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On construction of half integral weight Siegel modular
forms of Sp(2,R) from automorphic forms of the
compact twist Sp(2)

x)
Tomoyoshi Ibukiyama

In this paper, we construct automorphic forms of
the non-trivial double covering 5;25:§3’of the usual
symplectic group Sp(2,R)(matrix size four) from those
of its compact twist Sp(2) = Sp(2,C)N\U(4) (U(4): the
unitary group of size four). Our main point is that
this construction preserves L functions. Shimura [27]]
has proved the correspondence between half integral
weight automorphic forms of SLZ(R) and integral weight
forms. Our results can be regarded as a genus two version
of his correspondence for the-compact twist. Our
technique is similar to Yoshida[32] . whose origin is
in Niwa [22), Shintani (307, Rallis[25), oda[23], Kudial!7],
and Howe[ 7 J. As well known, we have Sp(2)/+1 =~ S50(5),
and (SO0(5), Sp(2,R)) is a dual reductive pair defined by
Howe[ 1], so such construction is naturally expected.
Rallis[26] developped some local Hecke theory of the
dual reductive pair under the assumption that the double
covering attached to the quadratic form is trivial.
But this assumption is not satisfied in our case.

One of our motivation is as follows: By Ihara [/3] ,
or Langlands [2°], it has been conjectured that there should

exist some good correspondence between automorphic forms
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of Sp(2) and Sp(2,R). Some examples and some good dimensional
relations between these forms have been known. (cf.
[g1,010),[11,02]) The only method at present to
prove such conjecture seems to be the trace formula.
It has worked well at least for dimensional relations(loc.cit.).
But more direct correspondence, if it exists, is
also very interesting. Here, instead of construction
from Sp(2) to Sp(2,R), we would like to insert 'middle!
term égzzjii.and construct the 'first half' of the mapping
from Sp(2) to Sp(2,R). The construction from g;?E:i}
to Sp(2,R) is left as a work in future, but we would like
to point out that all the Hecke theory at finite places
in this paper(e.g. comparison of local Hecke vperators)
remains valid also for this case, and that the main
obstruction for the 'last half' is a lack of knowlegde
how to choose a correct test function at the archimedean
place.

Now, we explain our results more explicitly.
Let B be a definite quaternion algebra over Q with

discriminant d, O be a meaximal order of B. Put
6' = | b€ My(B); n'E = n(n)1,, n(n)€ Q*V ,
where ~ is the main involution of B. Then, G is a Q-form of
- x
65p(2) = {h €& My(H); b'h = n(n)1,, n(h) € R*},

wvhere H is the Hamilton quaternions. Let GA be the



adeligzation of G! and G'v be its v-component(v <o),

For finite primes p, put O

p=0@zp and

/
up - GL2(OP) /\Gp. Put U = G -Tg Up. For each pair

of integers (f1, f2) such that f,2f, Z o, denote by

/
'} the representation of &,
(rf1'f2 ’ f1’f2 ) P n o0

T _T4]
ETY

corresponding to the Young diagram P

The space M of automorphic forms on G’ with weight

(f1,f2) belonging to U is defined by:

M v G . -
2,1, = {f,G.A., vafz ; f(axu) = f’f1’f2(u)f(x)

for all u < U and a € G-'} .
(e£.[5] ). Here, Iof £ is regarded as the representation
1?2

of G_k by G'A—-; Ge'o—? GL(Vf1’£2). On the other hand, put

C = (A B} € Sp(2,2); C =o mod d’and
C D
det A= 1 mod.4 },

where d’is the least common multiple of d and 4.



Ve denote by Sym(f) the symmetric tensor representation o,f-f:dég.k
of GL,(C). For odd k Z 1, we denote by S(I", detk/@ Sym(k'))

the space of automorphic forms belonging to I" with

k/2

weight det ® Sym(k') (As for the precise definition,

see §2.) On this space, Hecke operators
To(Paon:Pc.Pd)(Prf d', as b< d<c, a+c = b+d) are acting
(See §3). On the other hand, denote by T(pa,pb,pc,pd)

the usual Hecke operators on M
f1 ’f20

Main Theorem Assume that i'1+a‘.‘2 is even. Then, there

exists a € linear mapping

&t M —s  S(D , daet{f4-12%5)/24 Sym(fz))

1212
such that
& (2(1,1,p.p)) = €.2.(1,5,5%,p) 0 (£), 2nd

0‘(T(1,PnP2vP)f) = TO(P'P’p3DP3)r(f)

for all £ € M and all primes p4 d', where

Ep = 1, or i, according as p = 1 mod.4, or 3 mod.4.

We define in §5 L series of elements of

s(1r’ , detk/2® Sym(k')). Then, we have

Corollary Assumptions and notations being as above,
we get IL(s,f) = L(s, o (f)) up to finitely many bad

Euler factors.




We shall treat everything adelically, because it allows
us an easier treatment on Hecke theory and is more
suitable for the construction by the Weil representation.
_In §¢1, we review on the p-adic double covering of
symplectic groups, and extend it to the group with

the square multiplicators. wWe also define a double

. covering and the Weil representation of its adelization.
This is a generalization of Gelbart[3 Jto higher genera,
In §2, we define the mapping g by the Weil representation
» using good test functions at the infinite place in
Kashiwara and Vergne [1b]. The precise definition of

half integral weight Siegel modular forms and its
classical interpretation are also given there.

In §3, after a short explanation on the Hecke theory,

we compare the action of Hecke operators on Mf £
1772

and S(I1 , det(f17%2*5)/3g syn(s,)). mhis part is
essential. In §5, we shall give some examples.

After this work had been finished, the author had a chance
to talk with Prof.Kudla, and he told me that he has
obtained some correspondence of the representations

of the general dual reductive pairs under some

assumption. The connection to this paper does not seem
very clear at present, partly because the theory of
spherical functions for the non-trivial double covering
of the symplectic groups has not been known. (cf, [11] )



$1. Weil representation and doubdle cover.

In this section, we summarize some fundamental
properties of the double covering of the symplectic
groups with some similitudes and the Weil representation.

1«1 Let F be any local field and put

Sp(n,F)

lg € 6L, (F): gd% =3 |,

where J (0 ‘Hh) . The explicit 2-cocycle defining the

qn ©

topological double covering of Sp(n,F) has been known
(Weil(3}), Rao (27], Perrin(#), Lion. -Vergne[zl)).
Now, take Q € M_(F) such that Q = *Q and det Q } o.

Then, we have an embedding as in Lions-Vergne(loc.cit):

A B A®@ 1, BO®Q

The Weil representation RQ of Sp(n,F) attached to Q

is defined by the restriction of the Weil representation

of Sp(nm,¥) to Sp(n,F) through this embedding, that is,
2

for any C-valued L° function ¥ on M m(F), RQ is
?
given by the following formulae:
RQ( a t°_1 ) Y = l_(lz-—a Idet a' m/2 “P (tay))
v ‘a 0 (det a™)

for a € GLn(F),



X ot t
R (o 1n) = X(tr(xye*y)/2) @ (y) for x = *x € M (F),

Ry(3) = ¥(1)™" f ¢ (y*) K (tr(yQy*))[det o[*/2 ay'.
, K _(F)

‘n,m
Here, X 1is a fixed non trivial additive character of P,
and & (%) is a certain 8-th root of unity defined by Weil
[31]. (Note that, in our notation, the character in Weil
is x = X&/2d.) For any a, b € F, we have

Y(ab) ¥ (1)
r(a)¥y(v)

= (a, b)F’

where (a,b)F is the Hilbert symbol on F(Weil, loc.cit.).

It is known that Rp(g,8;) = c(81+8,)Ry(84)Ry(g,) for

some { +1 )'valued 2-cocycle on Sp(n,F). Values cQ(g1 ,g2)

can be calculated explicitly for amny given g,, &, (cf. [21 ]/
[24 ]'[m] )

For g = ( ‘é 1)3 ) ¢ sp(n,F), put r = rank C. Then, there

exist matrices P, Q &€ GLn(F) and A4 € GI‘n-r(F) such that

-1 o o t Ay ¥
Pleg = (g 1r) and "PAQ = ( ,' , ). Put
det C L] if r n,

(101) as= {
det PQ det A, ... if r< n.



Following [21], [24),[27]

¥ (1)

.2) -
(1.2) t,(8) (2P (aet )

We denote by c, or t, the above c for the quadratic

. or tQ

form Q(x) = x2. Then, we have

t1(g1)t1 (82)\ m tq(8182)
t, (gy85) / ta(8y)ty(8))

CQ(81 182) = Cy (81 ,32)111(

and everything in the right hand side can be calculated
for given g,, g,. For example, it is known by Weil

that if gy OT 8, is a 'upper triangular' matrix, i.e,

of the form (g JB)) ¢ Sp(n,F), then

t‘l,(gl@z)
t1 (81 )t‘, (82)

ci(8y,85) =

We gan express ¢, more explicitly in this case.

Assume that £g1’ gz} ={ (1: t§-1)' (é g)} as sets,

and define a as in (1.1) for (é g). Then, we have
(1.3) 31(81052) = (a, det x)F .

For the sake of simplicity, we assume from now on,
that F = Qp or R. To emphasigze its dependence on

various places v, we sometimes write cqr tq, ¥+ X etec.

as °Q,v etc. If no confusion is likely, we abbreviate Q

and just write Cye



To develop Hecke theory, we must take slightly larger
groups. Put

Gy = (g € M, (Q.); g’ = n(g)J, n(g) ¢ (Q, )2} ’

where v is a finite or infinite place. Put £, = Lz(Mn’m(F))
(square integrable functions), if F= R, and put
L=1¢ge LZ(Mn,m(F); ¢(-y) = 9(y) for all y ¢ Mn,m(F)} ,
if F =-Qp. L is also invariant by the action of RQ(g)

(g € sp(n,F)).

Proposition 1.4

We can extend Ry to the representation of G, by

putting: ]
o
Rt 2PN = ¢ AT

for ¢ ¢ [, where )\ is taken to be positive, if
F = Ro

Proof. " For n = 1, the proof has been given in Gelbart[3 J.

The general case is similarly proved, and we omit it here.

Remark Actually, we can extend RQ to Gv, where. G, is the
group of all v-adic symplectic similitudes. But, it is
more convenient to take the double cover of G;, because
» in the double cover of Gy» our important Hecke operator

T°(1,p,p2,p) vanishes identically.



¥rom now on until the eénd of this paper, we fix
characters "Xv as "fbli_o‘u‘m

Xp(x) = exp(-4TiFr(x)).  if P~ Q) and .
X, (x) = exp(4w ix), if P =R,

where Fr(x) is the fractional part of x. Then,

m Xy(x,). gives a non trivial additive character on

the adales Q4 which is trivial on 0. Now. assume that -
Q€ Mn‘,(fzp') if p + 2, and that, for p = 2, Q is half- '
integral, that is, diagonal componente belong to 2713
and other components to Z,. Put L = Mn.'mczp).

We define the dual L' of L by:

L' = {ye M, (Q); t(yy') € 2z, for all y'e L} .

iy



Let e be the smallest nonnegative integer among those

r such that L Dp'L'. Put N, = p® if p = 2, and

N2 - 2e+1' Put
(1.5)
A B + . A=
1% = {( c D ) € pr\ GI‘Z(Zp)' C=o mod.Np, and

if p = 2, also det A= 1 mod.4 )’ .

Proposition 1.6

Notations and assumptions being as above, Kp

splits G;. More precisely, let ¢ Dbe the characteristic

function of L. Then, there exists a {+ 1} valued

function €& on K, such that

RQ(k)‘f = sp(k) ‘¢ for all k € Ky
Proof It is enough to prove that RQ(g)q» = ¢, or -f
for generators of Kp. Kp is generated by the following

elements:

1) g..(: %, )2 €% 2 e=(, T x =t en(z),

Ne=(2 %4 ) a€GL,(2,), and if p = 2, also
(o a

t

det a = 1 mod.4, 4)3*(1,? )y X = xéMn(Zp),

X = o mod .
=onmn Np

As for the first three types of generators, it is easy
to see that RQ(g)‘f’ = ¢ . As for the fourth,



we have g = —J(; ‘f)J,, and RQ(g) is eﬂual’to'ﬁ"
‘BQ(-1’)RQ(J)RQ(; "{)RQ(J) up to sign. But, we get
R(=1)¢ = @ ¥O1)/ (-1)"),

Ro(3) @ = €4 ¥ (1) [det o[?/2, where ¢, is ‘the
characteristic function of L', and

Ro(s "D (laer o2y = y(1)™y.

On the other hand, §(1)/ ¥((-1)"2") r(1)2n'“_»-;“a""('1:-)2¥i‘ '-

or-)’(1)2(1*“m) .,a§corainc as nm is even. o¥ odd.

‘Because X11)8'= 1, our Proposition 1é'prdVedgj"q.é;d;§

Now, we define an adelic double cover.
Take a half integral non degenerate symmetric matrix
Q & Hm(Q). Define xp as above for each finite prime p.

Prolong the above function sp on Kp to G; by puft;ng

s,(g) = 1, or -1 arbitrarily for g ¢ G; ' B¢ Ko

We fix one such prolongation and denote it also ﬁjvspa

We put spo(g_) = 1 for g € G:,. Put
by(8128) = c_(8118,)8,(81)8,(8;)8,(818,), for VS

where c_ = the above 2 cocycle cq of Sp(n;Qv).
Then, bp = 1 on xp x xp. . Put

¢ = { & €My 83% = n(e)7, n(g)€ X}, &



-/3-

let'GA be the adelization of G. Put

GZ,‘ § g = (g,) € G,; n(g,)¢ (Q)vc)2 for all places v ] .
For g,, &, € G,, put
b(E,,8p) = TVF b, (g18)-

It is clear that this is well defined. We define a

double cover Ez of GK by this cocycle, that is,

'EI = GI x{+ 1} as a set, and the group multiplication
is given by:
(81v £1)(821 Ez) = (81820 £1 Ezb(&"gz))'

A double cover'E; of G; is defined in the same way by

b,. The groups Kp are subgroups of EX by embedding:
K, ® k —(k,1)¢€ G} . Put

6" = { 8¢ 61,,(2); 8% = n(g)7, n(g) € (@},

and for any @ € G*, put

s(¥) = T s (¥),

v

which is of course well defined. G’ can be regarded

as a subgroup of 5} by the mapping:

¢ts 8 — (d,s(8)) ¢ Gt.

Proposition 1.7.

We get G, = 6'GL, TT K.
p P

Proof. This is aobvious by virtue of the usual strong

approximation theorem. q.e.d.



Put X = M .(Q), X, = My ,m(Gy), and X, = ”n,m(QA)'

ﬁenote by S(XA) the Schwartz-Bruhat functions on XA'

For a function f = || f f, € 5(X,), where fp are
v

v’
the characteristic functions of Mn m(Zp) for almost
] - ?

all p, and g = (g, £) € G, (g = (g,) € G, , & = +1), put

TCQ(E)f = & U Sv(gv)Rvi(gv) fV'

Such functions as above form a dense subset of

S(X,), and we can extend ICQ(E) to the action on S(XA)
by continuity. We call KQ(E) the Weil representation
of (';X. Let V be a vector space over C. Then, we also

call the representation TCQ & id. on S(XA) ® V the

Weil representation.



§2. Automorphic forms on the double covering

In this section, we construct some automorphic forms

belonging to EX with n = 2,

2.1. First, we define vector valued automorphic forms

on ﬁz. Denote the Siegel upper half space of degree n by:

t

Ho= {X+8Y; X", v =Y e (R), Y50,

We take a function m(g,2) on Sp(n,R) x H as in

Lions-Vergne[2|Jp.174 (for our character 7§p). Then,

(tog(g)m(g,z))z = de1:(CZ+D)'1 for any

g = é g ) € sp(n,R), where t_(g) is as in (1.1)

N
(for Q = 1 and F = R). Denote by Sp(n,R) the unique
=+ - ~—
double cover in G° of Sp(n,R). For g = (g, £ ) ¢ Sp(m,R),

we put J(g,2) = (£ m(g,2)te (g))™'. Then,
J(§1§2’Z)'= J(E,: EZZ)J(ézv Z2) for §i= (gi’ 81‘_) € S/ITJH:R)

(i=1,2), that is, J is an automorphic factor.

(cf.Lions-Vergne,loc.cit.) Let (T, V) be a finite
dimensional irreducible representation of GLn(C).

Put.
Koo = {(-ﬁ i ) € SP(Q»R); A + iB is unitaryf‘ .

Denote by K_ the double cover of K, .
Put [ =6"N TTK.
L



Definition 2.1.

Notations being same as in §1, assume that

Q & Mm(Q) is half integral positive definite and

m is odd. A V valued function ¥ on 62 is called

automorphicform belonging to [T with weight det™ 29 ¢ R

if it satisfies the following conditions:

(1) % (rg) = $(g) forall r€G', g€l ,
(c2) ZE(SE) =- T(E) for (1,-1):%e&, ,

(c3) 2 (gk)= T(g) forallke WK, , B¢ T,
p

(c4) T (EK,) = J(Kw, i)™ T(ci+D)”' & (E)

for all K= (ke ,€) € Koy koo = ( § 3 )y 20d B Ty,

e

(c5) & ((x1,1)8) = F (g) for all (M,1) € &, x> o,

-6-+
E A®

The interpretation into the classical language is given

as follows:
For ( AByes p)~?
g =(5p) p(n,R), put 2 = g (i) = (AZ+B)(C2Z+D) .

Put
(2.2) £(2) = (too(g8)m(g,1)) ™€ (Ci+D)E ((g,1)).

Then, for any y e [7 , we have

(2.3) £(¥2) = s(&)(ty (F)n(¥,2) " ©(Ci+D)L(2).



Conversly, if there is a function f which satisfies
(2.3), we get an automorphic form & by virtue of
Prop.1.4. The proof is standard as in Gelbert ’

and we omit it here.

2.2. To construct automorphic forms by the VWeil
representation, we need some good test functions at the
archimedean place. If Q is positive definite, such

test functions are known by Kashiwara and Vergne[(b].
We quote here the part of that theory we need.

Let (X, V,) be an irreducible representation of 0(5),
where 0(5) is the real orthogonal group of size 5 for a

positive definite form. Put

H(Xx) = i V, valued pluriharmonic polynomial
functions P(y) on M, 5(R) such that

P(yh) = x(b)7'B(y) } .
Here, P(y) is called pluriharmonic, if

5 .321,
Z = o for i,J=1oo059
k=1 9 yikayjk

wvhere y = (yij)' The group GI.Z(C) acts on H( )\) by:

P(y)— P(a."y). ae€ GLZ(C). We denote this representation
by ©(A). For the sake of simplicity, we denote



xS
t

i .. -
the Young diagram [y . {1 (or the heightest weight

attached to a certain basis) by a series of integers

Theorem 2-4 (- Kashiwara- Vergne loc. eit.)

Notations being as above, T () ) .is irreducible.

We have H(X) ¥ o, if and only if X\ corresponds to

(m1,m2; £), €= (~-1)P1*02, m, 2 mza o, where (m1,m2)

is the heighest weight of X | SO(5) and & is the image

of -1 € 0(5). Besides, T (X\ ) corresponds to (-mz,-m1).

——

Theorem 2.5 (Kashiwara-Vergne loc.cit, Lions-Vergne C2l7] )
For any P(y), put £4(y) = B(yR)exp(-2 mtr(ya'y)),

where Q is a positive definite symmetric matrix in MS(R)
t

and R'R = Q. Then, we _have

s ‘l g
(Rq, o(8)E) (¥) = (t_, (£)m(g,1))’P((C{+D) yR )exp(2m1 tr(zyQ%y))
AB
.iﬂ‘éll. g = ( CD )é Sp(n,R), MZ = g(i)°
2.3. Now, we take a special Q for our purpose.
Let B be a definite quaternion algebra over Q with
discriminant d, We fix a basis (wi)(1=1...4) over Z of a

maximal order,of B. We identify B with Q* by this basis.

o



~-17-

On Qse B® Q, we define a quadratic form by N(x)-ﬂ;2

for (x,t) € B® Q, where N(x) is the reduced norm of B.

The symmetric matrix attached to this form is given by:

Q= ( g 7)€ M5(Q), where § = -%—-(tr(wi;j)) (i,3=1...4),

and tr is the reduced trace. Q is obviously positive

definite half integral.. We also identify M, 5(Q) with

(B ® Q)2. For y € M, 5(Q), which is identified with
251

t((y1 )‘H)s(yz'tz)) € (Bo Q)z, we have
2 -
yQty = ( N(y1 )+t1 t1t2+tr(y1y2)/2
byt rtr(y 7,0/2  N(y,)+t5
‘where ~ is the canonical involution of B. Put
' t- - X}
6' = { g € My(B); &°E = n(g)1,, n(g)€ Q*}.

Let GA be the adelization of G' and G"r be the

v-component. Let (K, V. ) be an irreducible
representation of Sp(2).which factors through
SO(5)'_2_ Sp(2)/+1 . This means that the corresponding
Young diagram (f.', f,) satisfies that f +f, = even.

Put O -0®Zp, and U

= '.
p GL2(OP)f'\ G Put

P

U=¢65 1T Up. Then, the space -of automorphic forms
b

belonging to U with weight K 1is defined by:



mf“fz(u) = { £ 6; >V, ; f(anu) = K (u)71(n)
for all a € G', u € U, h ¢ G;J.

(cf.Hashimoto[5 ]) We denote by X\ the representation
of S0(5) corresponding to K. The Young diagram of )\
is ((i‘1+f2)/2, (f1-—f2)/2). Take H( )\ ) as in 2.2.

Let { P;(y) } (i=1...dim H(X)) be a basis of H(X).
t
Put fi’w(y)-.:Pi(y)exp(-ZTLtr(yQ y). Let i‘p be the
characteristic function of K, 5(Zp) for each p.
?

Put fi = fi,«vT;.f

€ S(X where X = M2'5(Q).

p A)s

We have

2
Xx (3,000%x {(F T)iteq, re 5]

as vector spaces over QA‘ For h € GA and ()(1 ', X2) € XA,

T

(X = (2 THy), put
r. -t.

1 1

x1) ) h“x1h)
(5{2' f ) (h-112h )

This defines an action of GL on XA‘ It is proved

in the same way as in Yoshida [3Z) that, for a fixed

ge -GA ’ y2s:X (Tc(é)fi)(yf (n)) is convergent



and continuous on Gi. We denote by < , 2 a (sp(2)

invariant metric on V¢ . We regard R* as a subgroup of

x ao
G}, by embedding R aa—a(oa)e G -

Definition 2.6

For any @ e M, (U), we define a C valued

function on &, by

>+

F.(8) - f < ngx (< (B)E;)(yp (1)), ¢ (n)7 dn,

X
R™G'\ Gy

where dh is a Haar measure on Gp. We put

e (%) = E(8) = (F,(&)) (colum vector).

For our special Q of this subsection, Np in (1.2) is

equal to the p-part of d', where d' is the least common

multiple of d and 4. We put

sfQ +
Cila') =6" N 1;[xp,

{( ‘; 1); ) € 5p(2,2); C= o mod.d',

det A= 1 mod.4 }' .



Theorem 2.7

Let Kk Dbe the representation of Sp(2) which
corresponds with (f,,f,) (f, 2 f,2 o, f +f, = even).

For any ¢ ¢ M (U), o(¢) =& is an automorphic

form belonging to ["é(d') with weight

f -
det'fy 1,45)/2 3 Sym(f,), where Sym(f,) is the

symmetric tensor representation of GL,(C) of degree f,.

Proof We define an action of G} on f € S(XA) by:

(p (R)E)(y) = £(yp (b)), Then, for any E € G,

we get

(2.8) = (B)p(h) = p ()T (E).

This (2.8) can be proved directly for the génératora

of 5; as in Prop.1.3. In fact, the key point is

the fact that f(h)Qtf>(h) = Q. The assertion for
EZ follows immediately from this. Now, we check each
condition in Def.2.1.

1 o

(c1) G* is generated by ( o N1 ) ('; f ), ( : t:—1 ),

and J. For & € G' and ' = TT_f! € 5(X,), we have
v

n(r)f =s(d) TJ' Ry, v( )8 (5)f] = T;T Ry, ¥)L5.

-22-



As for the first three generators, it is obvious that

2wy = I (),
ye X yex

by virtue of the product formulae [T l¥| = T X (%)
v v

= 1T U‘V(-;) = 1, As for J, we get
v

W-(J)fl = f £1(y") X (~tr(yQ¥y'))ay’,

X,

where X = TT Xv’ By virtue of (2.8), we get
v

p @) ()1 = f(f(h)f')u')x(-tr(yoty-))ay'.
X

A

By the Poisson summation formula, we get

Z ) f)apm) = = fiypm.
YEX y€ X

If we put £' = v (g)f, we get the assertion.

The conditions (C2), (C3), (C5) are obvious. (C4)
is a direct consequence of Th.2.5, noting that k, (i) = 1

for any k_ 6 K, and the contragradient of
("(f1'f2)/2’ "(f1+f2)/2) is ((f1+f2)/2v (f1‘f2)/2)°

q.e.d.
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We express now ¢~(®) in the classical language

as in (2.2). For 2 € H,, take

B
g=( t,-1 ) € Sp(2,R)  such that det A > o and

o

A%i + B = z. Then, T ((g,1))f can be

g(itr) -

easily calculated. Take a double coset decomposition

H
GA = II G'hiU ’
1=1
so that the ©0 components (hi)°° = 1, We take the

Haar measure dh such that vol(Sp(2)TT Up) = 1,
Y

-1
Put [, =nm*N 6’ and 1= T;l)'mz,s(zp) Cx,.

Then, fj(z) attached to the j-th component of 0 (¢ )
as in (2.2) is given by:

f < 2 Pj(yP(h))exP(Z'titr(ZyQty).?(h) ay

fj(Z) = -1
y € L,o(h) N X

X
R G'\GA

> | (3T rmem(zritaaty), P>

=110 ye Lf(hi)‘% X

For example, if K is trivial, then

¢ (n;)

23 yeLp)nx

H .
fj(Z) = 2:1 exp(ZT!'—itr(ZyQty) .
l=
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v3. Hecke theory

3.1. We explain some general Hecke theory on
(I, det™2@<). make @ = *Q € M_(Q) as in §1.

Assume that Q is positive definite,
First, we need some lemma. We call a prime

P a good prime if p ¢ 2 and Np = 1, that is , if

+
Kp GSp(n,Zp) A Gp.

Lemma 3.1. *)

For a good prime p and any W € E; R

the double coset decomposition:

KPGKP = KWK, U &pmxp(h-'ﬂ

is disjoint.

Proof. We can assume that w = (w, 1) and

that W is a diagonal matrix whose diagonal components

e e f f
are given by (P tseees P2 P 'yeee,p D) with ej+fi=2% and

e, S es~<ce <f <... < f,. Under this assumption,

it is easy to see that Kpn w pr'1 is spanned by

"upper triangular" and "lower triangular" matrices.

) (footnote) A Lemma.similar to -this one is proved

independently by Hayakawa in classical terminology.



Now, let h, k £ Kp be elements such that hw = wk.
It is sufficient to prove that ﬁp(h,w) = pp(w ykK),
that is, cp(h,u))sp(h) = cp(u),k)sp(k). Let f be

the characteristic function of M, (z. ).
RUI

Then, RQ,p(h)f = sp(h)f by definition. On the other hand,
we have
RQ'p(h)RQ'p(w)f = cp(h,w)RQ’P(hw)f

= cp(h, w)cp(w ,k)sp(k)RQ,p(w)f.

So, we should prove that the actions of RQ p(h) on
14

r -1
f ) ) € .
and RQ,p(w)fEre same for any h € K, N wX,w

We may assume that h is "upper or lower triangular",
When h is "upper triangular", the proof is a direct

calculation, and we omit it here. Put

1 o -1
h=( 1)expnwxpu) . If we denote W by

1 )

(‘f;‘ 3 ), then, d~

xa €M (2)). Put £'(y) = £(tap~? y).

Then, RQ,p(u))f = constant times f'. We have
1 o 1 x . ;
(-x 1) = -J(, 3)J. By direct calculation, we get

' - 2
Ry, p(d)E" = £, b’p(1) ne |jet o|®/ |p§.ndet a|”, .

s

where f, is the characteristic function of p~ aM, m(Zp).
4



-217-

| 1 x '
Ry, pl o 1 )0y = X (tr(ay™y)1,(y) = £, because,

for y = p'sayo. Yo eMn,m(Zp)’ we have

2§ t

t -t -1 t
tr(xyQ'y) = tr(p axay Qy,) = tr(d 'xay Q7y,) € 2,

and finally, we get

RQ,p(-; f') )f' = const x £', where the constant

does not depend on y and W, q.e.d.

Ve define a measure dg on §; by putting

I‘F(E)dés J’(wgn) + ¢ (g,-1))dg,
(-; +
P

GP
where 4 is a function on E; and dg is a Haar measure

on G; such that vol(K,) = 1/2. Then, dg is E; invariant.

Let Y j_(i-=1,2) be continuous functions on G; such that
V;(&(1,-1)) = - ‘}’i(E), one of which is of compact

support. Then, the product is defined by:
f e, = L b (82" ¢, (2)dz.
P

By virtue of Lemma 3.1, for any w & G;, we can

define a function ¢ (W) by:

T if g € xpwxpu,g),

(s} otherwise,

Y (W)(g) = {



where € = +1. The action of a double coset pr‘fp

on a function &€ S(T, detm/zdot) is defined by

c(w)( (w)¥ P ), where c(W) is some normalizing
constant which will be chosen Yater. It is easy to

see that

BB ]E)@ - cw) T T @

where the summation runs through a set of

u
representatives of the left cosets of K wK_= J| K g..
PP i=n P73

For & , define f(Z) as in (2.2). Por the reader's
convenience, we write here how to calculate the action

of the Hecke operators on f(Z).. Take
A B
g =( c D ) € Sp(n,R) such that g(i) = Z. We denote

(g,1) € G¥ also by g. Put

£,(2) = J(g,1)" T(Ci+D) & (g&]'). Thenm, by definition,

[KPWKP] f =c(w) :%_1 fi . FPut éi = (giv -gi)'

A. B ‘
i7i
Put g; = ( c; D, ) = hywk,; for some h;, k; € Xoe

We may take g4 in G"'/'\ 1T Kp.
q%p
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Theorem 3,2 Notations and assumptions being as above,
we get

£;(2) = 5,(W)(m(g;12)te (g;)) s (h;)s (K]')

cp(si.k'i'1)cp(h,w) Jan s, (g;) T(CyV-1+D;)" '£(g;2),

where g; = >‘Bi’ N€ Ry \70 , s; € Sp(2,R) and

Ai Bi
"1t (ci Di) ]
This Theorem will not be used in the rest of this paper,
and the proof will be omitted here. Actually, we can take
g; 80 that it is "upper triangular", and all the quantities
in the above Theorem can be explicitly calculated at
least when w is given. Explicit actions of Hecke
operators has been calculated by several mathematitians
independently, e.g. JuravleV'Uq],[lS]f for general genus,
and Hina, Hayakawa, and the present author for genus two.
During the preparation of this paper, the author contacted
'with Hina, and some of his results convinced the author
that we should take symplectic similitudes group only
with square multiplicators. The author would like to
thank him for this point.

{footnote) ‘
These papers were informed by Prof.Bbcherer to the author,
after he finished this work. I would like to thank him.



3.2. Now. we go back to our special case in ¢2.3.
We define the normalizing factor of the Hecke operators
as below: Take a representation of Sp(2) with

f1+f2 = even. Take ho & G;) and denote the multiplicator

te _ €
h, =p 12). Take h  so that

5 .
of h, by p (i.e. h,
v
UnU = 1l n_U (disjoint).
s=1

Then, for ® € M, (U), we define

(3.3) (2(un,U) ¢)(h) = p PE1*T2)/2 55 4 (n ) qp ().

s=1

On the other hand, take ¢ ¢ G; and denote by p25"

the similitude of W . Take g, & G; so that

Ky (w,1) K LL Kpgl (disjoint).

For &€ s(p o(d), det(f1’f2*5)/2® Sym(fz)).
we define

(3.4) (T (pr %)§)(g) = p ¥(f 1t -1)/2 7— ¥ (-_-1
i=1

More explicitly, this action can be described as follows:

Put Ei = (81. 'gi) = (h,1)(w,1)(k,1) for some
B, k € K. Put ;' = (g]') T1). Then,

ﬂp(81o8;1) Fp(h.w) 'Bp(hw,k). On the other hand,

-]o



for £ ES(XP), we get
T© (B1)f = £ s (8] IR (g7 )1
Denote Sisp(gi) by &(g;). Then, we get
E(g;) = 8,(g;)8,(g] )5, (R)s,(w)s (nw)s (nw)s (k)5 (&;)

x cp(g198;1 )Cp(h,w )Cp(h ka)gp(g;‘ ).

Thus,

-3t

(3.5) £(g;) = s (w)e, (8567 e (hyw e, (g; .k Ve, (B)a (k7).

Here, we have some ambiguity on ap(u) ), because it
was arbitrarily chosen in §1. From now on, for the sake
of simplicity, we put sp(uJ) = 1. When

pe1 oe ] o
¢ P2 o0 o
o o Pf1 o '
o o o P

w, orho-:

we write T (K wEK)) = 7 (p%1,0%2, pT1,pT2) ana

£, £

2).

2(Uh,U) = T(p%1 p°2,p71,p

Our aim of this subsection is to prove the following

two key Theorems.



Theorem 3.6.

Take a prime p such that p/4 d'. Take disjoint

coset decomposition as follows:

1000
o100
Ul oo0po ) Up= 11 Uphg - (hg € G),
0Ooo0O0ODpD g=1
1T00 o W
opo o +
Kp(oopzo)Kp= H Kpgi (gie Gp).
ooo 1 1=1

Let fp be the characteristie function of M, 5(Zp).
- ’

Then,

(3.7) Z £(8;) (R, (8])1,) (1) =\ Z £.(1p ()"

for all Y € M2,5(Qp)’ where Ep =10r (-1,

according as p= 1, or 3 mod.4, respectively.

Theorem 3.8,
¥We use the same notations as above, but this time,

we take the following double cosets:

1oo0 o 10 o o

opo o v o1 o o u

‘ = | .
Uploop?o|lp ;ﬂ; Uphsr Kplo o p? o |Kp = 1L o8y

0Oo0O0 p ooop2

Then, we have

(3:9) 3~ €(g )R (e5)E () = p T £ (tp (™)
& g5 p g5 p P £ 7P f 8 *
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In the rest of this section, we shall give the proof

of these Theorems. First, we give &(gi). Put
) ={ (¥ ) (570 SL,(2); x=o,...,p-1} and

RGP ={ %), (* 7y s1(2) x = 0,.un,0%1,

Y = Oyeece,yp-i }-

Proposition 3.10

The set of g; in Theorem 3.6 can be chosen

to be the set of following elements of type (1),(2) and (3).

————

(1) poab
3533 , where o< a, b, ¢ £ p-1, and besides
coo0p
(% Z)EE U(£ g)tU mod.p
Ig}‘m_eUGGLz(Fp) andfél?;,
(2) P2 oo tU-1 00
o poo 0o}, U € R(p),
o o1l1o 00 u
0O 00D 00
(3) P oo pb ty=1 00 ,
o1bd ¢ oo
cop of oo » U € R(p),
2 oo0
coop 0 £bs p-1
ogcg,pz-h

1f g, is of type (1), then g (g;) = (5-), end

if g, is of type (2) or (3), them g(g;) = (31-),

where (-%-) is the Legendre symbol.,



Proposition 3.11

The set of £; din Theorem 3.8 can be chosen

to be the set of following elements of type (1),...,(6).

pP" o0 oo
0p200
o o 1o
o o o1
(2) ypoab
opbec ab
oopo det(b c)$omod.p,
coo0p
c<a, b ¢cgp-1,
(3) 1 0a b
o1 ‘b2 c °o< a, b, c-§P2—1.
oo0p o
000p2
(4) P2 oo0oo0 tU-1 00
O poYy 00 ,1§yép-1’
o o1o 00 U
©c eop! too U € R(p),
(5) ypoxpyy t,;~1 00 )
(°1Y Z)(U oo) 1sxs p-1, 0oy, 25
cop © 00 U € R(p)
o 0 0 p° °co ’
(6) 2
p oo o t,,~1 0 o < 2.
o 10 x u (o I} °§x=P1¢
° 018 oo U U € R(p%).
0O oo0Dp :

For each g; of the above type (1),...,(6),
2
: . b -ac - -X
£ (g;) ie given by 1, (5=%), 1, (==), (55-),

or 1, respectively.




For Y € Mz’s(qp) ’:‘:(Bp@ Qp)zo we put Y = t((y1,t1),(y2,t2)),

y; € Bp, t; € Qp. We define Ti(i=1,2,3) and D as follows:

2 -
(3.12) 7, = N(y )+ty » Tp = tr(y,¥,)+2t,t,,
2 2

In other words, if we identify Y with

(Y1oY2) € {(g _i); t € QP’ r € Bp} 2, we get

and it is obvious that Ti,and D is invariant by

. _ ,
mappings Y-"’Yf (n) (ne Gp)-

Proposition 3.13

For any Y € MZ‘S(QP), the left hand side of
— ’

(3.7) is given by the summation of the following
quantities:

(1) £,(x)x pﬁ(—?—) , i p| 25, 2| D,
pJ_p'(—;’:), if pfT4 p|D,
°, if p} D,
1

@2 2 L & Hu,
U € R(p)



0 otherwise

) 20,00 208 b »

if T,, T3 € Zp’

p-1 1
1/2 1 04,1 x
+p 2 £ () °)( )Y)x{
X=0 p*to pito 1 0 otherwise.

Each guantities laveled (n) (n=1,2,3) is

the contribution of cosets of type (n) in Prop.3.1o.

——

Proposition 3.14.

For any Y € M, S(Zp)' the left hand side of (3.9)
-_ ?

is given by the summation of the following quantities:

5 -1
(1 P17,

P(p“1)’ if p l D,
=P if p/rDa
Py if T1’ TZ’ T3 € 2z

(2) (1) x{

p’
(3) fp(pY) x{

o] otherwise,

T -1
@) PP(SHe (@ NS o

-1 o0
7, P~ -1
3,73 P Oy,1 X
+ P (T)xao fp((o 1)(0 1)Y)v
(—=2) if €
1 0y, 0 1 N ir Ty, Ty zp’
(5) Pr,0(} (S O)Y)x{ 7
o otherwise,
2
T,+xT,+x" T
p-1 1 2" 3y ifm,,r, €2
1 04,1 X 2'°3 P’
+p go 1,00 ¢ DY) # P



1,ifT1GZ

6 | 2 p-1 p-1 Oy,pPx 1 p’
) p° T (B )P o)m{
X=0 o otherwise,
2
p°-1 D
2 - ’ lf T e Z
+2° 2 1 (@ 9 Hy)« 5T P
x=p P 0 p’to 1
- 0o otherwise.

Each quantity laveled (n)(n=1,...,6) is

the contribution of cosets of type (n) in Prop.3.11.

Proof of Prop.3.10 and 3.11.
As we have chosen gy 80 that it is "upper

triangular", we can calculate Rp(g'j:1)fp directly

from the definition. For example, put

poabd 100 o p°1o oo
g:(gggg ,x=°1°_2° ) Faop-100)
oo0p ‘o 0o 0 po
coop -2 o o op
ooo p
1 o(-a ~b)_-1
y = o 1(-b -c)p
oo o o *
oo o0 O
Then, g~ | = «fd , and we get
=1
(Rp(d')fp)(Y) = exp(2TT ip (aT1+bT2+c'1‘3))fp(Y).

(R, (B )R, (& )2,)(Y) = exp(2mLip™> (aT1+bT2+cT3))fp(p-1Y)p5)
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and
(R (SR (B IRL(F)E,)(X)

-1

= exp(2n ip '(aT1+bT2+cT3))fp(Y).

By the calculation of 2 cocycles, we have
o = .
Rp( )Rp( g )Rp( ¥) Rp(osa 0" ). Now, we calculate

the summation of

-1

I(a,b,c) = (%)exp(Z Tip (aT1+bT2+cT3))fp(Y)

for all g of type (1) in Prop.3.10. If Y ¢ M2’5(Zp).

then, this is zero, so we can assume that T, € Z, (i=1,2,3).

We have ac--b2

= o mod.p. If a = o, then b = 0 and
¢ &= -f mod.p. The partial sum of I(a,b,c) over these

elements is given Dby:

p-1 (—") Ep P if PX T3o
2 (F)exp(2mcip™lony) =
c=1 o, it plos .

If a § o, then ¢ = v2a? mod.p and £ = a mod.p.
Then, the partial sum of I(a,b,c) over these elements

is given by:

p-1 p-1
I= 7 ) 1i(a,b,c)
b=0 a=1
p=1 p-1 7 (47, To-72)
- 3 X (Bexp(2reip” 1(—T-(T3b+:2-g ki - B LA O

.\
b=0 a=1 3



We may regard every element a,b, etc. as an element

of P.. If p)’TB, then T;b + 2'1aT2 runs through all

P
elements of Fp. and we get
g £ ~T3 D
a
I aZ‘1 p VP (D)exp(FE)-

In this case, we get

-7
1 (-1 E,Vp (D), 1 2| D,

-7
Eprp’(—g) . if p ) D.

It p T3, it is easy to see that

-7
L [ PRE ey,

o, if p,}'mz.
Thus, combining above calculation, we get
(1) of Prop.3.13. The other cases can be proved
more or less by similar routine calculation,

and the proof will be omitted here. qg.e.d.



Now, we must evaluate the right hand side of (3.7) and
(3.9). First, we calculate YF(hs) for Y € M2.5(Qp).

Define an injection j of Mz(Qp) ® Q, into M4(Qp) by:

t x 0o Yy
Xy _ w-t-y o
3((zw)'t)‘(oztw)‘
-2 0 o0 -t
we have Y p(n)”" = Y37 (mgaxngh), TN (m a(x g ),
t 2
where Y = (Y19 Yz) € (MZ(QP) ® Qp) and
h8 € GI'J = GSp(Z,Qp). For the sake of simplicity,

we sometimes write an element A = ((: z),t) € MQ(QP) @® Qp

or j(A) by a vector (x, y, 2z, w, t).

Lemma 3.15 (Andrianov [1])

1000 _
Forho=(g;;g) ,g_s_g_gg{hs} such that
000D
v

Uh U = El;li Uh, (disjoint) is given by the following

elements:
(1) Ppooo

opoo

oo1o

0oo0oo01
(2) (pooo) -l o , where o< a s p-1, and

o1 o0a ( )

oo1o o 1

600 p 0 U (i)U=(_1o) or

1
(11) U=( 5 ), ogasp -1.

(3)

) , where o < a,b,c< p-1

000 =
00-=0
O -op
—-0o0v



Lemma 3.16

When h_ is one of the above elements of type
(1), (2) (4)(4i), or (3), h,An]' for A = (x,¥,2,v,t)

is given respectively as follows:

(1) (X,0¥,0" z,W,t),
(2)(1) (-pw, y+aw, z,'-(x+az)/p, -t), ofaSp-i,

(i1) (px, y-ax, z, (w-9°x-az-2qt)/p, t+qx),

oSasp-1, ogq<p-1,

(3) (x+az, (y-cx+0b2-ac)z+aw-2bt)/p, Pz, w-cz, t-bz),

Oga, b' Cép"1o

Proof. The proof is a direct calculation, and we omit

it here.

Lemma 3.17 (Andrianov[1])

» & set of {hs} such that

Pt i

For 1, -

00 O =
00 ™o
Oy ©0O0O
"go OO0

v
Uh U = Al Uhsi is given by the following elements:
s=1

~4/-



(1)
' » B = tU(g g)Uv 1éf§ p‘1v

cooWw
OO o
o'w
‘g o

where (i) U= (9 )), or

(11) U= (1 9, osagp1,

(2) 2500 v
poo °
o 1 o ),where
oop ° U

(DUu=(_5H, or

o0 oW

(1) v = (] D), oLagp-1,

(3)

O OOk
O O =0

t,,~-1
v o ) o< b<p-1,
’ ——

(o} U 2
P 0<clp

o oo

-1’
o1
where (i) U= (_5 ,), or

(11) U= (] P, osagp1.

Lemma 3,18

When h_ is one of the above elements of type (1)(1)

(11), (2) (1)(11), or (3)(1)(i1), h an' for

A= (x,y,2,w,t) is given respectively as follows:

(1)(1) (x, Y'P-1fx’ Z, “"'P-1fzr t), 15£:§P'1u
(2)(11) (x+p-1fz, y+p_1i‘(-—q2x+w-2qt), z,

2

w-p~11q%z, t-p~1fqz),

15f<p-1, o0sq<p-1,

-41



(2)(1) (-pw, Dy, P 'z, -p” 'x, -t),

-1 2

(11) (px, py, P 'z, p ' (-q%x+w-2qt), t+qx),

05 q< p-1,

(3)(1) (-pw, p-1(y+bzz+cw+2bt), P2, -p_1(x+zc), -t-bz),

0<bSp-1, ofc<p?-1,
(ii) (px, p-1(-cx-2qu+y+bzz—2bt), Pz,
p-1(-q2x-cz+w-2qt), t+qx-bz),

o<b, q £p-1, oécépa4-

Proof. The proof is a direct calculation, and

we omit it here.
Now, we give two preliminary remarks to (3.7) and (3.9).

Lemma 3.19

The both sides of (3.7) and (3.9) remain unchanged,

even if we replace Y = t(Y1, Yz) c '(-'MZ(QP) ® Qp)2

by t(xz. Y,).

Proof This is obvious for the right hand sides.
As for the right hand side, put

.

10 0
©o0o0 |. Then, I € K, as we assumed that p/fd'.
o0 1 P

o10

OO0 -0

~43-



The action of the Hecke operators does not depend on

the choice of the representatives of the left Kp cosets,

80 we have

u u
S E(eRy (g1, = 3 £ (g DR (1g] )L,
i=1 i=1

u

= 2 E(Ig;)e (T,87 R (DR (7)1,
i=1

By virtue of (3.5), we have

€1g;)e (17 ")

-1 -1 -1 -1
cp(Ingi )cp(giI’Igi )cp(giI’Ik )Sp(Ik )Sp(h)cp(h,W)

-d - -
ep(Lk e (1k)e (77) E(e;)

Bp(I) E(gi) = £ (gi)’

because sp(I) = 1 by definition. But, for any f'¢€ S(Xp).
we have
Ry(DE (¥, 1)) = £1(Ma,1)), ¥y, T, € Q)

q.e.d.

Lemma 3%.20

Define T;(i=1,2,3) as in (3.12). If 7, ¢ (N

for some i, then the both sides of (3.7) and (3.9)

are zero.



- Proof As we have already written, Ti is invariant

by Y—Yp (h) (h € GI'D)° So, This lemma is obvious for the
right hand side. Now, we shall prove that each quantity
lavelled (n) in Prop.3.13 or in Prop.3.14 is zero, if
some T; is not integral. This is obvious for (1),(2)

in Prop.3.13 , and (1),(2),(3),(4) in Prop.3.14. Now,

we treat (3) in Prop.3.13. If T, & Zys it is zero.

15) and the quantity is

zero. If T, ¢ zp and the quantity (3) is not zero, then

If 754 2, and T, § Z,, then Y, € Z

1 04,1 x
we have T,, T3€ Zp and (o p)(o 1)Y € Mz,s(zp)

1

for some x € Z_. So, Y = “(U-p~'xV, p"1v) for some

P
U, Ve zg. If we identify 2. with

t r
{(i _t); t €2, €0 M(z)] ,

then T, = 2™ tx(p” UV) -xT5. So, te(p~tuv)/2 € 7.

On the other hand, we have

T, = det(U—-p"1xV) = det U - 2"1xtr(p'1UV) + xzdet(p'1v)
€ Zp.

which is a contradiction. Thus, this case is proved.

The proof for (5) in Prop.3.14 is completely the same.
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Now, we treat (6) in Prop.3.14. Assume that it is

not zero. Then, we have Y = t(-p-1v, pU+xV) and T.I < Zp

or Y = t(PU+P-1XV, P-1V) and T3€ %2, for some

P
x € Z‘,p and U, V & Zg. We can see from this that
Ty, T3 & Zp. we get T, = 2~ tr(p-1V(pU+xV)) or

2"11:r((pU+p'1xV)p'1V). As tr(Vz) = -2det V, we can

conclude that T2 € Z . q.e.d.

P

Proof of Th.3.6 and 3.8.

The proof consists of rather routine elementary
number theoretical calculation, but very long.
So, we sketch here only the outline of the proof.
For the sake of simplicity, we denote by (L1) (resp.(R1))
the left (resp.right) hand side’ of (3.7). Similarly,
we dennte hv (T2) (resp.(R2)) the left (resp.right)
hand side of (3.9).

Y = t(Y-‘: Yz) G(Mz(Qp) @ Qp)zs Y1~’ ((: Z)rt)'
x' y
Y, = ((z' w')’ t'). By virtue of Lemma 3.20, we can

assume that T; € 2 (i=1,2,3) in the following proof.

Put M = Mz(zp) ® Zp. By virtue of Lemma 3.19, we may



divdde the cases as follows:
(o) ¥, ¢ p“1m or Y, ¢ p°1M,

(11) Y, € pM, and Y2 € M, 1, 4 p¥,

1

(111) Y, € pM, and Y, € p” N, Y, ¢ M,

(V) Y,€M, Y, ¢pM, and Y€ DK, Y, ¢ M,

1

(VI) Y5 € P M, Y, ¢ M, for i =1, 2,

We calculate the both side of (3.7) and (3.9) in each
case by using Prop.3.13, 3.14 and Lemma 3.16, 3.18.

Case (0) The both sides are clearly zero, and

Theorems are obvious.

Case (I) Every vector in Lemma 3.16 and 3.18 belongs
to M and we have

(R1) = (p+1)(p%+1)p"/2 ana (R2) = p?(p+1) (2%+1).
In this case, we have T; = o mod.p(i = 1, 2, 3).

We have
(11) = p5/2(p + 1) + p1/2(p +1) = (R1) and

(12) = p° + p(p-1) + p° + p* = (R2).

Thus, Theorems are proved in this case.
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Case (II) We have T, Ty € pzp. and as we have assumed
'T36 Zp, we get D € pr. For U € R(p), we get

(gﬂ\ D)UY €My 5(2,) if end only if U = (5 9).

So, we get |

(1) = p"/2(p(=2) + 2 + p + ).

To obtain (R1 )',‘ we mﬁst treat various subcases.
For the sake of simplicity, we denote vectors(with

péramet,era)f ’of»ty‘pe (1), (2)(1), (2)(ii), or (3)

- of Lemma 3.16_ "by‘v1. Vo vé. OT Vi, respectively..
By C(wiz), .we denote the set of parameters in v,
such that AL € 215: » and so on.

Subcase (a) Assume that g'¢ Z;.

Then, v, ¢ zg. We have

‘c(vz) - ‘(a; x'+az*= o mod.p } and #(c(vz)) =1,
C(v}) = {(a,q); ofqsp-1, a= (w'-2qt'-q°x")/z" mod-p}
and #(c(v})) = p,

C(v,) = ((a,b,c); bzz'-2bt'+yo'-cx!+aw'-acz':-:.' o mod.p.}

The condition in 0'(v3) is a quadratic equation of b,

and the discriminant D(a,c) = t'z-z'(y'--cx'+aw'-acz').
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For fixed a,c, the number of b (that is, the number

of solution) is given by 1 + (1—)1%1-22-), so we get

p-1
(Clvy)) = 37 (1 + (R&ald y)
a,c=0
p-1
-2 s 2 (a9,
a,Cc=0

%
where (T) is the Legendre symbol. For a fixed a

such that az'+x'F o mod.p, D(a,c) runs through Z/pZ,
and the patial sum of these elements in the second
term is gero, For the unique solution a of az'+x'= o
mod.p, we get D(a,c) = T3 mod.p. Thus, we get

T
(C(v5)) = p° + p(—l-})

and (R1) = (L1).

X
po

and v, ¢ Zg (for any parameter).

Subcase (b) Assume that gz' ¢ pr and x € Z

5
Then, v, € zp

We get
c(vl) = z(a,q); ofagp-1, qzx'+2qt'-w'-3 o mod.p} .

The discriminant of q2

x'+2qt'-w' with respect to q
T
is t'24xtw! = T, mod. p. So, #(c(vy)) = p(1+(-—p—3-)).

Ve get #(C(v5)) = p%, and thus (R1) = (Li).



' x
P and t! ¢ Zp.

Then, Y4 €M, #‘(C(Vz)) = #(C(Vé)) = p and

#(C(VB)) = p2. In this case, T3 = 12

T,
.32) = 1, and we get (R1) = (I1).

Subcase (c) Assume that x', z' € bl

mod.p, 80

x
p and w'e¢ Zp.2
Then, v, € M, v} ¢ M, #(C(vz)) = p, and ff(c(v3)) = p~.,

In this case, '.l'3 = o mod.p.

Subcase (d) Assume that x', 2z', t'e p2

X

]
and y' € Zp

Subcase (e) Assume that x',z',t',w' & pr

Then, v, € M, V3 ¢ M, #(C(v,)) = p, # C(vy')) = p°,

and T3-:-'_ 0 mod.p.

Thus, (3.7) is proved in the Case (II). The equation
(3.9) is proved similarly: (R2) is obtained by
calculating in each case (a) ... (e) as above, and

we get

T
(R2) = (12) = (p3+p2)(1+(—§-3-)). We omit the detail here.

-1 o
Ccase (III) We prove (3.7). We have (g 1)U¥ ¢ L

for any U € R(p), and (l g)(; f)Y € L only for x = o0

(if 0o £x<€p-1). So, we get (L1) = ’p1/2

calculate (R1).

. Now, we

14X

p

because we have assumed ‘.1'3 € 2

Subcase (a) Assume that t' € p~

x
1Zp’

Then, x' or ' € p p
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I ' -1,x
fz'¢ Zp and x' € p Zp, then, Vir Voo V3 £ M and

C(v}) = {(a.q); y'-ax' = t'+gx’
= -qax'-az'+w'-2qt' = o mod.p j
The first two conditions in C(vé) implies

=y'/x' mod.p and q= -t'/x' mod.p. Now,

_qzx'_az'+wl_2qtl E -q(qxl+t|)-qt|_az|+wl
= t'x"1(qx'+t')-qt'-y'z'x"1+w' mod.p

= -T3/x' = o mod.p.
Thus, we get (R1) = p1/2.

1

If z' € p~'25 then, V49V, V5 4 M, and

p

0(73) = {(a.b.c); a= -x'/z' mod.p, ¢ = w'/2' mod.p,
b= t'/z' mod.p, and

y'-cx'-th'+(b2-ac)z'+aw's o mod.p
If the first three conditions in c(v3) are satisfied,

the last condition is automatic, because
y'-c(x'+az')-2bt'+b22'+aw'
= '1‘3/2' + (t'-bz')/2' = o mod.p.

1/2

Thus, we get (R1) = p = (L1).

12X,

Subcase (b) Assume that t' € 2_and 2'€ p~ D

P
Then, v1,v2,vé ¢M and

C(vs) = {(a.b.c): b = 0, x'+az', w'-cz' € zp} .



So, ﬁ(c(v3)) = 1 and (R1) = (L1).

Subcase (c) Assume that t',z' € Zp, x' ¢ p-1Z§.

Then, V,,V,,Vz 4' M and

c(vs) = { (a,a); @ = 0, a = y'/x' mod.p,

w'= az' mod.p | .

But, w'-az' = '1‘3/x' = o mod.p, S0 #(C(vé)) =1,