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Abstract

We make use of the Burchnall-Chaundy classification of rings of commuting ordinary dif-
ferential operators (1920’s), rediscovered in the 1970’s and deformed into the KP hierarchy,
and of the Krichever map, to construct a more (general and) analytic version which yields a
C*-algebra: our version admits a parametrization over a compact metric space. To this C*-
algebra, we associate a KK-class in the K-homology of the spectral curve. Motivated by the
fact that all isospectral Burchnall-Chaundy rings make up the Jacobian of the curve, we pro-
duce an identification of the K-theory of the curve with that of its Jacobian, implementing the
Brown-Douglas-Fillmore theorem on extension groups of operator algebras.
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1 Introduction

The discovery of “integrable equations”1 in the 1970’s prompted a rediscovery of the Burchnall-
Chaundy theory (1920’s). This result of differential algebra gives a classification of the rank-one2

commutative rings of Ordinary Differential Operators (ODOs) with fixed spectral curve, as the
Jacobi variety of the curve (line bundles of fixed degree, up to isomorphism). We note here
that the Burchnall-Chaundy theory allows for singular curves of a certain type, but we always
restrict ourselves to the case of Riemann surfaces which is the one of interest in our construc-
tions. The Krichever map sends a quintuple of holomorphic data associated to the ring to Sato’s
infinite-dimensional Grassmann manifold, where the time flows of the Kadomtsev-Petviashvili (KP)
equation acting on isospectral rings become linear.

In [11], we considered an operator-valued function approach to this theory in the setting of
a certain type of Banach Grassmannian. In particular, we were able to produce the notion of
an operator-valued Baker function which is applicable when the ring of operators is extended to
accommodate various algebra coefficients. As part of the Sato correspondence we implemented a
conjugating action by an integral operator and showed how the conjugated Burchnall-Chaundy ring
A of pseudodifferential operators can be represented as a commutative subring of a certain Banach
*-algebra A. The latter algebra is a subalgebra of the bounded linear operators L(HA) where HA
is a Hilbert module over a Hilbert *-algebra A. The Banach Grassmannian in question, denoted
Gr(p,A), is a Banach manifold naturally diffeomorphic to the similarity orbit of projections in A
modulo an isotropy subgroup. The space Gr(p,A) resembles in a more general sense the restricted
Grassmannians formerly introduced in [19, 22] and these latter spaces can be recovered as subspaces
of Gr(p,A). Some of our results require the algebra A to be commutative.

The commutative ring A has as its joint spectrum X ′ = Spec(A) an irreducible complex curve
whose one-point compactification is a non-singular algebraic curve X of genus gX ≥ 1. When A is
commutative, we obtain a parametrized version of the Krichever correspondence [16, 22] (originally
for the case A = C). We show that naturally associated to the ring A is a C*-algebra A (to which we
refer to as the Burchnall-Chaundy C*-algebra) which, by the Gelfand-Neumark-Segal theorem, can
be realized as a C*-algebra of operators on an associated Hilbert space H(A). For any generating
s-tuple of commuting operators in A we consider its joint spectrum and show that this injects into
the joint spectrum X ′.

The latter part of this paper is devoted to constructing from certain points in Gr(p,A), namely
the image of the Krichever correspondence, classes in the K-homology of C(X) using the identifica-
tion with Kasparov’s bivariant K-theory, specifically the isomorphism KK(C(X),C) ∼= K∗(C(X)).
In particular, by the Brown-Douglas-Fillmore (BDF) theorem, the group K1 of a C*-algebra C(X)
can be related with the extension group of the compact operators K(H) by C(X), in the sense that
there is a natural transformation of covariant functors

Ext(X) −→ Hom(K1(X),Z),

and this Ext group, in turn, can be identified with the C*-isomorphisms of C(X) into the Calkin
algebraQ(H). Using only the commutative subalgebra we constructed from the Burchnall-Chaundy

1The KP hierarchy is the model we use; variations would utilize slightly different objects of abstract algebra, e.g.
matrices instead of sclars.

2Namely, such that the orders of the operators in the ring are not all divisible by some number r > 1; if they are,
the ring corresponds to a rank-r vector bundle.
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ring, for the case A = C, we obtain some of these C*-isomorphisms, parametrizing in fact the
Jacobian J(X) of X (which is the group Ext1(OX ,O∗X) ∼= H1(X,O∗)). Finally, using the Abel
map which embeds X −→ J(X) we fit the three C*-algebras A, C(X) and C(J(X)) into the
framework of BDF theory [5]. We show, using the basic instrumentation of K-homology, that there
exists a natural injection of Ext groups Ext(X) −→ Ext(J(X)) (an isomorphism when gX = 1).

This paper is the first of two parts of our work devoted to linking the KP-theory with operator
algebras. In Part II we will extend our methods to the τ -function of integrable systems (see e.g.
[22]); in particular we pull back the tautological bundle over the Grassmannian, and obtain, much
as in the algebraic setting of [1], a Poincaré bundle over a product of homogeneous varieties for
operator group flows, whose fibres will be related by the BDF theorem to the Jacobians of the
spectral curves. An operator cross-ratio on the fibres will provide the τ -function, whose defining
equation is equivalent to the flatness of a universal connection on the bundle. We will investigate
the Schwarzian derivative associated to the cross-ratio, as well as an extension of the theory to
vector bundles.

2 Algebraic preliminaries

To work in a fairly general setting (though some conditions could be further relaxed to extend it
to more general topological algebras), let A be a unital Banach algebra with group of units G(A)
and space of projections P (A); for basic facts about Banach algebras we refer to [8]. Recall that
the right Green’s relation is pRq if and only if pA = qA for p, q ∈ A. Then let Gr(A) = P (A)/R
be the set of equivalence classes in P (A) under R. As the set of such equivalence classes, Gr(A)
may be called the Grassmannian of A. Relative to a given topology on A, Gr(A) is a space with
the quotient topology resulting from the natural quotient map

Π : P (A) −→ Gr(A), (2.1)

which can be shown to be an open map [10, 18]. Recall that two elements x, y ∈ A are similar if x
and y are in the same orbit under the inner automorphic action ∗ of G(A) on A. For p ∈ P (A), we
say that the orbit of p under the inner automorphic action is the similarity class of p and denote
the latter by Sim(p,A), whereby it follows that Sim(p,A) = G(A) ∗ p. Following [10] there exists a
space V (p,A) modeled on the space of proper partial isomorphisms of A upon which the restriction
of (2.1) gives a locally trivial principal G(pAp)–bundle

G(pAp) ↪→ V (p,A) −→ Gr(p,A), (2.2)

where the base is the Grassmannian Gr(p,A) viewed as the image of Sim(p,A) under this restriction
of (2.1). The construction of the bundle in (2.2) generalizes the usual Stiefel bundle construction
in finite dimensions. An alternative way of describing the analytic structure of (2.2) was outlined
[10, §7]. Let A[p] denote the commutant of p ∈ A and let G[p] = G(A[p]). As shown in [10], the
homogeneous space G(A)/G[p] provides the analytic structure for Gr(p,A):

Gr(p,A) ∼= G(A)/G(Π(p)) ∼= G(A)/G[p]. (2.3)

If we further assume that A has the unital associative *-algebra property, there is the corresponding
unitary group U(A) ⊂ G(A) of A with its Lie algebra u(A). Thus on setting U [p] = U(A)∩G[p], we
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can immediately specialize to representing Gr(p,A) as the Banach homogeneous space Gr(p,A) ∼=
U(A)/U [p]. Further, on setting U1[p] = G(pAp) ∩ U(A), we thus obtain a representation of the
Stiefel bundle (2.2) as an analytic, principal U1[p]-bundle

U1[p] ↪→ V (p,A) −→ Gr(p,A) ∼= U(A)/U [p]. (2.4)

The following lemma is straightforward and is obtained from [11, §2]:

Lemma 2.1. Let A and B be unital Banach algebras. Given a unital homomorphism
h : B −→ A, the diagram below commutes

V (q,B)
V (p,h)−−−−→ V (p,A)

ΠB

y yΠA

Gr(q,B)
Gr(q,h)−−−−→ Gr(p,A)

(2.5)

where for q ∈ P (B), we have set p = h(q) ∈ P (A).

In our setting, A a given topological algebra and E some A-module, then A = LA(E) could
be taken to be the ring of A -linear transformations of E. An example is when E is a complex
Banach space and A = L(E) is the Banach algebra of bounded linear operators on E. In order
to understand the relationship between spaces such as Gr(p,A) and the usual Grassmannians of
subspaces of E, we will describe a ‘spatial correspondence’.

Suppose further that, for a topological algebra A, E is an A-module admitting a decomposition

E = F ⊕ F c, F ∩ F c = {0}, (2.6)

where F, F c are fixed closed subspaces of E. Now p ∈ P (E) = P (L(E)) is chosen such that
F = p(E), and consequently Gr(A) consists of all such closed splitting subspaces. The assignment
of pairs (p,L(E)) 7→ (F,E), is called a spatial correspondence, and so leads to a commutative
diagram

V (p,L(E))
ϕ−−−−→ V (F,E)

Π

y yΠ

Gr(p,L(E)) =−−−−→ Gr(F,E)

(2.7)

where V (F,E) consists of linear homomorphisms of F = p(E) onto a closed splitting subspace of
E similar to F . If u ∈ V (p,L(E)), then ϕ(u) = u|F and if T : F −→ E is a linear homeomorphism
onto a closed complemented subspace of E similar to F , then ϕ−1(T ) = Tp : E −→ F . In particular,
the points of Gr(p,L(E)) are in a bijective correspondence with those of Gr(F,E) . The spatial
correspondence is thus a convenient way of encoding the geometric/vector space structure of the
latter into the former.

Remark 2.1. In the Banach manifold setting similar constructions of spaces such as Gr(p,A) (or
Gr(F,E)) are described in e.g. [3, 7, 14, 25].
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Let E be a complex Banach space admitting a decomposition of the type (2.6). One basic
ingredient of our development entails considering a class of Banach Lie groups of the type

Ĝ(E) ⊂ {
[
T1 S1

S2 T2

]
: T1 ∈ Fred(F ), T2 ∈ Fred(F c), S1, S2 ∈ K(E)}, (2.8)

that generates a Banach algebra A acting on E, but with possibly a different norm. Here we
mention that both compact and Fredholm operators are well-defined in the general category of
complex Banach spaces; reference [27] provides the necessary details.

3 Hilbert modules and the Banach *-algebra A

3.1 Hilbert *-modules

Take H to be a separable (infinite dimensional) Hilbert space. Given a unital separable C*-algebra
A one may consider the standard (free countable dimensional) Hilbert module HA over A as
defined by

HA = {{ζi}, ζi ∈ A , i ≥ 1 :
∞∑
i=1

ζiζ
∗
i ∈ A } ∼= ⊕Ai, (3.1)

where each Ai represents a copy of A. We can form the algebraic tensor product H ⊗alg A on
which there is an A-valued inner product

〈x⊗ ζ, y ⊗ η〉 = 〈x, y〉ζ∗η, x, y ∈ H, ζ, η ∈ A. (3.2)

Thus H⊗alg A becomes an inner-product A-module whose completion is denoted by H⊗A. Given
an orthonormal basis for H, we have the following identification (a unitary equivalence) given by
H ⊗ A ≈ HA (see e.g. [17, 9]). For properties of compact and Fredholm operators over Hilbert
modules, see e.g. [4]. We take L(HA) to denote the C*-algebra of adjointable linear operators on
HA and Fred(HA) to denote the space of Fredholm operators (see e.g. [4, 15]).

When HA is a Hilbert *-module there is a generalization of the well-known (nested) sequence
of the Schatten ideals of operators on a Hilbert space. The Banach spaces L`(HA) are defined as
the subspaces of L(HA) consisting of operators S with norm satisfying ‖S‖`

` = Tr(S∗S)`/2 < ∞,
(for 0 ≤ ` ≤ ∞, where L∞(HA) = K(HA) is the compact operators) [24]. We use this definition in
§3.2. Since this will turn out to be an essential ingredient (for example, in the Gelfand transform
§3.4) we will assume henceforth that HA is a separable Hilbert *-module.

Remark 3.1. If φ denotes a state of A, then we can produce a positive semi-definite pre-Hilbert
space structure on HA via an induced inner product 〈v|w〉φ = φ(〈v|w〉A). From the Gelfand-
Neumark-Segal (GNS) Theorem there is an associated Hilbert space Hφ for which `2 ⊗Hφ is the
completion of HA under this induced inner product (see e.g. [4, 12]). When φ is understood
we shall simply denote the latter by H(A). Observe that H(A) contains HA as a dense vector
subspace which is a right A-module.

The assignment of Hilbert spaces H 7→ H(A) and use of the A-valued inner product in (3.2),
thus allows us to modify various results that were originally established for the various objects
(H, 〈 , 〉) (such as the bounded linear operators, the compact operators, etc. in the case A = C).
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3.2 The Banach *-algebra A and its C*-norm closure

Next we consider decompositions of the type (2.6). We say that a polarization of HA given by a
pair of submodules (H+,H−), such that

HA = H+ ⊕ H− , and H+ ∩ H− = {0}. (3.3)

Specific to our situation we take a unitary A–module map J satisfying J2 = 1, thus giving rise to
an induced eigenspace decomposition HA = H+ ⊕ H−, for which H− ∼= H+.

Throughout, the main algebra we consider is the Banach *-algebra

A = LJ(HA) := {T ∈ LA(HA) : T is adjointable and [J,T] ∈ L2(HA)}, (3.4)

(by definition L2(HA) denotes the Hilbert-Schmidt operators) where for T ∈ A, we assign the norm
(cf. [19, §6.2]):

‖T‖J = ‖T‖ + ‖[J,T]‖2. (3.5)

The algebra A can thus be seen as a Banach *-algebra with isometric involution (when A ∼= C we
simply write LJ(H)). This is our restricted algebra which we will use henceforth. Together with
the topology induced by ‖ ‖J , the group of units G(A) is a complex Banach Lie group for which
we have the unitary Lie subgroup U(A) ⊂ G(A).

It is convenient to denote by Ā the C*-algebra norm closure of A in the C*-algebra L(HA).
Thus A is a Banach *-algebra with isometric involution dense in the C*-algebra Ā. In particular,
as A is a Banach algebra, it is closed under the holomorphic functional calculus, and as it is a
*-subalgebra of the C*-algebra Ā, it is therefore a (unital) pre-C*-algebra in the sense of [4, 6].

Let us recall the definition of a Fredholm module as generalized in [4, §17.5]. For any C*-algebra
B, and any (right) Hilbert A–module E, we call E a (left) Fredholm B-module over A provided
there is given an involutive representation Π : B −→ LA(E) together with an essentially (that
is, modulo compact operators) unitary operator S which essentially commutes with Π(B). Such
a module then determines a member of the Kasparov group KK(B,A) (this latter concept will
be used in §7). In particular, we are interested in the case where B is simply a C*-subalgebra of
LA(E) which is generated by an ordinary algebra homomorphism. In fact we will be usually taking
E = HA. In this situation, given a completely positive state (in the commutative case, a measure
giving positive mass to each open subset of the spectrum), we can then pass (as in Remark 3.1) to
the Hilbert space H(A) to obtain a Fredholm module in the sense of [6, IV].

3.3 The Grassmannians Gr(p, A)

We proceed with A as defined in (3.4). In (2.8) we take E to be the complex Banach space
underlying A where we consider the former as now admitting a decomposition of the type (2.6)
compatible with the polarization (3.3). That is, we identify F ∼= H+ and F c ∼= H− (this implicitly
makes use of the spatial correspondence). In the following we restrict to the ` = 2 (Hilbert-Schmidt)
case and thus (2.8) specializes to

Ĝ(A) = {
[
T1 S1

S2 T2

]
: T1 ∈ Fred(H+), T2 ∈ Fred(H−), S1 ∈ L2(H−,H+), S2 ∈ L2(H+,H−)}. (3.6)
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Granted that Ĝ(A) acts analytically on Gr(A), a typical orbit is the restricted Grassmannian
Gr(p,A) = Ĝ(A)/G[p] (see [10, 11]). More specifically, from §2, we have Gr(p,A) ∼= U(A)/U [p],
where

U [p] ∼= U(A) ∩G[p] ∼= U(A) ∩ (U(H+)× U(H−)). (3.7)

Directly from Lemma 2.1 we deduce:

Lemma 3.1. Let B ⊂ A be a Banach *-subalgebra of A, with inclusion h : B −→ A. Then there
is an induced inclusion of Grassmannians Gr(q,B) ⊂ Gr(p,A) where for q ∈ P (B) we have set
p = h(q) ∈ P (A).

Example 3.1. Let B ⊂ A be a C*-subalgebra. Then we have an inclusion

LJ(H)⊗B −→ LJ(H)⊗A ∼= A = LJ(HA). (3.8)

In particular, when B ∼= C and H = L2(S1,Cr) for which there is a polarization H = H+ ⊕ H−
(H+ ∩ H− = {0}), the inclusion LJ(H) −→ LJ(H) ⊗ A along with the spatial correspondence
induces an inclusion Gr(H+,H) ⊂ Gr(p,A) where Gr(H+,H) is the ‘restricted’ Grassmannian as
used in [19, 22] (see also §4.2 below).

The space Gr(p,A) may be realized more specifically in the following way. Suppose that a fixed
p ∈ P (A) acts as the projection of HA on H+ along H−. Therefore Gr(p,A) is the Grassmannian
consisting of subspaces W = r(HA) for r ∈ P (A) such that:

(1) the projection p+ = pr : W −→ H+ is in Fred(HA), and

(2) the projection p− = (1− p)r : W −→ H− is in L2(H+,H−).

Alternatively, for (2) we may take projections q ∈ P (A) such that for the fixed p ∈ P (A), the
difference q − p ∈ L2(H+,H−). Further, we define the big cell Cb = Cb(p1, A) ⊂ Gr(p,A) as the
collection of all subspacesW ∈ Gr(p,A) such that the projection p+ ∈ Fred(HA) is an isomorphism.

3.4 The case where A is commutative

Henceforth we will take A to be a commutative separable C*-algebra. The Gelfand transform
implies there exists a compact metric space Y such that Y = Spec(A) and A ∼= C(Y ). Setting
B = LJ(H), we can now express the Banach *-algebra A in the form

A ∼= B ⊗A ∼= {continuous functions Y −→ B}, (3.9)

for which the ‖ ‖2-trace in (3.5) is regarded as continuous as a function of Y . In view of Example
3.1 several results obtainable in the case of Gr(H+,H) can be extended by Y -parametrization in
a straightforward way. In view of Example 3.1 it will be convenient to set the usual restricted
Grassmannian Gr(H+,H) = Gr(q,B).

4 The Burchnall-Chaundy ring

We briefly recall how in the case A = C the KP flows act on Gr(p,A).
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4.1 The Burchnall-Chaundy ring and the formal Baker function

Let B denote the algebra of analytic functions U −→ C where U is a connected open neighborhood of
the origin in C. The (noncommutative) algebra B[∂] of linear differential operators with coefficients
in B, consists of expressions

N∑
i=0

ai ∂
i, (ai ∈ B, for some N ∈ Z). (4.1)

Here ∂ := ∂/∂x and the ai can be regarded as operators on functions, with multiplication

[∂, a] = ∂a− a∂ = ∂a/∂x . (4.2)

More generally, we pass to the algebra B[[∂−1]] of formal pseudodifferential operators with coeffi-
cients in B. This algebra is obtained by formally inverting the operator ∂ (see e.g. [21]) and taking
Laurent series as in (4.1), with −∞ < i ≤ N .

Recall that the n-th generalized KdV-hierarchy, for each n a reduction of the KP hierarchy,
consists of all evolution operators for n− 1 unknown functions u0(x, t), . . . , un−2(x, t) that can be
expressed as

∂L

∂t
= [P,L], (4.3)

where L ∈ B[∂−1] is an n-th order differential operator

L = ∂n + un−2 ∂
n−2 + . . .+ u1 ∂ + u0, (4.4)

and P is a differential operator for which the order ord[P,L] ≤ (n − 2). Later we will see that
the evolution of eigenfunctions of L via comparison with the constant-coefficients operator ∂n is
related to an integral operator K conjugating L such that K(L)K−1 = ∂n. The construction of [21]
enables the correspondence ‘( ∂

∂x)−1 ↔ multiplication by z’ to realize elements of a commutative
A ⊂ B[[∂−1]] as elements of B[[z]][z−1]. Note, although this is not an issue in the present paper, that
for formal objects in B[[∂−1]] to make sense in the analytic (in z−1) setting, convergence properties
will have to be imposed.

4.2 Holomorphic data over the spectral curve

The ring A is assumed to be a commutative subring of B[∂], whose joint spectrum is a complex
irreducible curve X ′ = Spec(A) with completion a non-singular algebraic curve X = X ′ ∪ {x∞}
of genus gX ≥ 1. We recall from [22] the following associated quintuple of data (X,x∞,L, z, ϕ):
L −→ X is a holomorphic line bundle, x∞ is a smooth point of X, z the inverse of a local parameter
on X at x∞, where z is used to identify a closed neighborhood X∞ of x∞ in X with a neighborhood
of the disk D∞ = {z : |z| ≥ 1} in the Riemann sphere, and ϕ is a holomorphic trivialization of L
over X∞ ⊂ X. Subsequently, we consider L2–boundary values of L over X/D∞ and ϕ identifies
sections of L over S1 with C-valued functions. Thus we arrive at the (separable) Hilbert space
H = L2(S1,C) together with a special case of (2.6), that is, on setting F = H+ and F c = H−, we
have as before a polarization

H = H+ ⊕H−, and H+ ∩H− = {0}, (4.5)
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in the case B = LJ(H) . Further the quintuple (X,x∞,L, z, ϕ) can be mapped, by the Krichever
correspondence, to a point W ∈ Gr(q,B) (cf [16, 22]). Following [22], the properties of the pro-
jections p± in §3.3 apply and the kernel (respectively, cokernel) of the projection p+ : W −→ H+

is isomorphic to the sheaf-cohomology group H0(X,L∞) (respectively, H1(X,L∞)) where L∞ =
L ⊗O(−x∞). Henceforth, we shall work with the Hilbert space H = L2(S1,C).

This remarkable correspondence [16] (see also [22] Proposition 6.2) links the data of the quintu-
ple to a flow of multiplication operators on H inducing a linear flow on the Jacobian torus J(X) of
X (recall that J(X) is the commutative group of holomorphic line bundles of zero degree over X).
Furthermore, this flow corresponds to the evolution in (4.3) of solutions of the generalized KdV
flows. In a later section we will view this correspondence in a ‘parametrized’ setting.

5 The Baker function in the C*-algebra setting

5.1 The Burchnall-Chaundy ring with coefficients in A

Continuing with A ∼= C(Y ) a commutative (separable) C*-algebra, we now consider the algebra
B⊗A of analytic functions U −→ A where U is a connected open neighborhood of the origin in C.
As before we have the algebra B[∂] of linear differential operators with coefficients in B, consisting
of expressions (4.1) where essentially the same discussion in §4.1 applies verbatim. In particular,
the coefficients ai are now thought of as A-valued functions.

5.2 A flow of multiplication operators

In the following we take D to denote the closed unit disk centered at the origin in C.

Definition 5.1. Let Γ+(Y ) ⊂ Ĝ(A) be the group of multiplication operators on HA given by the
group of maps g : S1 × Y −→ C∗ such that g is continuous in y for each y ∈ Y , g(x, y) is real
analytic in x ∈ S1 extending to g(z, y) holomorphic in z ∈ D, and g(0, y) = 1, for each y ∈ Y .

An action of Γ+(Y ) on Gr(p,A) is induced via its restriction to the subspace H+. In the special
case Y = {pt}, we set Γ+(Y ) = Γ+. In view of (3.9) and Gr(q,B) = Gr(H+,H), we consider
the restriction Γ+(Y )|Gr(q,B) acting as a Y -parametrized family {(Γ+)y}y∈Y . Effectively, we then
have a flow of multiplication operators as given by

Γ+(Y ) = {(exp(
∑

a

taz
a))y}y∈Y . (5.1)

Definition 5.2. Let Γ−(Y ) ⊂ Ĝ(A) be the group of multiplication operators on HA given by the
group of maps g : C\Int(D) × Y −→ C∗ such that g is continuous in y for each y ∈ Y , g(x, y) is
real analytic in x ∈ C\Int(D) extending to g(z, y) holomorphic in z ∈ C\Int(D), and g(∞, y) = 1,
for each y ∈ Y .

5.3 The abstract operator-valued Baker function

Recalling Definitions 5.1 and 5.2 above, let us consider subspaces W ∈ Gr(p,A) of the form

W = ghgH+, (5.2)
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with g ∈ Γ+(Y ) and hg ∈ Γ−(Y ). Also for g ∈ Γ+(Y ), we consider projections

pg
1 : g−1(W ) −→ H+, p

g
1 ∈ Fred(HA), (5.3)

and define in relationship to the big cell, the subgroup of Γ+(Y ) as given by

ΓW
+ (Y ) = {g ∈ Γ+(Y ) : pg

1 is an isomorphism}. (5.4)

Definition 5.3. The operator-valued Baker function ψW associated to the subspace W ∈ Cb ⊂
Gr(p,A) in (5.2), is defined formally as:

ψW = (pg
1)
−1(1) = (

∞∑
s=0

as(g) ζ−s) g(ζ) ∈Wg(ζ), (5.5)

where g ∈ ΓW
+ (Y ) and the as are analytic A-valued (operator-matrix) functions on ΓW

+ (Y ) extend-
ing to all A-valued functions g(z, y) in Γ+(Y ) meromorphic in z (cf. [11]).

5.4 A formal integral operator

Relative to W ∈ Gr(p,A), the set

BW = {f(z) =
N∑

s=−∞
csz

−s : s ∈ N, cs ∈ A, f(z)W ⊂W}, (5.6)

contains the coordinate ring of the curve X r {x∞}. As in [11, §6], following [22], there exists a
formal integral operator K ∈ B[[∂−1]] given by

K = 1 +
∞∑

s=1

as(x) ∂−s, (5.7)

(where the as are A-valued functions) unique up to a constant coefficient operator such that
L = K(∂n)K−1 belongs to A. Under the above correspondence the (formal) Baker function ψW is
defined as ψW = Kexz, the main point being that the function ψW will be an eigenfunction for the
operator L1/n = ∂ + [lower-order terms], that is,

L1/nψW = z ψW , (5.8)

and accordingly

ψW (x, z) = (1 +
∞∑

s=1

as(x) z−s) exz. (5.9)

Using a form of the Sato correspondence [21], we established in [11] (for A not necessarily commu-
tative):

Theorem 5.1. [11, Theorem 6.1] Given the Baker function ψW associated to a subspace W ∈
Gr(p,A), the Burchnall-Chaundy ring A is conjugated into A ⊂ LJ(HA) as a commutative subring,
the conjugating integral operator K being unique up to constant coefficient operators.
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5.5 The Y -parametrized holomorphic data

Since we have effectively tensored the coefficients of A by A, we can modify the discussion in §4.1
and §4.2 using the expression for A in (3.9). Specifically, the same construction involving the data
in §4.2 yields a Y -parametrized map to Gr(q,B) = Gr(H+,H) where we recall B = LJ(H) from
§3.4. Consequently, for a Y -parametrized quintuple in §4.2, y ∈ Y , we obtain the assignment

{(X,x∞,Ly, zy, ϕy)}y∈Y −→ certain points Wy ∈ Y ×Gr(q,B). (5.10)

As we have noted in §5.2, the restriction Γ+(Y )|Gr(q,B) acts as a family of multiplication
operators {(Γ+)y}y∈Y on subspaces W ∈ Gr(q,B). Following [22, §6], an element g ∈ Γ+ serves as
a transition function for a line bundle over X (that is, g ∈ Γ+ determines a point in PicgX (X) which
is then twisted into a point of J(X)). The restricted action Γ+(Y )|Gr(q,B) gives a parametrized
version of this result:

Proposition 5.1. Let J0(X × Y ) denote the space of topologically trivial line bundles on X × Y .
Then there exists a well-defined map

Γ+(Y )|Gr(q,B) −→ J0(X × Y ), (5.11)

given by gy −→ Lgy , and an induced action of Γ+(Y )|Gr(q,B) on J0(X × Y ).

Proof. We follow [22, Proposition 6.9] closely. Let X0 = X\X∞, and let Lgy −→ X×Y be the line
bundle obtained by taking topologically trivial line bundles over X0 × Y and X∞ × Y and glueing
them by gy = (g, y) over an open neighborhood of S1 × Y , where g ∈ Γ+. This line bundle has
degree gX , so it is not topologically trivial, but by changing gy by an element of Γ− we achieve
degree zero. Thus we obtain a map

Γ+(Y )|Gr(q,B) −→ J0(X × Y ),
gy 7→ Lgy

(5.12)

where Lgy has a ϕg-induced trivialization

ϕgy = (ϕg, y) : Lgy |X∞ × Y −→ C×X∞ × Y . (5.13)

Consequently, (Γ+)y acts on (X,x∞, z) and on (L, ϕ) via the tensor product with (Lgy , ϕgy) .

In this way the action of Γ+(Y )|Gr(q,B) on Y -parametrized solutions of the generalized n-th
KdV equations corresponds to L −→ L⊗Lgy . For a fixed y ∈ Y , the assignment g 7→ Lg defines a
surjective group homomorphism Γ+ −→ J(X), as in the case A ∼= C [22, Remark 6.8].

6 The Burchnall-Chaundy C* algebra

Motivated by Theorem 5.1 our next aim is to obtain a natural C*-algebra associated to A. Firstly,
in view of Theorem 5.1, let

iK : A −→ A, (6.1)

be the inclusion map induced via conjugation by the integral operator K in (5.7). We also recall
the C*-algebra Ā of §3.2.
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Definition 6.1. The Burchnall-Chaundy C* algebra denoted A is the C*-subalgebra of Ā generated
by iK(A).

Thus A is a separable C*-subalgebra of Ā (this uses the fact that Ā is separable). We also
endow A with an identity as induced from that of Ā. Further, let

iK : A −→ A, (6.2)

be the induced map of (6.1) into the C*-algebra A. Note that both maps in (6.1), (6.2) factor
through the tensor product A⊗A.

Remark 6.1. Note that the relevant algebras considered in §3.2 and above, are already inside the
C*-algebra LA(HA). In view of Remark 3.1, applying a completely positive state to pass to H(A)
serves to make LA(HA) a C*-subalgebra of L(H(A)). Thus we may, if we wish, identify A as a
particular C*-subalgebra of L(H(A)).

In the following we will also consider a commutative Banach subalgebra B of A as generated
by elements of iK(A). Suppose we have some finite number s of commuting operators Li ∈ A, for
1 ≤ i ≤ s. Recalling (6.2) and setting Ti = iK(Li) ∈ B, leads to

0 = iK([Li, Lj ]A) = [iK(Li), iK(Lj)]A = [Ti, Tj ]A, (6.3)

and hence we obtain a commuting s-tuple T (s) ≡ (T1, . . . , Ts) ∈ Bs.

We establish a connection between the joint spectrum of the Burchnall-Chaundy ring A and
the joint spectrum σ(T (s),B) of a generating commuting s-tuple T (s) of operators in the Banach
subalgebra B: while this is all we wish to say, standard facts of Banach algebra make it possible to
see that the spectra are in fact homeomorphic.

Theorem 6.1. For any s-tuple T (s) ∈ Bs of commuting operators that generate B, there exists an
injective map of spectra

σ(T (s),B) −→ (X ′ = Spec(A))× Y. (6.4)

Proof. Recall that each Ti = iK(Li) ∈ B, for 1 ≤ i ≤ s. By definition of the spectrum, any point

of the latter can be regarded as a non–trivial algebra homomorphism B f−→ C, which by definition
restricts to the ring of generators A, that is, we have a restricted homomorphism f |A : A f−→ C.
Note that if f1, f2 are two such homomorphisms, then if f1 = f2 on A, then likewise, f1 = f2 on
B. Finally, by using the contravariance of the Spec–functor applied to the subring inclusion iK , an
injective map σ(T (s),B) −→ X ′ = Spec(A) thus follows.

Remark 6.2. The s-tuple T (s) = (T1, . . . , Ts) of commuting operators in B, being images Ti =
iK(Li) of operators that commute with L of order n, provide a solution to the n-th generalized
KdV-hierarchy in (4.3), simply reproducing the construction in ([22, Proposition 4.12, Corollary
5.18, and §6].
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7 Extensions of compact operators and K-homology

7.1 Extensions of the ideal of compact operators

In relationship to HA we have the Calkin C*-algebra Q(HA) = L(HA)/K(HA). Note that we have
in our case:

Q(HA) = L(HA)/K(HA)
∼= L(H ⊗A)/K(H ⊗A)
∼= (L(H)⊗A)/(K(H)⊗A)
∼= (L(H)/K(H))⊗A
= Q(H)⊗A.

(7.1)

Application of the Brown-Douglas-Fillmore extension theory [5] shows that an extension of the
compact operators K(HA) by A yields a unital *-monomorphism

% : A −→ Q(HA). (7.2)

Let us also note that by the discussion of §3.2, a Fredholm module (HA, S) over A determines an
element in K–homology K∗(A). Using the morphism % in (7.2), we produce a well defined map
from the ring A to Q(H)⊗A as the composition

%K : A −→ A⊗A
iK−→ A %−→ Q(HA), (7.3)

which shows that each element L ∈ A determines an extension of K(HA) by A. Furthermore, the
contravariance of the “Spec” functor induces a well-defined map

%∗K : Spec(Q(HA)) −→ X ′ = Spec(A)× Y. (7.4)

7.2 Construction of a Kasparov KK-class

Let us now return to the (non-singular) algebraic curve X = X ′ ∪ {x∞} associated to Spec(A).
Here we shall consider a fixed y ∈ Y as in the case A ∼= C, and momentarily replace HA by
H = L2(S1,C). We will consider extensions such as (7.2) by the (commutative) C*-algebra
C(X). The group Ext(X) of these extensions is the same as the degree-1 K-homology group
K1(C(X)) = Ext(X) [4, 5]. More generally, K∗(C(X)) can be identified with Kasparov’s KK-
group KK(C(X),C); we refer the reader to e.g. [4, 6, 15, 23] for complete details of this theory,
but the main ingredients for constructing an element of such a group will be described below.

We will show how classes in K∗(C(X)), and hence Ext(X), can be constructed from subspaces
W ∈ Gr(q,B) which are images of the Krichever correspondence in §4.2 (these are characterized
by the size of the ring BW [22, Remark 6.3]). As a starting point, we endow the holomorphic
line bundle L −→ X with a general Hermitian metric (see e.g. [26, III Theorem 1.2]). The latter
induces a canonical Hermitian connection ∇ on L whose (0, 1)-component ∇′′

is taken to be the
∂̄–operator on sections (see e.g. [26, III Theorem 2.1]). Before looking at K∗(C(X)), we have the
more general result:

Theorem 7.1. To each holomorphic line bundle with connection {(L,∇) −→ X} there corresponds
a class u = u(L,∇) ∈ KK(C(X),A).
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Proof. Let (L,∇) −→ X be the holomorphic line bundle determined by L with the endowed
Hermitian connection ∇ whose (0, 1)-component ∇′′

is taken to be the ∂̄-operator on sections.

Since X has the Kähler property, we have a well–defined Dirac operator D =
√

2(∂̄+∂̄∗) (see e.g.
[20, (2.20)]). Next, following [4, 23] we specify a Kasparov bimodule (E, S) which up to operator
homotopy equivalence will (by definition) yield an element in the group KK(C(X),A).

Firstly, the space of A-valued, L2-sections E = L2(X,L)⊗A is a Z2-graded Hilbert A-module
acted on by C(X) via a *-homomorphism π : C(X) −→ L(E), such that for all a ∈ C(X), π(a)
is homogeneous of degree 0. Secondly via tensoring by A, the operator D admits a quasi-inverse

D∗ such that DD∗ − 1, D∗D − 1 ∈ K(E) and leads to an associated operator S =
[

0 D∗

D 0

]
homogeneous of degree 1, such that [23]:

a) π(a)(S2 − Id) ∈ K(E);

b) the commutator [π(a), S] ∈ K(E).

This leads to the bimodule (E, S) which up to operator homotopy equivalence yields the desired
element in KK(C(X),A).

We deduce the result for K∗(C(X)), and the special case of Ext(X), from Theorem 7.1 on
setting A = C:

Corollary 7.1. To each holomorphic line bundle L, corresponding to a certain subspace of Gr(q,B)
via the Krichever correspondence of §4.2, upon endowing it with Hermitian metric and attendant
canonical connection {(L,∇) −→ X}, there corresponds a class u = u(L,∇) ∈ K∗(C(X)) whose
degree-1 component, denoted u[1], defines an element of Ext(X).

Suppose that Y is now taken to be a compact manifold. There is a Y -parametrized version of
this last result when X is replaced by the compact manifold X × Y . Let πX : X × Y −→ X be the
first factor projection.

Corollary 7.2. Suppose X × Y has a spin-structure and let (L̃, ∇̃) −→ X × Y be a Hermitian
line bundle with connection such that L̃ = π∗X(L) where L −→ X is the holomorphic line bundle
corresponding to a certain point W ∈ Gr(q,B) and ∇̃ is the pullback connection under πX of the
Hermitian connection ∇ on L as above. Then a Y -parametrized family {Wy}y∈Y of such subspaces
of Gr(q,B) as above determines an element of K∗(C(X × Y )).

Proof. The first part follows just as in the proof of Theorem 7.1 for the case A = C, since the
assumption of a spin structure on X×Y provides a Dirac operator D̃ : C∞(X×Y, L̃) −→ C∞(X×
Y, L̃) from which a homogeneous degree 1 operator S̃ can be constructed as in the proof of Theorem
7.1. The analogous details apply to yield the corresponding bimodule (Ẽ, S̃) = (L2(X × Y, L̃), S̃)
leading to an element of KK(C(X × Y ),C). The result then follows from the Y -parametrization
of (5.10).
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7.3 The C*-algebra of the Jacobian and extensions

We return now to the Jacobian torus J(X) of X and recall that there exists a holomorphic em-
bedding µ : X −→ J(X) (see e.g. [13]). The following theorem establishes a relationship between
the respective commutative C*-algebras of continuous functions C(J(X)) and C(X) and the dual
K∗-functor:

Theorem 7.2. There exists a short exact sequence of C*-algebras

0 → I
i−→ C(J(X))

p−→ C(X) → 0, (7.5)

where I is a two-sided ideal in C(J(X)), i is injective and p is surjective. Furthermore, (7.5)
induces a periodic sequence of K∗–groups:

K0(I)
i∗ // K0(C(J(X)))

p∗ // K0(C(X))

��
K1(C(X))

OO

K1(C(J(X)))
p∗oo K1(I)

i∗oo

(7.6)

Proof. Firstly, from the embedding µ : X −→ J(X) we identify X as a closed subset of J(X)
and by standard principles, the induced map on continuous functions p : C(J(X)) −→ C(X)
is surjective. Alternatively, we note that the transcendence degrees of the rings of meromorphic
functions Mero(J(X)) and Mero(X) are gX ≥ 1 and 1, respectively. Thus with respect to a two-
sided ideal I0 in Mero(J(X)) we have a short exact sequence:

0 → I0
i−→ Mero(J(X))

p−→ Mero(X) → 0, (7.7)

where in each case the elements of the ring can be approximated by Laurent polynomials extendable
to the continuous functions. Hence (7.5) follows. The last part follows from the periodicity of the
K∗-functor [6, 12].

The periodicity sequence in (7.6) corresponds to the analogous sequence in the K-theory of
spaces:

K0(J(X)\Im µ) // K0(J(X)) // K0(X)

��
K1(X)

OO

K1(J(X))oo K1(J(X)\Im µ)oo

(7.8)

Now we return to K-homology and in particular, in degree 1 the following establishes a relation-
ship between the ‘Ext’ classes of X and J(X) on introducing the homology Chern character [2, 6].
Note that this is the case in which the BDF theory guarantees that elements of Ext correspond to
*-monomorphisms of the C-algebra to the Calkin algebra, and that the set of monomorphisms of
the Burchnall-Chaundy algebra into the algebras BW ⊂ L(HA) is indeed the Jacobian, as proved
by Burchnall and Chaundy: from this point of view, the Jacobian can be mapped to elements of
Ext.
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Theorem 7.3. The following diagram is commutative

K1(C(X))
µ̂∗−−−−→ K1(C(J(X)))

ch1

y ych1

H1(X,Q)
µ∗∼=−−−−→ H1(J(X),Q)

(7.9)

Here the map µ∗ is an isomorphism and the map µ̂∗ is injective. In particular, when gX = 1, the
map µ̂∗ is an isomorphism.

Proof. Applying the functor K∗ to (7.5), the resulting long exact sequence yields an injective map
µ̂∗ : K1(C(X)) −→ K1(C(J(X))). The commutativity of the diagram arises from applying the
homology Chern character homomorphism to each side. Regarding the lower horizontal arrow
µ∗, we recall some elementary facts concerning X and its Jacobian J(X) (see e.g. [13]). Setting
the genus gX = g, if δ1, . . . , δ2g are 1–cycles in X forming a (canonical) basis for H1(X,Z), then
H1(X,Z) ∼= Z{δ1, . . . , δ2g}. Next, we identify J(X) = Cg/Λ where Λ ⊂ Cg is a discrete lattice
of maximal rank 2g. Accordingly, H1(J(X),Z) ∼= Λ ∼= Z{λ1, . . . , λ2g}, for a basis λ1, . . . , λ2g for
Λ. Thus, from the (one-to-one) assignment δi 7→ λi, 1 ≤ i ≤ 2g, it follows that we have an
isomorphism H1(X,Z) ∼= H1(J(X),Z). Since both X and J(X) are quotients of their respective
covering spaces by torsion-free discrete groups, then on tensoring the respective integral homology
groups by Q, it also follows that H1(X,Q) ∼= H1(J(X),Q). In the case of genus gX = 1, X is, up
to the choice of a base point, an elliptic curve (a complex 1-dimensional torus), the map µ is an
isomorphism and consequently induces an isomorphism µ̂∗ : K1(C(X)) −→ K1(C(J(X))), in other
words, Ext(X) ∼= Ext(J(X)).
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