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Linear orbits of smooth planc curves

PaoLO ALUFFI
CAREL FABER

§0. INTRODUCTION

There is a natural dominant rational map from the P! of plane quartics to the
moduli space M3 of smooth genus 3 curves. Restrict this map to a generically
finite dominant rational map from a general (lincar) P8 ¢ P!* to M3. What is
the degree of this map?

This natural question led us to studying the objects considered in this paper.
It is readily understood that the fibers of the above map P%- - -> Ma—or, more

generally, of the natural map pas -> M (4-1)(a—3) —consist of the orbits of
2

the action of PGL(3), the group of linear transformations of the plane, on the

space PN = P52 of plane curves of a given degree d. For a smooth plane curve

C of degree d > 3, the set of all linear translations of C' is an 8-dimensional quasi-
projective subvariety of P¥; the theme of this paper is that interesting information
about plane curves gets naturally encoded in these subvarieties. For example, the
answer to the question posed in the beginning of this introduction is the degree
of the closure O¢ of O¢ in PV, for a general curve C € PV,

Our purpose in this paper is to begin exploiting this connection, by studying
the orbit closure O¢ for non-singular curves C. The paper is focused on the
computation of the degree of Oc, on determining the ‘boundary’ of a given orbit—
i.e., the complement of O¢ in Oc—and on studying the behavior of these orbits in
one-parameter families of curves. We hope to complement this paper with similar
results for singular curves, and with a study of the singular locus of the orbit
closures, in future notes. Applications of the results will center on the study of
the moduli spaces of plane curves: we include here (§5) results about the Chow
groups (with Q-coefficients) of the moduli spaces, in the spirit of {Faber]—this
uses our result saying where the restriction of the above map to a general linear
subspace of codimension 8 is proper. Also, the degree computation presented here
has enumerative significance: if a curve C has no non-trivial automorphisms, then
the degree of O¢ is the number of linear translations of C that contain 8 given
general points.

We attack the study of the orbit closure Oc of a curve C from two distinct
sides. The degree computations (§§2,3) rest on dominating the orbit closure with
a non-singular projective variety, and interscction theory computations using the
blow-up formula of [Aluffil]; the study of boundaries and families (§4) starts off
with the Cartan-Iwahori decomposition in the (easy) GL(3)-case.

For the degree computations: given a non-singular plane curve C we are able to
construct a non-singular compactification of the group PGL(3), with a dominant
morphism to Oc, by a suitable sequence of blow-ups of the space P& of 3 x 3
matrices. The sequence depends on C, and in fact we find that it depends on
local information about the flexes of C: revealing an intriguing connection between



O¢ and the Hessian of C, which we believe will play a substantial role in future
work on these objects. The variety is constructed by resolving the rational map
¢ : P8- - .>PV extending the action of PGL(3) on O¢. The base locus of this
map is supported on the set of matrices whose image is contained in C: if C is
smooth this is a subset of P® isomorphic to P2 x C. Every point p of C contributes
then to the base locus by the set of rank-1 matrices whose image 1s p; we will find
(Theorem II) that to resolve the indeterminacies of the map at such points, one
needs a number of blow-ups equal to the order of contact of the tangent line to
C at p. For example, three suitable blow-ups suffice to resolve the map (thus
constructing the variety) for a general curve. The construction leads to explicit
formulas { Theorem I11) for the degree of O¢ in terms of the degree of C, the order
of its group of automorphisms, and four numbers encoding the local information
about the flexes of C. The degree of the orbit closure is maximal if and only if the
curve has only simple flexes and no non-trivial automorphisms. The construction
presented here should allow us to perform multiplicity computations on Og¢, to
which we hope to devote a future note. Also, it should be possible to adapt the
construction we present here to obtain compactifications of PGL(3) dominating
the orbit closures of singular curves; we have some results in this direction (for
mild singularities), which we do not present here.

For the study of boundaries: the ‘boundary’ of an orbit O¢ (i.e., its complement
in its closure O¢) is the disjoint union of the orbits of different curves. These are
necessarily singular, and have infinite automorphism group; we determine which
curves arise in this way, depending on the flexes of the (smooth) curve C. Curves
in the boundary arise either as images of rank-2 matrices by the above map ¢,
or a8 limits of translations ¢(i) of C as ¢ approaches a point in the base locus
of ¢. In the first case, the boundary curves consist of d = deg C lines through a
point. Studying these curves amounts to studying the natural map from the g3
on C to the moduli space My of d-tuples of points on a line; we prove that this
map is generically finite for d > 5. The other kind of boundary curves is found
by shifting the point of view to the action of GL(3) on CV+! and studying all
limits lim;_o C o p(t), for p : C{(t}) — GL(3) a rational map. We use the Cartan-
Iwahori decomposition and a case-by-case analysis to show that each k-flex of C
(1.e., a point at which the tangent line intersects C with multiplicity &; in §§2,3
we also use the terminology ‘flex of order £ — 2’ for such a point} contributes
to the boundary by the orbit of a curve consisting of the union of a k-th order
cuspidal curve and the cuspidal tangent line, taken d — k times (in coordinates,
the orbit of the curve z%~*y* + 2912 = 0). A remarkable consequence (crucial
in the application in §5) is that a general codimension-8 subspace of PV will not
contain any of the curves arising in this manner. This makes the natural map
from this subspace to the moduli space of plane curves rather well-behaved.

Families are studied similarly. For a given C with a k-flex (k > 4), and with no
non-trivial automorphisms for simplicity, consider a general 1-parameter family
C(u) of curves centered at C(0) = C. We observe that, as u — 0, the orbit closure
of C(u) specializes to the union of the orbit closure of C and the (8-dimensional)
orbit closure of another (singular) curve. This establishes a sort of liaison between
C and a specific type of singular curve; the degree of O¢ equals the degree of the
orbit closure of the general curve minus the degree of the orbit closure of this
specific singular curve. We determine what singular curves arise in this way,
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depending on the special flex of C, this time by computing limits lim¢_o C(t*) o
p(t), for p as above, and e € N,..

The main body of the paper is preceded by a discussion of similar problems
for the case of the action of the group PGL(2) on the spaces P4 parametrizing
d-tuples of points on a line. This easy case makes for a good illustration of the
techniques employed in the rest of the paper, and is of some interest in itself,

We conclude this introduction by answering the question posed in the beginning:
the degree of the natural rational map from a general P® C P! to Mj is 14,280
(d = 4 in the corollary to Theorem III). Thus there are precisely 14280 quartics
isomorphic to a given general one and containing 8 given general poinis.

As another illustration of the ‘numerical’ results in the paper, consider the d-
uple Veronese embedding of P?: its trisecant variety can be identified with the
closure of the set of degree-d curves that can be written as sum of 3 d-th powers
of linear terms; i.e., with the orbit closure of the Fermat curve z¢ + y¢ + z9. The
Fermat curve has 6d? distinct automorphisms and precisely 3d d-flexes, so (again
as a consequence of Theorem III} the degree of the trisecant variety to the d-th
Veronese embedding of P? (d > 3) must be

-é(d — 2)(d® + 2d* — 264> — 7d* + 192d — 192).
More examples of this kind may be found at the end of §3.
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§1. Tne PGL(2)-CASE.

We consider here the orbits of the action of PGL(2) on the space P¢ of d-tuples of
points of P!: this simpler context gives a good illustration of the techniques we will
employ in the next sections to deal with PGL(3)-actions. (Some of these results
appear also in [Mukail-Umemura]; in fact, the ‘combinatorial’ computation of
the degree was done already in [Enriques-Fano).)

The first question we consider is the computation of the degree of the closure
(in P?) of the orbit of a d-tuple: i.e., the intersection product of the orbit closure
and three hyperplanes of P9,



It’s worth observing that, in the PGL(2) case, this degree can be computed
using simple combinatorics and a pinch of geometry. For the hyperplanes, take 3
distinct ‘point-conditions’, i.e., hyperplanes in P4 consisting of the d-tuples that
contain a certain given point. One checks easily that the intersection multiplicity
of the orbit closure and three point-conditions (determined by three distinct points
P1, P2, p3) at a d-tuple equals the product of the multiplicities of p;, pz and ps in
the d-tuple: so the intersection is automatically transversal if the d-tuple consists
of d distinct points. Therefore, in this case the degree is just the number of points
of intersection: the computation then comes down to counting the number of
elements of PGL(2) that send a given d-tuple (consisting of d distinct points) to
a d-tuple that contains 3 (distinct) given points. Using the fact that an element
of PGL(2) is uniquely determined by prescribing the images of 3 distinct points,
one immediately sees that the answer is

d(d —1)(d - 2).

To get the degree of the orbit closure, we have to divide this number by the number
of elements of PGL(2) sending a d-tuple to itself: i.e., the order of the stabilizer
of the d-tuple.

EXAMPLES.

(1) The stabilizer of a 3-tuple consisting of 3 distinct points is Sa, so the degree
of the orbit closure is 1 (the orbit closure is P3).

(2) A general 4-tuple has stabilizer C3 x C2, so the degree of the orbit closure
is 6. The 4-tuples with § = 0 (resp. 1728) have stabilizers A4 (resp. Dy),
so that the orbit closure has degree 2 (resp. 3).

(3) For d > 5, a general d-tuple has trivial stabilizer, so the degree of the orbit
closure is d(d — 1)(d — 2).

It would be easy to apply the same procedure to examine the case in which
some points of the d-tuples appear with multiplicity. For example, suppose the
d-tuple consists of an r-fold point and d—r simple points, and (for simplicity) has
trivial stabilizer. There are

(d=r)d=r—=1)d-r-2)
ways to send the d-tuple to a d-tuple containing 3 given simple points, and
(d=r}d-r-1)

ways to send it to a d-tuple with two assigned simple points and one given r-fold
point. Arguing as above, the intersection is transversal at a d-tuple of the first
kind, and has multiplicity r at a d-tuple of the second kind; and in the second
case there are 3 possible choices for the r-fold point. So the degree of the orbit
closure must be

@d=r)d=r=1)d=r—2)+3r(d=r)(d—r—1) = (d—r)(d—r~ 1)(d+2r — 2).

However, this approach would not carry over to the PGL(3)-case. We will describe
now the approach that does carry over to higher dimensions.
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The idea is to resolve the indeterminacies of a rational map associated naturally
to the given d-tuple. The easy combinatorics we have seen gets encoded in a
geometric construction; as it happens, the geometry can be transferred to higher
dimensions, while the combinatorics cannot.

Choose coordinates in P!, and let C stand for a homogeneous form in 2 variables
of degree d > 3, or for the d-tuple of points on P! corresponding to it. The
PGL(2)-orbit of C in P? is the image of the map

c: PGL(2) — P¢

sending o € PGL(2) to the form C oa. Observe that this map is finite (if at least
three points of the d-tuple are distinct), and its degree equals the order of the
stabilizer of C. This map determines a rational map from the P3 of 2 x 2 matrices
to P4, which we also denote by c.

Now we will resolve this rational map: i.e., we will construct a variety 1 filling
a commutative diagram

PGL(2) ¢ V —— Pd

L

PGL(2) ¢ P3-.-2. pd

The image of & in P? is precisely the orbit closure: therefore the degree of the
orbit closure can be found by computing the third power of the pull-back of the
hyperplane class of P4 to V, and dividing by the order of the stabilizer of C'. We
call ‘predegree’ the 3-fold self-intersection of the pull-back of the hyperplane from
Pe,

The base locus of ¢: P3- - -> P9 consists of the matrices a for which the form
C o o is identically zero. This happens exactly when « is a rank-1 matrix with
image a point of the d-tuple C. The base locus of ¢ is therefore supported on a
finite number of ‘parallel’ lines in the (non-singular) quadric of rank-1 matrices.
There are as many distinct lines as there are distinct points in the d-tuple C.

CLAIM. A variety V as above can be obtained by blowing up P3 along the support
of the base locus of c.

To see this, call ‘point-conditions in P3’ the inverse image of the point-conditions
of P4 (defined above). The map ¢ is then the map defined by the linear system
generated by the point-conditions in P2, and therefore the base locus of ¢ is actu-
ally cut out by the point-conditions. Now we argue that a point-condition in P?
is a degree-d hypersurface consisting of nothing but a collection of hyperplanes,
one for each point in the d-tuple C, each appearing with the same multiplicity as
the corresponding point appears in C. This is immediate: give coordinates

(Po Pl)

P2 p3

to the P2 of matrices; and suppose C is given by the equation
Flz:y)=0
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Then the point-condition corresponding to e.g. the point (1 : 0) has equation
F(po:p2)=0 ,

so is indeed a union of hyperplanes as argued.

Now let V be the blow-up of P3 along the lines supporting the base locus of
c. The (a priori rational) map é making the above diagram commute is then
defined by the linear system on 1 generated by the proper transforms of the
point-conditions: so the base locus of & is cut out by the proper transforms in V
of the point-conditions. But since the point-conditions are supported on unions
of hyperplanes, they necessarily intersect transversally in P3: therefore their in-
tersection in V is empty, and we can conclude that the map ¢ : V — P? is indeed
a morphism.

This proves the Claim.

Now computing the 3-fold self-intersection of the class of the proper transform
of a point-condition (i.e., the predegree of the orbit closure) is a straightforward
intersection calculus exercise. As we will in later sections, we use a formula from
[Aluffil], which we will recall as Proposition 3.2. The self-intersection is computed
as the self-intersection of the point-condition in P? (i.e., ¢®) minus contributions
coming from each component of the base locus of ¢. The formula gives

s 3
_ 3 (mi + dh)
predegree = d ‘E- L. roh
where the summation runs over the distinct points py,...,p, of the d-tuple, m; is

the multiplicity of p; in the d-tuple, L; is the line in the base locus corresponding
to p;, and h denotes the hyperplane class in L;. The degree is computed by taking
the coefficient of k in the expression under [:

’
predegree = d° — Z m?(3d — 2my)

i=1

- 3d(z m?) + 2(2 m3

i=1

So the predegree of a d-tuple C can be written in terms of just two numbers, each
of which is a sum of ‘local contributions’ given by each point of C. For example,
if the d-tuple consists of d — r simple points and one r-tuple point, then

¥
Zm?:rz-i-d-r, Zm?:ra-i-d—r,
i=1

i=1

predegree =d° — 3d(r* +d—r) +2(r + d - r)
={d-r)(d—r—-1)(d+2r-2)
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As we will see in section 3, this general feature of the predegree (being determined
by a few numbers recording local data) is preserved in the PGL(3) case.

We turn now to the question of determining the ‘boundary’ of the orbit of a
d-tuple C, by which we mean the complement of the orbit in its closure. Observe
that the boundary of an orbit is necessarily itself the union of orbits, and has
dimension < 2. Since the orbit of a d-tuple has dimension 3 as soon as the d-tuple
consists of at least 3 distinct points, we can conclude right away that the boundary
of the orbit of a given d-tuple must consist of the union of the orbits of d-tuples
concentrated in at most two points. We will show:

CraIM. The boundary of the (3-dimensional) orbit of C is the union of the
I-dimensional orbit of z? and of those 2-dimensional orbits of z"y*~" for which r
is the multiplicity of a point of C.

Again, we have two possible approaches. On the one hand, we can use the
blow-up constructing the variety V above. The rank-1 matrices not in the base
locus have image in the orbit of z¢; so we only have to determine the image in
P? of the components of the exceptional divisor in V. Now, the blow up can be
described easily in coordinates.

(Po Pl)
bz P3

Give coordinates
to the P3 of matrices. The locus of rank-1 matrices is given by pops — pyps = 0.
Suppose the d-tuple C has equation agz?+ayz?~ly+- - -+aqy® = 0, corresponding
to the point (ap : a; : -+ : ag) € P¢ (with obvious choice of coordinates there).
Assume that {1 : 0) is a point of multiplicity r > 1in C, e, 00 = a, = .- =
ar—1 =0,a, # 0. Then p; = pa = 0 is a component of the base locus of ¢ and we
can study V locally by blowing up P3 along p; = p3 = 0.

On the affine piece po = 1 we have coordinates (py, pz, ps). On an alline piece
of the blow-up, coordinates (g1, g2, ga) are given by

n=aqa
P2=1q2
P3 = q293

The map induced by ¢ is then given by
(91,92,93) — (b : by &+ 1 bg)
with
boz? + -+ bay® ~ a,(z + 19)* " (027 + 02439)" + -+ + aa(aT + g2q39)°.
Note that we can factor out ¢;" from the last expression, so that

bozd + -+ bay® ~ ar(z + qu)d"(z + qay)”
+ o122+ Q)TN 4 qay) T + -+ aagd T (2 + qay)”
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The exceptional divisor is given here by go = 0. The restriction of the map
&: V — P9 to the component of the exceptional divisor of V' corresponding to
the r-fold point is then given by restricting the last expression to g2 = 0: we get
d-tuples corresponding to points

boz® 4+ by’ ~ ar (2 + q1y)"" (2 + gay)”

we conclude that the image of the exceptional divisor corresponding to a point in
C of multiplicity r is the closure of the PGL(2)-orbit of z4~"y". (The boundary
of this orbit is the orbit of £9.) The claim follows.

Now for the alternative approach, which is the one we will use later on to study
the question in the PGL(3) case. To determine the boundary, one has to write
down all possible limits of the image ¢(a) in P¢, as a moves in PGL(2). Now the
question can be lifted to the same question in GL(2), where it can be reduced to
finding all limits

‘ILI.I& Coi(l)
where A(t) is a I-parameter subgroup of GL(2) (we'll say more about this reduction
in §4, where we treat the PGL(3) case). Up to a choice of coordinates, and
disregarding trivial cases, we are then reduced to studying the limits

. 0
}'-T:C"(O tb) :

“ with @ < b. Now suppose as above that C has an r-fold point at (1:0), i.e., it is
given by an equation a,z9~"y" + a,.+1::d"'1y'+1 + -+ agy? =0, with a, # 0.
Composing with the 1-parameter subgroup gives the equation

ta(d—r)-i—br (ar:d—ryr + ar+lzd—r—lyr+1t(6—a) 4+ adydt(d—r)(b—-a)) — 0,

and we see that the limit as £ — 0 must be a,z?~"y" if it exists at all. Again, we
conclude that each point of multiplicity r on C contributes to the boundary with
the orbit of z4~"y", which gives the original claim.

It is this second approach that we will follow to determine the boundary of
orbits of smooth curves in the PGL(3) case. Again we will find, as we have seen
in the PGL(2) case, that the global features of the orbit reflect local information
at the points of C.

Finally, we would like to analyze the behavior of the orbit closure in a family.
Suppose C(t) C P9 is a 1-parameter family of d-tuples, such that C(0) is a d-tuple
with an r-fold point (r > 1) and d—r simple points, while C(t) consists of d simple
points for each t # 0. The object is to compare the orbit (closure) of the central
fiber with the limit of the orbits of the other fibers. The orbit of the central fiber
is clearly a component of the limit of the orbits; to convince oneself that there
are other components, it’s enough to observe that, as secen above, the degree of
the orbit closure of C(t) for ¢ # 0 is d(d — 1)(d — 2), while the degree of the orbit
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closure of C(0) drops down to (d — r)(d — r —~ 1)(d + 2r — 2): other components
must account for the missing

(3d —2r — 2)r(r - 1)

Now this is the degree of the orbit closure of a d-tuple with r simple points and
a (d — r)-fold one: it’s not hard to see that this is precisely what makes up the
missing component. This sets up a sort of ‘dualily’ between different kinds of
d-tuples, which will have a counterpart in the PGL(3) case, to be seen in §4.

§2. A BLOW-UP CONSTRUCTION

In this section we construct a smooth projective variety surjecting onto the orbit
closure O¢ of a smooth plane curve C € PY = P‘(‘_JE) , where d > 3. As we will
see, the construction depends essentially on the number and type of flexes of C.

Fix coordinates (zq : zy : zz) of P2, and assume the degree-d curve C has
equation

F(zo,z1,22) =0

Consider the projective space P® = Pllom(C3, C3) of (homogeneous) 3x 3 matrices
a = (ai;)ij=0,1,2- So P? is a compactification of PGL(3) = {a € P® : deta # 0}.
To case notations, in this section we will refer to a point in P® and to any 3 x 3
matrix representing it by the same term; in the same vein, for a € P8 we will call
‘ker o’ the linear subspace of P? on which the map determined by o is not defined,
‘ima’ will be the image of this map, and the rank ‘rk o’ of & will be 14-dim(im«).

So:
a € PGL(3) <= kera=0 <= ima=P? < rka=3.

The curve C determines a rational map
c:P8__ PN

as follows: for a € P8, let ¢(a) be the curve defined by the degree-d polynomial
equation F{a(zo,z1,22)} = 0. So c(a) is defined as long as F(a(zg,z1,22))
doesn’t vanish identically; i.e., precisely if ima ¢ C.

If @ € PGL(3), then ¢(a) is the translate of C by o; therefore, ¢(PGL(3)) is
just the orbit O¢ of C in P¥ for the natural action of PGL(3).

As an alternative description for the map ¢, consider for any point p € P2 the
equation

F(a(p)) =0

As an equation ‘in p’, this defines the translate c(a); as an equation ‘in o’ this
defines the hypersurface of P® consisting of all o that map p to a point of C. We
will call these hypersurfaces, that will play an important role in our discussion,
‘point-conditions’. The rational map defined above is clearly the map defined by
the linear system generated by the point-conditions on P8,

Our task here is to resolve the indeterminacies of the map ¢ : PE-- >P¥ bya
sequence of blow-ups at smooth centers: we will get a smooth projective variety

9



% filling a commutative diagram

PGL(3) ¢ V —— PV

Il

€

PGL(3) C P --Z.» PN

The image of V in PN by ¢ will then be the orbit closure Oc. In §3 we will use
¢ to pull-back questions about O¢ to V; the explicit description of V obtained in
this section will enable us to answer these questions.

The plan is to blow-up the support of the base locus of ¢; we will get a variety
Vi and a rational map ¢; : Vi- - ->P¥. We will then blow-up the support of
the base locus of ¢), getting a variety V5 and a rational map ¢; : V3- - -> PV,
in the case we are considering here (i.e., the curve C is smooth to start with),
repeating this process yields eventually a variety V as above. The support of the
first base locus is in fact a copy of P? x C in P® (see §2.1); if (k,q) € P2 x C,
and ¢; denotes the map obtained at the i-th stage, we will find that ¢; still has
indeterminacies over (k,q) if and only if the tangent line to C at g intersects C
at q with multiplicity > 1. So, for example, if C has only simple flexes then the
map c3 is regular (Proposition 2.9); and in general the number of blow-ups needed
equals the highest possible multiplicity of intersection of a line with C.

We should point out that (even for smooth C) this is not the only way to
construct a variety V as above: in fact, a different sequence of blow-ups is the one
that seems to generalize naturally to approach the same problem for singular C.

§2.1. The first blow-up. The set of rank-1 matrices in P® is the image of the
Segre embedding

P2 x P? . P8
given in coordinates by

koo kiqo  kaqo
((ko tky: kn), (Qo 4y (Iz)) — | ko kiqn ko
koge k192 kaqe

where kozg + k121 + k222 = 0 is the kernel of the matrix, and (g0 : ¢1 : ¢2) is its
image. Intrinsically, this is just the map induced from the map

C¥eC® - @ C? = Hom(C?, C3)
(fiu)— fOu

We have already observed that the map ¢ : P8- - ->P¥ is not defined at o € P8
precisely when ima C C; if C is smooth (therefore irreducible), this means that
the 1mage of « is a point of C. Thetefore:
the support of the base locus of ¢ is the image of P2 x C in P® via the Segre
embedding identifying P? x P? with the set of rank-1 matrices.

In particular, the support of the base locus of ¢ is smooth, since C is. We let

then B = P2 x C, and we let V; 2%, P8 be the blow-up of P® along B. Since
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BNPGL(3) = @, Vi contains a dense open set which we can identify with PGL(3).
Also, the linear system generated by the proper transforms in Vj of the point-
conditions (which we will call ‘point-conditions in V;’), defines a rational map
¢; : Vi - - ->PY making the diagram

PGL(3) C WV --Z->PN

-l

PGL(3) ¢ P®--Z.P¥

commutative. The exceptional divisor E} in V; is the projectivized normal bundle
of Bin P8 E, = P(NBPS). We will show now that the base locus of ¢; Is
supported on a P'-subbundle of Ey over B.

Let (k,q) be a point of B = P? x C: i.e., a rank-1 o € P® with kera = ¥,
ima = ¢ € C. Also, let £ be the line tangent to C at g, let p be a point of P2, and
denote by P the point-condition in P® corresponding to p.

LEMMA 2.1. (i) The tangent space to B at (k,q) consists of all ¢ € P® such that
imp C € and p(k) C q.

(ii) P is non-singular at (k,q), and the tangent space to P at (k,q) consists of
all p € P8 such that o(p) C L.

We are using our notations rather freely here. For example, in (i) a = (k,q) is
in the tangent space since a(k) = @ (as « is not defined along k).

Proor: (i) The tangent space to B at (k,q) is spanned by the plane {(k’,q) €
B :k €P?} = {p€P?:imyp = ¢} and by the line {(k,¢) € B: ¢ € £} =
{p € P® : kerp = k,imyp € £}. Both these subspaces of P® are contained in
{w € P8 1 imyp C ¢, (k) C q}; since this latter has clearly dimension 3, we are
done.

(i) For a = (k, ¢) and ¢ € PB consider the line e+ ¢. Restricting the equation
for P to this line gives the polynomial equation in ¢

F(la+et)(p)) =0 , ie

aF
Fla -— i i =0
@)+ 3 (5r,) e
(where @;i(p) denotes the i-th coordinate of ¢(p)).

F(a(p)) = 0 since ima = ¢ € C; the line is tangent to P at o when the linear
term also vanishes, i.e. if 3, (8F/0z;),0i(p) = 0. This says precisely ¢(p) C £, as
claimed.

P is non-singular at a because any ¢ not satisfying the condition ¢(p) C £ gives
a line o+t intersecting P with multiplicity 1 at a, by the above computation. I

With the same notations, the tangent space to P2 x P2 at « consists of all p with
e(ker ) C ime (intrinsically, all transformations ¢ inducing a map coima —
coker a).

The set of all ¢ such that imy C £ forms (for any a) a 5-dimensional space
containing the tangent space to B at o, and thereflore determines a 2-dimensional
subspace of the fiber of NpP8 over a. As a moves in B we get a rank-2 subbundle
of NgP8, and hence a Pl-subbundle of E; = P(NgP®), which we denote B,.
Notice that B is non-singular, as a P!-bundle over the non-singular B.
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PROPOSITION 2.2. The base locus of the map ¢, : Vi - - ->PV is supported on
B;.

PRrROOF: Since ¢ is defined by the linear system generated by all point-conditions
in Vi, we simply need to show that the intersection of all point-conditions in Vj is
set-theoretically B;. This assertion can be checked fiberwise over a = (k,¢) € B;
so all we need to observe is that the intersection of the tangent spaces to all point-
conditions at a consists (by Lemma 2.1 (ii)) of the ¢ € P® such that ¢{p) C £ for
all p; i.e., the B-dimensional space used above to define B;. 1

If Pl(p) denotes the point-condition in V) corresponding to p € P?, we have just
shown anp, pl(P) is supported on B). The proof says a little more:

REMARK 2.3. [V cpa pl(P) N E, = B, (scheme-theoretically).

Indeed on each fiber of E; (say over a € B) the fiber of By, a linear subspace,

is cut out by the fibers of the Pl(p) N E,, linear subspaces themselves; and the
situation clearly globalizes as & moves in B.

§2.2. The second blow-up. Let V; =, Vi be the blow-up of Vi along B,.
The new exceptional divisor is F3 = P(Ng, V}); call ‘point-conditions in V3’ the
proper transforms of the point-conditions of V. The linear system generated by
the point-conditions defines a rational map ¢y : Va- - ->P¥; again, we obtain a
diagram

PGL(3) C V,--2->P¥

| ool

PGL(3) c P8-.l.pVN

and we proceed to determine the support of the base locus of ¢a.
Let E; be the proper transform of £; in V;. Then

LEMMA 2.4. The base locus of ¢y is digjoint from El.

Proor: This is basically a reformulation of Remark 2.3: E‘l is the blow-up of K,
along By, and B is cut out scheme-theoretically by the intersections of E; with
the point-conditions of V. So the intersection of the point-conditions in ¥, must
be empty along E1, which is the claim. |

Lemma 2.4 reduces the determination of the support of the base locus of ¢; to
a computation in P&, Denote by B the scheme-theoretic intersection of the point-
conditions in P8, so the support of B is B. For a € B, let th,(B) be the maximum
length of the intersection with B of the germ of a smooth curve centered at o and
transversal to B (the ‘thickness’ of B at a, in the terminology of [Aluffi2]).

LEMMA 2.5. The base locus of ¢3 is disjoint from (my 0 1)~ Yo if tho(B) < 2.

ProoF: The base locus of ¢4 is the intersection of all point-conditions in Vs, i.e.
the set of all directions normal to By and tangent to all point-conditions in V;. Let
then ¥(t) be a smooth curve germ centered at a point of B, above «, transversal
to By, and tangent to all point-conditions in Vj. By Lemma 2.4, y is transversal
to Ey; therefore = (¥(t)) is a smooth curve germ centered at o and transversal
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to B. Since v(t) intersects all point-conditions in V} with multiplicity 2 or more,
71(7(t)) must intersect all point-conditions in P® with multiplicity 3 or more; B
is the intersection of all point-conditions in P8, so this forces th,(B) > 3. 1

Now the key computation is

LEMMA 2.6. If a = (k,q) € B, and £ is the line tangent to C at g, then th,(B)
equals the intersection multiplicity of £ and C at q.

ProoF: Let m be the intersection multiplicity of £ and C at ¢. To show th,(B) >
m, we just have to produce a curve normal to B and intersecting all point-
conditions with multiplicity at least m at a; such is the line a + ¢, with ¢ € P8
such that imy = £ and (k) # ¢. Indeed, the last condition guarantees normality
(Lemma 2.1 (1)); and, for general p, ¢ = a(p) and @(p) span £: so F((a+ ¢t)(p))
is just the restriction of F' to a parametrization of £, and it must vanish exactly
m times at ¢ = 0. Notice that these directions are precisely those defining B;.

To show the(B) < m, let ¥(t) be any smooth curve germ normal to B and
centered at a; we have to show that v intersects some point-condition with mul-
tiplicity < m at a. In an affine open of P8 containing o, write

) =a+ept+...
The equation for the point-condition corresponding to p restricts on vy to

Pl(a+pt+..)0) = Fla) + Y (52 ) IRCCIETEL
i toalp

where ¢;(p) denotes the i-th coordinate of ¢(p). The coeflicient of ™ in this
expansion 18

*) % > (J—Z%)a(p)%,(fi)-”w_(p)

$1rrim

+ terms involving derivatives of lower order,

and to conclude the proof we have to show that this term is not identically 0,
To see this, observe that if £ and C intersect with multiplicity exactly m at g,

then the form
T (5'"—1’) e
. 33,‘1 "'8:,"' a(p) ! "

1000t m

doesn’t vanish identically on £; since p(ker a) ¢ ¢ (y is normal to B), this implies
that the summand

1 ( omF )
— A o Spil(l’)""Pi.,.(P)
m! ilgm 61:" a '32:.-_ a(p)

vanishes exactly d — m times along the line ¥ = kera. But since all the other
summands in (*) involve derivatives of order < m, they vanish with order > d—m
along k. Therefore (*} can’t be identically 0, as we claimed. i

We adopt the following conventions:
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DEFINITION. A point q of C is a ‘flex of order r’ (or ‘(r + 2)-flex’) if the line
tangent to C at q intersects C at ¢ with multiplicity r + 2. We will say that q is
a‘flex’ of C if r > 1, and that q is a ‘simple flex’ if r = 1.

Now we observe that there is a section s : By — Ej: for ay € By, let a =
m(ay) € B, say a = (k,q), and let £ be the line tangent to C at ¢. By the
construction of By, there is a matrix ¢ € P® with im¢ C £ such that a; is the
intersection of E; and the proper transform of the line @ + ¢t in V}; now let s(a,)
be the intersection of FE3 and the proper transform of the line o + ¢t in V3 (it is
clear that s(a;) does not depend on the specific ¢ chosen to represent aq).

Let By be the image via s of the set {ay € B; : ¢ is a flex of C}. Thus By
consists of a number of smooth three-dimensional components, one for each flex
of C: each component maps isomorphically to a P!-bundle over one of the planes
{(k,q) € B:qis aflex of C}.

PRoPOSITION 2.7. The base locus of the map cq : Vy- - ->P¥ is supported on
B,.

ProoF: Let a) € By, and a = (k, ¢) the image of a; in B, as above. By Lemma
2.5 and 2.6, the intersection of the base locus of c; with the fiber 75 () is empty
if ¢ is not a flex of C; it is at most one point even if ¢ is a flex of C, because it
misses a hyperplane in r;l(al) =~ P3 by Lemma 2.4. Thus all we have to show is
that s{ay) is in the base locus of ¢; if ¢ is a flex of C (of order » > 1). But, as
observed in the proof of Lemma 2.6, the line a+ ot determining «, intersects each
point-condition in P® with multiplicity at least r 4+ 2 > 3; therefore the proper
transform of a + @1 is tangent to all point-conditions in V|, and it follows that
s(a) € all point-conditions in Va2, as needed. §

§2.3. The third blow-up. Let V3 24 V4 be the blow-up of V; along B.
The new exceptional divisor is Ej; the ‘point-conditions of V3’ are the proper
transforms of the point-conditions of V3. The linear system generated by the
point-conditions defines a rational map ¢3 : V3- - ->P¥ | making the diagram

PGL(3) C Va--2->PN

| f;ﬂf;o‘l‘l ||

PGL(3) c P8--Z.,pN

commute. We will show now that c3 is a regular map if all the flexes of C are
simple, so that in this case V3 is the variety we are looking for, For each flex of
order > 1, we will find a four-dimensional component in the base locus of ¢3, and
more blow-ups will be needed.

Call By the scheme-theoretic intersection of the point-conditions in V3, so By is
supported on By. For a; € By, define the thickness th,, (B2} of B; at a; as we
did above for tha(B). Also, let & = (k,q) be the image of «; in B. With these

‘- notations:

LEMMA 2.8. If q is an flex of order r of C, then thy,(B3) = r.
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PRrROOF: We have to show that if ¥(t) is a smooth curve germ in V3, centered at
a9 and transversal to By, then the maximum length of the intersection of By and
v at t = 0 is precisely r.

Suppose first that v is transversal to E,: then, as argued in the proof of Lemma
2.5, the image of v in P® is a smooth curve germ centered at o and transversal
to B: by Lemma 2.6, the length of the intersection of B and this curve is at most
r 4 2; it follows that the maximum length of the intersection of Bz and such v’s
is indeed r (attained for example by the proper transform of « + ¢ t, with ¢ as in
the proof of Lemma 2.6).

Thus we may assume that v is tangent to E5, and show that

CLAIM. Bz Ny(t) vanishes at most r times at t = 0.

This is a lengthy coordinate computation, and we encourage the hasty reader
to skip it for the moment. The outcome is that the maximum length is r, and it is
attained in the direction normal to By in the section s(B1) C E3 defined in §2.2.

ProoF oF THE CLAIM: We express the blow-ups in coordinates. If o = (k,q) is
the image of &2 in B, we can assume that ¢ = (1:0:0) is a flex of order r of C,
and that k is the line 2o = 0. Also, we write the equation of C in a neighborhood
of ¢ (with affine coordinates z,y) as

y=f(z) ,

where f(z) is a convergent power series; since ¢ = (0,0) is a (smooth) flex of order
r of C, we can assume

f(z) = z"*? + terms in higher powers of z.

100
With this set-up, a 1s the matrix (0 o 0); give coordinates
000
1 p p2
P3 P4 Ps
Ps Pt P8

in a neighborhood of « in P8. The point-condition corresponding to (€g : &1 : €2)
has then equation

*) pefo + P78 + psda _ (P:!Eo + pak1 + Pafz)
€o + p1€1 + p262 o+ €y + 262

Equations for B in these coordinates are

P4 = P1pP3
Ps = pPa2ps
D7 = P1Ps
P8 = PaPs
ps = f(pa)
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(the first four equations define rank-1 matrices, and the fifth one forces the image

to land on C).

We can then choose coordinates (qy,...,¢s) in V; so that
PL=q  Pa=q4+ Q143 Pe = qag6 + f(g3)
p3=q2 Ps = qags + q293 P7 = q4q7 + q1Ps
Pa=gq3 P8 = 9448 -+ 92Ps

The exceptional divisor £ has equation g4 = 0; the equation (*) above pulls-back
to

flga) + qag6 + ¢4 qré1 + sz =f (93 + g4 &1+ gséa )

fo+qifs +q26a €o + q1€1 + 9262

£ + gséa ' 2 ( §1 + gséa )2 f'(es) | 3,
&+ a&r +4252f(q3)+ Y\ b0+ 161 + qoba 2 +aa()

= f(ga) + g4

and therefore the point-conditions in V; have equation

. q7€1 + g8éa - £y + g5 )
) o+ ali+q2le SHo+ali+ Q252f (22)

&1 + qséa ® 1"(q3) 2
+a (Eo +q &1+ Q252) 2 +aal)

Equations for B are
924 =0

g6 =0
qr = f'(QB)
s = QEf'(Q:;)

(let g4 = 0, and impose (**) to hold for all &g,€1,£2) and we then choose coordi-
nates (r,...,rg) in V4 such that

1 =Ty qa = T4 g6 = T4T¢
gz =rg gs =75 g7 = rarr + f'(ra)
gza=r3 gs = rarg + rs f'(ra)

In these coordinates the exceptional divisor E; has equation r4 = 0, and (**)
pulls-back to
r7€1 + rsé2 1 +rséo

rare + T + "(r
T M A + b o4 +r2€zf( 2)

__btnb ( &+ rsés )’f"(ra) 2.
_(50'1'1"161'*"'252"‘(3)-“'4 o+ i+ rala 2 +ra()

30 the point-conditions in V3 have equation

(**%) re1 +refa ( £+ r5én )2 f"(ra) +ra(---)

e Eo+rif1+réa  \lo+rilL+ b 2
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(also, the leading term in (---) is essentially f"/(r3)). Now letting r4 = 0 and
imposing that (***) hold for all £, £;, 2 gives equations for By at ag:

rg=10
ra =190
re =0 X
re=10
rg=10

from which it follows readily that the maximum length of the intersection with
the general point-condition of a smooth curve germ ¥(t) transversal to B, and
tangent to E3 equals the order of vanishing of f(t) at t = 0, 1.e. 7, as claimed.

Tracing this coordinate description, equations for s(B;) in V; are ry = rg =
r7 = rg = 01, Then (ry,...,78) = (#,+,,0,%,0,0,0) is a direction normal to By
in (B, ) which intersects the general point-condition precisely r times at t = 0.

The next results are now easy consequences.

PrOPOSITION 2.9. If all flexes of C are simple, then the map c3 : Va- - >PV s
regular.

PrRooF: We have to show that ¢3 has no base locus, i.e. that the intersection of
all point-conditions in V3 is empty. But a point in the intersection of all point-
conditions in V3 would determine a direction normal to By and tangent to all
point-conditions in V3; the thickness of Bz would then be > 2 at some point. By
Lemma 2.8, if all flexes of C are simple {i.e., of order 1) the thickness of B, is
precisely 1 everywhere on B, so this can’t happen. 1

By Proposition 2.9, we are done in the case when C has only simple flexes: V3
is the variety V we meant to construct. We will show now that for each flex of
C of order r > 1, the base locus of ¢z has a smooth four-dimensional connected
component.

100
1To see this, work over a neighborhood of o = (0 [ 0). B is parametrized by (k1,k2,z) =
000

1k k
x k11= k:: . For each ¢ = (z, f(z)) € C choose ¢ with ker on the line ) + {z3 = 0,
f(=} k1 f(=) k2 f(3)

and image # ¢ on the tangent line to C at g: e.g. (z # 1) at (1, f(z}+ f'(£)(1 — z)). Then, in
the given coordinates, the line a 4 ¢ ¢ and its proper transforms in V; and V; are parametrized
resp. by

1 Ky 4t koLt
t— ( x kx4t kpx4 Lt )
=) k(@ @ 11 (e f() 4t () (1-2)
t (k1 + 8, k2 + 88,z (1 — 2),4,0, f'(z), ¢S (=)
t (ky + 2, k2 + £, 2,81 — 5),£,0,0,0)

As t — 0, the last equation gives a parametrization of s3{B;} in (ry,...,rs):
(kl,kz.x,e)’—‘(kl'kQ,I,O.t.0,0,0) 1

from which we can read the equations of s{ B }.
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Let a3 € Bz, mapping to & = (k,q) in B, and assume ¢ is a flex of C of order
r > 1. By is 3-dimensional, so the fiber 75 (a3) of B3 = P(Np,V2) over oy is a P4,
We have two special points in this P*, namely the point determined by the proper
transform of the line a + ¢ used in §2.2 to define s, and the direction normal to
By in the section 8(B;). We have seen in the proof of Lemma 2.8 that the length
of the intersection of these directions with Bj is exactly r; also, these points are
distinct for all arg (since one of them corresponds to a direction contained in Fy,
while the other comes from a direction transversal to £3), so they determine a P!
in the fiber w;l(az). As a5 moves in the component of By over ¢, this P! traces a

PLbundle over that component, a smooth four-dimensional subvariety ng) of Ej.
Call B; the union of all these {(disjoint) subvarieties of E3, arising from non-simple
flexes of C.

PROPOSITION 2.10. The base Jocus of the map c3 : V- - ->PY s supported on
Bj.

PROOF: We have to show that in each fiber 73 '(ar2) 2 P* as above, the intersec-
tion of all point-conditions is supported on the specified P!. Observe that each
point-condition determines a hyperplane in this P4, so that the intersection of the
base locus of c3 with 751(02) must be a linear subspace of this P4. Secondly, for
the same reason, no directions tangent to the fiber of E; containing g can be
tangent to all point-conditions in V3. The fibers of Ey are three-dimensional and
transversal to Bs, thus this shows that the base locus of ¢z must miss a P2 in the
fiber 73 !(@3). Thus, the intersection of the base locus of c3 with 73 !(az) can
consist of at most a P1.

Therefore, we just have to show that the two points of 73 () used in the
construction of By are contained in all point-conditions of V3; or, equivalently, the
two directions in V3 used to define these points are tangent to all point-conditions
in V3. But this is precisely the result of the computation in the proof of Lemma 2.8:
the length of the intersection of these curves with all point-conditions is r > 2. 1

§2.4 Further blow-ups. As we have seen in §2.3, each non-simple flex ¢ of C
gives rise to a smooth four-dimensional component of the support Ba of the base
locus of c3; and Bj is the union of all such components. The plan is still to
blow-up the support of the base-locus; since the components are digjoint, we can

concentrate on a specific one: say B;(,"), corresponding to a flex g of C of order
r> 2

Let Vam be the complement of all components of By other than Bg") in V. Let

V_fq) — Va(’) be the blow-up of Vs(') along B_-(,’); again, the proper transforms in

Vi of the point-conditions define a map c{? : V{¥- - ->PN. The base locus of

cg’) might have components over B:(,'), whose union we denote Bg"); in this case,

we will let VB(') be the blow-up of V4(') along Bg’). Iterating this process we get a

18



tower of varieties and maps:

()
41
P, pN

¢

BE—:-)I - Ve(ﬂ'

Lol

B'(?) C V'_(ﬂ) - -cfj)-> PN

LoD
Bé") c Vsé’) L, P-N

where, inductively for i > 4: V,-(') — K(ﬂ is the blow-up of ‘./:(_")1 along B9

-1
csq) : V.-(q)- - ->P¥ is defined by the proper transforms in V.-(") of the point-

conditions (i.e., the ‘point-conditions in V,-(’)’); and (for i > 3) ng) is the support
of the intersection Bg') of the point-conditions in V'-(q) (i.c., the base locus of cgq)).
Also, for 1 > 3 let ESQ) be the exceptional divisor in V'-(q), and let E’f') be the

proper transform of E® in V,(_f;

LEMMA 2.11. Ifqisa flex oforderr > 2, then for3 <i<r+1:
(1);: VA9 is non-singular
(2)i: the composition map B,m — ng) is an isomorphism
(3)i: the thickness of B{") is r + 2 — i at each point of B{?
() B, nE =0

ProoF: We have (1)3, (2)a trivially, and (3); by Lemma 2.8. Also, since Bj is
cut out by linear spaces in each fiber of F3, we have (4)3. Now we will show that:

CLamM. For 4 < i < r+1, (1)i-1, (2)i-1, (8)i-2 and (4)i-1 imply (1):, (2);,
(3),'_1, and (4),'.

Also, we will show that (3),, (4),41 imply (3),41: this will prove the statement.

PROOF OF THE CLAIM: In this proof we will drop the (9) notation, to ease the
exposition. V; is then the blow-up of V;_; along B;_1, and these are both non-
singular by (1)i-1, (2)i-1: so ¥; must also be non-singular, giving (1);.

Next, compute the thickness of B;_;: let ¥(f) be any smooth curve germ
transversal to B;_; and centered at any w;_y; € B;_1. If v is tangent to FE;_,
then by (4);-1 its proper transform will miss the general point-condition in V;:
i.e., the length of the intersection of ¥(¢) with B;_, at t = 0 is 1. If v is transversal
to ;- {and B;_,), then ¥ maps down to a smooth curve germ v, centered at a
point of B;_; and transversal to B;_s. By (3);_2, the intersection of v. with the
point-conditions in V;_; has length at most r — i 4 4: it follows that the intersec-
tion of ¥ with the point-conditions in V;_, has length at most r —i 4 3 > 2 (since
i < r+1). Therefore the thickness of B;_; at ¢ is »— i+ 3, which gives (3);-:.
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For (2)i, look at the intersection of B; with the fiber of E; over an arbitrary
@;_1 € B;_;. First we argue this can’t be empty: indeed, th,,_,(Bi_1) = r—i+3 >
2, so through every a;_; in B; .., there are directions tangent to all point-conditions
in V;~;. To get (2)i, we need to show that the fiber of B; over a;_; consists
(scheme-theoretically) of a simple point. But this is the intersection of B; with
the fiber of E; (= P*) over a;_1, thus a nonempty intersection of linear subspaces
in P3 missing a hyperplane (by (4);_1): precisely a point, as needed for (2);.

Finally, we need (4);. Once more observe that B; intersects each fiber of E; in
an intersection of linear spaces: thus there are no directions in the fibers of E; and
tangent to all point-conditions in Vi. This says that Bj;, must avoid the proper
transforms in V;4, of all fibers of E;, and therefore E;, giving (4);.

This proves the Claim. The only case not covered yet is (3),41: to obtain
this and conclude the proof of 2.11, apply the same argument as above to (3),,
(4)r41- 1

Lemma 2.11 describes the sequence of blow-ups over V3 that takes care of a
specific flex g on C of order » > 2. The case i = r + 1 of the statement says that

)

the variety V,(_',"_1 is non-singular, and the base locus of the map c,(,‘fgl : V,(j’_)l --->PN
(9)

is supported on a variety B}, isomorphic to B:(,"); moreover, for all oy € B,(,i)l,

we got tha,,,(Brs1) = 1. Let then Ve — V,(_f_)l be the blow-up of V) along
Bg)l, and denote by cf_q_za the rational map V:_(i)z- - ->P¥ defined by the point-

conditions in V,(i),. Then V,(f_), is clearly non-singular, and
COROLLARY 2.12. c,(_?z is a regular map.

ProoF: Indeed, the point-conditions in V,_(_z)z cannot intersect anywhere along
EE?Q: if they did, any intersection point would correspond to a direction normal

to Biﬂ_)l and tangent to all point-conditions in V,.(i)l, and the thickness of Bﬁ?l

would be > 2, in contradiction with Lemma 2.11. I

By this last result, the sequence of r—1 blow-ups over V3 just described resolves

the indeterminacies of ¢3 : V5- - ->P¥ over the component B_r(,q) of Ba. To resolve
all indeterminacies of ¢35, we just have to apply the construction simultaneously
to all components of B3: build the sequence

Cit1

Biy1 C Vigr---->P¥

Lo

|
B C Vi --%op¥
A

By C Va --25PN
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where, for i > 4, V; — V;_; is the blow-up of V;_, along B;_y, ¢; : V;-- PV
is defined by the proper transforms in V; of the point-conditions, and B; is the
support of the base locus of ¢;. By Lemma 2.11 and Corollary 2.12 all V;’s are non-
singular, and, for each flex g of C of order r, B; has either exactly one component
mapping isomorphically to B:(f) if i < r+1, or no component over Bg’) ifi> r+42.

In particular, this construction will stop! If r is the maximum among the order
of the flexes of C, let V = V.42, € = ¢r43, and let = be the composition of the
r + 2 blow-up maps; then we have shown

TueoreM I1. €:V = PN isa regular map, and the diagram

PGL(3) ¢ V —— PV

L

PGL(3) c P8 -.Z. PV

commutes. .
which was our objective.
§3 THE DEGREE OF THE ORBIT CLOSURE

In this section we employ the blow-up construction of §2 to compute the degree
of the orbit closure O of a smooth plane curve C € PV¥ = P*5™ with at most
finitely many automorphisms (if d = 3, we should specify ‘induced from PGL(3)’.
This will be understood in the following). The degree will depend on just six
natural numbers: the order of the group of automorphisms of C, the degree d of
C, and four numbers encoding information about the number and order of the
flexes of C. In fact, the blow-up construction of §2 yields most naturally the
‘predegree’ of O, i.e. the product deg O¢ - o¢ of the degree of O¢ by the order
oc of the group of automorphisms of C: this number depends only on d and on
the flexes of C. Also, observe that for the general C of degree > 4, the predegree
“of O¢ equals the degree of the orbit closure.

Let V be the variety obtained in Theorem II: i.e., a smooth projective variety
filling a commutative diagram

PGL(3) ¢ V _° . pN
|

Il

PGL(3) c P8 ..Z., PV

where, for & € P8 a 3 x 3 matrix, ¢(a) is the translate of the curve C by «
as defined in §2; and = is the sequence of blow-ups of §2. For any p € P?, we
have a ‘point-conditicn in V| i.e. the proper transform of the hypersurface of P8
determined by all ¢ € P8 such that ¢(p) C C.
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DEFINITION. The ‘predegree’ of Oc is the 8-fold self-intersection P8 of the class
Pofa point-condition in V.

LEMMA 3.1. The predegree of O¢ equals the product of the degree of the orbit

closure of C by the order of the group of automorphisms of C induced from
PGL(3).

ProoF: The map ¢ is defined by the linear system generated by the point-
conditions on V so P is the pull-back of the hyperplane class from P¥ . Therefore
P® computes the pull-back of the intersection of c(V) Oc with 8 hyperplanes
of PV: i.e., the product of deg(O¢) by the degree of the map €. This latter equals
oc since, given a general c(a) € O¢ (o € P®), the fiber of ¢(a) consists of all
products ya, where ¢ fixes C. I

_ Our aim here is to compute the predegree of Oc, by using the construction of
V described in §2. We first collect most of the information we need from §2.

—The smooth projective variety V is obtained by a sequence of blow-ups at
smooth centers over P8,

—The center of the first biow-up is the three-dimensional B = P?x C, embedded
in P8 by Segre.

—Let V; be the blow-up of P® along B, E, the exceptional divisor. The center
of the second blow-up is a four-dimensional Pl-bundle B; over B, a subbundle
of P(NgP%) = E;. Over each a = (k,q) € P? x C, the fiber of B, is P! =
P(T2Qa/TaB), where Q, is the P® of matrices ¢ € P8 whose image is contained
in the line tangent to C at ¢.

—Let V5 be the blow-up of V] along By, E; the exceptional divisor. The center
of the third blow-up is the three-dimensional union B; of disjoint components
ng), one for each flex ¢ of C. Each ng) maps isomorphically to the restriction
of By to P? x g, and is disjoint from the proper transform El of E,.

—Let V3 be the blow-up of V; along By, E3 the exceptional divisor. The center
of the fourth blow-up is the four-dimensional union By of disjoint components
B:(,q), one for each flex g of C of order > 2. Each B:(,q) is a Pi-bundle over the
corresponding Bg'), a subbundle of E3; in the fiber of Ej over q, a P*, the fiber of
Bj is a P! spanned by points corresponding to a direction transversal to E, and
a direction lying in F,, transversal to the fiber of 5.

—For i > 4, let V; be the blow-up of V;_, along B;.,, E; the exceptional
divisor. The center of the (i + 1)-st blow-up is the four-dimensional union B; of
disjoint components B(q) one for each flex ¢ of C of order > i1 — 1. Each BE")
maps lsomorphlcally to the corresponding B‘(Q)l, and is digjoint from the proper
transform E‘_l of E;_y.

—V= Vr 42, where r is the maximum order of a flex of C.

Our tool will be a formula relating intersection degrees under blow-ups, from
[Aluffil]. In the form we will use, this can be stated as follows:

PROPOSITION 3.2. Let B < V be non-singular projective varieties, and let X C
V be a codimension-1 subvariety, smooth along B. Let V be the blow-up of V
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along B, and let X be the proper transform of X. Then

Frdimv _ naimyv _ [ (Bl +i[XDF™Y
Jyrremy = [ - [

where f;;, etc. denote the degree of a class in l7, etc., of. [Fulton], Def. 1.4.
Note: we will omit the [ sign and the class [] brackets when this doesn’t create
ambiguities.

ProoF: This follows from [Aluffil], §2, Theorem II and Lemma (2), (3). 1

We will compute the predegree of O¢ (i.e. }38) by applying Proposition 3.2 to
each blow-up in the sequence giving V: the missing ingredients to be obtained
at this point are the Chern classes of the normal bundles of the centers of the
blow-ups, and calculations in their intersection rings.

In the following, P,P;,ﬁ will denote resp. (the class of) point-conditions in
V,Vi, V. The embedding of B; in V; is denoted i;, and p;; will be used for the
map Bj — By (p; will be pj;_y for short). As a general convention, we will omit
pull-back notations unless we fear ambiguity.

§3.1. The first blow-up. The center of the first blow-up is the variety B =
P2 x C; the embedding ¢ : B — P® is given by composition with the Segre
embedding:

B=P?xCCP?xP? P8

Call h, k resp. the hyperplane class in P2,P2. Qur convention on pull-backs allows
us to write k, h for the pull-backs of k,h from the factors to P? x P2, and to
B C P? x P2, Also, since the Segre embedding is linear on each factor, the
hyperplane class of P® pulls-back to & + A on B.

LEMMA 3.3. If C has degree d:
(i)In B: k3 =0,k*h=d,kh2 =0,h> =0
iy o (1+k+ R)°(1 +dh)
(@) «(NoP) = (1 + Ay
(iii) P® = d®8; and P pulls-back to dk + dh.

Proor: (i) is immediate.

(ii) c(NpP®) = c(NgP? x P?)c(Npay psP®) by the Whitney formula and the
exact sequence of normal bundles. Now, since B = P2 x C, ¢(NgP? x P?) =
¢(NcP?) = 1 + dh. The formula for ¢(Nps 4 p:P?) is standard.

(iii) Recall from §2 that if p € P?, P is the point-condition corresponding to
p, and F(zg : 2y : z2) is the (degree-d) polynomial defining C, then o« € P <=
F(a(p)) = 0: so P is defined by a degree-d equation in P2,

We have already observed that the point-conditions are non-singular (Lemma

2.1 (ii)), so we are ready for the key computation needed to apply Proposition 3.2
to the first blow-up:

LEMMA 3.4,
(B+i*P)®

= - d? — 33d
o o(NaP®) d(10d — 9)(14 33d + 21)
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PrRooF: By Lemma 3.3, this is

/ (1 + dk + dh)B(1 + k)3(1 + h)?
paxe  (L+k+h)?(1+dh)

the statement follows by computing the coefficient of k2h (the only term with
non-zero degree, by Lemma 3.3(i)).

§3.2. The second blow-up. The center of the second blow-up is a P!-bundle
B, over B )
‘ B, " 14

S

B —— P¥
so classes on B; are combinations of (the pull-backs of) &k, h and ¢;(Og,(-1));

we call this latter e, and observe it is the pull-back from V] of the class of the
exceptional divisor E,.

LEMMA 3.5.
0 i=10
-1 i=1
(1) phe‘.z —3k + 2dh — 6h 1=2

—6k® + 9dkh —27kh i=3
24dk*h — 72k%h i=4
(i) c(Np, Vi) = (1 + )1 + k + dh —¢)®
() 3Py =dk +dh—e
Proor: (iil) is immediate, as P is non-singular and pulls-back on B to dk + dh
(Lemma 3.3 (iii)).
For (i) and (ii) we need to produce By C E; more explicitly as the projectiviza-
tion of a rank-2 subbundle of NgP8,
First define for any p € P? a rank-8 subbundle H, of the trivial bundle B x C°
over B: if F is a polynomial defining C, and (k,q) € B, A € C* = Hom(C?, C?),
say

2
(koA e Hy = Y (5r) Aph=0

$=0 axi

where A(p); is the i-th coordinate of A(p). So the fiber of H, over g is the
hyperplane of matrices A € C° such that A(p) € line tangent to C at g. Nolice
that the above equation has degree d — 1 in the coordinates of ¢: thus (denoting
by C? the trivial bundle B x C3, for short)

o (57) =@

Now restrict the Euler sequence for P8 to B via B < ps. Hp C C® determines
a subbundle H, of i"TP® and we have the following diagram of bundles over B
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(suppressing pull-back as usual)

0 0 0
! l l
0 ) Hy® Opa(l) —— H, — 0
|| | l
0 . 0 . C?@Ops(l) —— TP® — . 0
]
0 — %;@OPI(I)— j;:; 0
l !
0 0

from which it follows

P8 C?
6(7?—) —C(Fp ®OP0(1)) = 1+k+dh

Also, observe that each H, contains T'B.

Now let py, p2, p3 be non-collinear points. A matrix has image contained in a line
if and only if it sends three non-collinear points to that line, thus the intersection
Hp, N Hy, N Hp, is the rank-6 bundle over B = P? x C whose fiber over (k,q) € B
consists of all matrices whose image is contained in the line tangent to C at g¢.
This is the space we used to define By: if we set Q = H,, NH,, NH,,, then

_p( L 8 _ TP\ _ 3
Bl—P(ﬁ)CP(NBP)—El, and C( 0 —(1+k+dh)
Finally, the Euler sequences for Fy and B, give the diagram

0 0 0

! l !

0— 0 — %@031(1)  TBYB —— 0

H ., l

0 — 0 —— NBP8®051(1) _— TEl!B —_— 0

! ! l

0 —— %@Om(l) —— Np

EL —— 0
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(here TB,|B, TE,|B denote the relative tangent bundles of By, £y over B) from
which

. (TP8 5
C(NBIEI) =c (—a- ®OBI(1)) = (1+k+ dh —8)

From this discussion, it’s easy to obtain (i) and (ii):

. i Q\™! .
) n. Z(—l) e =c (ﬁ) by [Fulton], Proposition 3.1 (a)
8
=c (%) (NpP®)~! by Whitney’s formula

_ (L+k+dh)(1+ k(1 + h)?

- (14 k + h)?(1 + dh)

=1— 3k + 2dh — 6h + 6k® — Qdkh + 27kh + 24dk*h — 72k%h
(i) c(Np, Vi) = c¢(Ng,Vi)e(Ng, Ey) = (1+e)(L + k+dh—e)® . 11

Lemma 3.5 allows us to compute the term needed to apply Proposition 3.2 to
the second blow-up:

by the above and Lemma 3.3 (ii)

. LEMMA 3.6.
(Bi +i1P)°
B, ¢(Np, V1)
Proor: This is

= d(2d — 3)(322d® — 1257d + 1233)

/ (14 dk + dh — ¢)B
5, (1 +e)(1+k+dh—e)

by Lemma 3.5 (ii) and (iii). Since the degree doesn’t change after push-forwards,

this is also
/ (1+ dk + dh — ¢)®
s+ o)1+ k+dh—-c)
Computing the degree-4 term in the expansion of the fraction and applying Lemma

3.5 (i) and the projection formula, this is computed as a sum of degree-3 terms in
k,h over B. Lemma 3.3 (i) is used then to obtain the stated expression. I

§3.3. The third blow-up. At this point we have to start taking flexes into
account. For any ¢ € C, let f€(q) be the order of ¢ as a flex of C, in the gense of
§2.2: so ff(q) = 0if g is not a flex of C, fé(¢q) = 1 if ¢ is a simple flex of C, and
80 on. ]

The center By &, V4 of the third blow-up is the disjoint union

By= |J BY |
JHg)>0

where each ng) maps isomorphically to the restriction ng) of the Pl-bundle B,
to P2 x {¢} C B. Moreover, By N E; = @ (Lemma 2.4). As h restricts to 0 on
each P? x {q}, the intersection ring of B{ is generated by k,e (defined as in
§3.2). Also, we denote by e’ the pull-back of E to Bg"), and by pyp the map
B — P2 x {q} = P2.
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LEMMA 3.7.

(i)e =e
0 i=0
. i _ -1 i=1
(po.=9 g4 oy
-6k i=3

(iii) C(Nﬂg"’ Va) = (1+e€)(1+ k- 2¢)®
(iv) i3P; = dk — 2e
Proor: (ii) follows from Lemma 3.5 (i), since the restriction of & to Bg” is 0.
The key observation for the other points is that Bg” NE, = @ Realize
Bg’) C P(Np,V;) as P(L), where £ is a sub-line bundle of Ng,Vi. E; N E; is
the exceptional divisor of the blow-up of E, along By, i.e. the projectivization of
Npg, Ey in Ng, V. That P(L) and P(Np, E) are disjoint says that LN Np, E; is
the zero-section of Np, Vi, and therefore
Ng, Vi
L= Np, £y
(i) With the same notations, £ is tautologically the universal line bundle over
P(L); it must then equal the restriction to B of the universal line bundle
Opg,(—1) = Ng, V2. In other words

L2 Ng, V3 as bundles on Bg').

= Ng, Vi as bundles on B{¥.

Since the projection from ng) to ng) is an isomorphism, it follows that
e=c1(Ng, V1) = ei(L) = c1(Ng, V) = ¢

(iii) Call ES” the restriction of E; = P(Np,V;) to B, We have Euler se-
quences

0 o v Le0(1) —— TBWIBY — 0
0 ' O + Np,Vi ® O(1) —— TE|B® — 0

and we just argued £ = O(-1): so
c(NB(.)Eg")) =c (% ® ﬂ) (restricted to Bg"))
_(Q+e-eYl+k—e—¢)°
- (1+¢€~¢)
=(1+k~2)* by (i)

next, since N By 1s clearly trivial, we have c(NE
1

@ £2) = 1; so putting Ny Ve
2 P
together:
o(N (o V2) = o(NE, Va)e(N gor E2)e(N pio ESNY = (14 e)(1+k—2e)°
as claimed. '
(iv) Since Py is non-singular along By, P; restricts to dk — e — ¢’ = dk — 2¢ by
(). &

We are ready for the term needed to apply Proposition 3.2 to the third blow-up:
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LEMMA 3.8.

(Bz +i3Ps)® _

196d% — 960d + 1125
B, C¢(Np,V2) E ( )

Jt(g)>0

ProoF: By Lemma 3.7 (iii) and (iv), this is

Z f (1+dk-—28)5 _ E / » (1+dk-—28)8
J(g)>0 By (L+e)(1+k - 2¢)° 1¢(g)>07P? 20 (1+e)l+k—26e)?

{pushing forward doesn’t change degrees) and one concludes with the projection
formula and Lemma 3.7 (ii). §

§3.4. Further blow-ups. Further blow-ups are necessary if there are points ¢
on C with fé(q) > 1. We first attack the initial step.

The center B3 &, V3 of the fourth blow-up is the union

B3 = U B:(i” )
JH(g)>1

where each ng) is a P*-bundle over ng). The intersection ring of B:(;’) i8 generated
by (the pull-back of) the classes k,e of ng), and by the class of the universal
line bundle, i.e. the pull back f of E3 from V3. Denote by ps the projeciion
ng) — B:(f).

LEMMA 3.9.
0 i=0
-1 i=1
(pafi=( —¢ i=2
—e? i=3
- i=4

(ii) e(Np@ Vs) = (1+ f)(1 + k= 2¢ - f)?
(iii) i3 Ps = dk — 2¢ — f

ProorF: (ii1) is clear, as P; is non-singular along ng).
For the other items, we have to produce ng) C E:(;') = P(NgwV2) explicitly
as the projectivization of a rank-2 subbundle of N V;. Recall that each fiber
2

of B:(,q) is spanned by two points corresponding respectively to (1) a direction
transversal to Ey, and (2) a direction in Es, transversal to the fiber of E,. Since
these two points are always distinct, B:(,q) =P(Ly1 ® L2), where PLy, PLy give the
two distinguished points on each fiber. Now, £, N Nﬂgq)Eg is the zero-section in

N

o Va (the first direction is transversal to E5); so, with £ as in the proof of 3.7,
2

Ly=ENgWB=L
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Similarly, since the second direction is transversal to the fiber of E;, whose normal
bundle in E, is trivial, £, 2 (J; and therefore we have

B =P(L & 0)
(i) As in the proof of 3.5 (i),

pa. Z(—l)‘f‘ =c(LDO) ! = Z:(—l)‘e‘

and (i) follows by matching dimensions.
(i1) Another pair of Euler sequences: on B:(,")

0 v O —— (LOO)®O(1) —— TBWBY —— 0
0 » O » Ny ¥ ®0(1) —— TEQ|BY —— 0

Since ¢;(0(1)) = —f and E3 is the disjoint union of the E$0:
C(Nng)E'a) = C(Nng) Ey))

NB(Q)VZ ou

(14+k—-2e-f)°

(the Chern roots of NpwVs are e,k — 2¢,k — 2¢,k — 2¢,0 by Lemma 3.7 (iii)).
2
Finally:

C(Nggc) Va) = C(NE,V;;)C(NBPE;,) =1+ N1 +k—2—f)>

as stated. B
Lemma 3.9 describes the situation at the fourth blow-up. The next blow-ups

are built on this in the sequence described in §2.4: the center B; < V; of the
(7 + 1)-st blow-up (j > 3) is the union

B= |J BY ,
JUg)>i-2

(0

where each B}’) maps isomorphically down to B3/, and is disjoint from Eiy
(Lemma 2.11). The intersection ring of each B}") £ B:(,") is then generated by
k,e, f, and the relations stated in Lemma 3.9 (i) hold, for the projection p;; :

BJ(-q) — ng). Denote by f; the pull-back of Ej;to B}q); Lemma 3.9 can be
extended to all stages in the sequence:
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LEMMA 3.9 (CONTINUED). For3 < j < fl(q)+1
@ fi=1
(i6); o(Np@V;) = (1+ 1)1 +k—2¢ - (j - 2)f)°
(iif); i;P; = dk — 2e — (j - 2)f

Proor: For j = 3 this is given by Lemma 3.9. So it suffices to show that,
for 3 < j < flq), (3);, (§1);, (#5); imply (8)j41, (§8);j41, (ii8)j41. Consider then
B, = P(L;iy) C P(NywVj)- S0 fyi1 is the class of Op (=1), ice. of Lja.
Since B}?l N EJ,- = ® (Lemma 2.11 (iv)), we get by the usual argument

fixi = (L) = ei(Ng; V;) = f;
and f; = f by (i);; 80 fj+1 = f, giving (1);41.

(#ii); 4, follows then from (iif); and (§);41, since P; is non-singular along B;.
Finally, we use the Euler sequences ‘

0 + O + Lipn®0(1) — TB{Y,|BY

! ! !

0 » O > Npw V; ® 0(1) TE® B —— 0

to get (since Ej, is the disjoint union of the E’;fl)
Ny, Fi1) = (Vo 512)
NgwV;
= . o(1
| 00
A+ f-HO+k=2—(-2)f - f)° y
= by (3i);
+7-7 (9
=(L+k=2-(G-1D)°

80
o(Npw Vi+1) = e(Npp, Vie )Ny Ejpn) = (L+ (1 +k~2e ~ (j - nn -,

We get then the key term to apply Proposition 3.2 to the j-th blow up in the
sequence. In fact, we can cover Lemma 3.8 as well in one statement:

LEmMMaA 3.10. Forj> 2

(B; +4;P)° _

305 - 96(d — 1);°
b Vo) 2 305*-96(d—1)j

JHq)>j-2
+ 12(d = 1)(7d — 11)7% + 84(d ~ 1)?j — 7(2d — 3)(22d — 39).
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Proor: For j = 2, this is Lemma 3.8. For j > 3, by Lemma 3.9 this is

(1+dk — 2 — (5 — 2)f)®
2 ]Bm O+ N1 +k—-2e—(G—-2)f)°

JUg)>i-2

If pj3 denotes the projection B(q) — B('), (and pyp is the map B(') —P2x{q} =
P?, as in §3.3), this can be computed as

14+dk—2—(j—2)f)8
z/ ( (1-2)f)

”(q))J o P?D.p.r?- (1+f)(1+k 23...(] -Z)f) 3

which is evaluated by using the projection formula , 3.9 (i) and 3.7 (ii).2 ¥

§3.5. The degree of O¢. Computing the predegree of O¢ is now a straightfor-
ward application of Proposition 3.2 and Lemmas 3.4, 3.6 and 3.10; by Proposition

3.2
}~)8 — PB _ Z
jz07Bs

(B; — i3 Py)°
e(Np;V;)
(where By = B, etc.), and the terms in the summation have been computed in

sections 3.1-3.4. This gives

ProprosITON 3.11. The predegree of O¢ is

d® — d(10d — 9)(14d? — 33d + 21) — d(2d — 3)(322d* — 1257d + 1233)
=30 > 305* - 96(d— 1)5° + 12(d - 1)(7d - 11);?

i22  gq€eC
JUe)>i-2

+ 84(d — 1)%j — 7(2d — 3)(22d — 39)

This result can be given in handier forms. For example:

2The reason why this works for 7 = 2 as well is that

(4dk=208  _ (14dk=20) '
A+ NAFF—2eP = (1+k=22)0 G.Z( ~1)iy

expanding 1/(1 + f) and applying the projection formula
14 dk - 2e .
((1 . 2e))3 E (-1)'¢ by Lemma 3.9(i}

_ (1+dk—2c)3
T (14 &)1+ k- 2e)3

as needed for Lemma 3.8.

31



THEOREM I1I{a). The predegree of O¢ Is

d(d — 2)(d® + 2d° + 4d* + 84° — 1356d” + 5280d — 5319) — S fe(q)(fL(g) — 1)
9€C
(6£8(q)> + (75 — 24d) f£(g)* + (28d” — 240d + 393) f£(q) + 196d* — 960d + 1125)

ProoF: Invert the order of summations in Proposition 3.11, then use the fact that
2qec f€(q) = 3d(d — 2) (the number of flexes of C, counted with multiplicity). 1
Or, in another form:
THEOREM I1I(B). Denote by fg) the sum 3= .- f£(q)". Then the predegree of
Oc¢ is
d® — 8d(984° — 492d? + 843d — 486) — (16842 — 720d + 732) /)
— (2847 — 216d + 318)f&) — (69 — 24d) S — 65

By Theorem IH(B), if C is smooth then the predegree of O¢ depends only on
the degree d of C and on the four numbers fé?), fg’), g') and fg’).

If C only has simple flexes, then f£(g) = 0 or 1 for all ¢ € C, so Theorem III(A)
gives

CoROLLARY. If all flexes of C' are simple, then the predegree of O¢ is

d(d — 2)(d® + 2d° + 4d* + 84> — 1356d* + 5280d — 5319)
= d® — 1372d* + 79924> — 1587942 + 10638d

Denoting this polynomial in d by P(d), we remark that it gives the degree of
the orbit closure of the general smooth plane curve of degree d > 4 (indeed, such
a curve C has no non-trivial automorphisms, so by Lemma 3.1 the degree of O¢
equals the predegree).

REMARK. Denoting by fi(d) the (negative) contribution to the predegree aris-
ing from a flex of order k on a curve of degree d, we have, as an immediate
consequence of Theorem I1T(A):

fe(d) = —k(k—1)((28k+196)d* —(24k? +-240k +960)d+(6k> + 75> +393k 4 1125)).

One checks that fi(d) < 0 for all d > k + 2 > 4. This says that the predegree is
maximal for a curve with only simple flexes. Here are two examples:

—CQall ‘hyperflex’ a flex of order 2. If C has n hyperflexes, and all other flexes
of C are simple, then the predegree of O¢ is

P(d)+n - fa(d) = d(d — 2)(d® + 2d° + 4d* + 84° — 1356d° + 5280d — 5319)
— 6n(84d* — 512d + 753)

At the other end of the spectrum, suppose all flexes have maximal order:
—If all flexes of C have order d — 2, then the predegree of O¢ is

P(d) 4 3d - fs_z(d) = d*(d - 2)(d® + 2d* — 26d° — 7d? + 192d - 192)
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Since the Fermat curves are examples, it is from this result that we get the degrce
of the trisecant variety to the d-uple Veronese embedding of P?, as mentioned in
the introduction.

Before giving some more examples, we remind the reader that the degree of the
orbit closure will be computed from the predegree by dividing it by the order of
the group of automorphisms of C induced from PGL(3), by Lemma 3.1.

ExAMPLES. First we list, for some small values of d, the numbers (and their
factorizations) we get from the corollary to Theorem III:

d P(d) P(d) factored

3 216 2°. 33

4 14280 2%.3.5.7-17
5 188340 22.3.5-43-73
6 1119960 2%.3%.5.17-61
7 4508280 2°.32.5.7.1789
8 14318256 21.3.317-941
9 38680740 22.3%.5.7-379
10 92790480 2¢.3.5.59.6553

So for d = 3 we get 216 for the predegree of the orbit of any smooth plane cubic
curve. This gives the well-known numbers 12, resp. 6, resp. 4 for the degree of the
orbit closure of a smooth plane cubic with j # 0,1728, resp. j = 1728, resp. j = 0.
E.g., the group of projective automorphisms of a general cubic consists of 18
elements: the 9 translations over points of order 3 and the 9 reflections in a flex
of the curve. For cubics with j = 1728, resp. j = 0, the projective automorphism
group is twice, resp. thrice, as large.

For d = 4 we get 14280 for the predegree of the orbit of a smooth plane quartic
with only simple flexes. An example of such a curve is the Klein curve z3y+ 12z +
z%z; it has 168 automorphisms, so the degree of its orbit closure is 14280/168 = 85.

If a smooth quartic has n hyperflexes, the predegree of its orbit equals 14280 —
294n. E.g., the degree of the orbit closure of the Fermat quartic is 112, as there
are 96 automorphisms. As an other example, consider the curve z* + z3° + yz3.
It has 1 hyperflex and 9 automorphisms, so the degree of its orbit closure is
(14280 — 294)/9 = 1554.

Finally, one more example for all d > 5: the curve z9-ly 4 yd-1z 4 z9-1g,
It has three (d — 1)-flexes; the remaining 3(d® — 3d + 3) flexes are simple, form
one orbit for the action of the automorphism group and have trivial stabilizer.
(The automorphism group is the semidirect product of the diagonal matrices with
entries {1,{,(?"%), where ¢ is a (d? — 3d + 3)-rd root of unity, and the even
permutations of the coordinates.) So the degree of the orbit closure is

P(d)+3fa-a(d) 1}

B —3d13) = -3-(d6 + 3d° + 6d* — 21d° — 1354d% + 5463d — 5508)

The conclusion to draw from these examples (more precisely, from Lemma 3.1)
is that the existence of a curve with (many) automorphisms creates a congruence
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condition to be satisfied by the formula for the predegree of its orbit. An amusing
example: if the number of automorphisms of a smooth quartic is divisible by 32,
the quartic necessarily has 12 hyperflexes—the Fermat quartic is the only such
curve. In fact, in [Vermeulen] there is a complete list of the automorphism
groups that occur for a quartic with a given number of hyperflexes—the reader
may be assured that the numbers 14280 and 294 satisfy all implied congruences.

In the other direction, our formulas create necessary conditions for the exis-
tence of automorphisms of smooth plane curves. We give one example: from the
corollary to Theorem 1II (compare the list above) one concludes that a smooth
plane curve of degree d = 3 (mod 5) with only simple flexes cannot have an auto-
morphism of order 5. However, it is not hard to prove this result in a more direct
way.

§4. BOUNDARIES OF ORBITS AND FAMILIES OF ORBITS

§4.1. Boundaries of orbits. In this subsection we will study the ‘boundaries’
of the PGL(3)-orbits of nonsingular plane curves of degree d > 3. IL.e., for C such
a curve, we analyse the locus O¢ — O¢. This locus is the disjoint union of orbits of
(very) singular curves; our purpose is to write down which types of curves occur,
depending on C.

Consider the rational map ¢ : P8- - ->P". For o € PGL(3), the image c(a) is
just the translation of C by a, an element of the orbit Og¢.

The base locus of the map ¢ is supported on the set {a € P® : ima C C}.
Since C does not contain a line, these o necessarily have rank 1, and their image
is a point on C.

Now let a have rank 2. By the above, the image ¢(«) is defined, and is an
element of the boundary. It is the curve corresponding to the form C o a, which

is the composition
c

cilclc

As far as C goes, only the restriction of C' to the image of o is important; in pro-
jective terms, this is a d-tuple of points on the line im« (namely, the intersection
of that line with the curve C). To get the curve corresponding to C o &, we have
to ‘pull-back’ this d-tuple along «; we get a d-tuple of lines, all passing through
the point ker . Note that the two d-tuples are isomorphic: giving a rank-2 matrix
is equivalent to giving a point in the source P? (its kernel), a line in the target
P? (its image), and an element of PGL(2) identifying the P! of lines through the
kerne! with the image P!.

Using the above description of rank-2 matrices, it follows that the 5-dimensional
locus of rank-2 matrices with given image line has as its image under ¢ a generally
5-dimensional orbit of curves that are a d-tuple of lines through one point. Here
only the isomorphism class of the d-tuple is fixed; namely, it is that of the d-tuple
of points of C on the image line. (If the d-tuple contains at least 3 distinct points,
the orbit is 5-dimensional; if it is supported on 2 distinct points, the orbit is
4-dimensional; if all d points are equal, the orbit is 2-dimensional.)

Therefore, to find the image under ¢ of all of the locus of rank-2 matrices, we
have to study the natural rationa! map from the g3 on C (the 2-dimensional linear
system of (collinear) d-tuples of points of C corresponding to the dual P2) to the
‘moduli space of d-tuples’ (of points on a line). Namely, it is quite possible that
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distinct lines give isomorphic d-tuples. E.g., for d = 3 all 3-tuples of distinct points
are isomorphic, and the image under any (nonsingular) C of the 7-dimensional
locus of rank-2 matrices is the (closed) 5-dimensional locus of curves consisting of
3 lines through a point. (The image is closed because a cubic curve has flexes as
well as points of ordinary tangency.)

As for d = 4, the moduli space of 4-tuples of points on P! is the j-line.

LEMMA 4.1. Let C be a smooth quartic curve. The rational map j: g3(C)- - ->P!
is dominant.

ProoF: The j-invariant of a 4-tuple of points is undefined exactly when at least
three of the four points coincide. Therefore the base locus of the map j consists
of finitely many points, corresponding to the flex lines of C. We have to exclude
the possibility that the image of the irreducible open set where j is defined, is a
point. This is easy: there are ordinary tangent lines as well as lines which are not
tangent lines. |

For d > 5 the moduli space of d-tuples of points on P! is the quotient (in the
sense of geometric invariant theory) (P9),,/PGL(2). Here P4 is the projective
space of d-tuples, and (P9),, stands for the locus of semistable d-tuples. Note
(see [Mumford, p. 45]) that a d-tuple is stable (resp. scmistable) if and only if
all multiplicities are < d/2 (resp. < d/2). The geometric quotient {P?),,/PGL(2)
is a projective variety which we denote with M.

ProprosITION 4.2. Let C be a smooth plane curve of degree d > 5. The natural
rational map fc: g3(C)- - -> My is generically finite.

ProoF: We first observe that for many (possibly singular) curves, the result is
easy to prove. Assume C to be a reduced plane curve of degree d > 5. Assume
moreover that the dual curve exists (i.e., the closure of the locus of tangent lines
at smooth points is a curve—this happens exactly if C is not a union of lines)
and that there is at least one special tangent line giving a semistable d-tuple.
Then the result follows. Indeed, a general point of the dual curve gives a d-tuple
with one point of multiplicity two and otherwise simple points, whereas a special
tangent line produces a d-tuple with at least one multiplicity > 3 or at least two
multiplicities > 2. Since we required that one special tangent tuple be semistable,
whereas the general tangent tuple is stable (here we use that d > 5), the image
of the dual curve is a curve. But the general line in P? produces a d-tuple with
d points of multiplicity one: a point not on said curve. So the {closure of the)
image contains a closed curve and a point not on that curve. Since the image is
irreducible, it is 2-dimensional. So the map fc is indeed generically finite.

To finish the proof of the proposition, we sketch an argument that on a smooth
plane curve there always exists a semistable special tangent line. We count flexes
and bitangents, with multiplicities. An unstable tangent line has one multiplicity
> i‘aﬂ, so counts for at least d;za flexes. On the other hand, it counts for at most
(d; 2) bitangents, as this is the number of bitangents ‘disappearing’ in a d-flex. So
the number of disappearing bitangents is at most d —2 times the number of disap-
pearing fiexes, for any unstable tangent line. Now the total number of bitangents
is 43—6:—9 times the total number of flexes (both numbers with multiplicities). Since

2-9 .
8 >5d-2
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for d > 6, it follows that for these values of d not all special tangent lines can
give unstable d-tuples. For d = 5 it suffices to remark that the estimate d — 2
above can be improved: an unstable special tangent line counts for at most twice
as many bitangents as flexes in this case (cf. the 5-tuples of the form (3, 2)). Since
there are 45 flexes and 120 bitangents (counted with multiplicities), there exist at
least 30 ordinary bitangents. I

REMARK 4.3. If fc i1s a morphism, i.e., at each point the intersection multi-
plicity of the curve and the tangent line is < d/2 (so that d > 6), then it is a
finite morphism. (An infinite fibre other than the dual curve intersects the dual
curve, contradiction; and the dual curve is not a fibre since there are non-ordinary
tangent lines.)

So far for the images of rank-2 matrices. If o is a rank-1 matrix with image a
point not on C, one checks that the curve C o o is a d-fold line; the line is the
kernel of «.

As said before, the remaining matrices—those of rank 1 with image a point
on C—are in the base locus of the map ¢. To find the remaining points in the
boundary O¢ — Og¢, one can proceed in several ways,

One way would be to follow closely the process of resolving the map ¢, as it is
done in §2. There the map is resolved by a sequence of blow-ups; the center of each
blow-up is the support of the base locus of the induced map. If one determines
at each stage the image under the induced map of the exceptional divisor (minus
the new base locus), one finds step-by-step all points in the boundary of the
orbit of C. Here we will follow another method. We want to use the set-up of
[Kempf, proof of Theorem (1.4)]. In order to be able to do so, we need a slight
change of perspective: we will study (the orbits of) the action of G = GL(3) on

CN+L = C(d.;z) . This just amounts to considering the affine cones over the orbits
instead of the orbits themselves,

So consider the smooth plane curve C of degree d as an element of CN+!,
According to (loc.cit.), in order to find all points in the closure of the G-orbit of
C, we have to determine the limits lim,_.g C-p(t) that exist, where p: C((1)) = G
is a rational map. By the Cartan-Iwahori decomposition (loc.cit.; cf. the footnote
on p. 53 of [Mumford-Fogarty]) one has p = h; - A - hy, where hy, hy € G(C[[t]])
and A is a one-parameter subgroup (1-PS) of G (see also [Mumford, pp. 42-43]).
So it suffices to determine the limits

IimC-hy-A
t—0

that exist. Note that we are interested only in the orbits that occur in the bound-
ary, so we ignore the effect of h, (a transiation by £;(0)). For the same reason we
may and will assume that £;(0) is the identity matrix.

Now we choose coordinates so that A is diagonal:

t° 0 0
0 tt 0
0.0 ¢

with a < b < ¢ integers.
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LEMMA 4.4. Let

up b o
h]_ = G Ug C2
a3 b3 u3

be an element of G(C[[t]]) with hy(0) = I3. Then h, can be written as a product
hy = h-j with

1 00 vy er fi
h:(q 1 O)EG(C[t]) (M, j=(d2 va fz) € G(C[[t]]),

r s 1 ds ez v3

satisfying

(1) h(0) = j(0) = I5;
(2) deg(q) < b—a, deg(r) <c—a,deg(s) <c—b;
(3) d2=0 (mod t*-?), d3 = 0 (mod t°"%), e3 = 0 (mod t°~%).

(Here we define the degree of the zero polynomial to be —c0.)

ProoF: Obviously v; = uy,e; = b, and f; = ¢;. Use division with remainder to
write

vl'lag = Dyt* % 44
with deg(¢) < b—a, and let d2 = v; Dt>~° (so that qu; + d2 = az2). This defines ¢
and dj, and uniquely determines ve and f;. (Note that ¢(0) = d3(0) = f2(0) = 0
and that v,(0) = 1.)
Similarly, we let r be the remainder of

(vlvg — Cldg)-l(vzaa - dzb3)
under division by ¢°~%; and s be the remainder of
(v1v2 — €1d3) " (v1b3 — €1a3)

under division by =%,
Then deg(r) < ¢ ~ a, deg(s) < ¢ — b and r(0) = s(0) = 0; moreover, we have

vir+dys =ag (mod t°7%), eir+vs=bs (mod t"b),

so we take d3 = a3 — vy7r — dzs, e3 = b3 — ey — v95. This defines r, 5, d3 and eg,
and uniquely determines vs. I

It suffices therefore to consider the limits
limC-h-A
(—0
with A as in the lemma. The reason is that by (3) above we have j - A = A - &
for a k € G(C[[]]), and the effect of k can be ignored (note that k(0) is a lower

triangular matrix with 1's on the diagonal).

37



THEOREM 1V(1). Let C be a smooth plane curve of degree d > 3. The bound-
ary components of the PGL(3)-orbit O¢ of C in PN are all 7-dimensional. The
following hold:

(1) For 3 < k < d, the closure of the orbit of the curve z9~%y* 4+ zd-1z is a
boundary component if and only if C has a k-flex.

(2) For d > 5 there is exactly one other component, the closurc of the images
of the rank-2 matrices. For d = 3 or 4 there are no other components.

REMARK 4.5. Suppose that C has a k-flex in (1 :0: 0) along z = 0. We may
assume that the coefficients of £9~¥y* and of 4~ !z are both 1. Then the curve
x4 *y* 4 2z9-12 is equal to the limit lim¢_.o C - A where A is the 1-PS

= 0 0
0 ¢k 9
0 0 tdk-k

In other words, the boundary components of type (1) are orbit closures of 1-PS
limits of C. A direct proof of this statement, perhaps also for certain singular
C, would be very welcome. {Note: it is not true that all curves in the boundary
of an orbit are 1-PS limits of (transiates of) C. For the general C of degree
d > 6, the curve (22 + y?)z?~2 may serve as an example. Moreover, recently we
have found examples of (rather special) singular curves whose orbit closure has a
(7-dimensional) boundary component that is not contained in the Zariski closure
of the set of 1-PS limits of (translates of) C. The only reference we have been
able to find that touches upon questions of this kind is [Kraft, I11.2.3 Bemerkung
1, p. 178].)

PROOF OF THE THEOREM: We have to determine all limits

limC - h-A
t—0

that exist, with A and A as before.

We start with the following observation. Suppose that lim;—o C - h - X exists,
and suppose that a certain monomial z¥y's™ (with k 414 m = d) appears in
C with non-zero coefficient. Then ka + Ib + me > 0, and this monomial appears
in the limit if and only if ka + {6 + mc = 0. However, it is possible that other
monomials—those that don’t appear in C—do appear in the limit. The reason
is that for all terms t¥z*y' 2™ in C - h - A the weight w is at least ka + Ib + mc,
and there is a term with this minimum weight if and only if z¥y'2™ has non-zero
coeflicient in C.

Ii’s easy to analyse the cases where a > 0:

(1) If a > 0, the limit is 0.

(2) 1f a = 0 < b, the limit is C(z,0,0), which is a multiple of z¢.

(3) fa="5=0 < ¢, the limit is C(z,y,0). This is a rank-2 image.

(4) fa =b=c=0, the limit is C itself.
Note that in all these cases & has no effect whatsoever.

Next we assume a < 0. Since C does not contain a line, one of the monomials
z9-*y* has non-zero coefficient. Using the above observation, one first sees that
the coefficient of z¢ is 0 (since a < 0) and then that b > 0 (so in particular b > a).
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Again using the above observation, if C has at most a simple flex in (1:0: 0)
along z = 0 (i.e., the coefficient of z""‘ * is #£ 0 for a k < 3), the limit is in the
span of z9, z9-1y, 2922 z9-343 and zd 1z. (Note: if the coefficient of z9-1y
is 0, the coefficient of 29~z is # 0 since C is smooth.) One immediately checks
that this span is contained in the closure of the orbit of the curve z9-33 4 z9-12

To finish the proof of the first part of the theorem, we have to analyse the
situation at the higher flexes. So assume that C has a k-flex (k> 4) at (1:0:0)

along z = 0. Then the coefficients of z9, 291y, ..., 28 FH k-1 are all 0, while
the coefficients of 2%~ ¥y* and of z4~!z are # 0. This implies

(%) (d=k)a+kb>0,

(*%) (d—1)a+e¢>0.

In order that we will be able to determine which of the monomials =9, ...,
zd- ¥+l -1 gecur in the limit, we will write down for each monomial the numbers
that could a priori be the minimum weight of that monomial in the expression
C -h- ). Since these monomials 4~/ (with 0 < j < k — 1) do not appear in C,
their possible minimum weights are > (d — J)a+_7b to find the possible minimum
weights we repeatedly replace in z4~7y/ either an z by a y, or an z by a 2z, or a
y by a z, until we arrive at a monomial (call it M) that could appear in C we
then write down the weight of the original monomial as it arises from M in the
expression M -h-X. Replacing an z by a y, we have to go all the way up to z9-*¢*;
as for replacing an z or a y by a 2, we have to do only one such substitution, but
unless the result is 4!z, we cannot guarantee that the resulting monomial has
non-zero coefficient in C. This accounts for the >-signs in the list below. Note
that the original monomial ariges in a unique way from M if we replaced an z by
a yoray by a z; if we replaced an z by a z, there are two ways to reproduce the
original monomial: either we let the one z ‘take care’ of an z, or the z produce a
y and a y produce an z. In order that the latter possibility make sense, we need
that M contain a y; however, the weight (of the original monomial) gotten in that
case is strictly larger than the weight one gets by just replacing a y by a 2. So we
will ignore this second possibility.

Before we write down the list, we introduce some notation: we let [, resp. m,
resp. n be the valuation (with respect to t) of q, resp. r, resp. s (with v(0) = +00).

Now for the list. The possible minimum weights of z¢:

(0-1) (d=k)a+ k{a+1) =da+ ki,

(0-2) (d-Da+(a+m)=da+m.

The possible minimum weights of z9~1y:

(1-1) d=Ka+(k-D@e+)+b=(d—1Na+b+ (k1)
(1-2) >(d=a+b+(a+m)=(d-1a+b+m,

(1-3) (d=Da+(b+n)=(d-1a+b+n.

The possible minimum weights of z4~73 (with 2 < j <k —1):

(7-1) (d=k)a+ (k=j)(a+1)+jb=(d=ja+jb+ (k- ),
(3-2) >(d-j—1a+jb+(a+m)=(d-jla+jb+m,

(7-3) 2d=Fa+(G—-1)b+(d+n)=(d-jla+jb+n.
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Since we assumed that the limit limy_,qC - h - X exists, it follows that each
monomial z¢=7y (with 0 € j € k — 1) occurs with nonnegative weight in the
expression C-h-A. This leaves two possibilities for the possible minimum weights
of such a monomial as written down in the list above: either all possible minimum
weights are > 0, or at least two of them are < 0 and equal, and the third weight
(if it exists) is greater than or equal to these two. The second possibility reflects
the phenomenon of cancellation: a priori it is possible that terms arising from
distinct monomials M cancel each other out by having equal negative weights and
coellicients adding up to 0, in which case the true minimum weight of the original
monomial is larger than the smallest weight in the table above; in particular, the
true minimum weight could be greater than or equal to zero.

Hoping that the reader is still with us at this point, we will now analyse which
limits occur. Remember that a < 0 < b.

If I = oo (i.e., ¢ = 0), then from the above it follows that da + m > 0. So all
other second terms are > 0, s0 (d — 1)a + b+ n > 0, so all other third terms are
> 0. The limit is in the span of z¢, £%~ 'y, z%~1z and z9*y*, thus in the closure
of the orbit of z4~¥y* + z4-12.

If ¢ # 0, then by the lemma 0 < | < deg(q) < b — a. We distinguish two cases.

Case L.

da + kl > 0, da+m >0,

Since b—a—1 > 0, all other first terms are > 0, and in (*} we get strict inequality.
As before we get that all other second terms are > 0, so (1-3) is > 0, so all other
third terms are > 0. The limit is in the span of z¢, %'y and z9~!z. This span
is contained in the closure of the (projectively) 4-dimensional orbit of two distinct
lines, one of which has multiplicity d — 1.
Cask I1.
da+kl=da+m<0.

This implies (d = 1)a+ b+ (k - 1) < (d = a + b+ m, so we are left with two
subcases.

Case II-1.
d-1Da+b+(k-1)2>0, (d-=Da+b+n>0.

Clearly all terms with j > 2 are > 0, and the term in (%) is > 0 as well. So the
limit is again in the span of 24, ="'y and z9~!z.
Case I1-2.

(d=Da+b+(k-D=(d-1a+b+n<0.

Then (d — 2)a + 26 + (k — 2)I < (d ~ 2)a + 2b + n, so necessarily the first term
is > 0. One easily sees that the limit is contained in the span of z¢, z¢~ly,
291z and z9-2y2. This span is contained in the closure of the (projectively)
6-dimensional orbit of a smooth conic with a (d — 2)-fold tangent line. Note that
this 6-dimensional locus is contained in the orbit ¢losure of the curve z9 %y 4
z9~1z. (Choose coordinates so that (1 : 0 : 0) is a smooth point where z = 0 is
simply tangent, and apply the diagonalized 1-PS with entries (t'z,td'z,t“‘z) to
get the result.)
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Note that the above arguments apply when m = oo and/or n = co.

All in all, we proved that if C has a k-flex at (1 : 0 : 0) along 2 = 0 in the
coordinates chosen to diagonalize A, and if @ < 0, then the limits lim¢,o C - h - A
that exist are contained in the orbit closure of the curve z9-%y* 4 z4- 12,

Using Remark 4.5, we see that the first part of the theorem is now proved. To
prove the second part we have to deal with the limits of 1-PS’s for which a > 0.
It is immediate from the (easy) analysis of these limits (see above) that this gives
rise to at most one boundary component, the closure of the locus of images of
rank-2 matrices. By Proposition 4.2, this locus is 7-dimensional for d > 5, and
thus its closure forms a boundary component. For d = 3 (resp. 4) the locus has
dimension 5 (resp. 6), and its closure is the locus of all d-tuples of lines through a
point. One easily checks that this locus is contained in the boundary components
of type (1).

This finishes the proof of Theorem IV(1). 1

§4.2. Families of orbits. In this subsection we will study one-dimensional fam-
ilies of orbits. Let C(u) be a family of smooth plane curves of degree d over AL,
with central fibre C = C(0) a curve with one k-flex (4 < k < d) and otherwise sim-
ple fiexes, and general fibre a curve with only simple flexes. Assume for simplicity
that C has no non-trivial automorphisms. Denote by X the scheme-theoretic clo-
sure in PV x Al of the corresponding family of orbits, and by Xg the special fibre
of X.

Since X is flat over AL the degree of the fibres is constant. Now the general fibre
is the orbit closure of a curve with only simple flexes and no automorphisms. Its
degree was computed in the Corollary to Theorem III, §3, and equals that of the
orbit closure of a general plane curve. The special fibre contains the orbit closure
of C. This orbit closure has degree strictly less than the degree of the general fibre,
since not all flexes of C are simple (see the remark following Theorem I11). As a
consequence, Xy must have other components. We will prove that in a situation as
above, where the family is general in a sense to be specified later, there is only one
other component, the orbit closure of a certain, well-determined singular curve.

Thus the degree of the orbit (closure) of a general plane cutve is the sum of the
degrees of two other orbits; or, what we have to subtract from the general degree
to get the degree of the orbit of a curve with a k-flex, is in fact the degree of the
orbit of another, singular, curve; in some sense the two curves are ‘dual’ to each
other. (Perhaps ‘liaison’ gives a betier description of the situation.)

At present we are not able to compute the degrees of the orbits of these singular
curves directly, except in the case k = 4, by an ad hoc method. For other (less)
singular curves, we can compute the degrees of the orbits. We hope to publish
these results in a second paper, in which we will also exhibit other examples of
the ‘duality’ observed above.

In the following lemma, C(u) may be any family of smooth plane curves of
degree d over AL. Again we denote by X the scheme-theoretic closure in P¥ x Al of
the corresponding family of orbits, and by Xy the central fibre of X. Furthermore,
let Yp be the affine cone over X, and let G = GL(3).
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LEMMA 4.6. As sets,
Yo = {lim C(u) - g(t) : g € G(C((1))),u =1, €Ny },

where we ignore the limits that don’t exist.

PRrROOF: Again, we follow the set-up of [Kempf, proof of Theorem (1.4)]. Let
U= {C(u)-h:u30,h € G}, which locally around 0 equals the union of the
orbits outside the central fibre. Then Y; consists of the points in the closure of U/
that lie above u = 0. Pick such a point. We may find a curve S in U that contains
this point in its closure. This curve comes with a dominant map to Al. Writing
down for each u # 0 the elements in G that map C(u) to one of the points of
S above u,we find a curve §' in G. Finally, let S be a smooth complete curve
normalizing the curve S’ in G; it comes with a map to G and with a dominant
map to Al. Localize at u = 0: let { be a local parameter at a point of S lying
above u = 0. Then u = t* (up to a unit, which can be ignored) for some e € N,..
Considering that S” gives us a rational map from C[[t]] to G, or in other words,
an element of G(C((t))), we arrive at the statement of the lemma. 1

Returning to the beginning of this subsection, let C(u) be a family with central
fibre C = C(0) 2 smooth curve with one k-flex (k > 4) and otherwise simple flexes,
and general fibre a curve with only simple flexes.

We use Lemma 4.6 to determine the components of Xy. As before, by the
Cartan-Iwahori decomposition and since we are interested only in the orbits that
occur, we are reduced to computing the limits limg—o C'(u) - h1(f) - A(t) that exist,
with u = t° for an ¢ € N4 and h; an element of G(C{{t]}) with h,(0) = Ia. Choose
coordinates so that A is a diagonal matrix with entries (2%, t"’,t“), witha<bd<e.
If a > 0, the limit is contained in the orbit closure of C, so we assume a < 0. As
before it follows that 4 > 0 > a.

To get a limit that is not in the orbit closure of C, we have to assume that the
k-flex of C is in (1 : 0 :0) along z = 0. So C is of the form z?~*y* 4+ 29-1z 4 ..,
where the dots indicate terms that have higher {thus positive) A-weight. Denote
by a;(u) the coefficient of z?~/3 in C(u), for 0 < j < & — 1. Each of these
k polynomials has a zero at u = 0. We may assume that ag(u) and a;(u) are
identically zero: let b(u) be the coefficient of 4~z in C(u), let g(u) be the change
of coordinates fixing z and y and sending z to z — ag(u)b(u) "'z — ay (u)b(u)~ 1y,
and consider C(u) - g(u) as the new C(u) and g(u)~'hy(t) as the new hy(t).

Now we restrict our attention to a general family, in the following sense: we
assume that ap(u) has a simple zero at u = 0. In other words, we assume that
C(u) represents a first-order deformation of C in which the point (1 : 0 :0) is
not a flex. One checks that C(u) can be written in the form z#~%y* 4+ 2412 4
uz?2y? 4 .., where the dots indicate terms that have higher total weight (the
sum of the A-weight of a monomial and the t-valuation of its coeflicient).

THEOREM IV(2). Assume that C(u) is a general family, as above. Then the
central fibre Xo of the closure X of the corresponding family of PGL(3)-orbits
consists of two components, the orbit closure of C = C(0) and the orbit closure
of the curve z%~ ¥y 4 29-2y2 4 z4-12.

REMARK. The curve y* + z¥~2y® + z¥~12 has one singular point and k& — 2
simple flexes.
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PROOF OF THE THEOREM: We continue our analysis of the limits lim;_.q C(u) -
hy(t) - A(t), with C(u) in the form z *y* + 29~ 12 + uzd=2y? 4 ... Applying
Lemma 4.4, we see that it suffices to determine the limits lim—o C(u) - h(t) - A(t)
with A as in that lemma. Once again we write down the possible minimum (total)
weights of the monomials z9-74/ | for 0 < j < k — 1; we use the same notations as
in the proof of Theorem IV(1).

The weights of z9:

(0-1) (d—k)a+ k(a+1) = da + K,
(0-2) (d—1a+(a+m)=da+m,
(0-3) (d=2a+2(a+)+e=da+2l+e.

The weights of z9~1y:

(L) (@d=Bla+ (k= D@+ +b=(d—Datb+ (k- 1),
(1-2) >2(d-2a+b+(a+m)=(d-1)a+b+m,
(1-3) (d-=2)a+(a+D)+b+e=(d-Da+b+i+e,
(1-4) (d-1Da+(b+n)=(d—1)a+b+n.

The weights of x9-2y2:

(2-1) (d—k)a+ (k=2)(a+1)+ 2= (d—2a+ 2+ (k- 2)l,
(2-2) >{d-3)a+2b+(a+m)=(d—2)a+2b+m,
(2-3) (d—2)a+2b+e=(d—2)a+2b+e,
(2-4) >(d—2)a+b+(b+n)=(d-2)a+2+n.

The weights of z4-7y/  for3<j <k —1:

G-1)  (@d=Ba+ (k= i)a+D)+ib=(d=)a+ b+ k=),
(7-2) >(d~-j-Da+jb+(a+m)=(d—jla+jb+m,
(-3) > (d=j)a+jb+e=(d=i)atib+e
(G4)  2(d=atG=Db+G+n)=(d=ia+b+n.

Let us analyse the various possibilities. If [ = 400, then da + m > 0, thus
(d-1a+b+n>0,thus (d—2)a+2b+e > 0; all other weights are > 0. The
limit is in the span of z4, z9-1y, z9-2y2 29-%y* and 9!z, This gives the new
8-dimensional orbit closure. (Apply the 1-PS with (a,b,¢c) = (—k,d — k,dk — k)
to the family with e = d(k ~ 2).)

So we may assume 0 < ! < b — a. We distinguish four cases.

Case L

da+kl>0, da+m2>0, da+2l+e>0.

Then (d — 1)a+ b+ n > 0, all other weights are > 0. The limit is in the orbit

closure of zd-1y.

Case 11.
da+2l4+e>da+kl=da+m<0.
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Then (1-1) is less than (1-2) and (1-3). There are two subcases:
Caski 1I-1.

(d=Da+b+(k-1)I>0, (d—1)a+b+n>0.

The limit is in the orbit closure of z9~1y.
Case II-2.

d=-Da+b+(k-N=(d-1a+b+n<0.

Then 0 < (d - 2)a+ 2b+ (k — 2)! < (d — 2)a + 2b + n. The limit is in the orbit
closure of z9-2y2 4 z4-12,
Casg III.

da+m>da+2+e=da+kl<O.

Then (1-1) equals (1-3). If this number is > 0, then the limit is in the orbit closure
of z¢~1y. Else (1-4) is greater than or equal to it. Then (2-4) is greater than (2-1),
which equals (2-3). Finally, it follows then that (3-3) is greater than (3-1), which
is > 0. The limit is in the orbit closure of z9-3y2 4 29!z,

Case 1V,

da4+ki>da+m=da+2l4+e<0.

Then (1-1) and (1-2) are both greater than (1-3). Again, two subcases:
Caske 1V-1.

(d=Ya+b+n2>0, (d=Ma+db+l+e>0.

The limit is in the orbit closure of x4~ 1y,
CAsE 1V-2.

(d=Da+b+n=(d-1a+b+14+e<0.

Then 0 < {(d —2)a+2b+e < (d—2)a+ 26+ n. The limit is the orbit closure of
Id-2y2 + pd=15

This finishes the proof of the theorem. I

§5. AN APPLICATION.

In this section we present an application of the results so far. First we introduce
some notation. Let d > 4 be an integer, let N = (d‘;z) — 1 and let g = (dgl).
Denote by PV the projective space of plane curves of degree d, by M, the moduli
space of smooth, irreducible curves of genus g, and by M3 the locally closed
subvariety of M, of curves that can be embedded as smooth plane curves of
degree d. (Note that these curves have a unique gg, compare [ACGH, App. A,
Exc. 18(iii)].) Denote by V the closed (irreducible) subvariety, of codimension
one, of M3 of curves with at least one k-flex for a k > 4 (in other words, curves -
for which not all flexes are simple).
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TREOREM V(1). For d =4 or 5, the Chow ring (with Q-coefficients) of M3 -V
is trivial. Le., for £ > 1
A MG = V)q =(0).

ProoF: From the proof of Theorem IV(1) we know that the curves appearing in
the boundary of an orbit of a smooth plane curve of degree d are either of the
form ‘d lines through a point’ or have an equation of the form z?~*yf 4 z9-1;
with 2 <k < d.

Let X be the closed set in P which is the union of the closures of the loci of
such curves. The various loci have dimension either d+2 or 6 or 7, so (since d = 4
or 5) each component of X has dimension < 7 (in fact, equality holds).

Let P be a general linear subspace of codimension 8 in P¥; in fact, any such
subspace that has empty intersection with X. Let A C P¥ be the discriminant
hypersurface parametrizing the singular plane curves, and let /' = P — A be the
(non-empty, as we will see) open subset of P of smooth plane curves. Then (by
the definition of M,) there is a natural morphism ¢: U — A% which sends a
point in U to the isomorphism class of the curve corresponding to it. We claim:

(1) ¢ is surjective and quasi-finite;

(2) ¢ is finite (exactly) above M?% — V.

Once the claim is proven, the theorem follows by applying the (easy) Lemma A

in [Faber, Introduction]. (Note that the Chow ring (with Q-coefficients) of U is
trivial, cf. [Fulton, §1.8].)

PrOOF OF CLAIM: To prove the first part, note that P has non-empty intersection
with every 8-dimensional closed subvariety of PV, so in particular PNO¢ # @ for
a smooth C. Since PN X = @, we find

(*) 8# PNOc=PN0Oc=UNO0c,

so ¢ is surjective. Since U is affine and the intersection is a closed subset of P, it
consists of finitely many points, so that ¢ is quasi-finite.

To prove the theorem, it suffices to prove that ¢ is proper above M?, -V, the
locus of curves with only simple flexes, since ¢ is quasi-finite (([EGA III, 4.4.2]).
Let R = C[[t]], let K = C((t)) be its quotient field, and let i: Spec K — Spec R
be the map induced by the inclusion 2 C K. Consider a family over Spec 12 where
both fibres are smooth plane curves with only simple flexes. Let m: Spec R —
M3 —V be the morphism we get by taking isomorphism classes. Suppose we have
a map n: Spec K — U such that ¢ -n = m 1. Since P is proper over C, the map
n can be extended to Spec R to give a map p: Spec i — P. Denoting by C the
special fibre of the family, we know that the image of the closed point is contained
in Oc (it is here that we use that the family consists of curves with only simple
flexes; the special fibre in the closure of the corresponding family of orbits is O_c)
Using (*), we conclude that the image of p is contained in U. This proves thal ¢
is proper above M3 — V.

Next we show that in fact ¢ is not proper above V. A curve is in V if and only
if it has at least one k-flex (4 < k£ < d). Write down a general family (see Theorem
1V(2)) of smooth plane curves with central fibre a curve C with a k-flex and general
fibre a curve with only simple flexes: C(u) = 2% *y* 4 24 124 ux® 2y? 4 .. .. Let
A be the diagonalized 1-PS with entries (t~*,19-% 19 ~¥) let e = d(k — 2), and
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consider the family D(t) = C(¢°) - A(t). Taking isomorphism classes, we sec that
E(t) = C(t°) gives a map m: Spec R — M3. Assume for a moment that D(t)
gives a map n: Spec K — U. Then ¢ -n = m - { since the generic fibres of D(t)
and of E(t) are isomorphic. But there doesn’t exist a map p: Spec R — U with
p-i=n, since lim_o D(t) is the singular curve L =z *y* + 29124 29232 It
follows that ¢ is not proper above V.

To see that we may assume that D(t) gives a map n: Spec K — U, the crucial
point is to find a ¢ € PGL(3) such that L-g € P. Once we have that, we can
also find a g(t) € G(R), with g(0) = g, such that D(t) - g(t) € P(R). The generic
fibre of this family is then in U. To find g, note that Oz N P # @ (of course) and
that Oy — Op, C X. Namely, in the proof of Theorem IV(2) we found all points
in Or. These points are either in O¢, in which case they are in X, or (for certain
coordinates z, y and z) they are in the span of z¢, z9-1y, z4-%y? z9-*y* and
z4-'z, We have to check that the boundary points in this span are all in X. If
the coefficient of 29~z is 0, this is the case since X contains all curves of type ‘d
lines through a point’. If the coefficient of 24~z is # 0, we may assume that the
coefficients of z¢ and of z9~'y are 0. Since we are considering boundary points,
at least one of the coefficients of z4~*y* and of z9-2y® is 0; the resulting curves
are in X.

The claim and the theorem have been proven. 1

REMARKS. (1) The degree of ¢ is
d(d — 2)(d® + 2d° + 4d* + 8d° — 1356 + 5280d — 5319).

This is a direct consequence of the corollary to Theorem III: the degree of ¢ equals
the number of points in the intersection of P and the orbit closure of a general
plane curve of degree d.

(2) The reader is invited to compare the theorem with the construction in
[Faber, Proposition (1.1)], where an analogous result is proved using a special P®
in the P of plane quartics.

It is rather involved to extend the theorem to higher values of d. The problem
is that the locus @ C P¥ of all curves consisting of d lines through a point has
dimension d+2, so for d > 6 it has non-empty intersection with any linear subspace
P of dimension N — 8. Nevertheless it turns out to be possible to prove that for
d > 7 the complement in M2 of two irreducible divisors has trivial Chow ring.
The idea of the construction of the second divisor is as follows. Starting with the
1somorphism class [g] of a d-tuple ¢ of points on a line, one may constiruct the
subvariety of M3 of isomorphism classes [C] of curves C for which a line m in P?
realizes the class [g] (i.e., [nNC] = [¢]). Roughly, the second divisor is a union of
such subvarieties, where [¢] runs over the isomorphism classes of the d-tuples (of
lines through a point, this time) occuring in PN Q.

To describe the construction more precisely, we first need a lemma. Let S be
the locus of d-fold lines; this is the d-uple embedding of P? into PV,

LEMMA 5.2. Assets, Sing@Q = S.

PrROOF: Given a point in P2, the locus of curves consisting of d lines through
that point forms a P¢ which is linearly embedded in PY. Globally this gives a
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P2-bundle T over P2, inside PV x P2, Then @ = p;(T) where p,: PV x P2 — PN
is the first projection. The fibres of the morphism p,: T — @ consist of single
points above Q — S, and are P!’s above §. We claim that p; is an isomorphism
above @ — S.

To prove the ciaim, consider the map q: Q — S — P? which sends a curve
consisting of d (not all equal) lines through a point, to that point. Then the map
(1,9): @ = S = T C PV x P? (where i: Q — S — P¥ is the inclusion) gives an
inverse morphism to p; above @ —S. This shows that @ — S is non-singular (which
is all we need for the sequel). It’s not hard to check that @ is in fact singular
along S. B

REMARK. One can prove that ) is the locus of curves for which the Hessian is
identically zero.

We assume d > 7 from now on. Denote by @Q,, the locus of curves in @ for
which the corresponding d-tuple of points on P! is semistable (i.e., has no points
of multiplicity > d/2). Then Q,, is smooth. Let P be a general linear subspace
of PN of dimension N —8. Then PNQ,, has dimension d — 6. Applying Bertini,
we see that it is smooth and connected (since d > 7), hence irreducible.

Let (as in §4.1) Mg = (P9),,/PGL(2) be the moduli space of (semistable)
d-tuples of points on P!, and let Q’ be the image of PN Q,, in M. One verifies
that Q' is also irreducible of dimension d — 6.

As the next step in our construction we produce another map to M;. Denote
by F C PV the open set of smooth curves with only simple flexes. Consider the
map f: F x P? — M, which sends a pair (C,1) to the isomorphism class of the
d-tuple C N I. (Note that these d-tuples are in fact stable.)

We claim that the fibres of f over isomorphism classes of d-tuples consisting
of d distinct points are irreducible of dimenston N — d + 5. Fix such a d-tuple
on a line /. One checks that the curves containing those d points form a (linear)
PN-4, To get the fibre of f over the isomorphism class of the d-tuple, we first
carry around this PN¥—4 with PGL(2), by varying the d-tuple in its orbit while
fixing the line I; next we vary { in P2, The fibre is thus irreducible of the said
dimension.

Since P was chosen generally, @’ contains isomorphism classes of d-tuples with
d distinct points. We conclude that D" = f~1(Q’) is irreducible of dimension
(N —d+5)+4(d-6)= N — 1. Denote by p;: F x P? — F the first projection,
and let D' = p\(D"). Then D' is the locus in F of curves C for which the
intersection PN O¢ contains a point in the boundary of O¢. (Since P is general,
it has empty intersection with all the possible boundary components of type (1)
in Theorem IV(1), so a point in the intersection of P and the boundary of O¢
is necessarily in the boundary component of type (2), the closure of the locus
of rank-2 images.} We claim that D’ is an (irreducible) divisor in F'. First, the
dimension of D' is < N — 1 since D" has dimension N — 1. So all we need to
show Is that I meets a general one-dimensional subvariety K of F. Consider the
corresponding 9-dimensional union of orbit closures. The boundary components
of type (2) form an 8-dimensional subvariety. Now P meets this subvariety; let C
be a curve (corresponding to the point [C] of K') such that P meets the boundary
of O¢. By the above, [C] is in 1. So D' intersects K. This proves the claim.

Finally, let D = ¢(D’), which is an irreducible divisor in M3%. (Note that D' is
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PGL(3)-invariant.)
THEOREM V(2). Ford > 7, M2 -~V — D has trivial Chow ring.

ProoOF: Consider the natural map ¢: PNF — MZ—V. This morphism is proper
exactly above the locus of curves C for which the intersection of P and O¢ consists
of points corresponding to smooth curves. By the construction above, this locus
is the complement of D. Since for these curves PNO¢ = PN Oc, the map is also
quasi-finite, thus finite, above this locus. Applying as before [Faber, Lemma A]
we finish the proof of the theorem. I

Unfortunately, the method above does not work as well for d = 6. The reason
is that P N @Q,, is no longer irreducible, so the divisor D in Mﬁ — V will not be
irreducible either. However, it seems likely that the complement in M3~V of any
component of D has trivial Chow ring. It would be of some interest to examine
this, since the moduli space of plane sextic curves is birational to the moduli space
of K3-surfaces with a polarization of degree two.
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