Proper Actions of Lie Groups of Dimension $n^{2}+1$
 on n-Dimensional Complex Manifolds* ${ }^{*}$

Abstract

A. V. Isaev

In this paper we continue to study actions of high-dimensional Lie groups on complex manifolds. We consider connected complex manifolds M of dimension $n \geq 2$ on which connected Lie groups G of dimension $n^{2}+1$ act effectively and properly by holomorphic transformations. Such actions are transitive and are shown to split into three types according to the form of the linear isotropy subgroup. We give a complete explicit description of all pairs (M, G) for two of these types, and announce a classification for the third type. These results complement a classification obtained earlier by the author for $n^{2}+2 \leq \operatorname{dim} G<n^{2}+2 n$ and a result due to W. Kaup for the maximal group dimension $n^{2}+2 n$.

0 Introduction

Let M be a connected C^{∞}-smooth manifold and $\operatorname{Diff}(M)$ the group of $C^{\infty}{ }_{-}$ smooth diffeomorphisms of M endowed with the compact-open topology. A topological group G is said to act continuously on M by diffeomorphisms, if a continuous homomorphism $\Phi: G \rightarrow \operatorname{Diff}(M)$ is specified. The continuity of Φ is equivalent to the continuity of the action map

$$
\hat{\Phi}: G \times M \rightarrow M, \quad(g, p) \mapsto \Phi(g)(p)=: g p .
$$

We only consider effective actions, that is, assume that the kernel of Φ is trivial.

The action of G on M is called proper, if the map

$$
\Psi: G \times M \rightarrow M \times M, \quad(g, p) \mapsto(g p, p),
$$

is proper, i.e. for every compact subset $C \subset M \times M$ its inverse image $\Psi^{-1}(C) \subset G \times M$ is compact as well. For example, the action is proper if

[^0]G is compact. The properness of the action implies that: (i) G is locally compact, hence by [BM1], [BM2] (see also [MZ]) it carries the structure of a Lie group and the action map $\hat{\Phi}$ is smooth; (ii) Φ is a topological group isomorphism between G and $\Phi(G)$; (iii) $\Phi(G)$ is a closed subgroup of $\operatorname{Diff}(M)$ (see [Bi] for a brief survey on proper actions). Thus, one can assume that G is a Lie group acting smoothly and properly on the manifold M, and that it is realized as a closed subgroup of $\operatorname{Diff}(M)$.

Suppose now that M is equipped with a Riemannian metric \mathcal{G}, and let $\operatorname{Isom}(M, \mathcal{G})$ be the group of all isometries of M with respect to \mathcal{G}. It was shown in $[\mathrm{MS}]$ that $\operatorname{Isom}(M, \mathcal{G})$ acts properly on M (and so does its every closed subgroup). Conversely, by [Pal] (see also [A]), for any Lie group acting properly on M there exists a C^{∞}-smooth G-invariant metric \mathcal{G} on M. It then follows that Lie groups acting properly and effectively on the manifold M by diffeomorphisms are precisely closed subgroups of $\operatorname{Isom}(M, \mathcal{G})$ for all possible smooth Riemannian metrics \mathcal{G} on M.

If G acts properly on M, then for every $p \in M$ its isotropy subgroup

$$
G_{p}:=\{g \in G: g p=p\}
$$

is compact in G. Then by $[\mathrm{Bo}]$ the isotropy representation

$$
\alpha_{p}: G_{p} \rightarrow G L\left(\mathbb{R}, T_{p}(M)\right), \quad g \mapsto d g_{p}
$$

is continuous and faithful, where $T_{p}(M)$ denotes the tangent space to M at p and $d g_{p}$ is the differential of g at p. In particular, the linear isotropy subgroup

$$
L G_{p}:=\alpha_{p}\left(G_{p}\right)
$$

is a compact subgroup of $G L\left(\mathbb{R}, T_{p}(M)\right)$ isomorphic to G_{p}. In some coordinates in $T_{p}(M)$ the group $L G_{p}$ becomes a subgroup of the orthogonal group $O_{m}(\mathbb{R})$, where $m:=\operatorname{dim} M$. Hence $\operatorname{dim} G_{p} \leq \operatorname{dim} O_{m}(\mathbb{R})=m(m-1) / 2$. Furthermore, for every $p \in M$ its orbit

$$
G p:=\{g p: g \in G\}
$$

is a closed submanifold of M, and $\operatorname{dim} G p \leq m$. Thus, setting $d_{G}:=\operatorname{dim} G$, we obtain

$$
d_{G}=\operatorname{dim} G_{p}+\operatorname{dim} G p \leq m(m+1) / 2
$$

It is a classical result (see [F], [C], [Ei]) that if G acts properly on a smooth manifold M of dimension m and $d_{G}=m(m+1) / 2$, then M is isometric (with respect to some G-invariant metric) either to one of the standard complete
simply-connected spaces of constant sectional curvature $\mathbb{R}^{m}, S^{m}, \mathbb{H}^{m}$ (where \mathbb{H}^{m} is the hyperbolic space), or to $\mathbb{R}^{\left(\mathbb{P}^{m}\right.}$. Next, it was shown in [Wa] (see also $[\mathrm{Eg}],[\mathrm{Y} 1])$ that a group G with $m(m-1) / 2+1<d_{G}<m(m+1) / 2$ cannot act properly on a smooth manifold M of dimension $m \neq 4$. The exceptional 4-dimensional case was considered in [Ish]; it turned out that a group of dimension 9 cannot act properly on a 4 -dimensional manifold, and that if a 4-dimensional manifold admits a proper action of an 8-dimensional group G, then it has a G-invariant complex structure. Invariant complex structures will be discussed below in detail.

There exists also an explicit classification of pairs (M, G), where $m \geq 4$, G is connected, and $d_{G}=m(m-1) / 2+1$ (see [Y1], [Ku], [O], [Ish]). Further, in $[\mathrm{KN}]$ a reasonably explicit classification of pairs (M, G), where $m \geq 6, G$ is connected, and $(m-1)(m-2) / 2+2 \leq d_{G} \leq m(m-1) / 2$, was given. We also mention the classification of G-homogeneous manifolds for $m=4$, $d_{G}=6$ (see [Ish]) and the classifications of G-homogeneous simply-connected manifolds in the cases $m=3, d_{G}=3,4$ and $m=4, d_{G}=5$ (see [C], [Pat]) obtained by E. Cartan's method of adapted frames introduced in [C]. There are many other results, especially for compact subgroups, but no complete classifications exist beyond dimension $(m-1)(m-2) / 2+2$ (see [Ko2], [Y2] and references therein for further details).

We study proper group actions in the complex setting with the general aim to build a theory for group dimensions lower than $(m-1)(m-2) / 2+2$, thus extending - in this setting - the classical results described above. In our setting real Lie groups act by holomorphic transformations on complex manifolds. Thus, from now on, M will denote a complex manifold of complex dimension n (hence $m=2 n$) and G will be a subgroup of $\operatorname{Aut}(M)$, the group of all holomorphic automorphisms of M. We will be classifying pairs (M, G), but we will not be concerned with determining G-invariant Riemannian metrics on M. Proper actions by holomorphic transformations are found in abundance. A fundamental result due to Kaup (see [Ka]) states that every closed subgroup of $\operatorname{Aut}(M)$ that preserves a continuous distance on M acts properly on M. Thus, Lie groups acting properly and effectively on M by holomorphic transformations are precisely closed subgroups of $\operatorname{Aut}(M)$ preserving a continuous distance on M. In particular, if M is a Kobayashihyperbolic manifold, then $\operatorname{Aut}(M)$ is a Lie group acting properly on M (see also [Ko1]).

In the complex setting, in some coordinates in $T_{p}(M)$ the group $L G_{p}$ becomes a subgroup of the unitary group U_{n}. Hence $\operatorname{dim} G_{p} \leq \operatorname{dim} U_{n}=n^{2}$,
and therefore

$$
d_{G} \leq n^{2}+2 n
$$

We note that $n^{2}+2 n<(m-1)(m-2) / 2+2$ for $m=2 n$ and $n \geq 5$. Thus, the group dimension range that arises in the complex case, for $n \geq 5$ lies strictly below the dimension range considered in the classical real case and therefore is not covered by the existing results. Furthermore, overlaps with these results for $n=3,4$ and $n=2, d_{G}=6$ occur only in relatively easy situations and do not lead to any significant simplifications in the complex case. The only interesting overlap with the real case occurs for $n=2, d_{G}=5$ (see [Pat]); we will briefly discuss it below. Note that in the situations when overlaps do occur, the existing classifications in the real case do not necessarily immediately lead to classifications in the complex case, since the determination of all G-invariant complex structures on the corresponding real manifolds may be a non-trivial matter.

It was shown in [Ka] that if $d_{G}=n^{2}+2 n$, then M is holomorphically equivalent (in fact, holomorphically isometric with respect to some G invariant metric) to one of $\mathbb{B}^{n}:=\left\{z \in \mathbb{C}^{n}:|z|<1\right\}, \mathbb{C}^{n}, \mathbb{C P}^{n}$, and an equivalence map F can be chosen so that the group $F \circ G \circ F^{-1}:=\left\{F \circ g \circ F^{-1}: g \in G\right\}$ is, respectively, one of the groups $\operatorname{Aut}\left(\mathbb{B}^{n}\right), G\left(\mathbb{C}^{n}\right), G\left(\mathbb{C P}^{n}\right)$. Here $\operatorname{Aut}\left(\mathbb{B}^{n}\right) \simeq P S U_{n, 1}:=S U_{n, 1} /($ center $)$ is the group of all transformations

$$
z \mapsto \frac{A z+b}{c z+d},
$$

where

$$
\left(\begin{array}{cc}
A & b \\
c & d
\end{array}\right) \in S U_{n, 1}
$$

$G\left(\mathbb{C}^{n}\right) \simeq U_{n} \ltimes \mathbb{C}^{n}$ is the group of all holomorphic automorphisms of \mathbb{C}^{n} of the form

$$
\begin{equation*}
z \mapsto U z+a, \tag{0.1}
\end{equation*}
$$

where $U \in U_{n}, a \in \mathbb{C}^{n}$ (we usually write $G(\mathbb{C})$ instead of $G\left(\mathbb{C}^{1}\right)$); and $G\left(\mathbb{C P}^{n}\right) \simeq P S U_{n+1}:=S U_{n+1} /($ center $)$ is the group of all holomorphic automorphisms of $\mathbb{C P}^{n}$ of the form

$$
\begin{equation*}
\zeta \mapsto U \zeta, \tag{0.2}
\end{equation*}
$$

where ζ is a point in $\mathbb{C P}^{n}$ given in homogeneous coordinates, and $U \in$ $S U_{n+1}$ (this group is a maximal compact subgroup of the complex Lie group
$\operatorname{Aut}\left(\mathbb{C P}^{n}\right) \simeq P S L_{n+1}(\mathbb{C}):=S L_{n+1}(\mathbb{C}) /($ center $\left.)\right)$. In the above situation we say for brevity that F transforms G into one of $\operatorname{Aut}\left(\mathbb{B}^{n}\right), G\left(\mathbb{C}^{n}\right), G\left(\mathbb{C P}^{n}\right)$, respectively, and, in general, if $F: M_{1} \rightarrow M_{2}$ is a biholomorphic map, $G_{j} \subset \operatorname{Aut}\left(M_{j}\right), j=1,2$, are subgroups and $F \circ G_{1} \circ F^{-1}=G_{2}$, we say that F transforms G_{1} into G_{2}.

We are interested in characterizing pairs (M, G) for $d_{G}<n^{2}+2 n$, where $G \subset \operatorname{Aut}(M)$ acts on M properly. In [IKra], [I1], [I2], [I3] we considered the special case where M is a Kobayashi-hyperbolic manifold and $G=\operatorname{Aut}(M)$, and explicitly determined all manifolds with $n^{2}-1 \leq d_{\operatorname{Aut}(M)}<n^{2}+2 n$, $n \geq 2$ (see [I4] for a comprehensive exposition of these results). The case $d_{\text {Aut }(M)}=n^{2}-2$ represents the first obstruction to the existence of an explicit classification, namely, there is no good description of hyperbolic manifolds with $n=2, d_{\operatorname{Aut}(M)}=2$ (see [I1], [I4]); it is possible, however, that a reasonable classification exists in this case for $n \geq 3$. Our immediate goal is to generalize these results to arbitrary proper actions on not necessarily Kobayashi-hyperbolic manifolds by classifying all pairs (M, G) with $n^{2}-1 \leq$ $d_{G}<n^{2}+2 n, n \geq 2$, where G is assumed to be connected.

This classification problem splits into two cases: that of G-homogeneous manifolds and that of non- G-homogeneous ones (note that due to [Ka] G homogeneity always takes place for $d_{G}>n^{2}$). While the techniques that we developed for non-homogeneous Kobayashi-hyperbolic manifolds seem to work well for general non-transitive proper actions, there is a substantial difference in the homogeneous case. Indeed, due to [N] every homogeneous Kobayashi-hyperbolic manifold is holomorphically equivalent to a Siegel domain of the second kind, and therefore such manifolds can be studied by using techniques available for Siegel domains (see e.g. [S]). This is how homogeneous Kobayashi-hyperbolic manifolds with $n^{2}-1 \leq d_{\text {Aut }(M)}<n^{2}+2 n$, $n \geq 2$, were determined in [IKra], [I1], [I2], [I4]. Clearly, this approach cannot be applied to general transitive proper actions, and one motivation for the present work is to re-obtain the classification of homogeneous Kobayashihyperbolic manifolds without using the non-trivial result of $[\mathrm{N}]$.

The first step towards a general classification for proper actions with $d_{G}<n^{2}+2 n$ was made in [IKra] where we observed that if $d_{G} \geq n^{2}+3$, then, as in the case $d_{G}=n^{2}+2 n$, the manifold must be holomorphically equivalent to one of $\mathbb{B}^{n}, \mathbb{C}^{n}, \mathbb{C P}^{n}$. However, in [IKra] we did not investigate the question what groups (if any) are possible for each of these three manifolds within the dimension range $n^{2}+3 \leq d_{G}<n^{2}+2 n$. We resolved this question in [I5]. In the same paper we gave a complete classification of all pairs (M, G) with $d_{G}=n^{2}+2$.

In the present paper we assume that $d_{G}=n^{2}+1$. Note that this is the lowest group dimension for which G-homogeneity always takes place; indeed, for $d_{G}=n^{2}$ both G-homogeneous and non G-homogeneous manifold occur (see [I4]). For $d_{G}=n^{2}+1$ we have $\operatorname{dim} G_{p}=(n-1)^{2}$, and we start by describing connected subgroups of the unitary group U_{n} of dimension $(n-1)^{2}$ in Proposition 1.1 (see Section 1), thus determining the connected identity components of all possible linear isotropy subgroups. According to this description, every action falls into one of three types. In Sections 2, 3 we deal with actions of type I and II, respectively, and obtain complete lists of the corresponding pairs (M, G) in Theorems 2.1 and 3.1. Actions of type III are more difficult to deal with. In Section 4 we give a large number of examples of such actions. Jointly with N. Kruzhilin, we are currently working on the problem of describing all actions of type III. This work is now essentially complete, and we use this opportunity to announce that the examples in Section 4 in fact give a complete description of such actions (see Theorem 4.1). Thus, Theorems 2.1, 3.1, 4.1 describe all pairs (M, G) with $d_{G}=n^{2}+1$.

Regarding Theorems 2.1, 3.1, 4.1 for $n=2,3$ some remarks are in order. Firstly, all connected 2- and 3-dimensional complex manifolds that admit transitive actions of Lie groups by holomorphic transformations were determined in [HL], [OR], [Wi]; however, it was not the aim of those articles to give a description of all possible transitive actions, and, indeed, most actions listed in Theorems 2.1, 3.1, 4.1 do not occur in [HL], [OR], [Wi]. Secondly, as we have already mentioned, a classification of all effective proper transitive actions of connected 5 -dimensional Lie groups on simply-connected real 4-dimensional manifolds was given in [Pat] (see also [Ish]). Therefore, one can attempt to obtain Theorem 4.1 for $n=2$ by determining all invariant complex structures and by passing to quotients to produce a list of non simply-connected manifolds from the list of simply-connected ones. Thirdly, we have been informed by G. Fels that he has recently obtained Theorem 4.1 for $n=2$ by an alternative method.

Acknowledgements. Part of this work was done while the author was visiting the Ruhr-Universität Bochum in January-February 2007; the visit was partially supported by the Alexander von Humboldt-Stiftung. The classification of actions of type III (which is a joint work of the author with N. Kruzhilin) was completed during the author's visit to the Max-Plank Institut für Mathematik in Bonn in April-May 2007 and will appear in our future paper. We would like to thank G. Fels for making a large number of useful
comments and interest in our work.

1 Classification of Linear Isotropy Subgroups

In this section we prove the following proposition that extends Lemma 2.1 of [IKru].

Proposition 1.1 Let H be a connected closed subgroup of U_{n} of dimension $(n-1)^{2}, n \geq 2$. Then H is conjugate in U_{n} to one of the following subgroups:
I. $e^{i \mathbb{R}} S O_{3}(\mathbb{R})$ (here $n=3$);
II. $S U_{n-1} \times U_{1}$ realized as the subgroup of all matrices

$$
\left(\begin{array}{cc}
A & 0 \tag{1.1}\\
0 & e^{i \theta}
\end{array}\right),
$$

where $A \in S U_{n-1}$ and $\theta \in \mathbb{R}$, for $n \geq 3$;
III. the subgroup $H_{k_{1}, k_{2}}^{n}$ of all matrices

$$
\left(\begin{array}{cc}
A & 0 \tag{1.2}\\
0 & a
\end{array}\right),
$$

where k_{1}, k_{2} are fixed integers such that $\left(k_{1}, k_{2}\right)=1, k_{1}>0$, and $A \in U_{n-1}$, $a \in(\operatorname{det} A)^{\frac{k_{2}}{k_{1}}}:=\exp \left(k_{2} / k_{1} \operatorname{Ln}(\operatorname{det} A)\right) . \ddagger$

Proof: Since H is compact, it is completely reducible, i.e. \mathbb{C}^{n} splits into a sum of H-invariant pairwise orthogonal complex subspaces, $\mathbb{C}^{n}=V_{1} \oplus$ $\cdots \oplus V_{m}$, such that the restriction H_{j} of H to each V_{j} is irreducible. Let $n_{j}:=\operatorname{dim}_{\mathbb{C}} V_{j}$ (hence $n_{1}+\cdots+n_{m}=n$) and let $U_{n_{j}}$ be the group of unitary transformations of V_{j}. Clearly, $H_{j} \subset U_{n_{j}}$, and therefore $\operatorname{dim} H \leq n_{1}^{2}+\cdots+$ n_{m}^{2}. On the other hand $\operatorname{dim} H=(n-1)^{2}$, which shows that $m \leq 2$.

Let $m=2$. Then there exists a unitary change of coordinates in \mathbb{C}^{n} such all elements of H take the form (1.2), where $A \in U_{n-1}$ and $a \in U_{1}$. We note that the matrices A and the scalars a corresponding to the elements of H form compact connected subgroups of U_{n-1} and U_{1}, respectively; we shall denote them by H_{1} and H_{2}.

[^1]If $\operatorname{dim} H_{2}=0$, then $H_{2}=\{1\}$, and therefore $H_{1}=U_{n-1}$. In this case we obtain the group $H_{1,0}^{n}$.

Assume that $\operatorname{dim} H_{2}=1$, i.e., $H_{1}=U_{1}$. Then $(n-1)^{2}-1 \leq \operatorname{dim} H_{1} \leq$ $(n-1)^{2}$. Let $\operatorname{dim} H_{1}=(n-1)^{2}-1$ first. The only connected subgroup of U_{n-1} of dimension $(n-1)^{2}-1$ is $S U_{n-1}$. Hence H is conjugate to the subgroup of matrices of the form (1.1) if $n \geq 3$ and to $H_{1,0}^{2}$ for $n=2$. Now let $\operatorname{dim} H_{1}=(n-1)^{2}$, i.e., $H_{1}=U_{n-1}$. Consider the Lie algebra \mathfrak{h} of H. It consists of matrices of the following form

$$
\left(\begin{array}{cc}
\mathfrak{A} & 0 \tag{1.3}\\
0 & l(\mathfrak{A})
\end{array}\right)
$$

where $\mathfrak{A} \in \mathfrak{u}_{n-1}$ and $l(\mathfrak{A}) \not \equiv 0$ is a linear function of the matrix elements of \mathfrak{A} ranging in $i \mathbb{R}$. Clearly, $l(\mathfrak{A})$ must vanish on the commutant of \mathfrak{u}_{n-1}, which is $\mathfrak{s u}_{n-1}$. Hence matrices (1.3) form a Lie algebra if and only if $l(\mathfrak{A})=c$ •trace \mathfrak{A}, where $c \in \mathbb{R} \backslash\{0\}$. Such an algebra can be the Lie algebra of a closed subgroup of $U_{n-1} \times U_{1}$ only if $c \in \mathbb{Q} \backslash\{0\}$. Hence H is conjugate to $H_{k_{1}, k_{2}}^{n}$ for some $k_{1}, k_{2} \in \mathbb{Z}$, where one can always assume that $k_{1}>0$ and $\left(k_{1}, k_{2}\right)=1$.

Now let $m=1$. We shall proceed as in the proof of Lemma 2.1 in [IKra]. Let $\mathfrak{h}^{\mathbb{C}}:=\mathfrak{h}+i \mathfrak{h} \subset \mathfrak{g l}_{n}$ be the complexification of \mathfrak{h}, where $\mathfrak{g l}_{n}:=\mathfrak{g l}_{n}(\mathbb{C})$. The algebra $\mathfrak{h}^{\mathbb{C}}$ acts irreducibly on \mathbb{C}^{n} and by a theorem of E. Cartan (see, e.g., [GG]), $\mathfrak{h}^{\mathbb{C}}$ is either semisimple or the direct sum of the center \mathfrak{c} of $\mathfrak{g l}_{n}$ and a semisimple ideal \mathfrak{t}. Clearly, the action of the ideal \mathfrak{t} on \mathbb{C}^{n} is irreducible.

Assume first that $\mathfrak{h}^{\mathbb{C}}$ is semisimple, and let $\mathfrak{h}^{\mathbb{C}}=\mathfrak{h}_{1} \oplus \cdots \oplus \mathfrak{h}_{k}$ be its decomposition into the direct sum of simple ideals. Then the natural irreducible n-dimensional representation of $\mathfrak{h}^{\mathbb{C}}$ (given by the embedding of $\mathfrak{h}^{\mathbb{C}}$ in $\mathfrak{g l}_{n}$) is the tensor product of some irreducible faithful representations of the \mathfrak{h}_{j} (see, e.g., [GG]). Let n_{j} be the dimension of the corresponding representation of $\mathfrak{h}_{j}, j=1, \ldots, k$. Then $n_{j} \geq 2, \operatorname{dim}_{\mathbb{C}} \mathfrak{h}_{j} \leq n_{j}^{2}-1$, and $n=n_{1} \cdot \ldots \cdot n_{k}$. The following observation is simple.

$$
\begin{aligned}
& \text { Claim: If } n=n_{1} \cdot \ldots \cdot n_{k}, k \geq 2, n_{j} \geq 2 \text { for } j=1, \ldots, k \text {, then } \\
& \sum_{j=1}^{k} n_{j}^{2} \leq n^{2}-2 n .
\end{aligned}
$$

Since $\operatorname{dim}_{\mathbb{C}} \mathfrak{h}^{\mathbb{C}}=(n-1)^{2}$, it follows from the above claim that $k=1$, i.e. $\mathfrak{h}^{\mathbb{C}}$ is simple. The minimal dimensions of irreducible faithful representations of complex simple Lie algebras \mathfrak{s} are well-known (see, e.g., [OV]). In the table below V denotes representations of minimal dimension.

\mathfrak{s}	$\operatorname{dim} V$	$\operatorname{dim} \mathfrak{s}$
$\mathfrak{s l}_{k} k \geq 2$	k	$k^{2}-1$
$\mathfrak{o}_{k} k \geq 7$	k	$k(k-1) / 2$
$\mathfrak{s p}_{2 k} k \geq 2$	$2 k$	$2 k^{2}+k$
\mathfrak{e}_{6}	27	78
\mathfrak{e}_{7}	56	133
\mathfrak{e}_{8}	248	248
\mathfrak{f}_{4}	26	52
\mathfrak{g}_{2}	7	14

Since $\operatorname{dim}_{\mathbb{C}} \mathfrak{h}^{\mathbb{C}}=(n-1)^{2}$, it follows that none of the above possibilities realize. Therefore, $\mathfrak{h}^{\mathbb{C}}=\mathfrak{c} \oplus \mathfrak{t}$, where the dimension of \mathfrak{t} is equal to $n^{2}-2 n$. Then, if $n=2$, we obtain that H coincides with the center of U_{2} which is impossible since its action on \mathbb{C}^{2} is then not irreducible. Assuming that $n \geq 3$ and repeating the above argument for \mathfrak{t} in place of $\mathfrak{h}^{\mathbb{C}}$, we see that \mathfrak{t} can only be isomorphic to $\mathfrak{s l}_{n-1}$. But $\mathfrak{s l}_{n-1}$ does not have an irreducible n-dimensional representation unless $n=3$.

Thus, $n=3$ and $\mathfrak{h} \simeq \mathbb{C} \oplus \mathfrak{s l}_{2} \simeq \mathbb{C} \oplus \mathfrak{s o}_{3}$. Further, we observe that every irreducible 3 -dimensional representation of $\mathfrak{s o}_{3}$ is equivalent to its defining representation. This implies that H is conjugate in $G L_{3}(\mathbb{C})$ to $e^{i \mathbb{R}} S O_{3}(\mathbb{R})$. Since $H \subset U_{3}$ it is straightforward to show that the conjugating element can be chosen to belong to U_{3}.

The proof of the proposition is complete.

Let M be a connected complex manifold of dimension $n \geq 2$, and suppose that a connected Lie group $G \subset \operatorname{Aut}(M)$ with $d_{G}=n^{2}+1$ acts properly on M. Fix $p \in M$, consider the linear isotropy subgroup $L G_{p}$, and choose coordinates in $T_{p}(M)$ so that $L G_{p} \subset U_{n}$. We say that the pair (M, G) (or the action of G on M) is of type I, II or III, if the connected identity component $L G_{p}^{0}$ of the group $L G_{p}$ is conjugate in U_{n} to a subgroup listed in I, II or III of Proposition 1.1, respectively. Since M is G-homogeneous, this definition is independent of the choice of p.

We will now separately consider actions of each type.

2 Actions of Type I

In this section we prove the following theorem.

THEOREM 2.1 Let M be a connected complex manifold of dimension 3 and $G \subset \operatorname{Aut}(M)$ a connected Lie group with $d_{G}=10$ that acts properly on M. If the pair (M, G) is of type I, then it is equivalent to one of the following:
(i) $(\mathscr{S}, \operatorname{Aut}(\mathscr{S}))$, where \mathscr{S} is the Siegel space

$$
\mathscr{S}:=\left\{\left(z_{1}, z_{2}, z_{3}\right) \in \mathbb{C}^{3}: Z \bar{Z} \ll i d\right\},
$$

with

$$
Z:=\left(\begin{array}{ll}
z_{1} & z_{2} \\
z_{2} & z_{3}
\end{array}\right)
$$

(here $\operatorname{Aut}(\mathscr{S})$ is isomorphic to $\left.\operatorname{Sp}_{4}(\mathbb{R}) / \mathbb{Z}_{2}\right)$;
(ii) $\left(\mathcal{Q}_{3}, S O_{5}(\mathbb{R})\right)$, where \mathcal{Q}_{3} is the complex quadric in $\mathbb{C P}^{4}$, and $S O_{5}(\mathbb{R})$ is realized as a maximal compact subgroup of $\operatorname{Aut}\left(\mathcal{Q}_{3}\right) \simeq S O_{5}(\mathbb{C})$;
(iii) $\left(\mathbb{C}^{3}, G_{2}\left(\mathbb{C}^{3}\right)\right)$, where $G_{2}\left(\mathbb{C}^{3}\right)$ is the group that consists of all maps from $G\left(\mathbb{C}^{3}\right)$ with $U \in e^{i \mathbb{R}} S_{3}(\mathbb{R})($ see $(0.1)) .{ }^{\S}$

Proof: Fix $p \in M$. By Bochner's linearization theorem (see [Bo]) there exist an G_{p}-invariant neighborhood \mathcal{V} of p in M, an $L G_{p}$-invariant neighborhood \mathcal{U} of the origin in $T_{p}(M)$ and a biholomorphic map $F: \mathcal{V} \rightarrow \mathcal{U}$, with $F(p)=0$, such that for every $g \in G_{p}$ the following holds in \mathcal{V} :

$$
F \circ g=\alpha_{p}(g) \circ F,
$$

where α_{p} is the isotropy representation at p. Let \mathfrak{g}_{M} be the Lie algebra (isomorphic to the Lie algebra of G) of holomorphic vector fields on M arising from the action of G, that is, \mathfrak{g}_{M} consists of all vector fields X on M for which there exists an element a of the Lie algebra of G such that for all $q \in M$ we have

$$
X(q)=\left.\frac{d}{d t}[\exp (t a)(q)]\right|_{t=0}
$$

Next, let $\mathfrak{g}_{\mathcal{V}}$ be the Lie algebra of the restrictions of the elements of \mathfrak{g}_{M} to \mathcal{V} and \mathfrak{g} the Lie algebra of vector fields on \mathcal{U} obtained by pushing forward the elements of $\mathfrak{g}_{\mathcal{V}}$ by means of F. Observe that $\mathfrak{g}_{M}, \mathfrak{g}_{\mathcal{V}}, \mathfrak{g}$ are naturally isomorphic, and we denote by $\varphi: \mathfrak{g}_{M} \rightarrow \mathfrak{g}$ the isomorphism induced by F.

[^2]Let $\left(z_{1}, z_{2}, z_{3}\right)$ be coordinates in $T_{p}(M)$ in which $L G_{p}^{0}=e^{i \mathbb{R}} S O_{3}(\mathbb{R})$. Since F transforms $\left.G_{p}^{0}\right|_{\mathcal{V}}$ into $\left.L G_{p}^{0}\right|_{\mathcal{U}}$ and since G acts transitively on M, the algebra \mathfrak{g} is generated by $\left\langle Z_{0}\right\rangle \oplus \mathfrak{s o}_{3}(\mathbb{R})$ and some vector fields

$$
\begin{aligned}
V_{j} & =\sum_{k=1}^{3} f_{j}^{k} \partial / \partial z_{k} \\
W_{j} & =\sum_{k=1}^{3} g_{j}^{k} \partial / \partial z_{k}
\end{aligned}
$$

for $j=1,2,3$, where f_{j}^{k}, g_{j}^{k} are holomorphic functions on \mathcal{U} such that

$$
f_{j}^{k}(0)=\delta_{j}^{k}, \quad g_{j}^{k}(0)=i \delta_{j}^{k} .
$$

Here

$$
Z_{0}:=i \sum_{k=1}^{3} z_{k} \partial / \partial z_{k},
$$

and $\mathfrak{s o}_{3}(\mathbb{R})$ is generated by the following vector fields on \mathcal{U} :

$$
\begin{aligned}
& Z_{1}:=z_{2} \partial / \partial z_{1}-z_{1} \partial / \partial z_{2}, \\
& Z_{2}:=z_{3} \partial / \partial z_{1}-z_{1} \partial / \partial z_{3}, \\
& Z_{3}:=z_{3} \partial / \partial z_{2}-z_{2} \partial / \partial z_{3} .
\end{aligned}
$$

Since \mathfrak{g} contains the vector field Z_{0}, Hilfssatz 4.8 of [Ka] yields that every vector field in \mathfrak{g} is polynomial and has degree at most 2 . Considering $\left[Z_{0},\left[V_{j}, Z_{0}\right]\right],\left[Z_{0},\left[W_{j}, Z_{0}\right]\right]$ instead of V_{j}, W_{j} if necessary, we can assume that $V_{j}, W_{j}, j=1,2,3$, have no linear terms.

Since $\left[V_{1}, Z_{3}\right]$ vanishes at the origin and has no linear terms, it is identically zero, which implies

$$
\begin{array}{r}
V_{1}=\left(1+\alpha_{1} z_{1}^{2}+\alpha_{2} z_{2}^{2}+\alpha_{2} z_{3}^{2}+\beta z_{2} z_{3}\right) \partial / \partial z_{1}+ \\
\left(\begin{array}{l}
\left(\gamma_{12} z_{1} z_{2}+\gamma_{13} z_{1} z_{3}\right) \partial / \partial z_{2}+ \\
\\
\left(-\gamma_{13} z_{1} z_{2}+\gamma_{12} z_{1} z_{3}\right) \partial / \partial z_{3}
\end{array},\right.
\end{array}
$$

for some $\alpha_{1}, \alpha_{2}, \beta, \gamma_{12}, \gamma_{13} \in \mathbb{C}$. Similarly, considering $\left[W_{1}, Z_{3}\right.$] we obtain

$$
\begin{array}{r}
W_{1}=\left(i+\alpha_{1}^{\prime} z_{1}^{2}+\alpha_{2}^{\prime} z_{2}^{2}+\alpha_{2}^{\prime} z_{3}^{2}+\beta^{\prime} z_{2} z_{3}\right) \partial / \partial z_{1}+\left(\gamma_{12}^{\prime} z_{1} z_{2}+\gamma_{13}^{\prime} z_{1} z_{3}\right) \partial / \partial z_{2}+ \\
\left(-\gamma_{13}^{\prime} z_{1} z_{2}+\gamma_{12}^{\prime} z_{1} z_{3}\right) \partial / \partial z_{3},
\end{array}
$$

for some $\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \beta^{\prime}, \gamma_{12}^{\prime}, \gamma_{13}^{\prime} \in \mathbb{C}$. Further, considering $\left[V_{2}, Z_{2}\right],\left[W_{2}, Z_{2}\right]$, $\left[V_{3}, Z_{1}\right]$, [W_{3}, Z_{1}] analogously implies:

$$
\begin{array}{r}
V_{2}=\left(\delta_{12} z_{1} z_{2}+\delta_{23} z_{2} z_{3}\right) \partial / \partial z_{1}+\left(1+\varepsilon_{1} z_{1}^{2}+\varepsilon_{2} z_{2}^{2}+\varepsilon_{1} z_{3}^{2}+\zeta z_{1} z_{3}\right) \partial / \partial z_{2}+ \\
\left(-\delta_{23} z_{1} z_{2}+\delta_{12} z_{2} z_{3}\right) \partial / \partial z_{3} \\
W_{2}=\left(\delta_{12}^{\prime} z_{1} z_{2}+\delta_{23}^{\prime} z_{2} z_{3}\right) \partial / \partial z_{1}+\left(i+\varepsilon_{1}^{\prime} z_{1}^{2}+\varepsilon_{2}^{\prime} z_{2}^{2}+\varepsilon_{1}^{\prime} z_{3}^{2}+\zeta^{\prime} z_{1} z_{3}\right) \partial / \partial z_{2}+ \\
\left(-\delta_{23}^{\prime} z_{1} z_{2}+\delta_{12}^{\prime} z_{2} z_{3}\right) \partial / \partial z_{3} \\
V_{3}=\left(\eta_{13} z_{1} z_{3}+\eta_{23} z_{2} z_{3}\right) \partial / \partial z_{1}+\left(-\eta_{23} z_{1} z_{3}+\eta_{13} z_{2} z_{3}\right) \partial / \partial z_{2}+ \\
\left(1+\mu_{1} z_{1}^{2}+\mu_{1} z_{2}^{2}+\mu_{2} z_{3}^{2}+\lambda z_{1} z_{2}\right) \partial / \partial z_{3} \\
W_{3}=\left(\eta_{13}^{\prime} z_{1} z_{3}+\eta_{23}^{\prime} z_{2} z_{3}\right) \partial / \partial z_{1}+\left(-\eta_{23}^{\prime} z_{1} z_{3}+\eta_{13}^{\prime} z_{2} z_{3}\right) \partial / \partial z_{2}+ \\
\left(i+\mu_{1}^{\prime} z_{1}^{2}+\mu_{1}^{\prime} z_{2}^{2}+\mu_{2}^{\prime} z_{3}^{2}+\lambda^{\prime} z_{1} z_{2}\right) \partial / \partial z_{3}
\end{array}
$$

for some complex numbers $\delta_{12}, \delta_{23}, \varepsilon_{1}, \varepsilon_{2}, \zeta, \delta_{12}^{\prime}, \delta_{23}^{\prime}, \varepsilon_{1}^{\prime}, \varepsilon_{2}^{\prime}, \zeta^{\prime}, \eta_{13}, \eta_{23}, \mu_{1}$, $\mu_{2}, \lambda, \eta_{13}^{\prime}, \eta_{23}^{\prime}, \mu_{1}^{\prime}, \mu_{2}^{\prime}, \lambda^{\prime}$.

Next, it is easy to see that $\left[V_{1}, Z_{1}\right]+V_{2}$ vanishes at the origin and has no linear terms. Therefore, $\left[V_{1}, Z_{1}\right]=-V_{2}$, and we obtain

$$
\begin{align*}
& \beta=\gamma_{13}=\zeta=\delta_{23}=0 \\
& \gamma_{12}=\delta_{12}=\alpha_{1}-\alpha_{2} \tag{2.1}\\
& \varepsilon_{1}=\alpha_{2}, \varepsilon_{2}=\alpha_{1}
\end{align*}
$$

Similarly, we have $\left[V_{1}, Z_{2}\right]=-V_{3}$ which implies

$$
\begin{align*}
& \lambda=\eta_{23}=0 \tag{2.2}\\
& \eta_{13}=\alpha_{1}-\alpha_{2}, \mu_{1}=\alpha_{2}, \mu_{2}=\alpha_{1}
\end{align*}
$$

An analogous argument yields

$$
\begin{align*}
& \beta^{\prime}=\gamma_{13}^{\prime}=\zeta^{\prime}=\delta_{23}^{\prime}=\lambda^{\prime}=\eta_{23}^{\prime}=0, \\
& \gamma_{12}^{\prime}=\delta_{12}^{\prime}=\eta_{13}^{\prime}=\alpha_{1}^{\prime}-\alpha_{2}^{\prime} \tag{2.3}\\
& \varepsilon_{1}^{\prime}=\mu_{1}^{\prime}=\alpha_{2}^{\prime}, \varepsilon_{2}^{\prime}=\mu_{2}^{\prime}=\alpha_{1}^{\prime}
\end{align*}
$$

Next, $\left[V_{1}, Z_{0}\right]-W_{1}$ vanishes at the origin, has no linear part and hence vanishes identically. This implies

$$
\begin{equation*}
\alpha_{1}^{\prime}=-i \alpha_{1}, \alpha_{2}^{\prime}=-i \alpha_{2} \tag{2.4}
\end{equation*}
$$

Further, since the commutator [V_{1}, W_{1}] vanishes at the origin, its linear part \mathcal{L} is an element of $\left\langle Z_{0}\right\rangle \oplus \mathfrak{s o}_{3}(\mathbb{R})$. It is straightforward to see that

$$
\begin{aligned}
& \mathcal{L}=2\left(\alpha_{1}^{\prime}-i \alpha_{1}\right) z_{1} \partial / \partial z_{1}+\left(\left(\alpha_{1}^{\prime}-i \alpha_{1}\right)-\left(\alpha_{2}^{\prime}-i \alpha_{2}\right)\right) z_{2} \partial / \partial z_{2}+ \\
&\left(\left(\alpha_{1}^{\prime}-i \alpha_{1}\right)-\left(\alpha_{2}^{\prime}-i \alpha_{2}\right)\right) z_{3} \partial / \partial z_{3}
\end{aligned}
$$

Clearly, \mathcal{L} can lie in $\left\langle Z_{0}\right\rangle \oplus \mathfrak{s o}_{3}(\mathbb{R})$ only if

$$
\begin{aligned}
& \alpha_{1}^{\prime}-i \alpha_{1}=-\left(\alpha_{2}^{\prime}-i \alpha_{2}\right), \\
& \alpha_{1}^{\prime}-i \alpha_{1} \in i \mathbb{R}
\end{aligned}
$$

which, together with (2.4), implies that $\alpha_{2}=-\alpha_{1}$ and $\alpha_{1} \in \mathbb{R}$. Using (2.1)(2.3) and writing α_{1} instead of α we obtain:

$$
\begin{aligned}
& V_{1}=\left(1+\alpha z_{1}^{2}-\alpha z_{2}^{2}-\alpha z_{3}^{2}\right) \partial / \partial z_{1}+2 \alpha z_{1} z_{2} \partial / \partial z_{2}+2 \alpha z_{1} z_{3} \partial / \partial z_{3}, \\
& W_{1}=\left(i-i \alpha z_{1}^{2}+i \alpha z_{2}^{2}+i \alpha z_{3}^{2}\right) \partial / \partial z_{1}-2 i \alpha z_{1} z_{2} \partial / \partial z_{2}-2 i \alpha z_{1} z_{3} \partial / \partial z_{3}, \\
& V_{2}=2 \alpha z_{1} z_{2} \partial / \partial z_{1}+\left(1-\alpha z_{1}^{2}+\alpha z_{2}^{2}-\alpha z_{3}^{2}\right) \partial / \partial z_{2}+2 \alpha z_{2} z_{3} \partial / \partial z_{3}, \\
& W_{2}=-2 i \alpha z_{1} z_{2} \partial / \partial z_{1}+\left(i+i \alpha z_{1}^{2}-i \alpha z_{2}^{2}+i \alpha z_{3}^{2}\right) \partial / \partial z_{2}-2 i \alpha z_{2} z_{3} \partial / \partial z_{3}, \\
& V_{3}=2 \alpha z_{1} z_{3} \partial / \partial z_{1}+2 \alpha z_{2} z_{3} \partial / \partial z_{2}+\left(1-\alpha z_{1}^{2}-\alpha z_{2}^{2}+\alpha z_{3}^{2}\right) \partial / \partial z_{3}, \\
& W_{3}=-2 i \alpha z_{1} z_{3} \partial / \partial z_{1}-2 i \alpha z_{2} z_{3} \partial / \partial z_{2}+\left(i+i \alpha z_{1}^{2}+i \alpha z_{2}^{2}-i \alpha z_{3}^{2}\right) \partial / \partial z_{3} .
\end{aligned}
$$

We will now show that the cases $\alpha<0, \alpha>0$ and $\alpha=0$ lead to the manifolds and groups listed in (i), (ii) and (iii) of the theorem, respectively. For this purpose we refer to the general theory of Hermitian symmetric spaces (see $[\mathrm{H}]$ for details). By [Pal] one can find a G-invariant Hermitian metric on M. Since $L G_{q}$ for every $q \in M$ contains the element -id, the manifold M equipped with such a metric becomes a Hermitian symmetric space. The group $L G_{p}^{0}$ acts irreducibly on $T_{p}(M)$, and therefore M either is an irreducible Hermitian symmetric space, or is equivalent (holomorphically and isometrically) to \mathbb{C}^{3} with the flat metric.

Suppose first that $\alpha<0$. Then, changing coordinates as

$$
z_{j} \mapsto \sqrt{-\alpha} z_{j}, \quad j=1,2,3
$$

we can assume that $\alpha=-1$. In this case the algebra \mathfrak{g} is isomorphic to $\mathfrak{s p}_{4}(\mathbb{R})$. Then the group G is simple. Since a simple group cannot act by isometries on \mathbb{C}^{3} and contain a symmetry at every point, we obtain that M is an irreducible Hermitian symmetric space. Furthermore, every group with Lie algebra isomorphic to $\mathfrak{s p}_{4}(\mathbb{R})$ is non-compact, and hence M is noncompact. It now follows from E. Cartan's classification of irreducible Hermitian symmetric spaces that M is equivalent to \mathscr{S}. Since $\operatorname{Aut}(\mathscr{S})$ is connected
and 10-dimensional (in fact, isomorphic to $S p_{4}(\mathbb{R}) / \mathbb{Z}_{2}$), every equivalence map transforms G into $\operatorname{Aut}(\mathscr{S})$. Thus, we have obtained (i) of the theorem.

Suppose next that $\alpha>0$. Then, changing coordinates as

$$
z_{j} \mapsto \sqrt{\alpha} z_{j}, \quad j=1,2,3,
$$

we can assume that $\alpha=1$. In this case the algebra \mathfrak{g} is isomorphic to $\mathfrak{s o}_{5}(\mathbb{R})$. Again, G is simple, and, since every connected group with Lie algebra isomorphic to $\mathfrak{5 0}_{5}(\mathbb{R})$ is compact, M is a compact Hermitian symmetric space. It now follows from E. Cartan's classification of irreducible Hermitian symmetric spaces that M is equivalent to \mathcal{Q}_{3} by means of a map that transforms G into $S O_{5}(\mathbb{R}) \subset \operatorname{Aut}\left(\mathcal{Q}_{3}\right)$. Thus, we have obtained (ii) of the theorem.

Suppose now that $\alpha=0$. In this case \mathfrak{g} is isomorphic to the semidirect sum of $\mathbb{R} \oplus \mathfrak{o}_{3}(\mathbb{R})$ and \mathbb{C}^{3}. A group with such Lie algebra cannot act by holomorphic isometries on a 3-dimensional irreducible Hermitian symmetric space and contain a symmetry at every point; therefore M is equivalent to \mathbb{C}^{3} by means of a map \mathcal{F} that transforms G into a subgroup of $G\left(\mathbb{C}^{3}\right)$ (recall that $G\left(\mathbb{C}^{3}\right)$ is the full group of holomorphic isometries of \mathbb{C}^{3} with respect to the flat metric). Let $p_{0} \in M$ be such that $\mathcal{F}\left(p_{0}\right)=0$. Then \mathcal{F} transforms $G_{p_{0}}^{0}$ into a subgroup H of $U_{3} \subset G\left(\mathbb{C}^{3}\right)$ isomorphic to $e^{i \mathbb{R}} S O_{3}(\mathbb{R})$ and acting irreducibly on $T_{0}\left(\mathbb{C}^{3}\right)$. By Proposition 1.1, the subgroup H is conjugate in U_{3} to the standard embedding of $e^{i \mathbb{R}} S_{3}(\mathbb{R})$ in U_{3}, and hence there exists an equivalence map $\tilde{\mathcal{F}}$ between M and \mathbb{C}^{3} that transforms $G_{p_{0}}^{0}$ into $e^{i \mathbb{R}} S O_{3}(\mathbb{R})$. We now argue as at the beginning of the proof of the theorem with $\tilde{\mathcal{F}}$ in place of F. For the corresponding vector fields V_{j}, W_{j} we then obtain

$$
V_{j}=\partial / \partial z_{j}, \quad W_{j}=i \partial / \partial z_{j}, \quad j=1,2,3
$$

This implies that $\tilde{\mathcal{F}}$ transforms G into $G_{2}\left(\mathbb{C}^{3}\right)$, and we have obtained (iii) of the theorem.

The proof is complete.

3 Actions of Type II

In this section we obtain the following result.

THEOREM 3.1 Let M be a connected complex manifold of dimension $n \geq 3$ and $G \subset \operatorname{Aut}(M)$ a connected Lie group with $d_{G}=n^{2}+1$ that acts properly on M. If the pair (M, G) is of type II, then it is equivalent to
$\left(\mathbb{C}^{n-1} \times M^{\prime}, G_{1}\left(\mathbb{C}^{n-1}\right) \times G^{\prime}\right)$, where M^{\prime} is one of $\mathbb{B}^{1}, \mathbb{C}, \mathbb{C P}^{1}$, and G^{\prime} is one of the groups $\operatorname{Aut}\left(\mathbb{B}^{1}\right), G(\mathbb{C}), G\left(\mathbb{C P}^{1}\right)$, respectively.

Proof: Fix $p \in M$, choose $\mathcal{V}, \mathcal{U}, F$ and consider the Lie algebras $\mathfrak{g}_{M}, \mathfrak{g}_{V}$, \mathfrak{g} and the isomorphism $\varphi: \mathfrak{g}_{M} \rightarrow \mathfrak{g}$ as in the proof of Theorem 2.1. Next, we fix coordinates in $T_{p}(M)$ in which $L G_{p}^{0}=S U_{n-1} \times U_{1}$. The algebra \mathfrak{g} is generated by $\mathfrak{s u}_{n-1} \oplus \mathfrak{u}_{1}$ and some vector fields

$$
\begin{aligned}
V_{j} & =\sum_{k=1}^{n} f_{j}^{k} \partial / \partial z_{k}, \\
W_{j} & =\sum_{k=1}^{n} g_{j}^{k} \partial / \partial z_{k},
\end{aligned}
$$

where the functions $f_{j}^{k}, g_{j}^{k}, j, k=1, \ldots, n$, are holomorphic on \mathcal{U} and satisfy the conditions

$$
f_{j}^{k}(0)=\delta_{j}^{k}, \quad g_{j}^{k}(0)=i \delta_{j}^{k} .
$$

Here $\mathfrak{s u}_{n-1} \oplus \mathfrak{u}_{1}$ is realized as the algebra of vector fields on \mathcal{U} of the form

$$
\sum_{j=1}^{n-1}\left(a_{j 1} z_{1}+\cdots+a_{j n-1} z_{n-1}\right) \partial / \partial z_{j}+i a z_{n} \partial / \partial z_{n}
$$

with

$$
\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 n-1} \\
\vdots & \vdots & \vdots \\
a_{n-11} & \cdots & a_{n-1 n-1}
\end{array}\right) \in \mathfrak{s u}_{n-1}
$$

and $a \in \mathbb{R}$.
Let

$$
Z_{n}:=i z_{n} \partial / \partial z_{n},
$$

(observe that Z_{n} generates the \mathfrak{u}_{1}-component of $\mathfrak{s u}_{n-1} \oplus \mathfrak{u}_{1}$) and consider $\left[V_{j}, Z_{n}\right],\left[W_{j}, Z_{n}\right]$ for $j=1, \ldots, n-1$. Since these commutators vanish at 0 , they lie in $\mathfrak{s u}_{n-1} \oplus \mathfrak{u}_{1}$, which implies that the functions f_{j}^{k}, g_{j}^{k} are independent of z_{n} for $k=1, \ldots, n-1$ and that

$$
\begin{aligned}
f_{j}^{n} & =\tilde{f}_{j}^{n}\left(z_{1}, \ldots, z_{n-1}\right) z_{n}, \\
g_{j}^{n} & =\tilde{g}_{j}^{n}\left(z_{1}, \ldots, z_{n-1}\right) z_{n},
\end{aligned}
$$

[^3]for some holomorphic functions $\tilde{f}_{j}^{n}, \tilde{g}_{j}^{n}$.
For every pair of indices $1 \leq j, l \leq n-1, j \neq l$, the vector fields
\[

$$
\begin{aligned}
& X_{j l}:=i z_{j} \partial / \partial z_{j}-i z_{l} \partial / \partial z_{l}, \\
& Y_{j l}:=z_{l} \partial / \partial z_{j}-z_{j} \partial / \partial z_{l}
\end{aligned}
$$
\]

lie in the $\mathfrak{s u}_{n-1}$-component of $\mathfrak{s u}_{n-1} \oplus \mathfrak{u}_{1}$. We now compute the commutators $\left[V_{j}, X_{j, l}\right],\left[W_{j}, X_{j l}\right],\left[V_{j}, Y_{j l}\right],\left[V_{l}, Y_{j l}\right]$ and observe that $\left[V_{j}, X_{j l}\right]-W_{j},\left[W_{j}, X_{j l}\right]+$ $V_{j},\left[V_{j}, Y_{j l}\right]+V_{l},\left[V_{l}, Y_{j l}\right]-V_{j}$ vanish at the origin and hence lie in $\mathfrak{s u}_{n-1} \oplus \mathfrak{u}_{1}$. This yields

$$
\begin{aligned}
& \text { for } n \geq 4, j=1, \ldots, n-1: \\
\tilde{f}_{j}^{n}= & i \rho_{j}+\lambda z_{j} \\
\tilde{g}_{j}^{n}= & i \sigma_{j}-i \lambda z_{j},
\end{aligned}
$$

and

$$
\begin{gathered}
\text { for } n=3: \\
\tilde{f}_{1}^{3}=i \rho_{1}+\mu z_{1}+\nu z_{2} \\
\tilde{f}_{2}^{3}=i \rho_{2}-\nu z_{1}+\mu z_{2} \\
\tilde{g}_{1}^{3}=i \sigma_{1}-i \mu z_{1}+i \nu z_{2}, \\
\tilde{g}_{2}^{3}=i \sigma_{2}-i \nu z_{1}-i \mu z_{2}
\end{gathered}
$$

where $\rho_{j}, \sigma_{j} \in \mathbb{R}, \lambda, \mu, \nu \in \mathbb{C}$. We now define: $V_{j}^{\prime}:=V_{j}-\rho_{j} Z_{n}, W_{j}^{\prime}:=$ $W_{j}-\sigma_{j} Z_{n}$ for $j=1, \ldots, n-1$.

Further, consider the commutators [$\left.V_{n}, X_{j l}\right],\left[W_{n}, X_{j l}\right],\left[V_{n}, Y_{j l}\right],\left[W_{n}, Y_{j l}\right]$. Each of these commutators vanishes at the origin and hence lies in $\mathfrak{s u}_{n-1} \oplus \mathfrak{u}_{1}$. This gives that f_{n}^{n}, g_{n}^{n} are independent of z_{1}, \ldots, z_{n-1} and that for $k=$ $1, \ldots, n-1$ the following holds:

$$
\begin{aligned}
f_{n}^{k} & =\alpha^{k}+\beta^{k}\left(z_{n}\right) z_{k}, \\
g_{n}^{k} & =\gamma^{k}+\delta^{k}\left(z_{n}\right) z_{k}
\end{aligned}
$$

where α^{k} and γ^{k} are linear functions independent of z_{k}, z_{n}.
Next, computing the commutators $\left[V_{n}, Z_{n}\right]$ and $\left[W_{n}, Z_{n}\right]$, we see that $\left[V_{n}, Z_{n}\right]-W_{n}$ and $\left[W_{n}, Z_{n}\right]+V_{n}$ vanish at 0 and hence are elements of $\mathfrak{s u}_{n-1} \oplus \mathfrak{u}_{1}$. This gives

$$
\begin{aligned}
V_{n} & =\sum_{k=1}^{n-1} \varepsilon^{k} z_{k} z_{n} \partial / \partial z_{k}+f_{n}^{n} \partial / \partial z_{n}\left(\bmod \mathfrak{s u}_{n-1}\right), \\
W_{n} & =-i \sum_{k=1}^{n-1} \varepsilon^{k} z_{k} z_{n} \partial / \partial z_{k}+g_{n}^{n} \partial / \partial z_{n}\left(\bmod \mathfrak{s u}_{n-1}\right),
\end{aligned}
$$

for some $\varepsilon^{k} \in \mathbb{C}, k=1, \ldots, n-1$, and we set

$$
\begin{aligned}
V_{n}^{\prime} & :=\sum_{k=1}^{n-1} \varepsilon^{k} z_{k} z_{n} \partial / \partial z_{k}+f_{n}^{n} \partial / \partial z_{n} \\
W_{n}^{\prime} & :=-i \sum_{k=1}^{n-1} \varepsilon^{k} z_{k} z_{n} \partial / \partial z_{k}+g_{n}^{n} \partial / \partial z_{n} .
\end{aligned}
$$

Consider now for each $1 \leq j \leq n-1$ the commutator [$V_{j}^{\prime}, V_{n}^{\prime}$]. Its linear part \mathcal{L}_{j} is easy to find:

$$
\begin{gathered}
\text { for } n \geq 4, j=1, \ldots, n-1: \\
\mathcal{L}_{j}=\varepsilon^{j} z_{n} \partial / \partial z_{j}-\lambda z_{j} \partial / \partial z_{n},
\end{gathered}
$$

and

$$
\text { for } n=3 \text { : }
$$

$$
\begin{aligned}
\mathcal{L}_{1} & =\varepsilon^{1} z_{3} \partial / \partial z_{1}-\left(\mu z_{1}+\nu z_{2}\right) \partial / \partial z_{3}, \\
\mathcal{L}_{2} & =\varepsilon^{2} z_{3} \partial / \partial z_{2}-\left(-\nu z_{1}+\mu z_{2}\right) \partial / \partial z_{3} .
\end{aligned}
$$

Clearly, every commutator [$V_{j}^{\prime}, V_{n}^{\prime}$] vanishes at 0 . Hence it is an element of $\mathfrak{s u}_{n-1} \oplus \mathfrak{u}_{1}$ and thus coincides with \mathcal{L}_{j}. However, for $n \geq 4$ the vector field \mathcal{L}_{j} can be an element of $\mathfrak{s u}{ }_{n-1} \oplus \mathfrak{u}_{1}$ only if $\varepsilon^{j}=\lambda=0$. For $n=3$ the vector fields \mathcal{L}_{1} and \mathcal{L}_{2} can be elements of $\mathfrak{s u}{ }_{2} \oplus \mathfrak{u}_{1}$ only if $\varepsilon^{1}=\varepsilon^{2}=\mu=\nu=0$. Therefore, $V_{j}^{\prime}, W_{j}^{\prime}$, for $j=1, \ldots, n-1$, are independent of z_{n} and V_{n}^{\prime}, W_{n}^{\prime} are independent of z_{1}, \ldots, z_{n-1}.

Thus, we have $\mathfrak{g}=\mathfrak{g}_{1} \oplus \mathfrak{g}_{2}$, where \mathfrak{g}_{1} is the ideal generated by $\mathfrak{s u}{ }_{n-1}$ and $V_{j}^{\prime}, W_{j}^{\prime}$, for $j=1, \ldots, n-1$, and \mathfrak{g}_{2} is the ideal generated by \mathfrak{u}_{1} and $V_{n}^{\prime}, W_{n}^{\prime}$.

Let G_{j} be the connected normal (possibly non-closed) subgroup of G with Lie algebra $\tilde{\mathfrak{g}}_{j}:=\varphi^{-1}\left(\mathfrak{g}_{j}\right) \subset \mathfrak{g}_{M}$ for $j=1,2$. Clearly, for each j the subgroup G_{j} contains $\alpha_{p}^{-1}\left(L_{j p}\right) \subset G_{p}^{0}$, where $L_{1 p} \simeq S U_{n-1}$ and $L_{2 p} \simeq U_{1}$ are the subgroups of $L G_{p}^{0}$ given by $\alpha=0$ and $A=\mathrm{id}$ in formula (1.1), respectively. Consider the orbit $G_{j} p$ and the isotropy subgroup $G_{j p}$ of the point p with respect to the G_{j}-action for $j=1,2$. Clearly, for each j we have $G_{j p}^{0}=\alpha_{p}^{-1}\left(L_{j p}\right)$. Furthermore, for each j there exists a neighborhood \mathcal{W}_{j} of the identity in G_{j} such that

$$
\begin{aligned}
& \mathcal{W}_{1} p=F^{-1}\left(\mathcal{U}^{\prime} \cap\left\{z_{n}=0\right\}\right), \\
& \mathcal{W}_{2} p=F^{-1}\left(\mathcal{U}^{\prime} \cap\left\{z_{1}=\cdots=z_{n-1}=0\right\}\right),
\end{aligned}
$$

for some neighborhood $\mathcal{U}^{\prime} \subset \mathcal{U}$ of the origin in $T_{p}(M)$. Thus, each $G_{j} p$ is a complex (possibly non-closed) submanifold of M, and the ideal $\tilde{\mathfrak{g}}_{j}$ consists
exactly of those vector fields from \mathfrak{g}_{M} that are tangent to $G_{j} p$ for $j=1,2$. Next, since $L_{j p}$ acts transitively on real directions in $T_{p}\left(G_{j} p\right)$ for $j=1,2$, by [GK], [BDK] we obtain that $G_{1} p$ is holomorphically equivalent to one of $\mathbb{B}^{n-1}, \mathbb{C}^{n-1}, \mathbb{C P}^{n-1}$ and $G_{2} p$ is holomorphically equivalent to one of $\mathbb{B}^{1}, \mathbb{C}$, $\mathbb{C P}^{1}$ 。

We will now show that each G_{j} is closed in G. It is done as in the proof of Theorem 2.1 in [I5], but we repeat the argument here for the reader's convenience. We assume that $j=1$; for $j=2$ the proof is similar. Let \mathfrak{U} be a neighborhood of 0 in \mathfrak{g}_{M} where the exponential map into G is a diffeomorphism, and let $\mathfrak{V}:=\exp (\mathfrak{U})$. To prove that G_{1} is closed in G it is sufficient to show that for some neighborhood \mathfrak{W} of $e \in G, \mathfrak{W} \subset \mathfrak{V}$, we have $G_{1} \cap \mathfrak{W J}=\exp \left(\tilde{\mathfrak{g}}_{1} \cap \mathfrak{U}\right) \cap \mathfrak{W}$. Assuming the opposite we obtain a sequence $\left\{g_{j}\right\}$ of elements of G_{1} converging to e in G such that for every j we have $g_{j}=\exp \left(a_{j}\right)$ with $a_{j} \in \mathfrak{U} \backslash \tilde{\mathfrak{g}}_{1}$. Observe now that there exists a neighborhood \mathcal{V}^{\prime} of p in M foliated by complex submanifolds holomorphically equivalent to \mathbb{B}^{n-1} in such a way that the leaf passing through p lies in $G_{1} p$. Specifically, we take $\mathcal{V}^{\prime}:=F^{-1}\left(\mathcal{U}^{\prime}\right)$ for a suitable neighborhood $\mathcal{U}^{\prime} \subset \mathcal{U}$ of the origin in $T_{p}(M)$, and the leaves of the foliation are then given as $F^{-1}\left(\mathcal{U}^{\prime} \cap\left\{z_{n}=\right.\right.$ const $\left.\}\right)$. For every $s \in \mathcal{V}^{\prime}$ we denote by N_{s} the leaf of the foliation passing through s. Observe that for every $s \in \mathcal{V}^{\prime}$ vector fields from $\tilde{\mathfrak{g}}_{1}$ are tangent to N_{s} at every point. Let $p_{j}:=g_{j} p$. If j is sufficiently large, we have $p_{j} \in \mathcal{V}^{\prime}$. We will now show that $N_{p_{j}} \neq N_{p}$ for large j.

Let $\mathfrak{U}^{\prime \prime} \subset \mathfrak{U}^{\prime} \subset \mathfrak{U}$ be neighborhoods of 0 in \mathfrak{g}_{M} such that: (a) $\exp \left(\mathfrak{U}^{\prime \prime}\right)$. $\exp \left(\mathfrak{U}^{\prime \prime}\right) \subset \exp \left(\mathfrak{U}^{\prime}\right) ;(\mathrm{b}) \exp \left(\mathfrak{U}^{\prime \prime}\right) \cdot \exp \left(\mathfrak{U}^{\prime}\right) \subset \exp (\mathfrak{U}) ;(\mathrm{c}) \mathfrak{U}^{\prime}=-\mathfrak{U}^{\prime} ;$ (d) $G_{1 p} \cap$ $\exp \left(\mathfrak{U}^{\prime}\right) \subset \exp \left(\tilde{\mathfrak{g}}_{1} \cap \mathfrak{U}^{\prime}\right)$. We also assume that \mathcal{V}^{\prime} is chosen so that $N_{p} \subset$ $\exp \left(\tilde{\mathfrak{g}}_{1} \cap \mathfrak{U}^{\prime \prime}\right) p$. Suppose that $p_{j} \in N_{p}$. Then $p_{j}=s p$ for some $s \in \exp \left(\tilde{\mathfrak{g}}_{1} \cap \mathfrak{U}^{\prime \prime}\right)$ and hence $t:=g_{j}^{-1} s$ is an element of $G_{1 p}$. For large j we have $g_{j}^{-1} \in \exp \left(\mathfrak{U}^{\prime \prime}\right)$. Condition (a) now implies that $t \in \exp \left(\mathfrak{U}^{\prime}\right)$ and hence by (c), (d) we have $t^{-1} \in \exp \left(\tilde{\mathfrak{g}}_{1} \cap \mathfrak{U}^{\prime}\right)$. Therefore, by (b) we obtain $g_{j} \in \exp \left(\tilde{\mathfrak{g}}_{1} \cap \mathfrak{U}\right)$ which contradicts our choice of g_{j}. Thus, for large j the leaves $N_{p_{j}}$ are distinct from N_{p}. Furthermore, they accumulate to $N_{p} \subset G_{1} p$. At the same time, since vector fields from $\tilde{\mathfrak{g}}_{1}$ are tangent to every $N_{p_{j}}$, we have $N_{p_{j}} \subset G_{1} p$ for all j, and thus the orbit $G_{1} p$ accumulates to itself (we will use this term in the future in analogous situations). Below we will show that this is in fact impossible thus obtaining a contradiction. Clearly, we only need to consider the case when $G_{1} p$ is equivalent to one of $\mathbb{B}^{n-1}, \mathbb{C}^{n-1}$.

By the result of [GK], the orbit $G_{1} p$ is holomorphically equivalent to one of $\mathbb{B}^{n-1}, \mathbb{C}^{n-1}$ by means of a map that maps p into the origin and transforms $G_{1 p}^{0}$ into $S U_{n-1} \subset G\left(\mathbb{C}^{n-1}\right)$. Consider the set $S:=G_{1} p \cap G_{2} p$. The set
S contains a non-constant sequence of points converging to p, but does not contain any curve. Since $G_{1 p}^{0}$ preserves each of $G_{1} p, G_{2} p$, it preserves S. However, the $G_{1 p}^{0}$-orbit of every point in $G_{1} p$ other than p is a hypersurface in $G_{1} p$ diffeomorphic to the sphere $S^{2 n-3}$. This contradiction shows that G_{1} is closed in G.

Thus, we have proved that G_{j} is closed in G for $j=1,2$. Hence G_{j} acts on M properly and $G_{j} p$ is a closed submanifold of M for each j. Recall that $G_{1} p$ is equivalent to one of $\mathbb{B}^{n-1}, \mathbb{C}^{n-1}, \mathbb{C P}^{n-1}$ and $G_{2} p$ is equivalent to one of $\mathbb{B}^{1}, \mathbb{C}, \mathbb{C P}^{1}$, and denote by F_{1}, F_{2} the respective equivalence maps. Let $K_{j} \subset G_{j}$ be the ineffectivity kernel of the G_{j}-action on $G_{j} p$ for $j=1,2$. Clearly, $K_{j} \subset G_{j p}$ and, since $G_{j p}^{0}$ acts on $G_{j} p$ effectively, K_{j} is a discrete normal subgroup of G_{j} for each j (in particular, K_{j} lies in the center of G_{j} for $j=1,2)$. Since $d_{G_{1}}=n^{2}-2=(n-1)^{2}+2(n-1)-1$, Theorem 1.1 in [I5] yields that $G_{1} p$ is in fact equivalent to \mathbb{C}^{n-1} and that F_{1} can be chosen to transform G_{1} / K_{1} into $G_{1}\left(\mathbb{C}^{n-1}\right)$. Further, since $d_{G_{2}}=3$, the map F_{2} can be chosen to transform G_{2} / K_{2} into one of $\operatorname{Aut}\left(\mathbb{B}^{1}\right), G(\mathbb{C}), G\left(\mathbb{C P}^{1}\right)$, respectively. Here G_{j} / K_{j} is viewed as a subgroup of $\operatorname{Aut}\left(G_{j} p\right)$ for each j.

We will now show that the subgroup K_{j} is in fact trivial for each $j=$ 1,2 . Let first $j=1$. Clearly, $K_{1} \backslash\{e\} \subset G_{1 p} \backslash G_{1 p}^{0}$, and if K_{1} is nontrivial, the compact group $G_{1 p}$ is disconnected. Observe that any maximal compact subgroup of $G_{1}\left(\mathbb{C}^{n-1}\right) \simeq S U_{n-1} \ltimes \mathbb{C}^{n-1}$ is isomorphic to $S U_{n-1}$ and therefore, if G_{1} / K_{1} is isomorphic to $G_{1}\left(\mathbb{C}^{n-1}\right)$, it follows that $G_{1 p}$ is a maximal compact subgroup of G_{1}. Since G_{1} is connected, so is $G_{1 p}$, and therefore K_{1} is trivial. Let $j=2$. If G_{2} / K_{2} is isomorphic to either $\operatorname{Aut}\left(\mathbb{B}^{1}\right)$ or $G(\mathbb{C})$, the above argument can be applied. Suppose now that G_{2} / K_{2} is isomorphic to $G\left(\mathbb{C P}^{1}\right) \simeq P S U_{2}$. If K_{2} is non-trivial, then $G_{2} \simeq S U_{2}$ and $K_{2} \simeq \mathbb{Z}_{2}$. Then $G_{2 p}^{0}$ is conjugate in G_{2} (upon the identification of G_{2} with $S U_{2}$) to the subgroup of matrices of the form

$$
\left(\begin{array}{cc}
1 / b & 0 \\
0 & b
\end{array}\right)
$$

where $|b|=1$ (see e.g. Lemma 2.1 of [IKru]). Since this subgroup contains the center of $S U_{2}$, hence so does $G_{2 p}^{0}$. In particular, $K_{2} \subset G_{2 p}^{0}$ which contradicts the non-triviality of K_{2}. Thus, G_{1} is isomorphic to $G_{1}\left(\mathbb{C}^{n-1}\right)$ and G_{2} is isomorphic to one of $\operatorname{Aut}\left(\mathbb{B}^{1}\right), G(\mathbb{C}), G\left(\mathbb{C P}^{1}\right)$.

We remark here that since M is G-homogeneous and G_{j} is normal in G, the discussion above remains valid for any point $q \in M$ in place of p; in particular, all G_{j}-orbits are pairwise holomorphically equivalent, $j=1,2$.

Next, since $\mathfrak{g}=\mathfrak{g}_{1} \oplus \mathfrak{g}_{2}$, the group G is a locally direct product of G_{1} and G_{2}. We claim that $\mathscr{T}:=G_{1} \cap G_{2}$ is trivial. Indeed, \mathscr{T} is a discrete normal subgroup of each of G_{1}, G_{2}. However, every discrete normal subgroup of each of $G_{1}\left(\mathbb{C}^{n-1}\right)$, $\operatorname{Aut}\left(\mathbb{B}^{1}\right), G(\mathbb{C}), G\left(\mathbb{C P}^{1}\right)$ is trivial, since the center of each of these groups is trivial. Hence \mathscr{T} is trivial and therefore $G=G_{1} \times G_{2}$.

We will now show that for every $q_{1}, q_{2} \in M$ the orbits $G_{1} q_{1}$ and $G_{2} q_{2}$ intersect at exactly one point. Let $g \in G$ be an element such that $g q_{2}=q_{1}$. It can be uniquely represented in the form $g=g_{1} g_{2}$ with $g_{j} \in G_{j}$ for $j=1,2$, and therefore we have $g_{2} q_{2}=g_{1}^{-1} q_{1}$. Hence the intersection $G_{1} q_{1} \cap G_{2} q_{2}$ is non-empty. We will now prove that $G_{1} q \cap G_{2} q=\{q\}$ for every $q \in M$. Suppose that for some q the intersection $G_{1} q \cap G_{2} q$ contains a point $q^{\prime} \neq q$. Let $b_{j} \in G_{j}$ be elements such that $b_{j} q=q^{\prime}$ for $j=1,2$. Then $b_{1}^{-1} b_{2} \in G_{q}$. For $h \in G_{q}$ uniquely represented as $h=h_{1} h_{2}$, with $h_{j} \in G_{j}$, we set $\Pi_{1}(h):=h_{1}$. Then $\Pi_{1}\left(G_{q}\right)$ is a compact subgroup of G_{1} containing $G_{1 q}$. Since G_{1} is isomorphic to $G_{1}\left(\mathbb{C}^{n-1}\right)$, the subgroup $G_{1 q}$ is connected and is a maximal compact subgroup of G_{1}. Therefore, $\Pi_{1}\left(G_{q}\right)=G_{1 q}$. It then follows that in this case $b_{1} \in G_{1 q}$, and hence $q^{\prime}=q$. Thus, for every $p \in M$ the intersection $G_{1} q \cap G_{2} q$ consists of q alone.

Let, as before, F_{1} be a biholomorphic map from $G_{1} p$ onto \mathbb{C}^{n-1} that transforms G_{1} into $G_{1}\left(\mathbb{C}^{n-1}\right)$, and by F_{2} a biholomorphic map from $G_{2} p$ onto M^{\prime}, where M^{\prime} is one of $\mathbb{B}^{1}, \mathbb{C}, \mathbb{C P}^{1}$, that transforms G_{2} into G^{\prime}, where G^{\prime} is one of $\operatorname{Aut}\left(\mathbb{B}^{1}\right), G(\mathbb{C}), G\left(\mathbb{C P}^{1}\right)$, respectively. We will now construct a biholomorphic map \mathcal{F} from M onto $\mathbb{C}^{n-1} \times M^{\prime}$. For $q \in M$ consider $G_{2} q$ and let r be the unique point of intersection of $G_{1} p$ and $G_{2} q$. Let $g \in G_{1}$ be an element such that $r=g p$. Then we set $\mathcal{F}(q):=\left(F_{1}(r), F_{2}\left(g^{-1} q\right)\right)$. Clearly, \mathcal{F} is a well-defined diffeomorphism from M onto $\mathbb{C}^{n-1} \times M^{\prime}$. Since the foliation of M by G_{j}-orbits is holomorphic for each j, the map \mathcal{F} is in fact holomorphic. By construction, \mathcal{F} transforms G into $G_{1}\left(\mathbb{C}^{n-1}\right) \times G^{\prime}$.

The proof is complete.

4 Actions of Type III

In this section we give a large number of examples of actions of type III. Some of the examples can be naturally combined into classes and some of the actions form parametric families. In what follows $n \geq 2$.
(i). Here both the manifolds and the groups are represented as direct products.
(ia). $M=M^{\prime} \times \mathbb{C}$, where M^{\prime} is one of $\mathbb{B}^{n-1}, \mathbb{C}^{n-1}, \mathbb{C P}^{n-1}$, and $G=$ $G^{\prime} \times G_{1}(\mathbb{C})$, where G^{\prime} is one of the $\operatorname{groups} \operatorname{Aut}\left(\mathbb{B}^{n-1}\right), G\left(\mathbb{C}^{n-1}\right), G\left(\mathbb{C P}^{n-1}\right)$, respectively.
(ib). $M=M^{\prime} \times \mathbb{C}^{*}$, where M^{\prime} is as in (ia), and $G=G^{\prime} \times \operatorname{Aut}\left(\mathbb{C}^{*}\right)^{0}$, where G^{\prime} is as in (ia).
(ic). $M=M^{\prime} \times \mathbb{T}$, where M^{\prime} is as in (ia) and \mathbb{T} is an elliptic curve; $G=G^{\prime} \times \operatorname{Aut}(\mathbb{T})^{0}$, where G^{\prime} is as in (ia).
(id). $M=M^{\prime} \times \mathcal{P}_{>}$, where M^{\prime} is as in (ia) and $\mathcal{P}_{>}:=\{\zeta \in \mathbb{C}: \operatorname{Re} \zeta>0\} ;$ $G=G^{\prime} \times G\left(\mathcal{P}_{>}\right)$, where G^{\prime} as in (ia) and $G\left(\mathcal{P}_{>}\right)$is the group of all maps of the form

$$
\xi \mapsto \lambda \xi+i a,
$$

with $a \in \mathbb{R}, \lambda>0$.
(ii). Parts (iib) and (iic) of this example are obtained by passing to quotients in Part (iia).
(iia). $M=\mathbb{B}^{n-1} \times \mathbb{C}$, and G consists of all maps of the form

$$
\begin{aligned}
& z^{\prime} \mapsto \frac{A z^{\prime}+b}{c z^{\prime}+d} \\
& z_{n} \mapsto z_{n}+\ln \left(c z^{\prime}+d\right)+a
\end{aligned}
$$

where

$$
\left(\begin{array}{cc}
A & b \\
c & d
\end{array}\right) \in S U_{n-1,1}
$$

$a \in \mathbb{C}$, and $z^{\prime}:=\left(z_{1}, \ldots, z_{n-1}\right)$. In fact, for $T \in \mathbb{C}$ one can consider the following family of groups acting on $\mathbb{B}^{n-1} \times \mathbb{C}$

$$
\begin{align*}
z^{\prime} & \mapsto \frac{A z^{\prime}+b}{c z^{\prime}+d} \tag{4.1}\\
z_{n} & \mapsto z_{n}+T \ln \left(c z^{\prime}+d\right)+a
\end{align*}
$$

where A, a, b, c, d are as above. Example (ia) for $M^{\prime}=\mathbb{B}^{n-1}$ is included in this family for $T=0$. If $T \neq 0$, then conjugating group (4.1) in Aut $\left(\mathbb{B}^{n-1} \times \mathbb{C}\right)$ by the automorphism

$$
\begin{array}{rll}
z^{\prime} & \mapsto & z^{\prime} \\
z_{n} & \mapsto & z_{n} / T \tag{4.2}
\end{array}
$$

we can assume that $T=1$.
(iib). $M=\mathbb{B}^{n-1} \times \mathbb{C}^{*}$, and for a fixed $T \in \mathbb{C}^{*}$ the group G consists of all maps of the form

$$
\begin{align*}
z^{\prime} & \mapsto \frac{A z^{\prime}+b}{c z^{\prime}+d} \tag{4.3}\\
z_{n} & \mapsto \chi\left(c z^{\prime}+d\right)^{T} z_{n}
\end{align*}
$$

where A, b, c, d are as in (iia) and $\chi \in \mathbb{C}^{*}$. Example (ib) for $M^{\prime}=\mathbb{B}^{n-1}$ can be included in this family for $T=0$. This family is obtained from (4.1) by passing to a quotient in the last variable.
(iic). $M=\mathbb{B}^{n-1} \times \mathbb{T}$, where \mathbb{T} is an elliptic curve, and for a fixed $T \in \mathbb{C}^{*}$ the group G consists of all maps of the form

$$
\begin{aligned}
z^{\prime} & \mapsto \frac{A z^{\prime}+b}{c z^{\prime}+d} \\
{\left[z_{n}\right] } & \mapsto\left[\chi\left(c z^{\prime}+d\right)^{T} z_{n}\right],
\end{aligned}
$$

where A, b, c, d, χ are as in (iib), \mathbb{T} is obtained from \mathbb{C}^{*} by factorizing by the equivalence relation $z_{n} \sim d z_{n}$, for some $d \in \mathbb{C}^{*},|d| \neq 1$, and $\left[z_{n}\right] \in \mathbb{T}$ is the equivalence class of a point $z_{n} \in \mathbb{C}^{*}$. Example (ic) for $M^{\prime}=\mathbb{B}^{n-1}$ can be included in this family for $T=0$. This family is obtained from (4.3) by passing to a quotient in the last variable.
(iii). Part (iiib) of this example is obtained by passing to a quotient in Part (iiia).
(iiia). $M=\mathbb{C}^{n}$, and G consists of all maps of the form

$$
\begin{aligned}
z^{\prime} & \mapsto e^{\operatorname{Re} b} U z^{\prime}+a, \\
z_{n} & \mapsto z_{n}+b,
\end{aligned}
$$

where $U \in U_{n-1}, a \in \mathbb{C}^{n-1}, b \in \mathbb{C}$. In fact, for $T \in \mathbb{C}$ one can consider the following family of groups acting on \mathbb{C}^{n}

$$
\begin{align*}
z^{\prime} & \mapsto e^{\operatorname{Re}(T b)} U z^{\prime}+a, \tag{4.4}\\
z_{n} & \mapsto z_{n}+b,
\end{align*}
$$

where U, a, b are as above. Example (ia) for $M^{\prime}=\mathbb{C}^{n-1}$ is included in this family for $T=0$. If $T \neq 0$, then conjugating group (4.4) in $\operatorname{Aut}\left(\mathbb{C}^{n}\right)$ by the
automorphism

$$
\begin{array}{lll}
z^{\prime} & \mapsto & z^{\prime} \\
z_{n} & \mapsto & T z_{n}
\end{array}
$$

we can assume that $T=1$.
(iiib). $M=\mathbb{C}^{n-1} \times \mathbb{C}^{*}$, and for a fixed $T \in \mathbb{R}^{*}$ the group G consists of all maps of the form

$$
\begin{aligned}
& z^{\prime} \mapsto e^{T \mathrm{Re} b} U z^{\prime}+a, \\
& z_{n} \mapsto e^{b} z_{n}
\end{aligned}
$$

where U, a, b are as in (iiia). Example (ib) for $M^{\prime}=\mathbb{C}^{n-1}$ can be included in this family for $T=0$. This family is obtained from (4.4) for $T \in \mathbb{R}^{*}$ by passing to a quotient in the last variable.
(iv). Parts (ivb) and (ivc) of this example are obtained by passing to quotients in Part (iva).
(iva). $M=\mathbb{C}^{n}$, and G consists of all maps of the form

$$
\begin{aligned}
z^{\prime} & \mapsto U z^{\prime}+a, \\
z_{n} & \mapsto z_{n}+\left\langle U z^{\prime}, a\right\rangle+b,
\end{aligned}
$$

where $U \in U_{n-1}, a \in \mathbb{C}^{n-1}, b \in \mathbb{C}$, and $\langle\cdot, \cdot\rangle$ is the inner product in \mathbb{C}^{n-1}. In fact, for $T \in \mathbb{C}$ one can consider the following family of groups acting on \mathbb{C}^{n}

$$
\begin{align*}
z^{\prime} & \mapsto U z^{\prime}+a \tag{4.5}\\
z_{n} & \mapsto z_{n}+T\left\langle U z^{\prime}, a\right\rangle+b,
\end{align*}
$$

where U, a, b are as above. Example (ia) for $M^{\prime}=\mathbb{C}^{n-1}$ is included in this family for $T=0$. If $T \neq 0$, then conjugating group (4.5) in $\operatorname{Aut}\left(\mathbb{C}^{n}\right)$ by automorphism (4.2), we can assume that $T=1$.
(ivb). $M=\mathbb{C}^{n-1} \times \mathbb{C}^{*}$, and for a fixed $0 \leq \tau<2 \pi$ the group G consists of all maps of the form

$$
\begin{align*}
z^{\prime} & \mapsto U z^{\prime}+a \\
z_{n} & \mapsto \chi \exp \left(e^{i \tau}\left\langle U z^{\prime}, a\right\rangle\right) z_{n} \tag{4.6}
\end{align*}
$$

where U, a are as in (iva) and $\chi \in \mathbb{C}^{*}$. In fact, for $T \in \mathbb{C}$ one can consider the following family of groups acting on $\mathbb{C}^{n-1} \times \mathbb{C}^{*}$

$$
\begin{align*}
z^{\prime} & \mapsto U z^{\prime}+a \\
z_{n} & \mapsto \chi \exp \left(T\left\langle U z^{\prime}, a\right\rangle\right) z_{n} \tag{4.7}
\end{align*}
$$

where U, a, χ are as above. Example (ib) for $M^{\prime}=\mathbb{C}^{n-1}$ is included in this family for $T=0$. For $T \neq 0$ this family is obtained from (4.5) by passing to a quotient in the last variable. Furthermore, conjugating group (4.7) for $T \neq 0$ in $\operatorname{Aut}\left(\mathbb{C}^{n-1} \times \mathbb{C}^{*}\right)$ by the automorphism

$$
\begin{array}{ll}
z^{\prime} & \mapsto \sqrt{|T|} z^{\prime} \\
z_{n} & \mapsto z_{n},
\end{array}
$$

we obtain the group defined in (4.6) for $\tau=\arg T$.
(ivc). $M=\mathbb{C}^{n-1} \times \mathbb{T}$, where \mathbb{T} is an elliptic curve, and for a fixed $0 \leq \tau<2 \pi$ the group G consists of all maps of the form

$$
\begin{align*}
& z^{\prime} \quad \mapsto U z^{\prime}+a, \\
& {\left[z_{n}\right] \mapsto\left[\chi \exp \left(e^{i \tau}\left\langle U z^{\prime}, a\right\rangle\right) z_{n}\right],} \tag{4.8}
\end{align*}
$$

where U, a, χ are as in (ivb), \mathbb{T} is obtained from \mathbb{C}^{*} by factorizing by the equivalence relation $z_{n} \sim d z_{n}$, for some $d \in \mathbb{C}^{*},|d| \neq 1$, and $\left[z_{n}\right] \in \mathbb{T}$ is the equivalence class of a point $z_{n} \in \mathbb{C}^{*}$. In fact, for $T \in \mathbb{C}$ one can consider the following family of groups acting on $\mathbb{C}^{n-1} \times \mathbb{T}$

$$
\begin{align*}
z^{\prime} & \mapsto U z^{\prime}+a \\
{\left[z_{n}\right] } & \mapsto\left[\chi \exp \left(T\left\langle U z^{\prime}, a\right\rangle\right) z_{n}\right], \tag{4.9}
\end{align*}
$$

where U, a, χ are as above. Example (ic) for $M^{\prime}=\mathbb{C}^{n-1}$ is included in this family for $T=0$. For $T \neq 0$ this family is obtained from (4.7) by passing to a quotient in the last variable. Furthermore, conjugating group (4.9) for $T \neq 0$ in $\operatorname{Aut}\left(\mathbb{C}^{n-1} \times \mathbb{T}\right)$ by the automorphism

$$
\begin{array}{ll}
z^{\prime} & \mapsto \sqrt{|T|} z^{\prime} \\
\xi & \mapsto \xi
\end{array}
$$

where $\xi \in \mathbb{T}$, we obtain the group defined in (4.8) for $\tau=\arg T$.
(v). $M=\mathbb{C}^{n-1} \times \mathcal{P}_{>}$, and for a fixed $T \in \mathbb{R}^{*}$ the group G consists of all maps of the form

$$
\begin{aligned}
& z^{\prime} \mapsto \lambda^{T} U z^{\prime}+a, \\
& z_{n} \mapsto \lambda z_{n}+i b,
\end{aligned}
$$

where $U \in U_{n-1}, a \in \mathbb{C}^{n-1}, b \in \mathbb{R}, \lambda>0$. Example (id) for $M^{\prime}=\mathbb{C}^{n-1}$ can be included in this family for $T=0$.
(vi). $M=\mathbb{C}^{n}$, and for fixed $k_{1}, k_{2} \in \mathbb{Z},\left(k_{1}, k_{2}\right)=1, k_{1}>0, k_{2} \neq 0$, the group G consists of all maps of the form (0.1) with $U \in H_{k_{1}, k_{2}}^{n}$. Example (ia) for $M^{\prime}=\mathbb{C}^{n-1}$ can be included in this family for $k_{2}=0$.
(vii). Part (viib) of this example is obtained by passing to a quotient in Part (viia).
(viia). $M=\mathbb{C}^{n *} / \mathbb{Z}_{l}$, where $\mathbb{C}^{n *}:=\mathbb{C}^{n} \backslash\{0\}, l \in \mathbb{N}$, and the group G consists of all maps of the form

$$
\{z\} \mapsto\{\lambda U z\}
$$

where $U \in U_{n}, \lambda>0$, and $\{z\} \in \mathbb{C}^{n *} / \mathbb{Z}_{l}$ is the equivalence class of a point $z \in \mathbb{C}^{n *}$.
(viib). $M=M_{d} / \mathbb{Z}_{l}$, where M_{d} is the Hopf manifold $\mathbb{C}^{n *} /\{z \sim d z\}$, for $d \in \mathbb{C}^{*},|d| \neq 1$, and $l \in \mathbb{N}$; the group G consists of all maps of the form

$$
\{[z]\} \mapsto\{[\lambda U z]\}
$$

where U, λ are as in (viia), $[z] \in M_{d}$ denotes the equivalence class of a point $z \in \mathbb{C}^{n *}$, and $\{[z]\} \in M_{d} / \mathbb{Z}_{l}$ denotes the equivalence class of $[z] \in M_{d}$.
(viii). In this example the manifolds are the open orbits of the action of a group of affine transformations on \mathbb{C}^{n}. Let $G_{\mathcal{P}}$ be the group of all maps of the form

$$
\begin{aligned}
z^{\prime} & \mapsto \lambda U z^{\prime}+a \\
z_{n} & \mapsto \lambda^{2} z_{n}+2 \lambda\left\langle U z^{\prime}, a\right\rangle+|a|^{2}+i b,
\end{aligned}
$$

where $U \in U_{n-1}, a \in \mathbb{C}^{n-1}, b \in \mathbb{R}, \lambda>0$.
(viiia). $M=\mathcal{P}_{>}^{n}, G=G_{\mathcal{P}}$, where

$$
\mathcal{P}_{>}^{n}:=\left\{\left(z^{\prime}, z_{n}\right) \in \mathbb{C}^{n-1} \times \mathbb{C}: \operatorname{Re} z_{n}>\left|z^{\prime}\right|^{2}\right\}
$$

Observe that $\mathcal{P}_{>}^{n}$ is holomorphically equivalent to \mathbb{B}^{n}.
(viiib). $M=\mathcal{P}_{<}^{n}, G=G_{\mathcal{P}}$, where

$$
\mathcal{P}_{<}^{n}:=\left\{\left(z^{\prime}, z_{n}\right) \in \mathbb{C}^{n-1} \times \mathbb{C}: \operatorname{Re} z_{n}<\left|z^{\prime}\right|^{2}\right\}
$$

Observe that $\mathcal{P}_{<}^{n}$ is holomorphically equivalent to $\mathbb{C P}^{n} \backslash\left(\overline{\mathbb{B}^{n}} \cup L\right)$, where L is a complex hyperplane tangent to $\partial \mathbb{B}^{n}$.
(ix). Here $n=2, M=\mathbb{B}^{1} \times \mathbb{C}$, and G consists of all maps of the form

$$
\begin{aligned}
& z_{1} \mapsto \frac{a z_{1}+b}{\bar{b} z_{1}+\bar{a}}, \\
& z_{2} \mapsto \frac{z_{2}+c z_{1}+\bar{c}}{\bar{b} z_{1}+\bar{a}},
\end{aligned}
$$

where $a, b \in \mathbb{C},|a|^{2}-|b|^{2}=1, c \in \mathbb{C}$.
(x). Here $n=3, M=\mathbb{C P}^{3}$, and G consists of all maps of the form (0.2) for $n=3$ with $U \in S p_{2}$.
(xi). Here $n=3, M$ is obtained from $\mathbb{C}^{2} \times \mathbb{C}^{2 *}$ by factorizing by the equivalence relation $(z, \xi) \sim \nu(z, \xi)$, where $z \in \mathbb{C}^{2}, \xi \in \mathbb{C}^{2 *}, \nu \in \mathbb{C}^{*}$, and G consists of all maps of the form

$$
\begin{aligned}
z & \mapsto U z+C \xi, \\
\xi & \mapsto V \xi,
\end{aligned}
$$

where $U, V \in S U_{2}$, and

$$
C=\left(\begin{array}{rr}
c_{1} & i \overline{c_{2}} \\
c_{2} & -i \overline{c_{1}}
\end{array}\right),
$$

with $c_{1}, c_{2} \in \mathbb{C}$. Observe that $M=\mathbb{C P}^{3} \backslash \mathfrak{C}$, where \mathfrak{C} is the projective complex line given by $\xi=0$ and (z, ξ) are considered as homogeneous coordinates in $\mathbb{C P}^{3}$.
(xii). Here $n=3, M=\mathbb{C}^{3}$, and G consists of all maps of the form

$$
\begin{aligned}
z^{\prime} & \mapsto U z^{\prime}+\bar{U} a \\
z_{3} & \mapsto \operatorname{det} U z_{3}+\left[\left(\begin{array}{ll}
0 & 1 \\
-1 & 0
\end{array}\right) U z^{\prime}\right] \cdot[\bar{U} a]+b,
\end{aligned}
$$

where $z^{\prime}:=\left(z_{1}, z_{2}\right), U \in U_{2}, a \in \mathbb{C}^{2}, b \in \mathbb{C}$, and \cdot denotes the dot product in \mathbb{C}^{2}.

We announce the following theorem.
THEOREM 4.1 Let M be a connected complex manifold of dimension $n \geq 2$ and $G \subset \operatorname{Aut}(M)$ a connected Lie group with $d_{G}=n^{2}+1$ that acts properly on M. If the pair (M, G) is of type III, then it is equivalent to one of the pairs listed in (i)-(xii) above.

A proof of Theorem 4.1 will appear in our future joint article with N. Kruzhilin.

References

[A] Alekseevsky, D. V., On perfect actions of Lie groups, Russian Math. Surveys 34(1979), 215-216.
[Bi] Biller, H., Proper actions on cohomology manifolds, Trans. Amer. Math. Soc. 355(2002), 407-432.
[BDK] Bland, J., Duchamp, T. and Kalka, M., A characterization of $\mathbb{C P}^{n}$ by its automorphism group, Complex Analysis, University Park, PA., 1986, 60-65, Lecture Notes in Math., vol. 1268, SpringerVerlag, 1987.
[Bo] Bochner, S., Compact groups of differentiable transformations, Ann. of Math. 46(1945), 372-381.
[BM1] Bochner, S. and Montgomery, D., Groups of differentiable and real or complex analytic transformations, Ann. of Math. 46(1945), 685-694.
[BM2] Bochner, S. and Montgomery, D., Locally compact groups of differentiable transformations, Ann. of Math. 47(1946), 639-653.
[C] Cartan, E., Leçons sur la Géométrie des Espaces de Riemann, Gauthier-Villars, Paris, 1928.
[Eg] Egorov, I. P., On a strengthening of Fubini's theorem on the order of the group of motions of a Riemannian space (Russian), Doklady Akad. Nauk SSSR (N.S.) 66 (1949), 793-796.
[Ei] Eisenhart, L. P., Continuous Groups of Transformations, Princeton University Press, 1933.
[F] Fubini, G., Sugli spazii che ammettono un gruppo continou di movementi, Ann. Mat. Pura Appl. (3) 8(1903), 39-81.
[GG] Goto, M. and Grosshans, F., Semisimple Lie Algebras, Lecture Notes in Pure and Applied Mathematics, vol. 38, Marcel Dekker, Inc., New York, Basel, 1978.
[GK] Greene, R. E. and Krantz, S. G., Characterization of complex manifolds by the isotropy subgroups of their automorphism groups, Indiana Univ. Math. J. 34(1985), 865-879.
[H] Helgason, S., Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, 1978.
[HL] Huckleberry, A. T. and Livorni, E. L., A classification of homogeneous surfaces, Canad. J. Math. 33(1981), 1097-1110.
[I1] Isaev, A. V., Hyperbolic n-dimensional manifolds with automorphism group of dimension n^{2}, Geom. Funct. Anal. (GAFA) 17(2007), 192-219.
[I2] Isaev, A. V., Hyperbolic manifolds of dimension n with automorphism group of dimension $n^{2}-1$, J. Geom. Analysis 15(2005), 239-259.
[I3] Isaev, A. V., Hyperbolic 2-dimensional manifolds with 3dimensional automorphism group, preprint, available from http://front.math.ucdavis.edu/math.CV/0509030.
[I4] Isaev, A. V., Lectures on the Automorphism Groups of KobayashiHyperbolic Manifolds, Lecture Notes in Math., vol. 1902, SpringerVerlag, 2007.
[I5] Isaev, A. V., Proper actions of high-dimensional groups on complex manifolds, preprint, available from http://front.math.ucdavis.edu/math.CV/0610311.
[IKra] Isaev, A. V. and Krantz, S. G., On the automorphism groups of hyperbolic manifolds, J. Reine Angew. Math. 534(2001), 187-194.
[IKru] Isaev, A. V. and Kruzhilin, N. G., Effective actions of the unitary group on complex manifolds, Canad. J. Math. 54(2002), 12541279.
[Ish] Ishihara, S., Homogeneous Riemann spaces of four dimensions, J. Math. Soc. Japan 7(1955), 345-370.
[Ka] Kaup, W., Reelle Transformationsgruppen und invariante Metriken auf komplexen Räumen, Invent. Math. 3(1967), 43-70.
[Ko1] Kobayashi, S., Hyperbolic Manifolds and Holomorphic Mappings, Marcel Dekker, New York, 1970.
[Ko2] Kobayashi, S., Transformation Groups in Differential Geometry, Springer-Verlag, 1972.
[KN] Kobayashi, S. and Nagano, T., Riemannian manifolds with abundant isometries, Differential Geometry (in Honor of Kentaro Yano), Kinokuniya, Tokyo, 1972, pp. 195-219.
[Ku] Kuiper, N., Groups of motions of order $\frac{1}{2} n(n-1)+1$ in Riemannian n-spaces, Indag. Math. 18(1956), 313-318.
[MZ] Montgomery, D. and Zippin, L., Topological Transformation Groups, Interscience Publishers, Inc., New York, 1955.
[MS] Myers, S. B. and Steenrod, N., The group of isometries of a Riemannian manifold, Ann. of Math. 40(1939), 400-416.
[N] Nakajima, K., Homogeneous hyperbolic manifolds and homogeneous Siegel domains, J. Math. Kyoto Univ. 25(1985), 269-291.
[O] Obata, M., On n-dimensional homogeneous spaces of Lie groups of dimension greater than $n(n-1) / 2$, J. Math. Soc. Japan 7(1955), 371-388.
[OR] Oeljeklaus, K. and Richthofer, W., Homogeneous complex surfaces, Math. Ann. 268(1984), 273-292.
[OV] Onishchik, A. and Vinberg, E., Lie Groups and Algebraic Groups, Springer-Verlag, 1990.
[Pal] Palais, R. S., On the existence of slices for actions of non-compact Lie groups, Ann. of Math. 73(1961), 295-323.
[Pat] Patrangenaru, V., Classifying 3 and 4 dimensional homogeneous Riemannian manifolds by Cartan triples, Pacific J. Math. 173(1996), 511-532.
[S] Satake, I., Algebraic Structures of Symmetric Domains, Kanô Memorial Lect., 4, Princeton Univ. Press, 1980.
[Wa] Wang, H.-C., On Finsler spaces with completely integrable equations of Killing, J. London Math. Soc. 22(1947), 5-9.
[Wi] Winkelmann, J., The Classification of Three-Dimensional Homogeneous Complex Manifolds, Lecture Notes in Math., vol 1602, Springer-Verlag, 1995.
[Y1] Yano, K., On n-dimensional Riemannian spaces admitting a group of motions of order $n(n-1) / 2+1$, Trans. Amer. Math. Soc. 74(1953), 260-279.
[Y2] Yano, K., The Theory of Lie Derivatives and its Applications, North-Holland Publishing Co., P. Noordhoff Ltd., Interscience Publishers Inc., 1957.

Department of Mathematics
The Australian National University
Canberra, ACT 0200
AUSTRALIA
E-mail: alexander.isaev@maths.anu.edu.au

[^0]: *Mathematics Subject Classification: 32Q57, 32M10, 58D19
 ${ }^{\dagger}$ Keywords and Phrases: complex manifolds, proper group actions.

[^1]: ${ }^{\ddagger}$ For $k_{2} \neq 0$ the group $H_{k_{1}, k_{2}}^{n}$ is a k_{1}-sheeted cover of U_{n-1}.

[^2]: ${ }^{\S}$ In [I5] we introduced groups denoted by $G_{1}\left(\mathbb{C}^{n}\right), G_{2}\left(\mathbb{C}^{4}\right)$ and $G_{3}\left(\mathbb{C}^{4}\right)$. Notation in the present paper is consistent with that in [I5].

[^3]: ${ }^{\top}$ The group $G_{1}\left(\mathbb{C}^{n}\right)$ was introduced in [I5] and consists of all maps from $G\left(\mathbb{C}^{n}\right)$ with $U \in S U_{n}$ (we usually write $G_{1}(\mathbb{C})$ instead of $G_{1}\left(\mathbb{C}^{1}\right)$).

