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In the recent very interesting paper by Cecotti and Vafa [1] they have considered N=2
supersynunetric Landau-Ginzburg theories and have showed that in many cases the metric
for supersymmetric ground states for special deformations of this metric satisfies the certain
system of PDE's, such for example as Toda equations.

The purpose of the present paper is to give the additional examples of such theories.

1. Let us remind first at all sorne basic facts from N=2 supersymmetrie Landau-Ginzburg
theory (for more details see [1]). The basic quantities here are the chiral fields 4>i, the vacuum
state 10 > and the states

li >= 4>jlO > .

The action of fjJj on this state is given by the formula

(1)

(2)

So the action of the chiral field 4>i in the subsector of vacuum states is given by the matrix
(Ci)j = Ci/-. An~ogously, we have anti-chiral fields 4>. and the states IJ >. So we may
define two metric tensors

and

which should satisfy the condition

1]ij =< jli >

9i] =< Jli >,

(3)

(4)

(5)

The theory is determined by the superpotential w(x a ) which is holomorphic function of
complex variables X a . The superpotential completely determines the chiral ring

(6)

and we may also determine the metric TJij by the formula

where
Resw [4>] = L: 4>(x)H-1(x); H = det(Bi 8j w).

dw=O

(7)

(8)

As for the metric 9i], it depends from parameters tI, t2, .. ., entering to the superpotential
w(xa ). As was shown in [1], it should satisfy the zero-curvature conditions

(9)

aiCj - ajCi + [g(aig-1
), Cj] - [g(aj g-1

), Ci] = 0,
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(10)



and also should satisfy the " reality constraint " (5)

In the paper [1] the many interesting examples of Landau-Ginzburg theories were con
sidered. In the next sections we consider two new examples of such theories.

2. The model :

Here:

w(x) = t(e% - x).

w'(x) = t(e% -1),

(11)

(12)

and we may identify an element of 'R with the set of the values of the function 4>( x) at
critical points of w{x):

(13)

The multiplication operation Rcts componentwise on 4> and we have also

and
1

Res( if» = - L (t;6 )j .
t .

J

We choose as basis in 'R the elements alt (k E Z), such that

(14)

(15)

(16)

In this basis we have

(17)

Also
(C)~ = (1 - 21rik )6f.

Let us define
9jk =< klj > .

Then we can see that w{x) is quasi-invariant relative to the translation operation:

T : f{x) -t fex + 21ri)

Tw(x) = w(x) - 21ri.

So the metric 9il should be invariant at this transformation
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(18)

(19)

(20)

(21)

(22)



or

9· '+k = 90 I = Jk·),) I

Now instead the set {Jk} we may consider the function

J(8) = L fke21ri8k,

k

or

9k,l = 101

J(0)e-27r;(k-I)BdO.

The reality condition (2.9) now take the form

Hence

J(0) = I~(XP(i'f'(t,t; 0».

As for equation (3.9) we have

Now

Hence we have

hut

Hence we have

8(J8f-l) + ':!'-(f .:!-(J-l)) = 0
d8 d9

or
- cP
88<p + d82 <P = O.

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)

(33)

Finally:

J = J(t,tj 0) = 1~(xP(i'f'(t,t; 0»,

6.3 ", = 0,

'" = ",(t, t; 8), ",(t, t; 9 + 1) = 4>(t, t; 9),

82 ß2 82

6.3 = EJt2 + ät2 + 892 ' t = t 1 + it2·
1 2
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(34)

(35)

(36)

(37)



Note,that the variables may be separated in this equation and if you know q,(0, 0; 6) or
4>(t, tj 8) we may solve this equation [tl -+ 00 explicitely.

3. The model :

Here

( 1 2% % )
W = W c = t 2'e - 2ce + x , c> 1. (38)

w'(x) = t(e2%- 2ce% +1) = 2te%(coshx - c) = 2te%(cosh x - cosh ,), c = cosh,. (39)

We may identify an element of 'R with the set of values of the function 4>(x) at critical
points w( x):

{Xj} = {aj,bj }, aj = -,+21t"ij, bj = ,+21t"ij

4>(x) E 'R ~ {(cP)j,b},(t/»j,b = 4>(1=,+ 21t"ij).

The multiplication operation acts componentwise on 4> and we have also

At x = aj we have w" = -2te-"Y sinh,.

At x = bj we have w" = 2te"Y sinh,.

Here

We choose the basis in R related to aj and bk and in this basis we have

a,b 1 ±...,..c
7Jk I = 1= 2t . h e °k,", Stn "I

Also

where

A = -(1 + ~ cosh2")'), B = ~ sinh2")' - ")'.
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(40)

(41)

(42)

(43)

(44)

(45)

(46)



Hence

(
ca 0)

C = 0 eb •

(ca)~ = (A +B +21rik)ö; (Cb)~ = (A - B +21rik)ö;'

The matrix 9 has now the block form

aa {aa }9 = g'l: , ...],

The invariance group in this case is generated by the translation

T : x -+ x +21ri.

Hence
aa aa

9i+l,k+l = 9i,i:' ... ,

and

In these notations 1 (-e'Y 0)
TJ = 2t sinh l' 0 e-'Y '

The reality condition should be taken in the form

It is easy to show that this condition is equivalent one

Here

(47)

(48)

(49)

(50)

(51)

(52)

(53)

(54)

(55)

(56)

9 = DgD, (57)
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So, up to normalized factor, we may consider that 9 E SU(l, 1). The equation (3) may
be reduced now to the equation for the matrix 9 :

or

Let

g-8g--1 = At, - d --1 A9 d(J9 = 8·

(59)

(60)

We have also

Finally we have

d --1 _ --1 A
d(}g - 9 0,

d - A -
d(J9 = - Og· (61)

(62)

where

A -8--1
t = 9 g ,

9 E SU(l, 1),

d
Ao = 9dO g- 1

,

At, Ao E su(l, 1),

B = .!. sinh 21' - 1',
2

gE3g- 1 E su(l, 1). (63)

Note that for B -Jo 0 (this corresponds to the case of one chain with double zeros) we
obtain the equation of principal chiral field in 3-dimensions with coordinates t 1 , t 2 and (} for
the group SU(l, 1) (see {I]):

8 -8 --1 0IJ.g 1J.9 =, j.l=1,2,3. (64)

Here we considered the case of two chains of zeros. The consideration of arbitrary finite
number of chains gives analogous equation for some real simple Lie algebra.
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