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L.Statements. The problem of description of functions that are given on
some part of the boundary of a domain and can be extended holomorphically
to the entire domain has been considered in the papers [2],{4],[6],{7],{5],{10],
[11,]12],[13],[15],[16], [17],[19],[20]. (It is pressumed that the domain is not
contained in the hull of holomorphy of the piece of the boundary.) A survey
of almost all of these results can be found in [3]. In all papers mentioned
above (with exception of Fock-Kuni theorem [10] and its generalization in
[2]) the description is rather complicated. Recently, however, in [6], we have
obtained a one-variable result similar to the spirit of the Fock-Kuni theorem
but simpler both in its formulation and proof. Here the condition says that
the moment integrals (i.e. integrals of the quotient of the function and the
monomials z7¥) should not grow to fast for with k (Theorem A).

'The easy results of this spirit for several-dimensional case are obtained in
[7]. One can also apply one dimensional result from [6] (Theorem A) to the
the sections in several-dimensional case (see Theorem C in [5])
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Moreover, 1 would like to express deep gratitude to prof. F. Hirzebruch for inviting me ten
times to Bonn before. Unfortunately, | did not have any possibility to use these invitations
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For the solution of this free boundary problem they used to work with
some basis in a space of holomorphic or harmonic functions. We managed
to find a very simple solution, using the complete system of functions (if we
used the basis, the answer would not be so easy).

Let @ = {( : ¥(¢) < 0} be a (p1,...,pn)-circular domain in C", where
P1,-..,Pn are natural numbers, i.e. z € Q implies (z1€'™,...,2,e'") €
for t € R. In particular, for p; = ... = p, = 1 this circular domain is Cartan
domain. In addition to this, let 2 be convex and bounded and 902 € C%
Furthermore let D C C® be a domain bounded by a part of the J§} and by a
hypersurface I’ € C? dividing the domain ) into iwo parts, the complement
of D containing the origin. Let us consider the Cauchy-Fantappié differential
form

_ (n = S b (=D lordwlk) A d¢
(2md)» (w,( — z)" ’

w(¢ - z,w)

where dwlk] = dwy A ... Adwg—y A dwgga AL Adwy, d¢ = d(, .. .d(,,
(a,b) = a1by + ...anb,. Then grady = (%,...,%). By Sard theorem
grady # 0 for almost all r on 9€2,, where (2, = r{} is a homothety of 2 with

0 <r < 1. We will assume that grady # 0 on I'. We denote
(Iql-l-n—l)!/ ( gradi )q
Cg = —"7T-—"> )| ————= ) w((,gradi),
= SO\ G ) CGome )
where g = (q1,.. ., gn)s ¢! =@l @b gl =+ . o4 gy, T = w0l

ay = E bg,sCqCs,

(p.q)=k
(p.s)=k

where

bas = / 27°dV,
Q

dV is the volume element in (2.

We emphasize that the integral moments ¢, depend on f and I', but the
moments b, , depend only on .

The question is the following: When can a continuous function f on I’
(we write f € C(I')) be continued to a function F' being holomorphic in D
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(we write f € A(D)) satisfying F' € C(DUT) and F|r = f. In order to
simplify the formulation the extra condition f € L'(I') was added and we
will do so below as well. This produces no loss of generality since such a
condition holds on any smaller hypersurface.

Theorem 1 For a function f € C(T') U L}(T') to have a holomorphic con-
tinuation F' € A(D)NC(DUT) with F|r = f it is necessary and sufficient
that the following two conditions are fulfilled:

1. fis a CR function on T’
2. Tl_r-—nk—voo\k/a_k S 1:

The most easy results obtained as the solutions of free boundary problem
are the consequences of this theorem:

Let Dy € C be a domain bounded by a part of the unit circle y; = {z :
|z} = 1} and a simple , smooth and open arc I' connecting two points of v,
and lying inside the circle. We assume that 0 ¢ D,.

Theorem A (Aizenberg) For a function f € C(T')U L T) to have a holo-
morphic continuation in D) it is necessary and sufficient that

Jim /|4 < 1, | (1)

where

d
Ak = - fé(.gl}_(:a

Let 2 C C" be a bounded convex n-circular domain. We assume d,((?) =
maxg |29.

k=0,1,2,...

Theorem B (Aizenberg-Kytmanov) For a function f € C{I'Y)UL'(T") to
have a holomorphic continuation in D as above it is necessary and sufficient
that

1. f is a CR function on T’

T gl
i {eado () < 1. (2)
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Let D be a domain in C*, I' C D a hypersurface of class C!, transversal
to the z,-direction. Write ar, = {'z} x C,,, where 'z = (z,...,2021).
Assume that, for all 'z € C*! a, N D is connected and not empty. Then
ar, N1 is not empty.

The following theorem, proved with the help of T'heorem A, generalizes
the well-known classical Hartogs theorem: if f € A(D;) and can be holomor-
phically extended on z, in the domain D D Dy, then f € A(D). In Theorem
C we consider a function f € C(I") N CR(T).

Theorem C (Aizenberg-Rea) Let f: DUT — C be a function which is
holomorphic with respect to the z,-variable and, when restricted to D N a,,
is continuous up to 'Na,. Let f € C(I')NCR(I), then f is holomorphic
in D with respect to all variables.

This formulation can be improved using the methods of [14], [18]. Let
M={z:DNar,#0},and N C M. We call NNU for any U/ open in M,
a portion of N.

Theorem 2 Let f be a continuous CR function on U such for all’z € N its
restriction on I' N av, can be holomorphically extended with respect to z, tn
the domain D N, as a function continuous up to I'Na,. If any portion of
N is not pluripolar in CI™!, then f can be holomorphically extended in D as
a function of all the variables: There exists F € A(D)NC{D UT) such that
Flr=f.

In case when f('z,z,) for the fixed 'z € N can be holomorphically ex-
tended on z, for the whole C, it is sullicient to require that /¥ is not pluripo-
lar (and not any of its portion).

Corollary 1 Let f € C(T)NCR(T) and for 'z € N the restriction of f on
', can be holomorphically extended in the C, . If N is not pluripolar in
C'}, then f can be extended from I' in M x C,, as a holomorphic function,

where M = {z:TNai, #0} C CL.

2. Proof of Theorem 1 and Corollaries. We call £, weighted homogeneous

po/lynomia,l /of degree k if it is homogeneous of degree k with respect to
1/p; Pn
z .

1
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Any function ¢ € A(€) has a decomposition in §) into a series of weighted
polynomials (see 8], p.56)

#(z) =S Pula), 3)
k=1

untformly convergent on compact subsets of 2, and the P are pairwise
orthogonal in L*(€2). Hence, if ¢ € A%(2) = A(S2) N L*(Q), then

I6lEa@ = 2 IP:lEacw) (4
k=0
and furthermore, a function ¢ € A(£2) belongs to L#({?) if and only if the
series at the right hand side in (4) is convergent. Besides out the convergence
of the series (3) in L?(£2) implies its uniform convergence on the compact
subsets of {}. Therefore, the sum ¢(z) belongs to h*(£2) for any 4 priori given
series (3), convergent in L%((}).
We consider the function

B(z) = fr J(Ow(¢ = 2, grady), (5)

which is holomorphic in the origin. For z being sufficiently close to the
origin [{grady, ()| > |{grady, z)|, where ¢ € I'. Therefore,

1 -3 (lgl+n—1)! 2%(grady)’
(g?‘ad?,b,C - 'z)ﬂ qh“'!qnzo q!(n - 1)! (gradd), C)n+|q’
and it follows from (5), that in some neighbourhood of the origin
1 1
®(z) = €qz' = =5y ) Brys(2),
where
Pos(z) = Z cy2°
(pa)=k

It follows from the results of (7] that the mentioned above in the for-
mulation of Theorem 1 a holomorphic extension exists if and only if 1) is
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satisfied and the function ®(z) extends holomorphically from a neighbour-
hood of the origin into Q. Consider a weighted homothety QF = {w : w; =
rPiz; where z € Q},0 <r < 1. For & € A(Q) it is necessary and sufficient
that for any r the function ® € h*(22), i.e. the series

oo [ n) o0
> MPesliaey = D 2P fl2ae) = 7Y (P
k=0 k=0 k=0

COLVETZES.

We have proved that the required holomorphic extension of @ is equivalent
to 2). O

One can prove that there exists a basis in A(2) consisting of weighted
homogeneous polynomials, due to Gramm-Schmidt procedure (In [1] it was
proved for n = 2 and was used to establish an isomorphism between A((2)
for different Q). Furthermore, one can use the decomposition of @ in this
basis, but in this case one can obtain the analogue of I'heorem 1 which is
not much more complicated both in the formulation and in the proof. Thus,
in this case it is easier to use the complete system and not the basis.

If now Q is an n-circular domain (Reinhardt domain), then it is also
a (1,...,1)-circular domain and Theorem 1 can be applied. In this case
b, = 0, if ¢ # s, and, consequently,

ar =Y byale,|”. (6)

lql=k

b
i g 99— 1
lal—so \/ d2(Q)

and the number of terms in the right hand side of (6) is equal to

On the other side

(k+n—1)!
kK (n-1)1"
therefore in this case condition 2) from Theorem 1 is equivalent to 2)

from Theorem B, hence Theorem B is a consequence of Theorem 1. More
precisely, both of this theorems are based on the results of [7], but Theorem



1 is true for a wider class of domains, and therefore it includes Theorem B.
On the other hand for n = 1 Theorem B also implies Theorem A, since in

this case
_ (e L
CQI - 27TZ /I‘f(C) (QI)’C) d},c - 27”-”441?

but, of course, this is not the way to prove Theorem A, because the direct
proof is easy and elementary. Probably, Theorem 1 (and Theorem B) are the
most natural generalization of Theorem A for the several dimensional case.

3. Proof of Theorem 2. et us denote D_ = K, \ﬁl, where K is the unit
disc in C, and D, the domain from T’heorem A. We observe that condition
1) in Theorem A means, that the Cauchy type integral

Foy = L [ 104

Tomi Jp (—2

extends holomorphically from the domain D_ 3 0 into K; and Theorem
A can be generalized as follows (cp. with Corollary 1’ from [6])

Theorem A’ Let a simple smooth curve I' belong to 0D, D C C, and D_
be a one side neighbourhood of I', lying out of D (i.e. an open arc T C 0D-
and DND_ =0). For f € C(I')N LY(T) to be holomorphically extendable in
D to a function F € A(D)NC(DUT), Flr = f it is necessary and sufficient
that the Cauchy-type integral F_(z) is holomorphically extendable from D_
over ' in D.

One can give an equivalent formulation of Theorem C, substituting the
condition of holomorphy in 2z, in D Na:, by the condition of extendability of
the Cauchy-type integral from every curve I' N av,.

Without loss of generality of the proof we assume that f € C(T'), since
we could provide the proof for a family of slightly smaller pieces of the hyper-
surface T'c and, respectively, the smaller domains D(e), for € — 0. Therefore,
we can consider that f € C(y,) for 'z € M, where v, = I' N av,. Consider
the Cauchy-type integral

=

'y



and a domain D_ being a one side neighbourhood of I', lying at the
converse side of D with respect to I'. Then (cp., e.g. with [9], Appendix
5.4; and [3]) F4 is holomorphic with respect to all variables in Dy = D

and in D_, respectively. Now, by means of Theorem A’, for fixed 'z € N
F_('z,z,) extends holomorphically with respect to z, from D_ N a, into
the domain D N ar,. Let N be a maximal subset of M with the described
property of holomorphic extension, N ¢ N C M. For 'z € N denote by
W('z) the maximal subdomain of D N as, where the holomorphic extension
F_('z, z,) is possible, (or one of them, in case of multivalued extension). Let
W = U,emW('z), and WP - open kernel of W. Then, by Hartogs theorem
F_ extends holomorphically into W°. If D\ W? is not empty, then there
exists an open set U C M such that for all 'z € U the domain D Nar, is
bigger than the domain W° N av,. This is also true for a portion of the set
N in U. Furthermore, taking [18] into consideration one can show that this
portion is pluripolar in C™!, which contradicts with the promise of Theorem
2. Hence, D = WY, Using the generalized formula of Sokhotskii-Plemelj ([3],
(6], [5]) we obtain that Fio(z) € C(DUT) and Fy — F_|r = f, therefore
F, — F_ gives the required holomorphic extension of f from I' into D.

One can give an equivalent formulation of T'heorem 2; where instead of
the condition of holomorphic extension of f from I' with respect to z, one
can presume the extension of Cauchy-type integral F_('z,2,) from D_ Nas,
into D Nav,. (See Theorems A and A’.)
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