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In this paper we continue to study actions of high-dimensional Lie

groups on complex manifolds. We consider connected complex man-

ifolds M of dimension n ≥ 2 on which connected Lie groups G of

dimension n2 + 1 act effectively and properly by holomorphic trans-

formations. Such actions are transitive and are shown to split into

three types according to the form of the linear isotropy subgroup.

We give a complete explicit description of all pairs (M,G) for two of

these types, and announce a classification for the third type. These

results complement a classification obtained earlier by the author for

n2+2 ≤ dimG < n2+2n and a result due to W. Kaup for the maximal

group dimension n2 + 2n.

0 Introduction

Let M be a connected C∞-smooth manifold and Diff(M) the group of C∞-
smooth diffeomorphisms of M endowed with the compact-open topology. A
topological group G is said to act continuously on M by diffeomorphisms, if
a continuous homomorphism Φ : G → Diff(M) is specified. The continuity
of Φ is equivalent to the continuity of the action map

Φ̂ : G × M → M, (g, p) 7→ Φ(g)(p) =: gp.

We only consider effective actions, that is, assume that the kernel of Φ is
trivial.

The action of G on M is called proper, if the map

Ψ : G × M → M × M, (g, p) 7→ (gp, p),

is proper, i.e. for every compact subset C ⊂ M × M its inverse image
Ψ−1(C) ⊂ G × M is compact as well. For example, the action is proper if
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G is compact. The properness of the action implies that: (i) G is locally
compact, hence by [BM1], [BM2] (see also [MZ]) it carries the structure of
a Lie group and the action map Φ̂ is smooth; (ii) Φ is a topological group
isomorphism between G and Φ(G); (iii) Φ(G) is a closed subgroup of Diff(M)
(see [Bi] for a brief survey on proper actions). Thus, one can assume that G
is a Lie group acting smoothly and properly on the manifold M , and that it
is realized as a closed subgroup of Diff(M).

Suppose now that M is equipped with a Riemannian metric G, and let
Isom(M,G) be the group of all isometries of M with respect to G. It was
shown in [MS] that Isom(M,G) acts properly on M (and so does its every
closed subgroup). Conversely, by [Pal] (see also [A]), for any Lie group acting
properly on M there exists a C∞-smooth G-invariant metric G on M . It then
follows that Lie groups acting properly and effectively on the manifold M by
diffeomorphisms are precisely closed subgroups of Isom(M,G) for all possible
smooth Riemannian metrics G on M .

If G acts properly on M , then for every p ∈ M its isotropy subgroup

Gp := {g ∈ G : gp = p}

is compact in G. Then by [Bo] the isotropy representation

αp : Gp → GL(R, Tp(M)), g 7→ dgp

is continuous and faithful, where Tp(M) denotes the tangent space to M
at p and dgp is the differential of g at p. In particular, the linear isotropy
subgroup

LGp := αp(Gp)

is a compact subgroup of GL(R, Tp(M)) isomorphic to Gp. In some coordi-
nates in Tp(M) the group LGp becomes a subgroup of the orthogonal group
Om(R), where m := dim M . Hence dim Gp ≤ dim Om(R) = m(m − 1)/2.
Furthermore, for every p ∈ M its orbit

Gp := {gp : g ∈ G}

is a closed submanifold of M , and dim Gp ≤ m. Thus, setting dG := dim G,
we obtain

dG = dim Gp + dim Gp ≤ m(m + 1)/2.

It is a classical result (see [F], [C], [Ei]) that if G acts properly on a smooth
manifold M of dimension m and dG = m(m+1)/2, then M is isometric (with
respect to some G-invariant metric) either to one of the standard complete
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simply-connected spaces of constant sectional curvature Rm, Sm, Hm (where
Hm is the hyperbolic space), or to RPm. Next, it was shown in [Wa] (see
also [Eg], [Y1]) that a group G with m(m − 1)/2 + 1 < dG < m(m + 1)/2
cannot act properly on a smooth manifold M of dimension m 6= 4. The
exceptional 4-dimensional case was considered in [Ish]; it turned out that a
group of dimension 9 cannot act properly on a 4-dimensional manifold, and
that if a 4-dimensional manifold admits a proper action of an 8-dimensional
group G, then it has a G-invariant complex structure. Invariant complex
structures will be discussed below in detail.

There exists also an explicit classification of pairs (M, G), where m ≥ 4,
G is connected, and dG = m(m−1)/2+1 (see [Y1], [Ku], [O], [Ish]). Further,
in [KN] a reasonably explicit classification of pairs (M, G), where m ≥ 6, G
is connected, and (m − 1)(m − 2)/2 + 2 ≤ dG ≤ m(m − 1)/2, was given.
We also mention the classification of G-homogeneous manifolds for m = 4,
dG = 6 (see [Ish]) and the classifications of G-homogeneous simply-connected
manifolds in the cases m = 3, dG = 3, 4 and m = 4, dG = 5 (see [C], [Pat])
obtained by E. Cartan’s method of adapted frames introduced in [C]. There
are many other results, especially for compact subgroups, but no complete
classifications exist beyond dimension (m− 1)(m− 2)/2 + 2 (see [Ko2], [Y2]
and references therein for further details).

We study proper group actions in the complex setting with the general
aim to build a theory for group dimensions lower than (m− 1)(m− 2)/2+2,
thus extending – in this setting – the classical results described above. In
our setting real Lie groups act by holomorphic transformations on complex
manifolds. Thus, from now on, M will denote a complex manifold of com-
plex dimension n (hence m = 2n) and G will be a subgroup of Aut(M),
the group of all holomorphic automorphisms of M . We will be classifying
pairs (M, G), but we will not be concerned with determining G-invariant Rie-
mannian metrics on M . Proper actions by holomorphic transformations are
found in abundance. A fundamental result due to Kaup (see [Ka]) states that
every closed subgroup of Aut(M) that preserves a continuous distance on M
acts properly on M . Thus, Lie groups acting properly and effectively on M
by holomorphic transformations are precisely closed subgroups of Aut(M)
preserving a continuous distance on M . In particular, if M is a Kobayashi-
hyperbolic manifold, then Aut(M) is a Lie group acting properly on M (see
also [Ko1]).

In the complex setting, in some coordinates in Tp(M) the group LGp

becomes a subgroup of the unitary group Un. Hence dim Gp ≤ dim Un = n2,
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and therefore
dG ≤ n2 + 2n.

We note that n2 + 2n < (m− 1)(m− 2)/2 + 2 for m = 2n and n ≥ 5. Thus,
the group dimension range that arises in the complex case, for n ≥ 5 lies
strictly below the dimension range considered in the classical real case and
therefore is not covered by the existing results. Furthermore, overlaps with
these results for n = 3, 4 and n = 2, dG = 6 occur only in relatively easy
situations and do not lead to any significant simplifications in the complex
case. The only interesting overlap with the real case occurs for n = 2, dG = 5
(see [Pat]); we will briefly discuss it below. Note that in the situations
when overlaps do occur, the existing classifications in the real case do not
necessarily immediately lead to classifications in the complex case, since the
determination of all G-invariant complex structures on the corresponding
real manifolds may be a non-trivial matter.

It was shown in [Ka] that if dG = n2 + 2n, then M is holomorphi-
cally equivalent (in fact, holomorphically isometric with respect to some G-
invariant metric) to one of Bn := {z ∈ Cn : |z| < 1}, Cn, CPn, and an equiva-
lence map F can be chosen so that the group
F ◦ G ◦ F−1 := {F ◦ g ◦ F−1 : g ∈ G} is, respectively, one of the groups
Aut(Bn), G(Cn), G(CPn). Here Aut(Bn) ' PSUn,1 := SUn,1/(center) is the
group of all transformations

z 7→ Az + b

cz + d
,

where
(

A b
c d

)

∈ SUn,1;

G (Cn) ' Un n Cn is the group of all holomorphic automorphisms of Cn of
the form

z 7→ Uz + a, (0.1)

where U ∈ Un, a ∈ Cn (we usually write G (C) instead of G (C1)); and
G (CPn) ' PSUn+1 := SUn+1/(center) is the group of all holomorphic auto-
morphisms of CPn of the form

ζ 7→ Uζ, (0.2)

where ζ is a point in CPn given in homogeneous coordinates, and U ∈
SUn+1 (this group is a maximal compact subgroup of the complex Lie group
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Aut(CPn) ' PSLn+1(C) := SLn+1(C)/(center)). In the above situation we
say for brevity that F transforms G into one of Aut(Bn), G(Cn), G(CPn),
respectively, and, in general, if F : M1 → M2 is a biholomorphic map,
Gj ⊂ Aut(Mj), j = 1, 2, are subgroups and F ◦ G1 ◦ F−1 = G2, we say that
F transforms G1 into G2.

We are interested in characterizing pairs (M, G) for dG < n2 + 2n, where
G ⊂ Aut(M) acts on M properly. In [IKra], [I1], [I2], [I3] we considered the
special case where M is a Kobayashi-hyperbolic manifold and G = Aut(M),
and explicitly determined all manifolds with n2 − 1 ≤ dAut(M) < n2 + 2n,
n ≥ 2 (see [I4] for a comprehensive exposition of these results). The case
dAut(M) = n2−2 represents the first obstruction to the existence of an explicit
classification, namely, there is no good description of hyperbolic manifolds
with n = 2, dAut(M) = 2 (see [I1], [I4]); it is possible, however, that a
reasonable classification exists in this case for n ≥ 3. Our immediate goal
is to generalize these results to arbitrary proper actions on not necessarily
Kobayashi-hyperbolic manifolds by classifying all pairs (M, G) with n2−1 ≤
dG < n2 + 2n, n ≥ 2, where G is assumed to be connected.

This classification problem splits into two cases: that of G-homogeneous
manifolds and that of non-G-homogeneous ones (note that due to [Ka] G-
homogeneity always takes place for dG > n2). While the techniques that
we developed for non-homogeneous Kobayashi-hyperbolic manifolds seem to
work well for general non-transitive proper actions, there is a substantial
difference in the homogeneous case. Indeed, due to [N] every homogeneous
Kobayashi-hyperbolic manifold is holomorphically equivalent to a Siegel do-
main of the second kind, and therefore such manifolds can be studied by
using techniques available for Siegel domains (see e.g. [S]). This is how ho-
mogeneous Kobayashi-hyperbolic manifolds with n2−1 ≤ dAut(M) < n2+2n,
n ≥ 2, were determined in [IKra], [I1], [I2], [I4]. Clearly, this approach can-
not be applied to general transitive proper actions, and one motivation for
the present work is to re-obtain the classification of homogeneous Kobayashi-
hyperbolic manifolds without using the non-trivial result of [N].

The first step towards a general classification for proper actions with
dG < n2 +2n was made in [IKra] where we observed that if dG ≥ n2 +3, then,
as in the case dG = n2 +2n, the manifold must be holomorphically equivalent
to one of Bn, Cn, CPn. However, in [IKra] we did not investigate the question
what groups (if any) are possible for each of these three manifolds within the
dimension range n2 + 3 ≤ dG < n2 + 2n. We resolved this question in [I5].
In the same paper we gave a complete classification of all pairs (M, G) with
dG = n2 + 2.
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In the present paper we assume that dG = n2 + 1. Note that this is
the lowest group dimension for which G-homogeneity always takes place;
indeed, for dG = n2 both G-homogeneous and non G-homogeneous manifold
occur (see [I4]). For dG = n2 + 1 we have dim Gp = (n − 1)2, and we start
by describing connected subgroups of the unitary group Un of dimension
(n − 1)2 in Proposition 1.1 (see Section 1), thus determining the connected
identity components of all possible linear isotropy subgroups. According to
this description, every action falls into one of three types. In Sections 2,
3 we deal with actions of type I and II, respectively, and obtain complete
lists of the corresponding pairs (M, G) in Theorems 2.1 and 3.1. Actions of
type III are more difficult to deal with. In Section 4 we give a large number
of examples of such actions. Jointly with N. Kruzhilin, we are currently
working on the problem of describing all actions of type III. This work is
now essentially complete, and we use this opportunity to announce that the
examples in Section 4 in fact give a complete description of such actions (see
Theorem 4.1). Thus, Theorems 2.1, 3.1, 4.1 describe all pairs (M, G) with
dG = n2 + 1.

Regarding Theorems 2.1, 3.1, 4.1 for n = 2, 3 some remarks are in order.
Firstly, all connected 2- and 3-dimensional complex manifolds that admit
transitive actions of Lie groups by holomorphic transformations were deter-
mined in [HL], [OR], [Wi]; however, it was not the aim of those articles to
give a description of all possible transitive actions, and, indeed, most actions
listed in Theorems 2.1, 3.1, 4.1 do not occur in [HL], [OR], [Wi]. Secondly,
as we have already mentioned, a classification of all effective proper transi-
tive actions of connected 5-dimensional Lie groups on simply-connected real
4-dimensional manifolds was given in [Pat] (see also [Ish]). Therefore, one
can attempt to obtain Theorem 4.1 for n = 2 by determining all invari-
ant complex structures and by passing to quotients to produce a list of non
simply-connected manifolds from the list of simply-connected ones. Thirdly,
we have been informed by G. Fels that he has recently obtained Theorem 4.1
for n = 2 by an alternative method.

Acknowledgements. Part of this work was done while the author was vis-
iting the Ruhr-Universität Bochum in January-February 2007; the visit was
partially supported by the Alexander von Humboldt-Stiftung. The classifi-
cation of actions of type III (which is a joint work of the author with N.
Kruzhilin) was completed during the author’s visit to the Max-Plank Insti-
tut für Mathematik in Bonn in April-May 2007 and will appear in our future
paper. We would like to thank G. Fels for making a large number of useful
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1 Classification of Linear Isotropy Subgroups

In this section we prove the following proposition that extends Lemma 2.1
of [IKru].

Proposition 1.1 Let H be a connected closed subgroup of Un of dimension
(n−1)2, n ≥ 2. Then H is conjugate in Un to one of the following subgroups:

I. eiRSO3(R) (here n = 3);

II. SUn−1 × U1 realized as the subgroup of all matrices

(

A 0
0 eiθ

)

, (1.1)

where A ∈ SUn−1 and θ ∈ R, for n ≥ 3;

III. the subgroup Hn
k1,k2

of all matrices

(

A 0
0 a

)

, (1.2)

where k1, k2 are fixed integers such that (k1, k2) = 1, k1 > 0, and A ∈ Un−1,

a ∈ (det A)
k2

k1 := exp(k2/k1 Ln (det A)).‡

Proof: Since H is compact, it is completely reducible, i.e. Cn splits into
a sum of H-invariant pairwise orthogonal complex subspaces, Cn = V1 ⊕
· · · ⊕ Vm, such that the restriction Hj of H to each Vj is irreducible. Let
nj := dimCVj (hence n1 + · · ·+ nm = n) and let Unj

be the group of unitary
transformations of Vj. Clearly, Hj ⊂ Unj

, and therefore dim H ≤ n2
1 + · · · +

n2
m. On the other hand dim H = (n − 1)2, which shows that m ≤ 2.

Let m = 2. Then there exists a unitary change of coordinates in Cn such
all elements of H take the form (1.2), where A ∈ Un−1 and a ∈ U1. We note
that the matrices A and the scalars a corresponding to the elements of H
form compact connected subgroups of Un−1 and U1, respectively; we shall
denote them by H1 and H2.

‡For k2 6= 0 the group Hn
k1,k2

is a k1-sheeted cover of Un−1.
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If dim H2 = 0, then H2 = {1}, and therefore H1 = Un−1. In this case we
obtain the group Hn

1,0.

Assume that dim H2 = 1, i.e., H1 = U1. Then (n − 1)2 − 1 ≤ dim H1 ≤
(n − 1)2. Let dim H1 = (n − 1)2 − 1 first. The only connected subgroup
of Un−1 of dimension (n − 1)2 − 1 is SUn−1. Hence H is conjugate to the
subgroup of matrices of the form (1.1) if n ≥ 3 and to H2

1,0 for n = 2. Now
let dim H1 = (n − 1)2, i.e., H1 = Un−1. Consider the Lie algebra h of H. It
consists of matrices of the following form

(

A 0
0 l(A)

)

, (1.3)

where A ∈ un−1 and l(A) 6≡ 0 is a linear function of the matrix elements of A

ranging in iR. Clearly, l(A) must vanish on the commutant of un−1, which is
sun−1. Hence matrices (1.3) form a Lie algebra if and only if l(A) = c·trace A,
where c ∈ R\{0}. Such an algebra can be the Lie algebra of a closed subgroup
of Un−1 × U1 only if c ∈ Q \ {0}. Hence H is conjugate to Hn

k1,k2
for some

k1, k2 ∈ Z, where one can always assume that k1 > 0 and (k1, k2) = 1.

Now let m = 1. We shall proceed as in the proof of Lemma 2.1 in [IKra].
Let hC := h+ ih ⊂ gln be the complexification of h, where gln := gln(C). The
algebra hC acts irreducibly on Cn and by a theorem of E. Cartan (see, e.g.,
[GG]), hC is either semisimple or the direct sum of the center c of gln and a
semisimple ideal t. Clearly, the action of the ideal t on Cn is irreducible.

Assume first that hC is semisimple, and let hC = h1⊕· · ·⊕hk be its decom-
position into the direct sum of simple ideals. Then the natural irreducible
n-dimensional representation of hC (given by the embedding of hC in gln) is
the tensor product of some irreducible faithful representations of the hj (see,
e.g., [GG]). Let nj be the dimension of the corresponding representation of
hj, j = 1, . . . , k. Then nj ≥ 2, dimC hj ≤ n2

j − 1, and n = n1 · ... · nk. The
following observation is simple.

Claim: If n = n1 · ... · nk, k ≥ 2, nj ≥ 2 for j = 1, . . . , k, then
∑k

j=1 n2
j ≤ n2 − 2n.

Since dimC hC = (n− 1)2, it follows from the above claim that k = 1, i.e.
hC is simple. The minimal dimensions of irreducible faithful representations
of complex simple Lie algebras s are well-known (see, e.g., [OV]). In the
table below V denotes representations of minimal dimension.
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s dim V dim s

slk k ≥ 2 k k2 − 1
ok k ≥ 7 k k(k − 1)/2
sp2k k ≥ 2 2k 2k2 + k
e6 27 78
e7 56 133
e8 248 248
f4 26 52
g2 7 14

Since dimC hC = (n − 1)2, it follows that none of the above possibilities
realize. Therefore, hC = c ⊕ t, where the dimension of t is equal to n2 − 2n.
Then, if n = 2, we obtain that H coincides with the center of U2 which
is impossible since its action on C2 is then not irreducible. Assuming that
n ≥ 3 and repeating the above argument for t in place of hC, we see that
t can only be isomorphic to sln−1. But sln−1 does not have an irreducible
n-dimensional representation unless n = 3.

Thus, n = 3 and h ' C ⊕ sl2 ' C ⊕ so3. Further, we observe that every
irreducible 3-dimensional representation of so3 is equivalent to its defining
representation. This implies that H is conjugate in GL3(C) to eiRSO3(R).
Since H ⊂ U3 it is straightforward to show that the conjugating element can
be chosen to belong to U3.

The proof of the proposition is complete. �

Let M be a connected complex manifold of dimension n ≥ 2, and suppose
that a connected Lie group G ⊂ Aut(M) with dG = n2 + 1 acts properly
on M . Fix p ∈ M , consider the linear isotropy subgroup LGp, and choose
coordinates in Tp(M) so that LGp ⊂ Un. We say that the pair (M, G) (or the
action of G on M) is of type I, II or III, if the connected identity component
LG0

p of the group LGp is conjugate in Un to a subgroup listed in I, II or III
of Proposition 1.1, respectively. Since M is G-homogeneous, this definition
is independent of the choice of p.

We will now separately consider actions of each type.

2 Actions of Type I

In this section we prove the following theorem.
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THEOREM 2.1 Let M be a connected complex manifold of dimension 3
and G ⊂ Aut(M) a connected Lie group with dG = 10 that acts properly
on M . If the pair (M, G) is of type I, then it is equivalent to one of the
following:

(i) (S , Aut(S )), where S is the Siegel space

S :=
{

(z1, z2, z3) ∈ C3 : ZZ � id
}

,

with

Z :=

(

z1 z2

z2 z3

)

(here Aut(S ) is isomorphic to Sp4(R)/Z2);

(ii) (Q3, SO5(R)), where Q3 is the complex quadric in CP4, and SO5(R) is
realized as a maximal compact subgroup of Aut(Q3) ' SO5(C);

(iii) (C3, G2(C
3)), where G2(C

3) is the group that consists of all maps from
G(C3) with U ∈ eiRSO3(R) (see (0.1)).§

Proof: Fix p ∈ M . By Bochner’s linearization theorem (see [Bo]) there exist
an Gp-invariant neighborhood V of p in M , an LGp-invariant neighborhood U
of the origin in Tp(M) and a biholomorphic map F : V → U , with F (p) = 0,
such that for every g ∈ Gp the following holds in V:

F ◦ g = αp(g) ◦ F,

where αp is the isotropy representation at p. Let gM be the Lie algebra
(isomorphic to the Lie algebra of G) of holomorphic vector fields on M arising
from the action of G, that is, gM consists of all vector fields X on M for which
there exists an element a of the Lie algebra of G such that for all q ∈ M we
have

X(q) =
d

dt

[

exp(ta)(q)
]∣

∣

∣

t=0
.

Next, let gV be the Lie algebra of the restrictions of the elements of gM to
V and g the Lie algebra of vector fields on U obtained by pushing forward
the elements of gV by means of F . Observe that gM , gV , g are naturally
isomorphic, and we denote by ϕ : gM → g the isomorphism induced by F .

§In [I5] we introduced groups denoted by G1

(

Cn
)

, G2

(

C4
)

and G3

(

C4
)

. Notation in
the present paper is consistent with that in [I5].
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Let (z1, z2, z3) be coordinates in Tp(M) in which LG0
p = eiRSO3(R). Since

F transforms G0
p|V into LG0

p|U and since G acts transitively on M , the algebra
g is generated by 〈Z0〉 ⊕ so3(R) and some vector fields

Vj =
3

∑

k=1

fk
j ∂/∂zk,

Wj =
3

∑

k=1

gk
j ∂/∂zk,

for j = 1, 2, 3, where f k
j , gk

j are holomorphic functions on U such that

fk
j (0) = δk

j , gk
j (0) = iδk

j .

Here

Z0 := i
3

∑

k=1

zk ∂/∂zk,

and so3(R) is generated by the following vector fields on U :

Z1 := z2 ∂/∂z1 − z1 ∂/∂z2,
Z2 := z3 ∂/∂z1 − z1 ∂/∂z3,
Z3 := z3 ∂/∂z2 − z2 ∂/∂z3.

Since g contains the vector field Z0, Hilfssatz 4.8 of [Ka] yields that ev-
ery vector field in g is polynomial and has degree at most 2. Considering
[Z0, [Vj, Z0]], [Z0, [Wj, Z0]] instead of Vj, Wj if necessary, we can assume that
Vj, Wj, j = 1, 2, 3, have no linear terms.

Since [V1, Z3] vanishes at the origin and has no linear terms, it is identi-
cally zero, which implies

V1 = (1 + α1z
2
1 + α2z

2
2 + α2z

2
3 + βz2z3) ∂/∂z1 + (γ12z1z2 + γ13z1z3) ∂/∂z2+

(−γ13z1z2 + γ12z1z3) ∂/∂z3,

for some α1, α2, β, γ12, γ13 ∈ C. Similarly, considering [W1, Z3] we obtain

W1 = (i + α′
1z

2
1 + α′

2z
2
2 + α′

2z
2
3 + β ′z2z3) ∂/∂z1 + (γ′

12z1z2 + γ′
13z1z3) ∂/∂z2+

(−γ′
13z1z2 + γ′

12z1z3) ∂/∂z3,
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for some α′
1, α

′
2, β

′, γ′
12, γ

′
13 ∈ C. Further, considering [V2, Z2], [W2, Z2], [V3, Z1],

[W3, Z1] analogously implies:

V2 = (δ12z1z2 + δ23z2z3) ∂/∂z1 + (1 + ε1z
2
1 + ε2z

2
2 + ε1z

2
3 + ζz1z3) ∂/∂z2+

(−δ23z1z2 + δ12z2z3) ∂/∂z3,

W2 = (δ′12z1z2 + δ′23z2z3) ∂/∂z1 + (i + ε′1z
2
1 + ε′2z

2
2 + ε′1z

2
3 + ζ ′z1z3) ∂/∂z2+

(−δ′23z1z2 + δ′12z2z3) ∂/∂z3,

V3 = (η13z1z3 + η23z2z3) ∂/∂z1 + (−η23z1z3 + η13z2z3) ∂/∂z2+
(1 + µ1z

2
1 + µ1z

2
2 + µ2z

2
3 + λz1z2) ∂/∂z3,

W3 = (η′
13z1z3 + η′

23z2z3) ∂/∂z1 + (−η′
23z1z3 + η′

13z2z3) ∂/∂z2+
(i + µ′

1z
2
1 + µ′

1z
2
2 + µ′

2z
2
3 + λ′z1z2) ∂/∂z3,

for some complex numbers δ12, δ23, ε1, ε2, ζ, δ′12, δ′23, ε′1, ε′2, ζ ′, η13, η23, µ1,
µ2, λ, η′

13, η′
23, µ′

1, µ′
2, λ′.

Next, it is easy to see that [V1, Z1] + V2 vanishes at the origin and has no
linear terms. Therefore, [V1, Z1] = −V2, and we obtain

β = γ13 = ζ = δ23 = 0,
γ12 = δ12 = α1 − α2,
ε1 = α2, ε2 = α1.

(2.1)

Similarly, we have [V1, Z2] = −V3 which implies

λ = η23 = 0,
η13 = α1 − α2, µ1 = α2, µ2 = α1.

(2.2)

An analogous argument yields

β ′ = γ′
13 = ζ ′ = δ′23 = λ′ = η′

23 = 0,
γ′

12 = δ′12 = η′
13 = α′

1 − α′
2,

ε′1 = µ′
1 = α′

2, ε′2 = µ′
2 = α′

1.
(2.3)

Next, [V1, Z0] − W1 vanishes at the origin, has no linear part and hence
vanishes identically. This implies

α′
1 = −iα1, α′

2 = −iα2. (2.4)

Further, since the commutator [V1, W1] vanishes at the origin, its linear part
L is an element of 〈Z0〉 ⊕ so3(R). It is straightforward to see that

L = 2(α′
1 − iα1)z1 ∂/∂z1 +

(

(α′
1 − iα1) − (α′

2 − iα2)
)

z2 ∂/∂z2+
(

(α′
1 − iα1) − (α′

2 − iα2)
)

z3 ∂/∂z3.
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Clearly, L can lie in 〈Z0〉 ⊕ so3(R) only if

α′
1 − iα1 = −(α′

2 − iα2),
α′

1 − iα1 ∈ iR,

which, together with (2.4), implies that α2 = −α1 and α1 ∈ R. Using (2.1)–
(2.3) and writing α1 instead of α we obtain:

V1 = (1 + αz2
1 − αz2

2 − αz2
3) ∂/∂z1 + 2αz1z2 ∂/∂z2 + 2αz1z3 ∂/∂z3,

W1 = (i − iαz2
1 + iαz2

2 + iαz2
3) ∂/∂z1 − 2iαz1z2 ∂/∂z2 − 2iαz1z3 ∂/∂z3,

V2 = 2αz1z2 ∂/∂z1 + (1 − αz2
1 + αz2

2 − αz2
3) ∂/∂z2 + 2αz2z3 ∂/∂z3,

W2 = −2iαz1z2 ∂/∂z1 + (i + iαz2
1 − iαz2

2 + iαz2
3) ∂/∂z2 − 2iαz2z3 ∂/∂z3,

V3 = 2αz1z3 ∂/∂z1 + 2αz2z3 ∂/∂z2 + (1 − αz2
1 − αz2

2 + αz2
3) ∂/∂z3,

W3 = −2iαz1z3 ∂/∂z1 − 2iαz2z3 ∂/∂z2 + (i + iαz2
1 + iαz2

2 − iαz2
3) ∂/∂z3.

We will now show that the cases α < 0, α > 0 and α = 0 lead to the man-
ifolds and groups listed in (i), (ii) and (iii) of the theorem, respectively. For
this purpose we refer to the general theory of Hermitian symmetric spaces
(see [H] for details). By [Pal] one can find a G-invariant Hermitian metric
on M . Since LGq for every q ∈ M contains the element −id, the mani-
fold M equipped with such a metric becomes a Hermitian symmetric space.
The group LG0

p acts irreducibly on Tp(M), and therefore M either is an ir-
reducible Hermitian symmetric space, or is equivalent (holomorphically and
isometrically) to C3 with the flat metric.

Suppose first that α < 0. Then, changing coordinates as

zj 7→
√
−αzj, j = 1, 2, 3,

we can assume that α = −1. In this case the algebra g is isomorphic to
sp4(R). Then the group G is simple. Since a simple group cannot act by
isometries on C3 and contain a symmetry at every point, we obtain that
M is an irreducible Hermitian symmetric space. Furthermore, every group
with Lie algebra isomorphic to sp4(R) is non-compact, and hence M is non-
compact. It now follows from E. Cartan’s classification of irreducible Hermi-
tian symmetric spaces that M is equivalent to S . Since Aut(S ) is connected
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and 10-dimensional (in fact, isomorphic to Sp4(R)/Z2), every equivalence
map transforms G into Aut(S ). Thus, we have obtained (i) of the theorem.

Suppose next that α > 0. Then, changing coordinates as

zj 7→
√

αzj, j = 1, 2, 3,

we can assume that α = 1. In this case the algebra g is isomorphic to so5(R).
Again, G is simple, and, since every connected group with Lie algebra iso-
morphic to so5(R) is compact, M is a compact Hermitian symmetric space.
It now follows from E. Cartan’s classification of irreducible Hermitian sym-
metric spaces that M is equivalent to Q3 by means of a map that transforms
G into SO5(R) ⊂ Aut(Q3). Thus, we have obtained (ii) of the theorem.

Suppose now that α = 0. In this case g is isomorphic to the semidirect
sum of R ⊕ o3(R) and C3. A group with such Lie algebra cannot act by
holomorphic isometries on a 3-dimensional irreducible Hermitian symmetric
space and contain a symmetry at every point; therefore M is equivalent to
C3 by means of a map F that transforms G into a subgroup of G(C3) (recall
that G(C3) is the full group of holomorphic isometries of C3 with respect to
the flat metric). Let p0 ∈ M be such that F(p0) = 0. Then F transforms
G0

p0
into a subgroup H of U3 ⊂ G(C3) isomorphic to eiRSO3(R) and acting

irreducibly on T0(C
3). By Proposition 1.1, the subgroup H is conjugate in

U3 to the standard embedding of eiRSO3(R) in U3, and hence there exists an
equivalence map F̃ between M and C3 that transforms G0

p0
into eiRSO3(R).

We now argue as at the beginning of the proof of the theorem with F̃ in
place of F . For the corresponding vector fields Vj, Wj we then obtain

Vj = ∂/∂zj , Wj = i ∂/∂zj , j = 1, 2, 3.

This implies that F̃ transforms G into G2(C
3), and we have obtained (iii) of

the theorem.
The proof is complete. �

3 Actions of Type II

In this section we obtain the following result.

THEOREM 3.1 Let M be a connected complex manifold of dimension
n ≥ 3 and G ⊂ Aut(M) a connected Lie group with dG = n2 + 1 that acts
properly on M . If the pair (M, G) is of type II, then it is equivalent to
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(Cn−1 × M ′, G1(C
n−1) × G′), where M ′ is one of B1, C, CP1, and G′ is one

of the groups Aut(B1), G(C), G(CP1), respectively.¶

Proof: Fix p ∈ M , choose V, U , F and consider the Lie algebras gM ,gV ,
g and the isomorphism ϕ : gM → g as in the proof of Theorem 2.1. Next,
we fix coordinates in Tp(M) in which LG0

p = SUn−1 × U1. The algebra g is
generated by sun−1 ⊕ u1 and some vector fields

Vj =

n
∑

k=1

fk
j ∂/∂zk,

Wj =

n
∑

k=1

gk
j ∂/∂zk,

where the functions f k
j , gk

j , j, k = 1, . . . , n, are holomorphic on U and satisfy
the conditions

fk
j (0) = δk

j , gk
j (0) = iδk

j .

Here sun−1 ⊕ u1 is realized as the algebra of vector fields on U of the form

n−1
∑

j=1

(aj 1z1 + · · ·+ aj n−1zn−1) ∂/∂zj + iazn ∂/∂zn,

with






a1 1 . . . a1 n−1
...

...
...

an−1 1 . . . an−1 n−1






∈ sun−1,

and a ∈ R.
Let

Zn := izn ∂/∂zn,

(observe that Zn generates the u1-component of sun−1 ⊕ u1) and consider
[Vj, Zn], [Wj, Zn] for j = 1, . . . , n − 1. Since these commutators vanish at 0,
they lie in sun−1⊕u1, which implies that the functions f k

j , gk
j are independent

of zn for k = 1, . . . , n − 1 and that

fn
j = f̃n

j (z1, . . . , zn−1) zn,
gn

j = g̃n
j (z1, . . . , zn−1) zn,

¶The group G1

(

Cn
)

was introduced in [I5] and consists of all maps from G
(

Cn
)

with

U ∈ SUn (we usually write G1

(

C
)

instead of G1

(

C1
)

).
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for some holomorphic functions f̃n
j , g̃n

j .
For every pair of indices 1 ≤ j, l ≤ n − 1, j 6= l, the vector fields

Xjl := izj ∂/∂zj − izl ∂/∂zl,
Yjl := zl ∂/∂zj − zj ∂/∂zl

lie in the sun−1-component of sun−1⊕u1. We now compute the commutators
[Vj, Xj,l], [Wj, Xjl], [Vj, Yjl], [Vl, Yjl] and observe that [Vj, Xjl]−Wj, [Wj, Xjl]+
Vj, [Vj, Yjl] +Vl, [Vl, Yjl]−Vj vanish at the origin and hence lie in sun−1 ⊕ u1.
This yields

for n ≥ 4, j = 1, . . . , n − 1:

f̃n
j = iρj + λzj,

g̃n
j = iσj − iλzj,

and
for n = 3:

f̃ 3
1 = iρ1 + µz1 + νz2,

f̃ 3
2 = iρ2 − νz1 + µz2,

g̃3
1 = iσ1 − iµz1 + iνz2,

g̃3
2 = iσ2 − iνz1 − iµz2,

where ρj, σj ∈ R, λ, µ, ν ∈ C. We now define: V ′
j := Vj − ρjZn, W ′

j :=
Wj − σjZn for j = 1, . . . , n − 1.

Further, consider the commutators [Vn, Xjl], [Wn, Xjl], [Vn, Yjl], [Wn, Yjl].
Each of these commutators vanishes at the origin and hence lies in sun−1⊕u1.
This gives that fn

n , gn
n are independent of z1, . . . , zn−1 and that for k =

1, . . . , n − 1 the following holds:

fk
n = αk + βk(zn)zk,

gk
n = γk + δk(zn)zk,

where αk and γk are linear functions independent of zk, zn.
Next, computing the commutators [Vn, Zn] and [Wn, Zn], we see that

[Vn, Zn] − Wn and [Wn, Zn] + Vn vanish at 0 and hence are elements of
sun−1 ⊕ u1. This gives

Vn =
n−1
∑

k=1

εkzkzn ∂/∂zk + fn
n ∂/∂zn (mod sun−1),

Wn = −i
n−1
∑

k=1

εkzkzn ∂/∂zk + gn
n ∂/∂zn (mod sun−1),
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for some εk ∈ C, k = 1, . . . , n − 1, and we set

V ′
n :=

n−1
∑

k=1

εkzkzn ∂/∂zk + fn
n ∂/∂zn,

W ′
n := −i

n−1
∑

k=1

εkzkzn ∂/∂zk + gn
n ∂/∂zn.

Consider now for each 1 ≤ j ≤ n − 1 the commutator [V ′
j , V

′
n]. Its linear

part Lj is easy to find:

for n ≥ 4, j = 1, . . . , n − 1:

Lj = εjzn ∂/∂zj − λzj ∂/∂zn,

and
for n = 3:

L1 = ε1z3 ∂/∂z1 − (µz1 + νz2) ∂/∂z3,
L2 = ε2z3 ∂/∂z2 − (−νz1 + µz2) ∂/∂z3.

Clearly, every commutator [V ′
j , V

′
n] vanishes at 0. Hence it is an element of

sun−1 ⊕ u1 and thus coincides with Lj. However, for n ≥ 4 the vector field
Lj can be an element of sun−1 ⊕ u1 only if εj = λ = 0. For n = 3 the vector
fields L1 and L2 can be elements of su2 ⊕ u1 only if ε1 = ε2 = µ = ν = 0.
Therefore, V ′

j , W ′
j, for j = 1, . . . , n − 1, are independent of zn and V ′

n, W ′
n

are independent of z1, . . . , zn−1.
Thus, we have g = g1 ⊕ g2, where g1 is the ideal generated by sun−1 and

V ′
j , W ′

j, for j = 1, . . . , n− 1, and g2 is the ideal generated by u1 and V ′
n, W ′

n.
Let Gj be the connected normal (possibly non-closed) subgroup of G

with Lie algebra g̃j := ϕ−1(gj) ⊂ gM for j = 1, 2. Clearly, for each j the
subgroup Gj contains α−1

p (Lj p) ⊂ G0
p, where L1 p ' SUn−1 and L2 p ' U1

are the subgroups of LG0
p given by α = 0 and A = id in formula (1.1),

respectively. Consider the orbit Gjp and the isotropy subgroup Gj p of the
point p with respect to the Gj-action for j = 1, 2. Clearly, for each j we have
G0

j p = α−1
p (Lj p). Furthermore, for each j there exists a neighborhood Wj of

the identity in Gj such that

W1p = F−1 (U ′ ∩ {zn = 0}) ,
W2p = F−1 (U ′ ∩ {z1 = · · · = zn−1 = 0}) ,

for some neighborhood U ′ ⊂ U of the origin in Tp(M). Thus, each Gjp is a
complex (possibly non-closed) submanifold of M , and the ideal g̃j consists
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exactly of those vector fields from gM that are tangent to Gjp for j = 1, 2.
Next, since Lj p acts transitively on real directions in Tp(Gjp) for j = 1, 2,
by [GK], [BDK] we obtain that G1p is holomorphically equivalent to one of
Bn−1, Cn−1, CPn−1 and G2p is holomorphically equivalent to one of B1, C,
CP1.

We will now show that each Gj is closed in G. It is done as in the proof
of Theorem 2.1 in [I5], but we repeat the argument here for the reader’s
convenience. We assume that j = 1; for j = 2 the proof is similar. Let
U be a neighborhood of 0 in gM where the exponential map into G is a
diffeomorphism, and let V := exp(U). To prove that G1 is closed in G it is
sufficient to show that for some neighborhood W of e ∈ G, W ⊂ V, we have
G1 ∩ W = exp(g̃1 ∩ U) ∩ W. Assuming the opposite we obtain a sequence
{gj} of elements of G1 converging to e in G such that for every j we have
gj = exp(aj) with aj ∈ U \ g̃1. Observe now that there exists a neighborhood
V ′ of p in M foliated by complex submanifolds holomorphically equivalent to
Bn−1 in such a way that the leaf passing through p lies in G1p. Specifically, we
take V ′ := F−1(U ′) for a suitable neighborhood U ′ ⊂ U of the origin in Tp(M),
and the leaves of the foliation are then given as F−1(U ′ ∩ {zn = const}). For
every s ∈ V ′ we denote by Ns the leaf of the foliation passing through s.
Observe that for every s ∈ V ′ vector fields from g̃1 are tangent to Ns at every
point. Let pj := gjp. If j is sufficiently large, we have pj ∈ V ′. We will now
show that Npj

6= Np for large j.

Let U′′ ⊂ U′ ⊂ U be neighborhoods of 0 in gM such that: (a) exp(U′′) ·
exp(U′′) ⊂ exp(U′); (b) exp(U′′) · exp(U′) ⊂ exp(U); (c) U′ = −U′; (d) G1 p ∩
exp(U′) ⊂ exp(g̃1 ∩ U′). We also assume that V ′ is chosen so that Np ⊂
exp(g̃1∩U′′)p. Suppose that pj ∈ Np. Then pj = sp for some s ∈ exp(g̃1∩U′′)
and hence t := g−1

j s is an element of G1 p. For large j we have g−1
j ∈ exp(U′′).

Condition (a) now implies that t ∈ exp(U′) and hence by (c), (d) we have
t−1 ∈ exp(g̃1 ∩ U′). Therefore, by (b) we obtain gj ∈ exp(g̃1 ∩ U) which
contradicts our choice of gj. Thus, for large j the leaves Npj

are distinct
from Np. Furthermore, they accumulate to Np ⊂ G1p. At the same time,
since vector fields from g̃1 are tangent to every Npj

, we have Npj
⊂ G1p for

all j, and thus the orbit G1p accumulates to itself (we will use this term in
the future in analogous situations). Below we will show that this is in fact
impossible thus obtaining a contradiction. Clearly, we only need to consider
the case when G1p is equivalent to one of Bn−1, Cn−1.

By the result of [GK], the orbit G1p is holomorphically equivalent to one
of Bn−1, Cn−1 by means of a map that maps p into the origin and transforms
G0

1 p into SUn−1 ⊂ G(Cn−1). Consider the set S := G1p ∩ G2p. The set
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S contains a non-constant sequence of points converging to p, but does not
contain any curve. Since G0

1 p preserves each of G1p, G2p, it preserves S.
However, the G0

1 p-orbit of every point in G1p other than p is a hypersurface
in G1p diffeomorphic to the sphere S2n−3. This contradiction shows that G1

is closed in G.

Thus, we have proved that Gj is closed in G for j = 1, 2. Hence Gj acts
on M properly and Gjp is a closed submanifold of M for each j. Recall that
G1p is equivalent to one of Bn−1, Cn−1, CPn−1 and G2p is equivalent to one
of B1, C, CP1, and denote by F1, F2 the respective equivalence maps. Let
Kj ⊂ Gj be the ineffectivity kernel of the Gj-action on Gjp for j = 1, 2.
Clearly, Kj ⊂ Gj p and, since G0

j p acts on Gjp effectively, Kj is a discrete
normal subgroup of Gj for each j (in particular, Kj lies in the center of Gj

for j = 1, 2). Since dG1
= n2−2 = (n−1)2 +2(n−1)−1, Theorem 1.1 in [I5]

yields that G1p is in fact equivalent to Cn−1 and that F1 can be chosen to
transform G1/K1 into G1(C

n−1). Further, since dG2
= 3, the map F2 can be

chosen to transform G2/K2 into one of Aut(B1), G(C), G(CP1), respectively.
Here Gj/Kj is viewed as a subgroup of Aut(Gjp) for each j.

We will now show that the subgroup Kj is in fact trivial for each j =
1, 2. Let first j = 1. Clearly, K1 \ {e} ⊂ G1 p \ G0

1 p, and if K1 is non-
trivial, the compact group G1 p is disconnected. Observe that any maximal
compact subgroup of G1(C

n−1) ' SUn−1 n Cn−1 is isomorphic to SUn−1

and therefore, if G1/K1 is isomorphic to G1(C
n−1), it follows that G1 p is a

maximal compact subgroup of G1. Since G1 is connected, so is G1 p, and
therefore K1 is trivial. Let j = 2. If G2/K2 is isomorphic to either Aut(B1)
or G(C), the above argument can be applied. Suppose now that G2/K2 is
isomorphic to G(CP1) ' PSU2. If K2 is non-trivial, then G2 ' SU2 and
K2 ' Z2. Then G0

2 p is conjugate in G2 (upon the identification of G2 with
SU2) to the subgroup of matrices of the form

(

1/b 0
0 b

)

,

where |b| = 1 (see e.g. Lemma 2.1 of [IKru]). Since this subgroup contains the
center of SU2, hence so does G0

2 p. In particular, K2 ⊂ G0
2 p which contradicts

the non-triviality of K2. Thus, G1 is isomorphic to G1(C
n−1) and G2 is

isomorphic to one of Aut(B1), G(C), G(CP1).

We remark here that since M is G-homogeneous and Gj is normal in G,
the discussion above remains valid for any point q ∈ M in place of p; in
particular, all Gj-orbits are pairwise holomorphically equivalent, j = 1, 2.
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Next, since g = g1 ⊕ g2, the group G is a locally direct product of G1 and
G2. We claim that T := G1 ∩ G2 is trivial. Indeed, T is a discrete normal
subgroup of each of G1, G2. However, every discrete normal subgroup of
each of G1(C

n−1), Aut(B1), G(C), G(CP1) is trivial, since the center of each
of these groups is trivial. Hence T is trivial and therefore G = G1 × G2.

We will now show that for every q1, q2 ∈ M the orbits G1q1 and G2q2

intersect at exactly one point. Let g ∈ G be an element such that gq2 = q1.
It can be uniquely represented in the form g = g1g2 with gj ∈ Gj for j = 1, 2,
and therefore we have g2q2 = g−1

1 q1. Hence the intersection G1q1 ∩ G2q2 is
non-empty. We will now prove that G1q ∩ G2q = {q} for every q ∈ M .
Suppose that for some q the intersection G1q ∩ G2q contains a point q′ 6= q.
Let bj ∈ Gj be elements such that bjq = q′ for j = 1, 2. Then b−1

1 b2 ∈ Gq. For
h ∈ Gq uniquely represented as h = h1h2, with hj ∈ Gj, we set Π1(h) := h1.
Then Π1(Gq) is a compact subgroup of G1 containing G1 q. Since G1 is
isomorphic to G1(C

n−1), the subgroup G1 q is connected and is a maximal
compact subgroup of G1. Therefore, Π1(Gq) = G1 q. It then follows that in
this case b1 ∈ G1 q, and hence q′ = q. Thus, for every p ∈ M the intersection
G1q ∩ G2q consists of q alone.

Let, as before, F1 be a biholomorphic map from G1p onto Cn−1 that
transforms G1 into G1(C

n−1), and by F2 a biholomorphic map from G2p
onto M ′, where M ′ is one of B1, C, CP1, that transforms G2 into G′, where
G′ is one of Aut(B1), G(C), G(CP1), respectively. We will now construct a
biholomorphic map F from M onto Cn−1 × M ′. For q ∈ M consider G2q
and let r be the unique point of intersection of G1p and G2q. Let g ∈ G1

be an element such that r = gp. Then we set F(q) := (F1(r), F2(g
−1q)).

Clearly, F is a well-defined diffeomorphism from M onto Cn−1 × M ′. Since
the foliation of M by Gj-orbits is holomorphic for each j, the map F is in
fact holomorphic. By construction, F transforms G into G1(C

n−1) × G′.

The proof is complete. �

4 Actions of Type III

In this section we give a large number of examples of actions of type III.
Some of the examples can be naturally combined into classes and some of
the actions form parametric families. In what follows n ≥ 2.

(i). Here both the manifolds and the groups are represented as direct prod-
ucts.
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(ia). M = M ′ × C, where M ′ is one of Bn−1, Cn−1, CPn−1, and G =
G′ × G1(C), where G′ is one of the groups Aut(Bn−1), G(Cn−1), G(CPn−1),
respectively.

(ib). M = M ′ × C∗, where M ′ is as in (ia), and G = G′ × Aut(C∗)0,
where G′ is as in (ia).

(ic). M = M ′ × T, where M ′ is as in (ia) and T is an elliptic curve;
G = G′ × Aut(T)0, where G′ is as in (ia).

(id). M = M ′×P> , where M ′ is as in (ia) and P> := {ζ ∈ C : Re ζ > 0};
G = G′ × G(P>), where G′ as in (ia) and G(P>) is the group of all maps of
the form

ξ 7→ λξ + ia,

with a ∈ R, λ > 0.

(ii). Parts (iib) and (iic) of this example are obtained by passing to quotients
in Part (iia).

(iia). M = Bn−1 × C, and G consists of all maps of the form

z′ 7→ Az′ + b

cz′ + d
,

zn 7→ zn + ln(cz′ + d) + a,

where
(

A b
c d

)

∈ SUn−1,1,

a ∈ C, and z′ := (z1, . . . , zn−1). In fact, for T ∈ C one can consider the
following family of groups acting on Bn−1 × C

z′ 7→ Az′ + b

cz′ + d
,

zn 7→ zn + T ln(cz′ + d) + a,

(4.1)

where A, a, b, c, d are as above. Example (ia) for M ′ = Bn−1 is included in this
family for T = 0. If T 6= 0, then conjugating group (4.1) in Aut(Bn−1 × C)
by the automorphism

z′ 7→ z′

zn 7→ zn/T,
(4.2)
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we can assume that T = 1.

(iib). M = Bn−1 ×C∗, and for a fixed T ∈ C∗ the group G consists of all
maps of the form

z′ 7→ Az′ + b

cz′ + d
,

zn 7→ χ(cz′ + d)T zn,

(4.3)

where A, b, c, d are as in (iia) and χ ∈ C∗. Example (ib) for M ′ = Bn−1 can
be included in this family for T = 0. This family is obtained from (4.1) by
passing to a quotient in the last variable.

(iic). M = Bn−1 ×T, where T is an elliptic curve, and for a fixed T ∈ C∗

the group G consists of all maps of the form

z′ 7→ Az′ + b

cz′ + d
,

[zn] 7→
[

χ(cz′ + d)T zn

]

,

where A, b, c, d, χ are as in (iib), T is obtained from C∗ by factorizing by the
equivalence relation zn ∼ dzn, for some d ∈ C∗, |d| 6= 1, and [zn] ∈ T is
the equivalence class of a point zn ∈ C∗. Example (ic) for M ′ = Bn−1 can
be included in this family for T = 0. This family is obtained from (4.3) by
passing to a quotient in the last variable.

(iii). Part (iiib) of this example is obtained by passing to a quotient in
Part (iiia).

(iiia). M = Cn, and G consists of all maps of the form

z′ 7→ eRe bUz′ + a,
zn 7→ zn + b,

where U ∈ Un−1, a ∈ Cn−1, b ∈ C. In fact, for T ∈ C one can consider the
following family of groups acting on Cn

z′ 7→ eRe (Tb)Uz′ + a,
zn 7→ zn + b,

(4.4)

where U , a, b are as above. Example (ia) for M ′ = Cn−1 is included in this
family for T = 0. If T 6= 0, then conjugating group (4.4) in Aut(Cn) by the
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automorphism
z′ 7→ z′

zn 7→ Tzn,

we can assume that T = 1.

(iiib). M = Cn−1 × C∗, and for a fixed T ∈ R∗ the group G consists of
all maps of the form

z′ 7→ eT Re bUz′ + a,
zn 7→ ebzn,

where U, a, b are as in (iiia). Example (ib) for M ′ = Cn−1 can be included
in this family for T = 0. This family is obtained from (4.4) for T ∈ R∗ by
passing to a quotient in the last variable.

(iv). Parts (ivb) and (ivc) of this example are obtained by passing to quo-
tients in Part (iva).

(iva). M = Cn, and G consists of all maps of the form

z′ 7→ Uz′ + a,
zn 7→ zn + 〈Uz′, a〉 + b,

where U ∈ Un−1, a ∈ Cn−1, b ∈ C, and 〈· , ·〉 is the inner product in Cn−1. In
fact, for T ∈ C one can consider the following family of groups acting on Cn

z′ 7→ Uz′ + a,
zn 7→ zn + T 〈Uz′, a〉 + b,

(4.5)

where U , a, b are as above. Example (ia) for M ′ = Cn−1 is included in this
family for T = 0. If T 6= 0, then conjugating group (4.5) in Aut(Cn) by
automorphism (4.2), we can assume that T = 1.

(ivb). M = Cn−1 × C∗, and for a fixed 0 ≤ τ < 2π the group G consists
of all maps of the form

z′ 7→ Uz′ + a,

zn 7→ χ exp
(

eiτ 〈Uz′, a〉
)

zn,
(4.6)

where U, a are as in (iva) and χ ∈ C∗. In fact, for T ∈ C one can consider
the following family of groups acting on Cn−1 × C∗

z′ 7→ Uz′ + a,

zn 7→ χ exp
(

T 〈Uz′, a〉
)

zn,
(4.7)
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where U, a, χ are as above. Example (ib) for M ′ = Cn−1 is included in this
family for T = 0. For T 6= 0 this family is obtained from (4.5) by passing
to a quotient in the last variable. Furthermore, conjugating group (4.7) for
T 6= 0 in Aut(Cn−1 × C∗) by the automorphism

z′ 7→
√

|T |z′
zn 7→ zn,

we obtain the group defined in (4.6) for τ = argT .

(ivc). M = Cn−1 × T, where T is an elliptic curve, and for a fixed
0 ≤ τ < 2π the group G consists of all maps of the form

z′ 7→ Uz′ + a,

[zn] 7→
[

χ exp
(

eiτ 〈Uz′, a〉
)

zn

]

,
(4.8)

where U, a, χ are as in (ivb), T is obtained from C∗ by factorizing by the
equivalence relation zn ∼ dzn, for some d ∈ C∗, |d| 6= 1, and [zn] ∈ T is the
equivalence class of a point zn ∈ C∗. In fact, for T ∈ C one can consider the
following family of groups acting on Cn−1 × T

z′ 7→ Uz′ + a,

[zn] 7→
[

χ exp
(

T 〈Uz′, a〉
)

zn

]

,
(4.9)

where U, a, χ are as above. Example (ic) for M ′ = Cn−1 is included in this
family for T = 0. For T 6= 0 this family is obtained from (4.7) by passing
to a quotient in the last variable. Furthermore, conjugating group (4.9) for
T 6= 0 in Aut(Cn−1 × T) by the automorphism

z′ 7→
√

|T |z′
ξ 7→ ξ,

where ξ ∈ T, we obtain the group defined in (4.8) for τ = argT .

(v). M = Cn−1 × P> , and for a fixed T ∈ R∗ the group G consists of all
maps of the form

z′ 7→ λT Uz′ + a,
zn 7→ λzn + ib,

where U ∈ Un−1, a ∈ Cn−1, b ∈ R, λ > 0. Example (id) for M ′ = Cn−1 can
be included in this family for T = 0.
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(vi). M = Cn, and for fixed k1, k2 ∈ Z, (k1, k2) = 1, k1 > 0, k2 6= 0, the
group G consists of all maps of the form (0.1) with U ∈ Hn

k1,k2
. Example (ia)

for M ′ = Cn−1 can be included in this family for k2 = 0.

(vii). Part (viib) of this example is obtained by passing to a quotient in
Part (viia).

(viia). M = Cn∗/Zl, where Cn∗ := Cn \ {0}, l ∈ N, and the group G
consists of all maps of the form

{z} 7→ {λUz},

where U ∈ Un, λ > 0, and {z} ∈ Cn∗/Zl is the equivalence class of a point
z ∈ Cn∗.

(viib). M = Md/Zl, where Md is the Hopf manifold Cn∗/{z ∼ dz}, for
d ∈ C∗, |d| 6= 1, and l ∈ N; the group G consists of all maps of the form

{[z]} 7→ {[λUz]},

where U, λ are as in (viia), [z] ∈ Md denotes the equivalence class of a point
z ∈ Cn∗, and {[z]} ∈ Md/Zl denotes the equivalence class of [z] ∈ Md.

(viii). In this example the manifolds are the open orbits of the action of a
group of affine transformations on Cn. Let GP be the group of all maps of
the form

z′ 7→ λUz′ + a,
zn 7→ λ2zn + 2λ〈Uz′, a〉 + |a|2 + ib,

where U ∈ Un−1, a ∈ Cn−1, b ∈ R, λ > 0.

(viiia). M = Pn
> , G = GP , where

Pn
> :=

{

(z′, zn) ∈ Cn−1 × C : Re zn > |z′|2
}

.

Observe that Pn
> is holomorphically equivalent to Bn.

(viiib). M = Pn
< , G = GP , where

Pn
< :=

{

(z′, zn) ∈ Cn−1 × C : Re zn < |z′|2
}

.

Observe that Pn
< is holomorphically equivalent to CPn \ (Bn ∪L), where L is

a complex hyperplane tangent to ∂Bn.
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(ix). Here n = 2, M = B1 × C, and G consists of all maps of the form

z1 7→ az1 + b

bz1 + a
,

z2 7→ z2 + cz1 + c

bz1 + a
,

where a, b ∈ C, |a|2 − |b|2 = 1, c ∈ C.

(x). Here n = 3, M = CP3, and G consists of all maps of the form (0.2) for
n = 3 with U ∈ Sp2.

(xi). Here n = 3, M is obtained from C2 × C2∗ by factorizing by the
equivalence relation (z, ξ) ∼ ν(z, ξ), where z ∈ C2, ξ ∈ C2∗, ν ∈ C∗, and G
consists of all maps of the form

z 7→ Uz + Cξ,
ξ 7→ V ξ,

where U, V ∈ SU2, and

C =

(

c1 ic2

c2 −ic1

)

,

with c1, c2 ∈ C. Observe that M = CP3\C, where C is the projective complex
line given by ξ = 0 and (z, ξ) are considered as homogeneous coordinates in
CP3.

(xii). Here n = 3, M = C3, and G consists of all maps of the form

z′ 7→ Uz′ + Ua,

z3 7→ det U z3 +

[(

0 1
−1 0

)

Uz′
]

·
[

Ua
]

+ b,

where z′ := (z1, z2), U ∈ U2, a ∈ C2, b ∈ C, and · denotes the dot product in
C2.

We announce the following theorem.

THEOREM 4.1 Let M be a connected complex manifold of dimension
n ≥ 2 and G ⊂ Aut(M) a connected Lie group with dG = n2 + 1 that acts
properly on M . If the pair (M, G) is of type III, then it is equivalent to one
of the pairs listed in (i)–(xii) above.
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A proof of Theorem 4.1 will appear in our future joint article with N.
Kruzhilin.
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