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COHOMOLOGY OF THE NILPOTENT SUBALGEBRAS

OF CURRENT LIE ALGEBRAS

*
Feigin B.L. and Fialowski A.

Introduction

In this paper we ccmpute the one and two dimensional
cohomology of the maximal nilpotent subalgebras of affine Lie
algebras with coefficients in the adjoint representaticn. We
also prove one of the possible‘analogies of the Bott-Kostant
theorem for current Lie algebras. This article is an enlarged
version of the note [4].

Let g be a complex semisimple finite-dimensional Lie

Y

algebra, g=n_6 ho n, its Cartan decomposition, ‘ﬁ =pgeClt,t
the corresponding current Lie algebra, i.e. the Lie algebra of
functions S‘I —— g, having a finite Laurent expansion, wiFh the
bracket givinturthefbrmula E.0l(x) = [f(x)yg(x)],f,geg,}<€s1.

. A
Note that g5 admits the natural grading: g =&

>

gm where

A

gm=g®tm. Let us denote (n, 1) & (geot) & (g@tz) &... by
G+ and goeC[t] by gl[t]; ﬁ+ and g(t] inherits the grading

A A
from K g. We shall identify g with ge 1cg.

Recall that a current algebra is the quotient of an affine
Lie algebra by its centre ({10]). Note that the main idea in
the investigation of the cohomology of current algebras (as well
as the other Kac-Moody algebras) is the analogy with the theory
of finite~dimensional semisimple complex Lie algebras. In
particular, ﬁ+ is a counterpart of the maximal nilpotent
subalgebra of a finite-dimensional semisimple Lie algebra. So,
we can use the well-known methods for computing the cohomology
with the help of the Laplace dperator ([11]1), the Bernstein-
Gelfand-Gelfand resolvent ({2]) etc. In [9] V. Kac proved that
the cohomology space of ﬁ+ with trivial coefficients is in

one-one correspondence with the group algebra of the affine Weyl
)
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group. As a consequence he obtained the Kac-MacDonald's

identities.

Another approach to the cohomology of current algebras uses
the ideas from the cohomology theory of the Lie algebra of tangent
vector fields on a smooth manifold ({8]). Now we are going to
use both methods.

In [12] Leger and Luks computed H2(n+;n+) (for another
computation see [171). They used the following method. The
cohomology of n, with coefficients in an irreducible finite-
dimensional representation V of g 1is well-known. Namely,
the Bott-Kostant Theorem {(see, [11],[2]) asserts that
dim Hi(n+;V) is equal to the number of elements of length i
in the Weyl group of g. In particular, we know H-(n_;g), where
g 1is the adjoint representation. Consider now the exact

sequences of n_-modules:

O—>n, ~—»>g—>g/n, >0, 0-—=>h—=>ag/n — ¥ —>0.
Here (g/n,)/h can be identified with n¥ Dby means of the
Killing form. These sequences allow us to reduce the computation
of HZ(n+;n+) to that of H1{n+;n:) and this space can be
determined directly. In this paper we compute Hl(ﬁ+;ﬁ+) for
i=1,2, generalizing the method in [12]. Another approach to

affine algebras is contained in [6].

In Section 1 we prove a Theorem, analogous to the Bott-
1 A A
Kostant Theorem, while in Section 2 we calculate Hl(n+;n+), for
i=1,2.

The authors are grateful to Dmitrij Fuks and George Leger
for their useful comments.

A A
1. Computation of H' (n_;g)

The Bott-Kostant Theorem can be generalized to affine Lie
algebras at least in two ways. The most direct generalization
is the following one: if V 1is an irreducible representation
of the current algebra with dominant highest weight, then
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i A
dim Hl(n+;V) is equal to the number of elements of length 1
in the Weyl group. The proof is similar to that of the finite-
dimensional case. The adjoint representation however is not

a module of highest weight.

In this Section we give another generalization of the
Bott—-Kostant Theorem, namely we compute the cohomology of
3+ with coefficients in modules similar to the adjoint module
consisting of functions on the circle S1 with values in the

representation space of g.

Let V be a representation of g, A a C-algebra and
w:m[t,t-q] —> A a homomorphism. Define a representation of
A
g in V & A by the formula

(x®@f)(vea) =x(v)ew(fla, x€g , veV, fECIZ[t,t-1

1, a€A.

We need two special cases: A=C[t,t '], © is the identity map
and A=C, ¢(f) =£(1). In the first case denote the module
XW&A by G and in the second case by V1. The elements of
V are raticnal functions € — V, regular ocutside the origin.
The mapping, sending a function & — V to its value at 1,
is a homomorphism Q —_— V1.
The space G is endowed with an obvious module structure
over E[t,t-1] and multiplication by an element of E[t,t_1]
is a g-endomorphism of the g—module G. Notice that G is a
graded a—module, 7 = ig% Gi where Gi = Ve>ti. |
Now we are going to investigate the cohomology of ﬁ+ with
coefficients in G. Denote by C'(§+;G) the cochain complex

A i . . . A A
of n_ with coefficients in the n+—module V. The complex

C'(a+;0) 1s graded by weights: C'(g.;eﬂ = 8, C; (ﬁ ;G), where
- A + meZ ~(m) "+
for the cochain @€ C?m)(n+:V) the weight of w(ei1,...,eiq) is
m+ i, +...+iq (i, is the weight of ej,).
Lemma 1. For all m the complexes sz)(ﬁi;e) are
isomorphic to each other and to the complex C*{(n _;V.)

In fact, the composition of the embedding
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. A A LA A i LA A . A
C(m)(n+;V) —> C (n+;v) and 2f the mapping C (n+,V) —> C (n+,V1)

induced by the homomorphism V — V is an isomorphism.

1
AA
From the above it follows that the space H (g;V) is a
E[t,t-1}-module. Lemma 1 can be reformulated as follows.

AA -1 LA
Lemma 2. H (g;V)=C[t,t ]®EH (3;vy).

A
Let us now deal with the computation of H'(n+;V1). The Lie
A '

algebra n_ 1is embedded into glt], v, is naturally endowed
with a gl{tl-module structure, consequently the homomorphism

A
Vot H'(Q[tLB:V1) —> H'(Q[t];V1) — H'i(n_;V

74)

is defined.

Let 1 Dbe the homomorphism
LN H' H. A
Hi(n,) o (git],g;v,) —> (n v,
sending uev to the cohomolcgy class uv (v).
Proposition 1. If V 1is a finite dimensional representation

of g then 1t 1is an isomorphism.

The proof will be given below. Proposition 1 and Lemma 2
imply the basic result of this Section.

i, A A -1
Theorem 1. H (n+;g) ;m[t,t

(n+) for any
nonnegative integer 1i.

Indeed, set V=g. The space Hi(g+,g) is a m[t,t-1]-module.
It follows from Lemma 2 that Hi(ﬁ+,ﬁ) is a free module of rank
equal to dim Hi(3+,V1). The cohomology of g+ with trivial
coefficients is known (see for instance [71]). Usihg this result,
it is not difficult to find the cohomology H' of
ge't®getze ... .We only need the following fact. The space H°
is a g-module, and Hom (g,Hi) =0 1if i#1 and € if 1i=1
(see (131). As Hi(g[t],g;V)z Homg(V,Hi), this gives us that
Hl(g[t],g;g) =0 for 1#1 and is one-dimensional for 1=1.
After this it is enough to apply Proposition 1 and we get



A 1 - A
B (n,;V,) =put 1(n+).

Let us prove now Proposition 1. Introduce two subalgebras

—_ A —_
)2g ® ... and n=n_ N 8. Let G be

of 3:5=(t-1)g & (t-1

a compact connected Lie group corresponding -to a compact real

form of g.

Lemma 3. EY(F)EIY(%+)p}r(§)®E¥(QG).

Here QG 1is the loop space of G.

Proof. Since glt] =ﬁ+-+§ and §==ﬁ+f1§ we have
c(mn) = C'(ﬁ+)®(:.(g[t])0'(§). Here the tensor product is taken
in the category of differential algebras. In such a situation there
exists a spectral sequence (Eilenberg-Moore, see [15]), connecting
the cohomology of these four differential algebras. This spectral
sequencé generalizes the Kiinneth formula [14]. It converges to

» — A —
H-(n) and the second term is isomorphic to TorA(H'(n+),H'(g)),

where A=H'{g[t]). We remark that H'(g[t]) = H ' (g) (see e.g. [3])

and H'(3) acts trivially on H'(Q+) and on H-(g)

(for H'(g) this is trivial and for H'(g+) this follows from
the fact that the composition H (g) —> H'(n+) —_— H'(3+) is
trivial). It follows from this that the second term of the

A -
spectral sequence is isomorphic to H'(n+)@Ii'(g)@:TorA(m,m).

We will show now that TorA(E,E)E H " (Q2G). Indeed, the
cohomology algebra of g with trivial coefficients coincides
with the-cohomology algebra of ¢ and by the Hopf Theorem it

is commutative and free [16]. Using the computation of

TorA(E,E) for the free commutative algebra A (Proposition 7.3



from [15] and see alsc [1]) and the connection between the
cohomology of G and (G, we obtain the isomorphism

TorA(E,E} = R (QG).

Now it can be shown that the spectral seguence degenerates

{e.g. by indicating explicit cycles of C’(;) -which represent
the generators of E2, which we shall do at the end of this

Section). Lemma 3 1is proved.

—_ . A A
The Lie algebra n is an ideal in n_ and n_/n=g.

In virtue of this, g acts on H (n). The algebra g acts
trivially on H°(R,) and on H*(QG), buton H*(F) it acts in the
standard way (§EEg®t€Bg®t2® ... 1is an ideal of glt],
gltl/g=zg, so g acts on 14 naturally and the action of g

on H'(g) is semisimple).

Now to finish the proof of Theorem 1 let us consider the
A
Serre-Hochshild spectral sequence, associated with n_, its
— A
ideal n and the module Vi converging to H'(n+;V1). The

algebra n acts on V1 trivially. The second term of this

spectral sequence is the following:

H'(8;H (m,V)) =H (g;H (M) eV,) =

=

A
H (g;H (n,) ®H (g) ® H' (QG) & V

n

1)

H'(n) ® H'(2G) @ H'(g;H° (5)3 V)

n

+

As g is semisimple, H (g) ® vV, is the direct sum of finite-

dimensional representations, i.e.

H (g;H (3) ®V.) =H (g) eI



where I is the invariant space of H'(3) eV, (see {71).

1
Note that I & H'(g[t},g;vq). The differentials in thé above
sequence act in the following way: they map the generators

of the algebra H (QG) into the generators of H'{(g) and

are trivial on H'(%+) ® H'(g[t],g:v1). It follows from this
that the spectral seguence converges to H'(G+) ® H (gltl,g;v,).
Thus our spectral sequence is the product of

Hf(ﬁ+) ® H'(g[t],g;v1) with the spectral sequence of the Serre

path fibration EG — G; it follows from this that 1 is an

isomorphism.

Now we explain why the spectral sequence in the proocf of
Lemma 3 collapses. To define explicitly cycles of C (1),
representing the generators of EZ we apply the continuous
cohomeology theory. Let n(0,1) be the Lie algebra of
infinitely differentiable functions f:[O,?]l——% g such that
f(0)en, £(1) =0. Denote by C;(O,1) the complex .of cochains
of n(0,1), continuous in the Cm—topology. Let a be'a
generator of H (g) and o a cochain representing o. For
p€ [0,1] denote by ¢p the homomorphism 1 —> g, "the value

1] 2
at p": ¢ ((e=1g (k=1 gy, ...) = I%(1;:-1)“‘%. Let

=¢§E s oy € C.(0,1). Choose « in such a way that a,=a, =0.

“p 0~ %
Let p=#0,1; then we can define the cochain %%(p) where x

is the coordinate on [0,1]. It is. shown in [3] that 2a (p) .

ax
is a coboundary %% (p) = Sw(p) where & 1is the differential
in C;(O,1). Indeed, let Kp(p=#0,1) be the cochain complex

of n with support at p. It is proved in the same paper that

the cohomology of KP is isomorphic to E'(g). Now, Kp



is w1-module, where W1 is the Lie algebra of formal

vector fields at the point p. But H'(g) is finite-dimensional
and W, has no nontrivial finite-dimensional representations.
We conclude that if wE€ Kp and G&v =0 then B/va is

the differential of some other cocycle UtEKp.

This means that

o, = oy = 8 éq w(x)dx .

In particular, ¢ f1 w{x)dx = 0. Suppose that a' = I1w(x)dx.
0 0

The cochain a' represents a nontrivial cohomology class of

n.

The Lie algebras §+ and § = goe (t~-1) ® g H:-1)269...

are graded. Similarly the cochain complexes are alsc graded.
Note that the cochain complex KO of n{(0,1) with support in
0 1is isomorphic to & Ci(g+) and the cochain complex K1 with
sﬁpport in 1 is isomorphic to ® Ci(E). It follows from this
that the cohomology of KO and K1 is isomorphic to H'(ﬁ+)
and H°(3) respectively.

Recall that H" (g3) 1is isomorphic to the free graded
commutative algebra on generators 51,52,..., deg £k==2k-%1.

Using the above construction assign to each 51 a representative

cocycle Ei.

Proposition 2. The space H'(n) is generated by the

cohomology classes of cochains of form u/\v/\P(E{,Eé,...),

where uEZKO, vEZK1 are cocycles, corresponding to the elements



. A P . .
of H (n ) and H'(g) respectively and P is an arbitrary

polynomial in generators 5{,55,...

The proof of this Proposition follows from the
construction above for continuocus cohomology (a similar argument
in a more difficult situation was used in [5]). In particular,
we have an explicit construction of cochains, representing the

generators of E, in the proof of Lemma 3., surviving till E_

.

2. Computation of Hl

A A
(n;n) for 1 = 1,2
Let us consider the next exact sequences:

A A A A A A A
0 — n, —> g3 —> g/n+ — 0; 0 —=>h— g/n+ — n: - 0

A k] »
((3/9)/h can be identified with n: by means of the Killing

form). Consider the induced exact cohomology sequences:

1 1

A A A A A
(g+;ﬁ ) = H (n_;g) — H1(n+;g/n+).~>

0.A A A
H (n,:;g/n) — H +

2/\ A

-2 . -
(n,_;8) ;

A A
—> H (n+;QJ — 4

0. A A 1 A 1 .8 AA 1,0 A
H o (n ;n¥%) — H (n_;h) — H (n_;g/n.) — H (n ;n}) —

2 A
— H (n+;h).

A A
The first sequence allows us to compute H‘(n+;n+) at once.

We will state the result, i.e. describe all the derivations

A
of n,o.

Each element u€eh defines a cohomology class of

A
H1(Q+;n+) containing the cocycle: £ — uf, (uf)(t) =({u,f(t)],
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where f:C — g, £(0) €n,. Then to each vector field tPo/Bt

where P 1s a polynomial in t, we assign the cocycle

A ~ +
R, = n, 1 £e) b et T

-

/3t, £:€ — g , £(0) eEn_ .

Theorem 2. The mapping, sending the elements of h and
£€[t]) 5/3t to the cohomology classes of the cocycles constructed

A

1 A
above gives an isomorphism h® t€lit]s/st @ H (n_;n ).

A
In other words, an arbitrary derivation of n is uniquely
represented as u+tP 3/3t +g where u€h, PeEC[t] and g

is an inner derivation.

A A
For the computation of Hz(n+;n+) by a similar way, we have
A AA
to know H1(n+;g/n+). This space appears in the second exact
seguence and to find it we have to know the iscmorphism

‘]f\‘/\*
H (n+,n+)

I

A A
(Hy(n_;n_))*. For this we are going to use the next

general construction (see Theorem 4.1 in [12]).

Let L be a Lie algebra, T a derivation of L acting
in a semi-simple way and whose eigenvalues are positive. (These
restrictions on T can be considerably weakened.) It is clear
that such a derivation must be outer. It is easy to see that
$+ has such a derivation. For instance, we can take u+t 3/3t,
where u€h, <y,u>€ R, 0< <y,u><e ,vy is an arbitrary

positive root, £ 1is a small positive number (we can take

g < %).

Let W(L) be the Weyl algebra, associated with L. Recall
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that W(L}) is the standard complex of the differential Lie

superalgebra T==LO ® L,, Ly=L, Ly as L[,y-module is the

adjoint representation and  [x,x] =0 1if x¢€ L1. The

differential 4 acts as follows: d{(L,) =0, d(L1) — LO

0
is an iéomorphism of [-modules. In other words, W(lL) 1is a
differential graded algebra, spanned by La and L? ,LSE L#z L*
where La has degree 1 and L# has degree 2, ¢:L6 —> L;

is the canonical isomorphism. The differential is defined by
the formula 68 =6OB-+¢(8) where 606 is the differential
of B considered as an element of the standard cochain complex
of L. It is not difficult to show that the complex W(L) is
acyclic'in positive dimensions. The next Lemma states even
more.

In W({L) we define a filtration: W, = & A*(La) @ISj(L1)*.

jzi
Consider the corresponding spectral seguence E.

Lemma 4. The spectral se€gquence

B2/ - HE(L;SP/ 2 %) == H(W(L))

is trivial, beginning from E3.

Remark. For arbitrary algebra [ this is of course not
true, but in this Lemma we consider such L which satisfies
a strong additional assumption: there exists such a semisimple

derivation T:L —> L for which all the eigenvalues are positive.

Such a derivation can only exist in case of nilpotent algebras,

and for themalso not always. Let us consider in our case such a T.



-12-

Proof of Lemma 4. The differential

5=l 8418 2 Ln) — v ¥ (18R 2 1

is defined on the cochain level by the formula (%:=r)
A
r+1 3j
2 1 1 = ' 1 '
[(80) Ry reensly PTG el y) j§1[¢(z1,...,2q_1,zj)](11....,zr+1).

Define the map I):Hq-1(L;Sr+1L*) — ﬁq(L;SrL*) by the formula

: no. B p-i i . ,
)T = 121(-” (908302 AT (T 2,2

[(D¢)(£1,.“
It is easy to check that the bracket [D,d] coincides with the
map, defined in H' (L;S*L*) by T. This map has only positive
eigenvalues and can be transposed with ¢. Define DO as %D on

the A-eigenspace of ‘T in H"(L;S*L*}. Then Dy is a contracting

homotopy in the complex E, = {H"(L;S*L*),8} and this means that

This lemma implies in particular, that the seguence

0 — HE(L) — H'(L,L*) — uO(L,s%L*) — 0
is exact. The arrows here are differentials in the second term
of E. We remark that HO(L,SzL*) is exactly the space of

invariant bilinear symmetric forms on L.
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Theorem 3. The space of invariant bilinear symmetric

A
forms on n_ 1is the direct sum of the following two

subspaces intersecting trivally.

2) The first space consists of the forms whose kernel contains
A A .
[n+,n+]. This space is iscmorphic to the space of quadratic

A A A
forms an u+/[n+,n+] i.e. has dimension (2+1)(2+2)/2

where 2 1is the rank of 1o

1

b) Let P(t ') 3/9t be a vector field, where P is a

polynomial without constant term. The second space consists

of the forms

(x,y) —> <P (™) ax/3t,y>+<P(t 1) ay/at,x>

A A
where x,y€n,_, <,> 1is the Killing form on g.

Proof. Let w be an invariant bilinear symmetric form on

A
n,. Let us assign to the gquadratic form, associated with w

. A A
the mapping 8:n_ — n¥;

I\
here n+=n+®g®t€ﬁg®t2 8 ... ,ﬁ_’:=n: ® (get)*@(g@:tz.)* e...

Suppose that w 1s homogeneous with respect to the grading by
A A
the weight of t; the n -module n* is filtrated by the

Ak
H1=n: ® (get)* etc. Let i be the

submodules ﬁa =nr,
smallest number such that 9(§+)<:GI. If 1i=0 then w lies
in the first factor. The assertion that the kernel of this form
contains [g+,g+] follows from Theorem 5.1 in [12]. If 1 =1
then the image of the mapping n, — (gt)* 1is either one-

+

dimensicnal or ccincides with n+(n+C:g; (g@t)*, g 1is identified
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with (get)* by the Xilling form). In the first case w
lies in the first factor and in the second case in the second

one. These facts follow from the following simple Lemma.
Lemma 5. dim Hom y (n+,g) = 1+, 0 > 1.
+

(This Lemma can be verified for instance by looking

over all the simple Lie algebras).

Further, by using Lemma 5, we get that if 122, then
the form belongs to the second space. This completes the proof

of Theorem 3.

A A
Now, using the exact sequence (3), we compute H1(n+;n:)

. , . 2.An A
and after this we can determine H (n+;n+

Theorem 4. a) The kernel of the natural mapping

1 A 1.A A 2.A A
¢+ H (n+) x H (n+;n+) —> H (n+;n+)

is %+ 1 -dimensional where 2 1is the rank of g.
b) If rankg>1 , then dim ccker ¢ =2+ 1+p where p is

the number of positive roots of g representable as the sum of

two simple roots.

The case g=sl (2,C}) 1is not covered by this Theorem. This

case 1is really an exceptional one (see [6]).
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