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Abstract

We consider a real-valued function 7 = M(t) on the real axis, such that
M(t) < 0fort < 0. Under appropriate assumptions on M, the pull-back oper-
ator M* gives rise to a transform of Sobolev spaces W**(—00,0) that restricts
to a transform of W*P{—o00,00). We construct a bounded linear extension op-
erator W*?(—00,0) — W*?(—o00,00), commuting with this transform.
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1 Motivation

As described in Schulze [S], Sobolev embedding theorems may be treated in the
framework of pseudodifferential operators with operator-valued symbols whose def-
inition is based on the “twisted” homogeneity.

In particular, consider the strongly continuous group action (Kx)ie(o,00) ON 2
space L = H*(R.), s € R, given by xyu(t) = A7u(Mt). Obviously, ) acts continu-
ously also on V = H*(R). It is easy to verify that

W*RY, H*(R)) = H*(R),
W*(R%, H*(R)) = H*(R™),

where W?(RY, L) is defined to be the completion of Cg,,,(R?, L) with respect to

1
the norm |ju|| = (fnq(n)z"||rca71)Fy,_.,,u||%dq)5, F being the Fourier transform. Each
continuous linear extension operator T' : H*(R_) — H*(R) commuting with x,
gives rise to a constant operator-valued symbol a(y,n) in SY(T*(RY), L(L — V))
simply by a(y,n) = T'. The symbol space in question is defined on the base of the
group action ,, so that a(y,n) satisfies

1 =18l

I fc(',,)D;'Dga(y, ﬂ)"(n)”cw_,!/) <cln)

for all multi-indices a and 8, uniformly in y on compact subsets of R? and 7 € R*.
Then, the corresponding pseudodifferential operator op(a)u = F; % a(y,n)Fyqu
extends to a continuous mapping of W?(R?%, L) — W*(R% V). Moreover, it is an

extension operator of H*(R%*') — H*(Rt!), for if R : H*(R) — H*(R._) is the
restriction mapping, then op(R) is the restriction operator of H*(R*+!) — H*(R7*")
and

op(R)op(a) = op(RT)
=1
on H*(R%™). This operator-valued boundary symbol is of particular interest in
Boutet de Monvel's algebra (cf. ibid., Subsection 4.2.2).
With this as our starting point, we are looking in this paper for a bounded

extension operator of A*(R_) — H*(R) commuting with a general transform of
these spaces.

2 Statement of the main result

Fors € Zy,1 <p<ooand —oo <a<b< oo, let W*P(a,b) stand for the Sobolev
space of all functions f € L?(a,b) having weak derivatives f(*) of order s on (a,b),
such that
1f lwerasy = IFllzoeey + 1/ luriap) < co.
It is well-known (see Nikol’skii [N1], Babich [B]) that there exists a bounded
linear extension operator

T : W**(=00,0) = W*"(—00,c0) (2.1)



Extension Operators for Sobolev Spaces 3

(i.e., (Tf)(t) = f(t) if t < 0). It can be constructed in the following way: for t > 0,

(T = 3 a5 F(~B51), (2.2)

j=1

where 3; are arbitrary distinct positive numbers and «; are defined by

Yoo (=B =1, i=0,1,...,5~1

j=1

(This construction was first used in Hestenes [H]}.)
Denote by « a dilation transform of the type

(xf)() = Af(M), té€(—o0,00),

where A and X are positive numbers. Then the extension operator T' defined by
(2.2) commutes with «:
Tk =«xT. (2.3)
(Note that in the left side « is considered as an operator acting from W*?(—o00,0)
to W*P(—o00,0), while in the right side it is considered as an operator acting from
W*?(—c0, 00) to W*P(—00,0).)
Below we consider a more general transform « defined by

(£f)(t) = Af(M(t), =€ (-00,00), (2.4)

where A is a positive number and M a function satisfying appropriate conditions.
We construct a bounded linear extension operator commuting with this transform.

Theorem 2.1 Suppose s € Z,, 1 < p < 00, and k is a transform defined by
(2.4), where A > 0 and M satisfies the following conditions:
1) M € C}, (—00,00) and all derivatives M), i =1,...,s, are bounded;
2) M is odd;
3) M(t) > 0 for all t € (0,00);
4) there ezists ¢ > 0 such that M'(t) > ¢ fort € (—o0,00), moreover, M'(0) # 1;
5) M"(0) = ...= MG-I(0) = 0.
Then, there exists a bounded linear extension operator (2.1) satisfying (2.3).

3 Proof

1° For f € W*?(—00,0), we set f_(t) = f(—t) and

(THE) =3 a;(F ), >0,

i=1
where aj, 3 =1,...,s, are defined by

z’ja,- AT (M(0)Y =(-1), 1i=0,1,...,s—1. (3.1)

i=1
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We note that, since M’(0) # 1, the determinant of this system with respect to the
variables a; A’, being a Van-der-Mond determinant, is not equal to 0.
Put
Mj(t) = M(--- (M(1))--).
S e

P
Then

(T = o 41 f(-M(0), >0

As by condition 3) M;(t) > 0 for ¢ > 0, the value (T f}(t) is well-defined.
2° Suppose f € W*P(—00,0). In order to prove that T'f € W*?(—o0,00) it is
enough to prove that T'f € W*?(0, c0) and

(THD04) = fP0-), i=0,1,...,01-1, (3.2)

where f(}(0—) and (T f)®)(0+) are boundary values of f0} and (T ) respectively
(see for instance Nikol’skii [N2], Triebel [T]).

3° Since f € W*P(—00,0), it is equivalent to a function F defined on (—oo,0],
such that the ordinary derivatives F{), i = 1,...,s—1, exist on (—c0,0] and F(~1)
is absolutely continuous on [a,0] for each @ < 0. Moreover, f()(0—=) = F®(0) for ; =
1,...,s—1. We note also that the ordinary derivative F{*) exists almost everywhere
on (—00,0) and is equivalent to the weak derivative f(*). (See for example Nikol’skii
[N2].)

It follows that T'f, defined on (0, ), is equivalent to TF, defined on [0, co0),
the ordinary derivatives (TF)®, i = 1,...,s — 1, exist on [0, 00) and (T F)(~1 is
absolutely continuous on {0, 8] for each b > 0. The latter is due to the fact that the
functions M; are absolutely continuous and monotonic. Consequently, the ordinary

derivative (TF)(*) exists almost everywhere on (0,00), is equivalent to the weak
derivative (T f)*) and

I Fllwesioc0) = HTFllzroeey + I(TF) o000 (3.3)
Moreover, condition (3.2) is equivalent to

(TFY)0) = FOW0), :=0,1,...,1—1. (3.4)

4° Qur next observation is that, forz =1,...,s and t > 0, we have

(F=M0)Y = (=1 FO(=M,(0)) (M'(Msos ()M (Mya(t)) -+ M(0))
+§ﬂW4ummmx
=1

where A; ;. are linear combinations of products of some natural powers of derivatives

MO(M, (1), where 0 <m < j—1and 1 <1< ¢—k+ 1. This equality is valid
everywhere on [0,00), if ¢ < s, and almost everywhere, if 1 = s.
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It is worth pointing out that every summand in A;; contains as a factor at
least one derivative of M of order greater than 1. Consequently, we can assert, by
conditions 2) and 5), that

(F(—=M;(t) Jizo = (=1)' (M'(0))" FO(0)
forall 2 =0,1,...,3 — 1. Hence it follows that
(7)) = (-1)° ()_: o A (M’(O))‘f) F0), (3.5)

fort=0,1,...,8—1.
Moreover, since the derivatives M), ... M) are bounded, there exists a con-
stant ¢; > 0 such that

(F(=M;0)9] < e S IFO(=M;0)], >0,

k=1
fort: =1,...,s. Thus,
(TF |<szlF (=M;(1), t=0,
=1
and
(TF)¥)(t |<CZZE|F tHl, t>0,
j=1 k=1

for: =1,...,s, the constant c; being independent of F.
5° By condition 4), there is a constant ¢ > 0 with the property that

Mi(t) > cs, t€ (—o0,00),

for j =1,...,s. Consequently,

ITF|lLrooe)y < €2 Z”F )| zr(0,00)

0 dr »
- . IF(r)I"—,—_———)
2 ; (/_m MM (r))
_1
< ey’ D |IF Lr(-co)
=1

= ¢4 [|Fllze(-c00) (3.6)

_1
where ¢4 = cpc3 78, Similarly,

KT F) o000y < €5 3 IFLr(-co0) (3.7)
k=1
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with ¢s a constant independent of F.
Now we invoke a well-known result that

1 iaecony < 5 (1 r(-oo) + IFllr(oo)) (38)

for all k < s, where the constant ¢ depends only on s (cf. Nikol'skii [N2]). Thus,
combining (3.3), (3.6), (3.7) and (3.8) yields

T fllwer(o,00) < €7 || fllwep(-c0,0s (3.9)

where ¢z is independent of f.

6° According to (3.5) condition (3.4) and, hence, (3.2) is equivalent to (3.1).
Thus, from what has been said in item 2° it follows that T f € W*P(—00,00). The
estimate (3.9) now shows that the operator 7" is bounded.

7° Finally, equality (2.3) is equivalent to

Za_,n,’ kf)- ZaJ AR

n (0,00). The latter equality is valid for, by condition 2),
(xf)-() = ( F(M(2)))-
= Af(M(-t))
= Af(-M(t))
= (kf2)),

which completes the proof.
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