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ABSTRACT

Let V be a finite dimensional real Euclidean space and let G be a

finite irreducible group generated by orthogonal reflections across

hyperplanes in V. We study interpolation of operators in G-invariant

norms on V. A collection of G-invariant norms is called G-sufflclent if

any G-invariant norm is a strlct interpolation norm for this collection.

Using the general theory of sufficient collections we calculate

explicitly·two remarkable minimal sufficient collections and study their

extremal properties.
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COXE:I'ER GROUPS AHn INTERPOLATION OF OPERATORS

Nahum Zobin, Veronica Zoblna

To our teacher, Professor SeI im J::rein,

th
on his 75 birthday

Introduction.

Here we present a detailed exposition of our results on interpolation

of operators in finite dimensional spaces with norms invariant under the

action of a Coxeter group.

The first result of this sort was a finite dimensional version of the

well-known theorem due to B. Mityagin [5] and A.P. Calderon [3],

asserting that every B -invariant norm on Rn is a strict interpolation
n

norm between the in - and in - norms (B is the group generated by all
1 ~ n

permutations and all changes of signs of canonical coordinates in Rn ).

nIt follows from our results that, say, i-norm i5 not a strict
CJ)

interpolation norm for any finite collection of B - invariant norms,
n

all different from the in - norm. So, the above two narms are , in this
CJ)

sense, extremal B - invariant norms . What is the reason for such an
n

extremality ? What are the analogs of these norms if we conslder other

graups (ar semigraups) ? These questions were studled far general groups

[ 13,14 ] and, further on, for general semigroups [ 10,11 ], a full

exposition of the general theory i5 contained in [ 12 ].

The case of Caxeter groups is especially interesting because i t

turned out that i t 1s p05sible to give final answers to almost all

natural quest ions.

The first re5ults were obta1ned in [ 8,9 ], but at that time we had

no general theory and the results were very far from being final. It i8
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interesting that a bi t earlier M. L. Eaton and M. D. Perlman in their

investigation of analogs of Schur maJorization motivated by problems of

statistics [ 4 ], came to a necessity to study geometry of convex hulls

of orbl ts of vectors under the action of Coxeter groups. This was a

crucial point of our research and there are some intersections in their

and our results in this theme. A new approach was proposed in [ 13,14 ]

and It gave a possibility to understand the problem deeper. An intense

research was llOdertaken in 1979-1989 and we have obtained final results,

which were partially announced In 11], the proofs were very

complicated and depended heavily on the class1fIcatlon cf Coxeter

groups. Recently we found new ideas which Permitted us to give new and

simpler procfs.

The paper 1s erganized as follows. In § 1 we briefly describe the

general theory cf sufficient collectlons, Introduce main notions and

formulate main results. § 2 is devoted to a short Intreductlon Into the

theory of Coxeter groups, adJu5ted te our needs. § 3 contains some

additional material on Coxeter groups maybe, it i8 known to

speciaiists. but we could not fInd it In literature ). § 4 15 devoted to

a realization of the general censtruction cf sufficient collections In

the specif1c situation of Coxeter groups. In § 5 we study deeper

extremal properties of the canonical collectiens which are not cevered

by the general theory. § 6 contains expl1ci t formulas for standard

collections for some Coxeter groups. § 7 1s devoted tc some remarks on

connections between the results cf the paper and other problems of the

Interpolation theory.

Acknowledgement. We are greatly 1ndebted to our teacher Professor

Selirn Grigor' evlch Krein far numeraus frul tful dlscusslons, valuable

remarks and encouragement.
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§ 1. A ·review of the general theory.

PROBLEM. Let V be a real finite dimensional linear space. Let G be a

group of linear operators acting on V. A closed convex G-invariant set U

is called G-symmetric. A collection of G-symmetric sets {U} is
ce. ClEA

called sufficient (or,better, G-sufficient) if for any linear operator

L: V ~ V the inclusions LU c U (V Cl E A) imply the inclusions
Cl Cl

LU c U for any G-symrnetric set U.

The problem is to describe all sufficient collections, to construct

certain canonical colleetions and to Investigate them. This was done in

[ 14 ]. The papers [ 8,10,13,14 ] are mostly short announcements. The

most complete exposition of the theory for general semigroups of

operators is contained in [ 12 ], abrief survey of the theory is

contained in [ 11 ].

The main goal of this paper is to give a eomplete account of the

results eoncerning the realization of the general theory in the ease

when G 1s a finite 1rreducible Coxeter group.

NaTIONS. Dur approach 1s based on a systematic explo1 tatlon of the

canonlcal duality between the space End V of linear operators on V and

the tensor product space V~V/.

Suff1clent eollections are descr1bed in geometrie terms connected

ow1th certa1n sets: e , K(B) , Extr K(a) , U , S(U) def1ned below :

8" = { a~f e V~V' sup <ga,f> ~ 1 }
gEG
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( For a un1formly bounded group G the set 8 ls compact 1f and only if G

acts irreducibly ).

K(8) = conv 8 - the closed convex hull of the set 8 .

Extr K(8) - the set of extreme points of K(8).

VO
::: { f e V' <x,f> ~ 1, V x EU} - the polar set of U.

S(U) = { x~f E V@V' o
X E U, f EU}.

CoGx = conv {gx: geG} - the closed convex hull of the G-orb1t of x.

The follow1ng Theorem 1.1 glves a descript10n of all suff1c1ent

collect1ons.

THEOREM' 1. 1. A collect ion

suff1clent if and only if

{U} of
ca: IXEA

G-symmetr1c sets 1s

K(S) = conv U S(U )
IXEA IX

CANONlCAL COLLECTIONS .

b Collect1ons, cons1st1ng of G-symmetr1c sets of the form Co x are
G

called slmple collect1ons .

Collect1ons consist1ng of G-symmetric sets of the form

are called dual-simple collections.

o(Co .f)
G

There are two canonical collections constructed wi th the help of the

followlng sets ~ and fl'
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31 = { a e V 3 f e V', a0f e Extr K (a) }
a a

11' ::I { f e V': 3 a e V , a 0f e Ex t r K (a ) }
f f

The collection { Co a } n is called the simple canonical collectlonj
c aeJI

othe collection {(Coc.f) }fETt' 1s called the dual-s1mple canonical

collect1on.

THEOREM 1.2. The canonlcal collectlons are sufflclent.

EQUIVALENCE OF SUFFICIENT OOLLECTIONS. Conslder the set of all compact

cenvex subsets in V. This set cf subsets is equ1pped with the so called

Hausdorff tepology. The Hausdorff distance between two sets i5 def1ned

as follows :

d (U U) ~ 1nf { A : U C U + AB, U c U + AB },
H 1, 2 1 2 2 1

where B is a f1xed ne1ghborhood of the origin in V. It 1s clear that

the Hausdorff topology does not depend on the choice of B.

Let -H H
~, lim

H
denote, respect1vely, the closure, the

convergence and the limit in the Hausdorff topology.

Let {U} be a suffic1ent collection of bounded G-symmetr1c
(t a.EA

sets. It 15 clear that any collect1on of the type {Aa.Ua }aeA 1s

sufficient and any collection {Wß}ßEB such that

V a. E A , 3 {ß } c B
1

1s also suff1c1ent. This remark implies the follow1ng

DEFINITION 1. 1. Suff1cient collectlons { Va: }<XEA and { W
ß

} ßEB of

G-symmetric bounded sets are called equivalent if
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H H
{ ;\U };\elR,aeA = { ""Wß },.,.elR,ßesa

If

H H
{ ;\U };\~,CXEA s; { ""Wß }llelR,ßEB(X

then the collection {U} is said to be smaller than the collection
(X aEA

THEOREM 1. 3. The simple canonical collect ion ( Co a) is the
C aeTi

smallest s1mple suff1cient collection. The dual-simple canon1cal

collect1on (

collect ion.

(Co :>.Lf)o ) tTlI
C"'- fEJI

is the -smallest dual-simple sufflc1ent

THEOREM 1.4. The smallest sufficient collection exists if and only 1f

the two canon1cal collectlons coincide.

§ 2. A survey of the theory of Coxeter groups

A Coxeter group G is a group of linear operators in areal Euclidean

finite dimensional space V, which can be described as foliows: fix a

fInite number of hyperplanes in V contalning the origin, then the group

G i8 generated by orthogonal reflectlons across these hyperplanes. Let n

be a unit vector orthogonal to a hyperplane across which a reflect10n g

acts. Then the reflectlon g 15 deflned by the formula

gx = x - 2n <x,n>

We consider finite Coxeter groups. The finiteness condltion on the

group G Implles severe restr1ctions upon positions of the hyperplanes.

If reflections across two hyperplanes belong to a finite group, then the
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angle between these two hyperplanes must be n
m

m E N, m i?:: 2.

All hyperp1anes , such tha t the ref1ec tions across them be1ong to

the Coxeter group, split the space into connected cornponents - interiors

of polyhedral cones; these cones are called Weil chambers.

A hyperplane containing a (dirn V - 1) - dimensional face of a

Weil chamber is called a wall. The group G is generated by reflections

across the walls of any Weil chamber ( [1], eh.V, 3.1, Lemma 2 ). Any

Weil chamber is a fundamental domaln for the group G ( [1], eh.V, 3.3,

Th.2 ), this means that the G-orbit ef any x has exactly one point in

common with any Weil ehamber. The group G aets transitivelyon the set

of Weil chambers - for any two Weil chambers there exists exactly one

element of the group mapp1ng the first chamber onto the secend one.

([1], eh.V, 3.1, Lemma 2, and eh.V, 3.3, Prop. 1). Weil ehambers of any

Coxeter group sueh that the origln is its only fixed point are

s1mplieial cones, this means that every extreme ray of the chamber does

not belang to exactly one wall of the ehamber

Prop.7 ).

[1], eh V, 3.9,

A Coxeter group G i5 usually deser1bed with the help of its

Coxeter graph r(G). The vert1ces of the graph are in a one-to-one

correspondence w1th the walls of a Well chamber ( or w1th the extreme

rays of the chamber - an extreme ray corresponds to that un1que wall of

the ehamber wh1eh doe5 not contain It ); two vert1ces are conneeted by a

bond if and only If the angle between the correspond1ng walls 1s

m i?:: 3. This number m 1s attr1buted to the bond of the graph.

For a Coxeter group wl thout nontrivial f1xed points the

irreduc1bil1ty is equivalent to the connectedness of Its Coxeter graph

( [1], eh.V, 3.7, Corollary ).
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If G is a finite Cexeter greup then its Cexeter graph has no cycles

([1], ch.V, 4.8, Prop.8). A vertex ef a graph is called an end vertex

if it is connected with exactly one ether vertex. A vertex is called a

branching vertex if it is connected with at least three ether vertices.

The Coxete r graph cemp1e tely desc r i bes the We il chamberand the

Coxeter group as weIl. All Cexeter graphs are classified and, hence, all

finite irreducible Coxeter groups are classified too ( see [1]).

§ 3. Coxeter groups stabl11zers and supports

Let C be a Weil chamber. Let W(i) denote the wall ef C corresponding

the vertex n(i) e r(G). Let n(i) denote the unit vector of the inner

( with respect te C ) normal to W(i). For every I there exlsts exactly

one extreme ray of C not centalned in W( i), We let w( i) denote the

vector situated on this extreme ray, normalized by the cenditien

<n(i),w(i» = 1. So, we obtain

1
1 i = j

<n(i),w(j» = '
o , i :;C j

In the theory of Cexeter groups the vectors h n(l) ( with special h'S )
t

1are called roots, and the vectors Xw(i) are called fundamental
t

welghts.

Let g(i) denote the orthogonal reflectlon across the wall W(l)

g(i)x = x - 2<n(i),x> n(i)

•Let adenote the unlque element of orb a , belonglng to C.
c

DEFINITION 3.1.

suppca = { n(i) e r(G)

= { n(i) E r(G)

9
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One can easily see that if we decompose •a :2Li\w(i)
1

( i\ ~ 0 L
1

then supp a = { x(i) : i\ > 0 }. One can easily prove that supp aeie

not depend upon the choice of the Weil chamber C.

does

Let J, ... , J be the sets of vertiees of conneeted eomponents of
1 s

the Coxeter graph r(G). Let G denote the subgroup of G generated by
p

refleetions aeross the walls W(i), xCi) E J . Let
p

V = { x e V : gx = x V g e G }~
p p

It i5 elear that G are normal subgroups in G , V are invariant under
p p

G. It is known ( [1], eh.V, 3.7, Prop.5 ), that

G=G xGx ... xG
128

VaVfIJVe ... eV,
1 2 8

the actions of G in V are irredueible. It follows from the above
p p

that a veetor x from V belongs to a proper G-invariant subspaee if and

only if supp x interseets with every J ,1 ~ P ~ s.
p

Let a e C, eonsider

C(a) = n W(i)) n C =
X(lHhupp a

C

(n W(i)) n C
1: aew ( 1 )

C(a) is called the eell of a.

Let K c V, let Stab K denote the stabilizer cf K, i.e.,
c

Stab K = { g e G : gx = x , V X E K }c

It is knewn that -

(1) Stab a
c = StabcC (a) and n W( i) is the set cf fixed points cf

x (1) fsupp a
C

Stab a ( [1], eh.V, 3.3, Th.2);
c

(ii) Stab a is a Coxeter group, i t is generated by refleetions acrossc

the walls of the chamber C, contalning a, 1.e., it Is genera ted by the

reflections g(l) ( xCi) f supp a ) (~1]. eh. V, 3.3, Prop.l). We conslderc

the action of Stab a on C(a)~ to avold nontrivial flxed points,
c
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[ ( n W(i) ) n C ]~ =
l[ ( 1 ) Eaupp a

C

span ( o(i) :1[(i) E ·supp a }
c

One can easily see that

dirn C(a)~ = dirn V - card supp a
G

(. )

If S 1s a subset of vertices of the graph r(G), then let r(G)\S denote

the graph obtained from r(G) by eraslng all the vertices belanglng to S

together with all bonds 1ncident to these vertices.

PROPOSITION. 3.1. r(Stab al ) = r(G)\supp a.
G ~ C

G(a)

PROOF. Cons1der the traces of the hyperplanes W(i) on C(a)~. l.e.,

consider the hypersubspaces ~ ~weil n C(a) in the space C(a) . The angles

between the walls W( i) colncide w1 th the angles between their traces.

These traces obvlously form a Weil chamber for the group Stab al .•c ~
G(a)

so the Coxeter graph r(Stab al )c 1.
C(a)

1s completely defined by the

angles between the walls weil , n(l) E supp a,
G

i. e. ,

r (Stab al ) = r (G )\supp a.
G 1. G

C(a)
•

Let pr b denote the orthogonal proJectlon of the vector b on the
a

subspace C(a)~ .

PROPOSITION 3.2. supp (pr b) = supp b\supp a.
Stab a a G G

G

PROOF. b = c + pr b
a

c e n W(1). Note tha t b e W(1)
1: aew (1 )

~( 1[(i) E supp a ) if and only If pr b E W(i) n C(a)
G a
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supp (pr b) = { n(i) E r(stabGal ol)
Stab a a

G C(a)
pr b e C(a)ol n Weil } =

a

= "{ n(i) E r(G) : n(i) ~ supp a, pr b ~ Weil n C(a)ol }= .
G a

= { n(i) E r(G) : a E W(i), pr b ~ W(i) } =
a

= { n(i) e r(G) : a E W(i), b ~ W(i) } =

= supp b \ supp a.
G G •

PROPOSITION 3.3. Let G be 1rreduclble. Stab allS 1rreduclble lE
G ol

a

and only lE supp a cons1sts oE an end vertex.
G

PROOF. If the group Stab al
G ol

a

is 1rreducible then C(a) 1s

So,

1-dimensional ( or else there exist nontrivial fixed points for the

olaction of Stab a on a ). Applying the equality (.) above, we obtain
G

Card supp a = dirn V - dirn C(a)ol = dirn V - (dirn V - 1) = 1
G

supp a conslsts of one vertex.
G

Let us show that thls vertex from supp a 1s an end vertex. As C(a).l = aol
G

then Stab al = Stab alGol G ol
a C(a)

and the action is irreducIble If and

only if r(Stab al )
G .1

C(a)
i5 connected Stab alG ol

C(a)

acts wlthout

nontrivial flxed points, see (i) above) ort equivalently, r(G)\supp a is
G

connected. But supp a consists cf one vertex. so thls vertex must be an
G

end vertex, because r(G) is connected ( G is irreducible ) and r(G) does

not contain cycles ( see § 2 ).

§ 4. Canonical collections for Coxeter groups

•

Let G be a fini te irreducible Coxeter group acting in a fini te

dimensional real Euclidean space V. We consider V = V' and the dualit~
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i8 given by the G-invariant scalar product < , >. These agreements and

the orthogonality of operators from G imply the coincidence cf the sets

JI and 31'.

LEMMA 4.1.

(1) sup <gx,f> = <x,f> If and only If x'and f belang ta the same WeIl
gEG

chamber;

(11) lE sup <hx,f> = <x,f> = <gx,f> then there exlsts weG such that
heG

gx a wx and wf = f.

PROOF.

( 1 ) Let f belong to a Weil chamber C, take any h E Stab f and conslder
o G

another WeIl chamber hC.o Obvlously, f belengs to the chamber hC.
o

Cenversely, If C and C are WeIl chambers and f e C n Cl' then take
0 1 0

the element h E G such that hC :;: C It exlsts because of the
0 1

transltlvity of the action ef G on the set of WeIl chambers - see § 2 )

and notlce that fand hf belong to the same WeIl chamber C • so f = hf,
1

and h e Stab f. So, we have proved that the elements of Stab fand thec c

WeIl chambers contalnlng f are In a one-to one correspon~ence. So, if x

and f do not belong to the same WeIl chamber then hx f C fer any
o

h e Stab f. Conslder the walls W( 1) of C, such that f e W( i). The
G 0

subgroup Stab f ls genera ted by the reflectlons across these walls, so
G

it ls possible to fInd h e Stab f such that <hx, n(l» ~ 0 for all 1
G

such that f E W( 1). But If hx f Co' then there exlsts i such that
o

<hx,n(i » < 0, so f f W(l ) and <f,n(! » > O. Then
000

<gel )hx.f> = <hx - 2n(1 )<hx,n(l »,f> =
000

= <hx,f> - 2<hx,n(i )"><n(l ),f> > <hx,f> = <x,h- l f> = <X,f>
o 0
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and therefore if x and f do not belong to one Weil chamber then <x,f> <

< max { <gx,f>: g E G }. If there exist two Weil chambers C and C sucho 1

that x,f E C and gx,f E C then there exists h E Stab f such that hC =o 1 G 0

:c Cl and therefore hx, gx e Cl' so hx = gx , and <x, f> = <hx , hf> =

= <gx,f>. The assertion (i) is proved.

(ii) If sup <hx,f> = <x,f> = <gx,f> then by (i) there exist Weil
heG

chambers C and C such that f,x e C and f,gx E C. As the group G
1 2 1 2

acts transitivelyon the set of Weil chambers ( see § 2 ),there ex1sts

an . element wEG such that

therefore gx = wx and fx = x.

wC ::: C so gx , wx E C
1 2' 2

and f, wf E C2
'

•

REMARK 4.1. The assertion (i1) of Lemma 1 may be reformula ted as

follows:

Let x,y belong to one G-orblt and let

<x,f> ::: <y,f> ::: max ( <t,f> : t E orb x = orb y J.
G G

Then x,y belong to one Stab f-orbit.
G ~_.

THEOREM 4.1. Z E Extr(Co a)o lf and only lf supp Z conslsts of one
G G

vertex and for every connected component U of

lntersection suppca n U 15 nonempty.

r(G)\supp s
G

the

PROOF. Let Z E Extr(Co a)o. We may assume that z and a belang to
G

the same Weil charnb~r C. As Z E Extr(Co a)o there exists a (dirn V - 1) 
G

dimensional face of Co a such tha t
G

14
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. i.e., the system

5 ={ X E orb a : 1 = <x,z> = max ( <h,z> : h E orb a ) }
C c

is complete in V. Note that the vector a belongs to thls system. Due to

the assertlon (11) ef Lemma 4.1 the system 5 ceincides wlth the

5tab z-orblt of a.
c

Decempose a = a + a
1 2

a E C(z), a E C(z)~
1 2

a
2

= pr ~a. Then
c(z}

Y E erb a, as C(z) belongs to the
Stab z 2

C

5 c C(z)~ + { va: VER }, and
1

X :::J a + y I

1
X E 5 ,

set of flxed vectors of Stabcz. 50,

If the system 5 ls complete then dlrn C(z)~ + 1 = dim V.

for every

As ~card supp Z :::J dlrn V - dim C(z) we obtaln that
c

Moreover as the system 5 CI a + orb a Is complete In V,
1 Stab z 2

C

then a
2

~cannot belong to a proper 5tab z-lnvarlant subspace In C(z) , thereforec

every connected cornponent ofwlthSupp I a must Intersect
Stab z ~ 2

C c(z}

r(Stab 21 ) or, due to the Proposltlons 3.1, 3.2,c l.
c(z}

supp a\supp Zc C

must Intersect wlth every connected component of r(G)\supp z.
c

These arguments may be obviously reverted. •

THEOREM 4.2. a E ~ if and only if supp a conslsts of exactly onec

end vertex of r(G).

PROOF. Let a E ~, then there exists f E V such that a~f E Extr K(g),

hence a E (COef)O, f e (coGa)o, so the supports of a and f conslst of

one vertex each and suppcf Intersects wlth every component of

r(G)\supp a and supp a intersects wlth every connected component of
c c
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r(G)\supp f. hence supp a conslsts of an end'vertex.c c

Conversely. suppose that a E C and supp a conslsts of an end
c

vertex of r(G). Take any fEe n Extr(Coca)o. Then suppcf also conslsts

of an end vertex of r(G) and surely suppca ~ suppcf ( Th. 4.1 ). Note

that a E Extr(Co f)o ( Th. 4.1 ). and that Stab a acts lrreduclbly on a~
c c

Prop. 3.3 ).

Let us show that a@f E Extr K(~). Conslder a decomposltion

a@f = L A
l
a

1
&f

1
• Al ~ 0, L Al • 1, a

l
ef

1
E a.

1

We show that a ef = a&f. Apply the operators g~D ( g E Stab a ) to the
1 I c

equal1ty and sum up the results. We obta1n

( Card Stab a ) a*f = L A (
C I

I

r ga )~f
1 I

qEStab a
C

Decompose a = a + a
1 11 12

a :c V a
11 1

a E a~. Then
12

r ga:cl:
I

9ESlab a
C

g(a + a ) = ( Card Stab a )a
11 12 C 11

gEStab a
C

+ r ga
l2

qESlab a
C

~The second term vanlshes because of the 1rreduc1b111ty of Stab a on a
G

~( thls term belongs to a and It 1s Stab a-lnvar1ant ). So, we obta1n
G

::I r A v (a@f )
1 I 1

1

therefore f c r A v f .
I I I

Let us prove that v f e (Co a)o, Really
1 I G

Therefore

1v a = a =
I 11 Card Stab a

c
r ga

I
qESlab a

G

1v a@f = =----:--::=:-:----;-
I I Card Stab ac

ga *f
1 I

9ESlab a
G

Slnce a @f E ~ we conclude that for any h E G
1 1

<hva
I

1
f > = =-----:---=-:----;--

1 Card Stab a
c

16
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So. v f e (Co a)o .
1 1 C

But f E Extr(Co a)o
c and

v f e (CO a)o. Therefore V f = fand as
1 1 C 1 1

= L A ( ! a h~f
1 V 1

1

1we obtain tha t .a = L A ( - a ).
1 V 1

1

1 a 0f e :a: then 1 (Cocf)o Sut Extr (Co floAs - a 0f = -a e a e
V 1 I 1 V 1 G

I I

r 1 therefore a = 1 So, a ef ! f = al8lf.and a := A (- a ), -a = V a 181 •1 V 1 V I 1 1 I V
I I I

THEOREM 4.3. Let G be a finite lrreduclble Coxeter group. There

exlsts the smallest sufficlent col1ection ( = the canonical collections

colncide) lf and only if the Coxeter graph has no branching vertices.

PROOF. The canon1cal collect1ons co1nc1de

1f and

{ Coca }ae~ = { (Cocf)o }fe~

only 1f for any a e 11 there ex1sts f e 11 such that

Co a = (Co f)o, or Extr (Co a)o = orb f, or, equ1valently, for any a E ~
C C C c

all vectors from Extr(Co a)o have the same support, but every end
c

vertex. different from supp a, ls support1ng a vector from (Co a)o - seec c

Th.4.1. So, there 1s only one end vertex 1n r(G), different from supp a,
c

so there are onlY,two end vertices in r(G) and this happens if and only

if there is no branching vertices in r(G) (because r(G) contains no

cycles - see § 2 ). •

§ S. Standard collections

We want to inyestigate the structure of the canonical collections in

more details. One can easily see that there are "surplus ll sets in the

canonical collections: 1f a set U belongs to a canonical collection then

17



any set kU also belongs to 1t ( k e IR l. We want to e11minate such

surplus sets. Consider the group G consisting of operators kg
...

k E R\{O}, g e G . Obv10usly G ~ = ~ I i.e. G transforms n into ~ and ~

is flbered into nonintersectlng G-orbltsl.

Choose a representat1ve b In every G-orbit in n and let ~ denote the

set of such representatives.

DEFINITION 5.1. Every collectlon { Co b } ~ 1s called a standard
G bEJI

simple collection. Every collectlon { (Co bl o } ... 1s called a standard
G be~

dual-slmple collection.

Obviously, standard collections are equivalent to the corresponding

canonlcal ones and therefore 1nher1t many of their properties.

I t is possible to calculate the number of elements In standard

collectlons and to prove that this number 15 the smallest possible among

all sufflclent collectlons.

I. COXETER GROUPS AHn SPECIAL PERMUTATIONS OF COXETER GRAPHS. Consider a

Weil chamber C. Obv1ously -C 15 also a WeIl chamber. As the group G acts

transitivelyon the set of Wel1 chambers, then there exists exactly one

element wEG such that W (-C) = C. If -D E G then w = - D. Consider
o 0 e

the operator w (-0).
e

It maps C onto C, 1t i5 an orthogonal operator I

therefore It preserves angles between the walls of C and it maps extreme

rays of C to extreme rays of C. Therefore 1t g1ves rise to a special

permutation n of vert1ces of the Coxeter graph r(G). n 1s trivial if

-0 E G. This permutation TC preserves bonds and thelr mul tipI iel ties

beeause the operator W (-0) preserves angles between walls. So, theo

permutation TC maps end vertices to end vertices, giving rise to a

18



permutation n of the set of end vertices, the permutation n is

completely defined by the permutation n. The permutation 7t contains

cycles of length at most two, because [w (_Q)]2 =
o

2 2 2 2
[w (-0)] eWE G, w maps C to C, therefore w = 0 ).
000 0

really,

LEMMA 5. 1. Let suPPex and sUPPeY consist of one vertex eaeh.

Then x 1s G-equivalent to Y if and only if 1t sUPPex = sUPPeY or

PROOF.

x is G-equivalent to y ** 3 g e G , k E R\{O} , x = kgy

1
~ 3 k e R\{O} sUPPe k x = sUPPeY

~ supp x = supp y. or supp (-x) = supp· y
e e e e

~ supp x c supp y or supp w (-x) c supp y
e eGO e

•

COROLLARY 5.1.

JE -0 E G then x 1s G-equivalent to y 1f and only 1f suPPex = suPPey.

IE -0 ~ G then x 1s G-equivalent to y 1f and only If sUPPex = sUPPeY or

n supp X ::: supp y.
e e

I I. SUFFICIENT COLLECTIONS CONTAINING nIE SMALLEST NUMBER OF SETS.

THEOREM 5.1. Let G be a fin1te lrreduclble Coxeter group. The number

of elements in a standard collectlon equals

(I) the number of end vert lees of the Coxeter graph prov Ided the

operator -0 _e G.

(il) the number of end vert1ces of the Coxeter graph minus 1 provlded

the operator -Q E G.

19



PROOF. I t 1s known from the c!ass1f1cation cf connected Coxeter

graphs ([1], eh. VI, 4.1, Th.1 that there may be two or three end

vertlces in a Coxeter graph. So, If -0 ~ G then,

(1) in the case of two end vert1ces, n changes places of these vertices

and therefore vectors supported at these vert1ces are G-equlvalent.

(11) in the case of three end vertiees n ehanges places of two of them

and leaves the third end vertex fixed (because i t contains cycles of

length at most twol, therefore vectors supperted at the first two end

vertlces are G-equ1valent and as for vectors supported at the thlrd

vertex they are G-unequlvalent to the previous vectors.

The number of sets in a standard collectlon is equal to the number

of vectors in 11, or, equlvalent ly, to the number cf palrwise G -

nonequ1valent elements in ~, or, equ1valently, to the number of palrw1se

n-nonequ1valent end vert1ces of r(G).

So, if -6 E G th1s number equals the number cf end vertlces.

If -0 ~ G then there 1s exactly one pair of n-equlvalent end

vertices so the number of elements of ~ equals the number cf end

vertices minus 1. •

New we want to study general suff1cient collections conta1ning the

minimal possible number cf sets. We shall prove that in the most cases

these sufficient collections are the standard ones.

Let { U } be a flni te sufflclent collect10n. I ts sufficlency 1s
1

equivalent to the inclus1en

Extr K(8) c US(U )
1

But we know all vectors from Extr K(S): cons1der the set { n(a) } of end

vert1ces cf the Coxeter graph r(G) and let

20
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One ean easily see that

Extr K(a) a { k(tt,ß)gw(<<)@hw(ß) : g,h E G, a $ ß, n(<<), n(ß)

1
are end vertices of r(G), k(a,ß) c <w(a),w(ß» }

Note that If k(a,ß)w(ex)ew(ß) E S(U) and U 1s G-symmetr1e then

k(afß)gw(<<)~hw(ß) E S(U) for all g,h E G. So, the eolleet1on {U } Is
1

suff1elent If and only 1f we ean dlstrlbute all elements of the type

k(ex,ß)W(ex)0W(ß) among the sets S(U ). We must know whieh of the elements
1

h(ex, ß )w(ex)@W(ß) are 11 compat1ble" f 1. e., ean belong to one set S(U), and

which are not.

Let G be' a flnlte Irredue1ble Coxeter group.

LEMMA 5.2. Let e ~e E Extr K(SJ. Let U be aG-symmetrie closed set
1 2

such that e ~e e S(UJ and ve E Extr V
121

oThen ~e ~ Extr U for any ~ > O.
1

1 e e Extr VO ( v > 0 J.
v 2

PROOF. We may cansider that e , e belang to the same Well chamber,
1 2

1Represent the element - ev 2

1- e = a ve + a,v 2 1

.La E e
1

T~ follows from the irreducIb111ty of the group Stab e
G 1

.Lon e
1

that

ve Card(Stab e )
1 G 1

Henee

gESt ab e
G 1

1 A 1
I: g - e =« ve .
A V 2 1

Card(Stab e) Q
C 1

But the left part of this equality 1s a eonvex eomb1nation of elements
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from Uo. Hence a ve e Uo, and
1

< ave, ve > = <
1 1

1 A 1
< g v e

2
,ve

1
> = 1

Card(Stab e) qeStab e
C 1 C 1

Now assume that ~e e Extr UO for some ~ > O. As av > 0
1

(0:. =
<e ,e >

2 1

2v <e ,e >
1 1

) and ave e UO, then ~ ~ av. But 1f ~ > av then
1

1 = <ave ,ve > < <~e ,ve > ~ 1,
1 1 1 1

°slnce ~e e U , ve e U. Thus, ~ =. av and therefore ~e (= ave ) ls a
1 1 1 1

A 1
convex combinat1on of the elements g e e UO (g e Stab e ) I whichv 2 G 1

d1ffer from ~e. But this contradicts to our assumpt1on, tha t
1

o
Jle e Extr U .

1 •

LEMMA 5.3. Let -D e G . Let e 0e e Extr K(S). Let U be a elosed
1 2

G-symmetr le set and e ee e S(U). Conslder any xC!Je E Extr K(8). Then
121

x$e ~ S(U).
1

PROOF. It follows from the inclus10n e 0e e S(U) n Extr K(S) that
1 2

for some r e
1

E Extr U and 1
'1

e
2

e Extr UO . As -D e G we may

consider 7 > O.

Analogously , if X0e
1

E S(U) n Extr K(8) , then for some 0 > 0

X E Extr U, and i e
1

E Extr Uo, but this contradicts to the assertion
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of Lemma 5.2. •

It follows from the Classlflcatlon of Coxeter graphs that If r(G)

has a branchlng vertex then It has three end vertlces.

LEMMA 5.4. Let -0 e G and let r(G) have a branchlng vertex. Let n(1),

n(2), n(3) denote the three end vertlces of r(G). Let e be supported
I

at n(l) , e E C ( 1 = 1, 2, 3 ).
1

(1) Let e ~e , e ~e e Extr K(21) • If
1 2 1 3

e ~e, e ~e e S(U )
1 2 1 3

then

u = A Co e •
G 1

(11) Let e ~e e ~e E Extr K(e) . If e ~e , e $e E S(U) then
2 1 , 3 1 2 1 3 1

U = Il (Co e )0.
G 1

PROOF.

(1) As e ~e ,e $e e S(U) n Extr K(S) then there exlst Atll such that
1 2 1 3

1 1 °Ae ,Ile e Extr U, and ~ e , - e e Extr U. As -0 e G we may assume that
1 1 ~ 21.13

A,#.! > 0 and therefore A = #.!. So, Ae
l

e Extr U, ~ e
2

, ~ e
3

e Extr Uo.

Then

It fellows from Theorem 4.1 that Extr (Co e )0 = (erb e ) U (orb e ).
G 1 G 2 G 3

Therefore (Co e )0 = conv Extr (Co e )0 = conv [ (orb 'e ) U (orb e ) ) =
G 1 G 1 C 2 G 3

= conv [ (Co e ) U (Co e ) l, therefore
G 2 G 3

A Co e = A {conv [ (Co e ) U (Co e ) ]}o = U
G 1 G 2 G 3

The assertion (ii) Is proved simllarly. •

REMARK 5.1. Note that the condltlon -0 e G ls very substantlal. If

-0 ~ G then we may only assert that If e
l
0e

2
, e

t
0e

3
E S(U) n Extr K(S)
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then there exlst A, IJ E IR such that Ae E Extr U , Ile e Extr U,
1 1

1 ° 1 °~ e e Extr U and - e E Extr U. Certainly, if A and 11 are of the same
~ 2 11 3

sign then we can assert that A :: J.L and repeat the arguments of the

prev10us proof. But 1f -0 t! G then 1t may happen that A and J.L are of the

different signs and, for example A then we only 1 and= -Il, know that X e
2

1 e belong to Extr U
O It may happen ( and it really happens ) that- X 3

-e e orb e and therefere we
3 C 2

only know that e @e e S(U), th1s ls
I 2

certa1nly not suff1c1ent fer the val1d1ty of the assert10n that

U = ACO e .
C I

THEOREM 5.2. Let G be a finite irreduelble Coxeter group.

(1) The number of sets in any suffle1ent eolleet10n 1s not smaller

then the number of sets 1n a standard eolleetion.

( 11) I f the Coxeter graph has no branehlng vert lees or the opera tor

-0 E G then any suff1elent eolleetlon eons1stlng of the same

number of elements as a standard one - ls a standard collectlon

1 tself.

(111) - If the Coxeter graph has a branchlng vertex and the operator

-0 t! G then there exist non-standard suffielent eolleetions

conslst1ng of the same number of elements as the standard ones.

They may be descrlbed as follows

let ~ = ( e,e ), every sufficlent coll~ctlon ( U,U ) is of the
I 2 I 2

form:

U :: Cl
1

o(Co e )
C 2

, ß Co e c U C ß <e , e > (Co e )0,
C2 2 2 I Cl

U :: a: Co e
2 C 2

PROOF.

ß Co e c U C ß <e , e > (Co e )0.
C I I I 2 C 2
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(i) If the Coxeter graph has no branching vertices then by Theorem 4.3

the two canonical collectlons coincide and they form the smallest

sufficient collection. A standard eollection (whieh is equlvalent to the

respeetive canonical one) 18 also the smallest collectlon. Hence there

i5 a standard subeollectlon in any fInIte sufficient eolleetlon.

Therefore i tremains

branchlng graphs.

to prove the assertion only far graups wi th

Let { U1, ... ,U } be a sufflclent collectlon.
m

As we knaw from the classlfieation of Coxeter graph ([ 1], eh. VI.

4.1, Th.l ) I the branehlng Coxeter graphs have three end vertices.

Therefore standard eollectlons consist of three sets if -Oe G and of two

sets If -D e G (see Theorem 5.1 ). Consider these two cases.

I. -1 e G , ~ CI { eie I e }.
123

One may canslder that all e 's belang to the same Well chamber . The
1

poInts i $ J , I,J = 1,2,3, are extreme points of K(8),

<e , e >
1 J

v e *e , v e ee I v e ee E Ex t r Kca)
12 1 2 23 2 3 31 3 1

here v
IJ

:c
1 Consider the points

Assume that v e *e E SCU )
12 1 2 1

then by Lemma 5.3 v e *e e S(U )
23 2 3 1

and

v ~ 0e f S (U) . Le t v e 0e E 5 CU) then v e @e f 5 (U) . Hence
3~ 3 1 1 23 2 3 2 31 3 1 2

v e *e
31 3 1

mus t be long to the thl rd se t S (U). Tbi s means tha t the
3

colleetian { U
1'

... ,U } consists of no less than three sets.
m

11. Let -0 f G. Consider the permutation n of the end vertices of

the Coxeter graph, which was deflned In part I of § 5. The permutation n

transposes two end vertiees and leaves the third one fixed.
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Let ~ = {e ,e } and let e be the vector corresponding to the n-fixed
1 2 1

vertex of the Coxeter graph. ( One may conslder that e
1

and e2 belong

to the same Weil chamber ).

So, v e 0e E Extr K(S), v e 0e E Extr K(S) (v
1j

> 0).
12 1 2 21 2 1

Assume that v e 0e E S(V)
12 1 2

and v e 0e E 5 (U) .
21 2 1

We cannot use

Lemma 5.3, since -0 ~ G ). Then for some l'and a

and

'3"e E Extr V ,
1

V
12 e E Extr V

O

2

ae E Extr V ,
2

V

21 e E Ex t r UO
•

a 1

Remark that in thls case the numbers 1 and a can be of arbitrary signs.

But by the choice of e : -e = w e
1 1 0 1

the operator w was deflned
o

in part I of § 5 ). As U is aG-symmetrie set then w U a U and therefore
o

v v
(=-'3"e ) e Extr U Analogously, 21 ( =- 21 ) 0

lWe w e e E Extr U .
o 1 1 a o 1

eS
1

v
Then 111 E Extr V and 21

E Extr VO but this is impossible bye e I
1 lai 1

Lemma 5.2.

Thus , v e 0e and
12 1 2

v e 0e cannot belong to
21 2 1

S(V) simultaneously.

Hence the collectlon { U } conslsts of no less then two sets.
I

(1) is proved.

(ii) Let {V } be a fInite sufflcient collectlon conslsting of the same
I

number of sets as a standard one. We show that {U } is a standard
I

collection itself.

If the Coxeter graph r(G) has no branchlng vertlces then the

canonical collections colnclde and there exlsts the smallest sufflclent

collection (see Theorem 4.3). Then there exists a standard subcollection
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of the collect10n {U }. So, the assertion (i1) 1s obv1ous.
1

Let the Coxeter graph have a branching vertex , and -a e G. Then

every standard collection consists of three sets. Let ~ = { e
1
,e

2
,e }

we consider e , e , e belonging to the same Weil chamber).
1 2 3

Every extreme point v e *e (v > 0, i,J = 1,2,3 ) of K(S) roust
1J 1 J lJ

belang to one of the sets S(U ), S(U
2

) , S(U )
1 3

Assume that v e ~e E S(U
1

), then by Lemma 5.2
12 1 2

V e *e ti! S(U )
23 2 3 1

V e 0e ~ S(U )
21 2 1 1

V e *e ~ 5(U )
31 3 1 1

Let v e 8e E S (U ), then by Lemma 5.2
23 2 3 2

V e 0e ti!! S(U )
32 3 2 2

V e ee ~ S(U )
31 3 1 2

V e ee ti!! S(U )
12 1 2 2

As v e 8e ~ S(U ) , S(U
2

) then v e 8e E S(U ) , and then
31 3 1 1 31 3 1 3

v e 8e ti!! 5 (U). Cons1der v e 0e . As 1t does not belang to S (U )
13 1 3 3 13 1 3 3

then it must belong to S(U ) or to S(U ) . We consider both cases.
1 2

The first case. Let v e 8e E S(U )'
13 1 3 1

then v e 8e ti!! S(U ) .
32 3 2 1

As v e 0e til!: S(U) then v e 8e til!: S(U). Then 1mmediately v e ~e til!:
32 3 2 2 32 3 2 3 21 2 1

by Lemma 5. 3 ).

So, v e 0e E S(U ), and we obtain the following
21 2 1 2

v e 8e ,V e 8e e 5 (U )
12 1 2 13 1 3 1

v e 8e ,v e *e E 5 (U )
23 2 3 21 2 1 2
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v e ~e ,v e 0e e S (U )
31 3 1 32 3 2 3

By Lemma 5.4 these inclusions Imply the following equalitles:

U CI i\ Co e , U :c i\ Co e , U = i\ Co e .
1 1 Gl 2 2 G2 3 3 G3

The second case. Le t v e ee e 5 (U ) then v e 0e ~ 5 (U) (and
13 1 3 2 21 2 1 2

ear 11er we had v e 0e ,
31 3 1

v e &e ~ S (U »). As
32 3 2 2

v e ~e ~ S(U ),
21 2 1 1

f! S(U )
2

then v e 0e E S(U ). Hence
21 2 1 3

v e 0e e 5 (U ), v e 0e e 5 (U ) , v e *e e 5 (U ).
13 1 3 3 12 1 2 3 32 3 2 3

Now, as v e ~e E 5 (U ), 5 (U) then v e 0e E 5 (U ).
32 3 2 2 3 . 32 3 2 1

Thus we obtaln

the followlng

v e ~e , v e ee e 5 (U )
12 1 2 32 3 2 1

v e @e , v e ee e S (U )
13 1 3 23 2 3 2

v e 0e • V e ee E S (U )
21 2 1 31 3 1 3

By Lemma 5.4 these Inclus10ns imply the followlng equalltles

U = #J. (Co e )0
1 1 G 2

(11) 1s proved.

o
U = #J. (Co e )

2 2 G 3
o

U = #J. (Co e ) .
3 3 G 1

(li1) Consider a sufficlent collection {U ,U }. Cons1der (as above) that
1 2

e and e belong to the same Weil chamber. There are three end vertlces
1 2

of the Coxeter graph r(G) corresponding to the vectors e, e, e. Let
123

w e = -e , w e :c -e , w e = -e . We consider elements
01 1 02 3 03 2

v e @e
l J l J

( V
lJ

1
= ), they all belong to Extr K(8), so we must dlstribute<e ,e >

l J

the elements v e GDe among the sets S(U ) and 5 (U ).
l J l 1 2

Remark that v = v and v = v Indeed
12 13 21 31

! 1 1 1v a = = = = V
12 <e ,e > <w e ,w e > <-e -e > <e ,e > 13

1 2 o 1 0 2 l' 3 1 3
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and the second equallty may be proved slml1arly.

Let v e ~e E 5 (U ) then
12 1 2 1

v e ~e E S(U )
13 1 3 1

( Indeed , v e l3e :::
13 1 3

== v e l3e : V (-e) $ (-e ) = v (w e )~ (w e ) E 5 (U ))
12 1 3 12 1 3 12 0 1 0 2 1

By the same reason as 1n the proof of (11) we obtaln as

v e ee E S(U ) then v e ~e E S(U ).
12 1 2 1 21 2 1 2

As above, one can show that the Incluslon v e se E S(U) Implies
21 2 1 2

the Incluslon v e Se E S(U ) . So, we have got that
31 3 1 2

v e 0e , v e se e 5 (U ) and v e 0e , v e ~e e 5 (U
2

).
12 1 2 13 1 3 1 21 2 1 31 3 1

We have distrlbuted almost all elements of Extr K(a) between S(U ) and
1

5 (U ) wl th the only exceptions of v e se and v e &e. Let us see what
2 23 2 3 32 3 2

is the situation with them.

Obvlously v = v and 1f v e se E 5 (U ), then v e 0e E 5 (U ).
23 32 23 2 3 l 32 3 2 l

Le t i = 1 , i. e. , v e GDe e 5 (U ). Then 5 (U ) 3 v e 0e ,
23 2 3 1 1 12 1 2

v e GDe .
23 2 3

It follows from the flrst inclusion that Ae E Extr U
1 1

and

E Extr U 0
1

e
Jl 3

e Extr U o.
1

The s igns of A and IJ mus t be

From the second Incluslon we have :some A.for

v
23andJle e Extr U

2 1

different ( really, If A~ > 0 then we consider vectors

and we obtain a contradiction with Lemma 5.2 ).

Without loss of generallty we may assurne that A > 0, IJ < o. Then

IJe : IIJI w e and the element IIJlw e ls an extreme point of U and,
2 o 3 o 3 1

hence IIJle3
is also an extreme point of u. Then by the Remark 5.1,

1

uslng the fact that A and IIJI are both positive we conclude that
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v
U = ( 12 Co e )0. Now the set

1 T G 2
U Is submlt to the only restrlctlon

2

v e *e E S(U ). For example, the set Co e satlsfles thls condltlon.
21 2 1 2 G 2

V

Thus a non-standard collectlon {( ~2 Co e )0, Co e } ls sufflclent.
f\. G 2 G 2

Note that one can take U to be any set such that
2

ß Co e c U c ß _1_ (Co e )o.
G 2 2 v G 1

21

Let 1 = 2 : v e tOO E S(U )
23 2 3 2

Then v e @e
21 2 1

v e @e E S(U )
23 2 3 2

Then for some i\ • ~

v
i\e E Extr U

21
E Extr U °T e

2 2 1 2

V

E Extr U
23

E Extr U °~e
2 •

e
2 J1. 3 2

Slgns of
-v

23 and i\ must be dlfferent by Lemma 5.2 ) , slnce

-v V
23 23 ° Hence the slgns of i\ ande = w e ls an extreme polnt of U .
~ 2 ~ o 3 2

~ must be the same, therefore i\ = ~. Consider A.Jl > O.

Then U = A- Co e . And U ls submlt to the only one restrlctlon :
2 G 2 1

v e @e E S(U ). Lt follows that U
1

may be any closed G-symmetrlc set
12 1 2 1

satlsfylng the condltlon

ß Co e C U c ~ (Co e )0.
eil V G 2

12
•

§ 6. Explicit formulas for standard collections.

All flnlte lrreduclble Coxeter groups are classlfled, they are

dlvlded Into 4 countable famliles : A, B, D, J
2

(p), and.6 exceptlonal
k k k

groups : E, E • E ,F • H , H. Their Coxeter graphs are classlfled
6 7 8 4 3 4
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see [1], ch.VI, 4.1, Th.l ).

As it was mentioned above. in the theory of Coxeter groups special

vectors on extreme rays of Weil chambers are called fundamental weights

and they are calculated explic1tly see [1] ). There are also

descriptions of the action of the operator n on the vertices of Coxeter

graphs. In some cases there are exp11ci t descr1pt1ons of Weil chambers

•and the related operators a ~ a .

We calculate standard collectians far Caxeter grcups such that there

exist simple descripticns cf the1r acticns. Slightly different fcrmulas

were given in the survey [11] but we prefer tc give them here for the

sake cf ccmpleteness.

Group ~ ( k ~ 2 ) .

1 f h Rk+lV is a hyperp ane c t e space

k+l

V = { x = (x •... x ): L x =°}1 k+l 1
1=1

c are the vectors of canonical basis
1

Cl = (1,o .... 0). c
2

= (0.1, .... 0). .... c
k
+

1
= (0,0, ... 0.1).

The action of the group A: permutations of coordinates of a vector
k

in the canonical basis (the triv1al case is not under conslderation).

The Coxeter graph is : 0--0- ... -0--0 . As the Coxeter graph has no

branching vertlces then there exlsts the smallest sufficlent collection

(Theorem 4.3).

A Weil chamber:

k+1

C = { X ::: (x ." .• x ): x ~ X ~ ••. ~ x ~ x L x = ° }
1 k+1 1 2 k k+l ' 1

1=1

•Let x be the only vector of orb x in the Weil chamber C, 1. e. , the
G
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•operation x 1---+ x is the permutation of coordinates in the

nonincreasing order. The fundamental weights are the following

w =
l

c +
1

+c ) 
l

k+1
1 . E c

k+l J=1 J

The fundamental weights correspondlng to the end vertices of the Coxeter

graph ( i.e., the set n ) are

( k, -1, -1, ... ,-1 )
1

k+l
=

k+1
1 1: c

k+l J=1 J
w = C

1 1

kw = ( c +... +c
k 1 k

) -
k+1
L C =

Jk+1 Je 1

1

k+l
( 1, 1, ... 1, -k )

Remark that -D ~ A . Then by Theorem 5.1 standard collections consist of
k

one set (the number of end vertices minus 1). The permutation Tl

transposes the end vertices and therefore .fl = { w }. A standard
1

collection { Co w }.
A 1

k

Co W l:I { X
A

k
1

<x,gw > ~ sup <gw ,gw > } c
k 1 k

gEA
k

•= { x <x, gw > ~ <x ,w > :s <w ,w > } =k k 1 k

1
k • • 1

z:: { x ( I: x - x 'k ) ~ -- } =
k+1 l k+1 (k+l)1=1

= { x •- x ·k ~ 1 } =k+1 { x •
- X k+1

•- x 'k ~ 1 }k+1

•= { x : - x . (k+l ) :s 1 } = { x min x )(k+l) ~ -1 } .k+1 1
l

Taking w we obtainw =1 k+1

Co w = { x min x ~ -1 }
A 1 l

k l
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Group Bk ( k ~ 2 ).

v = Rk
. The action of the group

coordinates in the canonical basis.

permutations and sign changes of

The Coxeter graph: 0--0

1 2

4
-0-0

k

As graph has no branching

vertices, then the canonical collections colnclde and thls is the

smallest sufficlent collection.

The fundamental weights :

W = Cl + C + ..• + C = (1,1,
1 2 1

1,0, ... ,0) (i uni ts)

A Weil chamber

1w ::;-
k 2

C + c + ... + C
1 2 k

C c { X ::; ( xl"" 'X
k

) : x ~ X ~ ... ~ X ~ 0 }
1 2 k

•
X denotes, as above, the image of the vector x in the Weil chamber,

•i.e., the operation x ~ X is a non-increasing permutation of the vector

The fundamental weights corresponding to the end vertices of the

Coxeter graph ( i.e., the set ~ = { w ,w } ) are
1 k

w ::; C :: ( 1,0, ... ,0
1 1

The o~erator

1w = - ( 1,1, ... ,1 )
k 2

-0 E B. It follows that standard collections consist of
k

two sets : { Co w
B 1

k

Co w }.
B k

k

•Co w = { x: < X ,w > :5 <w ,w > } =
B 1 k 1 k

k

1
k • 1= { x: L x :s } =

2 1=1 1 2
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k •= { x: L x :S 1 } =
I

1=1

1

:: { x: r lXII :S 1 }

l=k

kThis is the unit ball of the space 1 .
1

•Co w = { X: <X , W > :S <w ,w > } :;:

B k 1 k 1
k

• :S ! :S !:::11 { X: X } = { X: max lXII }
1

2 2

This is a ball of the space lk .
co

The assertion about the sufficiency of the collection

{Co w , Co w} is the Hityagin-Calderon theorem ([3,5]).
B 1 B k

k k

It follows from our general theory that this collection 1s the

smallest one. This means that the norms of lk and lk are not strict
1 co

interpolation norms for any finite collection of B -symmetrie norms.
k

Group Dk ( k ~ 3 )

v = Rk
. The action of the group

even numbers of coordinates .

permutations and sign changes of

The Coxeter graph

k-1

/0
0--0-0- ... -0,
120

k

The fundamental weights :

w = c + c +... +c :11 ( 1, 1, ... 1, 0, ... , 0 ),
112 1

i units, 1 s i :s k-2;

W
k-l

1
=

2
c +c + ... +c +c -c)=

1 2 k-2 k-1 k

1= (1,1, 1,-1
2
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+ c + ...
2

w =! ( c
. k 2 1

A Well chamber

(

+ c + C
k-2 k-l

+ C
k

1= - ( 1,1, .. ~ ,1 )41

2

C ::l {x = (x
1 •

The fundamental welghts of the Weil chamber C correspondlng to the end

vertlces ( i.e .• elements of the set ~ ) are

w z:::I C :::J ( 1,0, ,0
1 1

2

! ( 1,1, ... 1 )
2

W
k-l

w =
k

1
= (1. 1 t 1,-1 )

1We omit the factor -2 in the formulas for w ,w.
k-l k

The graph has a branchlng vertex therefore the canonical collectlons

do not coinclde and the smallest collection does not exlst .

•The vector x may be obtained from x as follows : the coordinates of

x are rearranged in the modulus nonincreasing order. If the number of

•negative coordinates of x is even then all coordinates of x get the

signs 11+11. If the number of negative coordinates of x is odd then the

•last coordinate of x gets 11_11 and the other coordinates get 11+11.

To describe the canonical collections we need to conslder two cases.

I. Let k be an odd number. Then the operator -0 E D and therefore
k

(Theorem 5.1) that 5tandard collections consist of two sets. The action

of the operator w '(-1) on the fundamental weights cf Weil chamber 1s
o

the following :

w • (-1 )
o

w ~ W
1 1

w ~ w
k-l k

w ~ W
k k-l

A standard simple collection { Co wo 1
k

Co w }.
o k-l

k

Co w = { x:o 1
k

•<x ,w > ~ <w.w >
k-l 1 k-l
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k-1. •
c { X : ~ (X) - (X) ~ 1,

• L. 1 k
1=1

k-1. •
L (X) + (X) :s 1 } 111

1 k
1=1

:= { X
k-1 • •

L'(X)I + I(X )k l ~ 1}
1=1

c { X

Co W ::: { X
o k-1

k

•
<X ,w > ~ <w ,w >

1 k-1 1

•
<X ,W > ~ <W • W > } =

k k-l k

::r { X
•(X) :$ 1,

1

k •

L (X ) I ::5 k-2 } =
1=1

= { X max IX I I :$ 1.
I

k •

L lXII + (x )k - min lXII ::s k-2 } =
1=1 I

k

L lXII + min Ix11 ( (_1)N(X) - 1 ) ::s k-2 }
1 =1 1

Here N(x) 15 the number of negative components 1n the vector x.

A standard dual simple collection : { (Co w )0 , (Co w )0 }.
o lOk

k k

(Co w )0 c { X
o 1

k

•
<X , w > ::5 1 } =

1

a { X
•

Xl :$ 1 } = { X : max Ixll::s 1 }
1::51 ::5k

•(Co w)o = { X : <X ,w > ~ 1 } =
o k k

k
1-1

+ mln
I

::5 1 } :;

m1n Ix I I ~ 1 } =
I

lXII ( (_1)N(X) - 1 ) :s 1 }

•L (X )
I

1=1

•+ (x) -
k

.- { X

X := {

m { X

Let k be an even number, then -1 e D . A standard s1mple collect10n
k

{ Co w , Co w ,Co
D

w
k

} 15 the followingo 1 0 k-l
k k k

Co w = { X
o 1

k
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Co w = {x
D k-l

k

k

max lXII :s 1,. E lXII + m1n lXII ((_1)N(X) - 1) :S k-2 }
1=1 1

Co W :EI: { X : max IX I :s 1,
D k 1

k 1

k

I I I I N(X»)E Xl + min Xl (- (-1) - 1 ::S k-2 }
1 =1 I

A standard dual simple collect1on

{ (Co w ) 0 , ( Co w ) 0 , ( Co w) 0 }
D 1 D k-l D k

k k k

(Co w )0 = { X
D 1

k

max Ix 1I :S 1 }
1::S 1::Sk-l

(Co w )0 = { X :
D k-l

k

(Co w)o = { X
D k

k

k

E lXII + m1n lXII (_(_1)N(X) - 1) :S 1 }

I-I I

k

E lXII + m1n lXII ( (_1)N(X) - 1) :s 1 }
1=1 1

2The group 12 (p) acts in IR as follows : fix two straight lines

Tlcontaining the origin with the angle between them. The group I (p) 19
P 2

generated by orthogonal reflect10ns across these lines. In particular,

I (6) m G. The corner bounded by two rays,
2 2

1Isituated on these lines ( the angle between them equals
p

is a Weil

chamber. The Weil chamber C has two fundamental weights wand w. The
1 2

p

Coxeter graph is: 0---0. The Coxeter graph has no branching vertices,

so the canonical collections colnc1de and the srnallest sufflclent

collectlon exlsts.

If P is an even number then -1 e I
2

(p), therefore standard

collectlons conslst of two sets : regular p-polygons, one w1 th the

vertex on the ray, contalnlng w
1

, the other .. on the ray, contalnlng w
2

•
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If P 1s odd then -1 ti!! I (p)
2

therefore standard collections consist

of one set: regular p-polygon with a vertex on one of the f1xed linesl

i.e. on one of the rays w ( 1 = 1,2 ).
i

Any sufficient collect10n consists of no less then two ( p even ) or

one ( p odd ) sets and any sufficient collect1on w1 th such number of

elements 1s a standard one.

As for the rest Coxeter groups ment10ned above we don't know simple

descr1pt10ns of their actions, so we don't know simple descriptions of

the operations •x ~ x and this is why formulas for standard

collections 1n terms of this operation are noneffective. As Coxeter

graphs of these groups are weIl known ( (1) ) we can only answer the

quest ion on the the existence of the smallest suffic1ent collectlon and

the number of sets in standard collections.

Group [6' The Coxeter graph is o~ . As the graph has a

1 3 14 5 6

o
2

branching vertex then the canonical collections do not.coincide, so the

smallest suffic1ent collect10n does not ex1st. The operator w '(-1) acts
o

as follows

w • (-1) : w ~ W W ~ W W ~ Wo 1 6' 2 2' 6 1

Every standard collect10n consists cf two sets.

Group E1 . The Coxeter graph 1s

38
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Group ES . The Coxeter graph 1s

coilections do not colnclde, so the smallest suffIc1ent collection does

not exist. -1 E E7, every standard collection consists of three sets.

o~-o

1 3 14 5 6 7 S

o
2

The canonlcal collections do not coincide, so the smallest sufficient

collect10n does not exist. -1 e Es' so every standard collect10n

cons1sts cf three sets .

Group F4 . The Coxeter graph 1s
4

0---0-0--0

1 2 3 4

There exists a

descr1pt10n of the actIon of F but I t 1s rather complicated. The
4

canon1cal collections coinclde, forming the smallest suff1cient

collection, since there 1s no branch1ng vertlces in the graph . -1 E F ,
4

hence standard collectlons cons1st of two sets.

Group H
3

The Coxeter graph 1s
5

0--0-0 The canon1cal

collectlons colnc1de and form the smallest sufficlent collect10n.

-1 EH, so standard collect10ns cons1st of two sets
3

The Coxeter graph 1s
5

o-o-ס----ס . The canon1cal

collectlons colnclde and form the smallest suffic1ent collect1on. -1 e

eH, so standard coilections conslst of two sets .
4

§ 7. Some remarks.

K - MONO"iONICITY. Conslder a collect10n of pseudonorms {1I'1I }. One may
(X
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construct the following K-functional (see, e.g.

K (x; t ; 11· 11 ) = inf { L t 11 x 11
IX a. a. a. a.

IX

The pseudonorm 11' 11 ls said to be K-monotone

2 ]) for x E V, t· ~ 0
a.

x = LX}a.
IX

w1 th respect to the

pseudonorms 11·11 ) if the follow1ng implication holds :
IX

if K (x' t . 11·11 ) ~ K (Y' t . lI·n ) for all t i!; 0
'Cl' Cl ' . Cl' a. a.

then 11 x 11 :S 11 Y 11

One can eas1ly prove that 1f a pseudonorm ls K-monotone w1th respect

to a collect1on pseudonorms, then 1t is astriet 1nterpolat1on norm for

th1s eolleet1on. In [ 3 ] it was shown -that every B -lnvar1ant norm is
n

K-monotone w1th respeet to the norms ( in , in ).
1 00

I t was 0 bserved in [ 6 ] tha t a pseudonorm 1s K-mono tone w1th

respect to a eollection of pseudonorms {II'II } 1f and only if for every
Cl

X E V, f E V'

11 xliII f 11' ~ inf { f = ~ trJ X
L T"k '
k

=L
a.

z }
IX,k

( Here 11'11', (and, respect1vely, 1I.II Cl
) denotes the pseudonorm on V',

eonJugate to the pseudonorm 11·11 ( respeet1vely, lI·n ).
a.

PROPOSITION 7.1. Let G be a finite lrreduclble Coxeter group. Any

G-lnvarlant pseudonorm ls K-monotone wlth respect to any standard

simple collection.

PROOF. Take any G-invariant pseudonorm, then 1ts unit ball V i5 a

G-symmetr1c set. VO ls the un1t ball cf the conJugate pseudonorm. Take

x E 11 x 11 U , fell f 11"' UO
• Then fell xliII f 11' (Co x) o. Decompose f:

G

f = L v f , where f E Extr 11 xliii f 11' (Co x) 0 , v ~ 0 L v = 1.
k k k C k k

So, Card supp f :: 1 ( see Tb. 4.1. ). Then x0f = L v x@f . Obv1ously
G k k k

k
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ox e 11 xliII f 11' (Co f) ,so we may decompose x:
G k

X1:LA. x ,
<X.k 00tCt, k

x e Ex t r 11 x 11 n f n' (Co f ) 0Ctk G k A. ~ 0
00t

L A. = l.
Ctk

CX

So, sUPPGXOOt cons1sts of an end vertex of r(G) for every Ct,k. Decompose

xiZf

Obviously fell xliII fll' (Co x )0. Let supp x = n( s (Ct, k)), wherek GOOt G~

Tt(s(Ct, k)) 1s an end vertex of r(G),

canon1cal collect1on.

so Co x belongs to the simpleGOOt

...
Let rt = { wes) : seS } and let 11·11 denote the pseudonorm whose

S

un1t ball is Co wes), n(s) 1s an end vertex cf r(G).
e

We obta1n

LI v A. I 11 x 11 11 f lI S (Ct,k) =kOOt 00t s (a, k) k
(x, k

f
=L I v A. I 11 11 11

k US(CX,k)
11 x 11 11 f 11'x IIxll IIfll'kCXk CXk S (CX, k)

(x, k

so

As
f

~..,.,.......,...k~-r e (Co x)o then
"xII IIfll l C CXk 1

f
11 xliII k US(IX,k) ~ 1

ak s(a,k) IIxll IIfll' 1

IX,k

11 A. x
CXk CXk

11
S (a, k)

11 v f
k k

11 S (Ct, k):s L v A. 11 x ]I 11 f 11' =
k~

0:. , k

= 11 xliII f 11' .

and f:: L v f
k k

k

X=LA. x
CXk Ctk

a.
•

RECONSTRUCTING COLLECTIONS OF NORMS FROH nIE SET OF INTERPOLATION NORMS.

In the survey [ 2 ] the following question was asked : 1s 1t poss1ble to

reconstruct two norms, def1ned on the space V, know1ng the set cf all
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strict interpolation norms for this couple of norms ?

Recently O. Tikhonov and L. Veselova have shown that the answer is

lI yes li ( private communication ). The answer to the above question is

11 no 11 , if to consider not two but three ini tial norms on V - one may

consider two different standard collections - a simple one and a dual

simple one - for the group D,
n

n even the set of all strict

interpolation norms here is exactly the set of all D -invariant norms ).
n

If we replace the word II norm li by the word "pseudonormll in the above

question, then again the answer is 11 no 11 - a counterexample is glven by

two different standard collections for the group D, n odd. These
n

collections consist of two sets each, they are certainly nonequivalent

and have the same set of strict interpolation norms.
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