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by

Piotr Pr-agacz2

INTRODUCTION

The goal of this paper is to give a survey of some recent applica-
tions of the theory of symmetric polynomials to geometry. Being in the
past a good part of classical algebraic knowledge, the theory of symmetric
functions is rediscovered and developed nowadays (see [M]). Here we dis-
cuss only some of gecometric applications of symmetric polynomials which

are related to the present interest of the author.

The gecometrical objects we study are : degeneracy loci of vector
bundle homomorphisms, Flag varletles, Grassmannians including 1sotropic
Crassmannians i.e. the parameter spaces for lisotropic subspaces of a gl-
ven vector space endowed with a symplectic or orthogonal form, Schubert

varieties and the parameter spaces of complete quadrics and correlations.

The algebraical tools we use are: Schur polynomials including
supersymmetric and Q-polynomials, binomial determinants and pfaffians,
divided differences, reduced decompositions in the Weyl groups and Young

diagrams.

1
This paper is an extended version of the talks glven by the author at
''Seminaric Internaclonal de Algebra y sus Aplicaclones", Mexlco Clty,

January 19681.
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Visiting the Max-Planck Institut during the preparatlion of this paper.



The material surveyed here contains :

1. Polynomials supported on determinantal/degeneracy loci,

2. Formulas for the Segre classes of tensor operations

and applications,
3. Divided differences and flag degeneracy loci,

4. Symplectic & orthogonal divided differences and the

intersection rings of isotropic Grassmannians.

The bibliography is only a sampling of the vast literature in the

subject and it doesn't pretend to be complete.

Last remark: we use a separate numbering of theorems, propositions

etc. for each section.

Acknowgledgement. It was A.lLascoux who introduced me several years ago

to this branch of mathematics. I wish to express to him my gratitude.

1. POLYNOMIALS SUPPORTED ON DETERMINANTAL / DEGENERACY LOCI

This Section summarizes mainly a series of results from [P] ,

1-4
(P-P],__ . [P-Rl_ and [P-T]

Let Matm“n(K) be the affine space of mxn matrices over a field K.
The subvariety Dr of Maﬁun(K) consisting of all matrices of rank s r
is called a determinantal variety. Algebro-geometric properties of these
varieties were widely investigated in the seventies and eighties. The
prototype of the results of this Section is, however, an older result -
a formula of Giambelll [G]1 (1903) for the degree of the projective
determinantal variety ( 1.e. the class of Dr\O in P(Matmm(K)) ). In
order to perform his computations Giambelli used the machinery of sym-
metric polynomials developed by the 18-th - and 19-th - century elimi-

nation theory.
Determinantal varieties are a particular case of degeneracy loci

Dr(w) ={xeX, rk ¢(x) sr}



r=0,1,...,min (rkF,rkkE) associated with a morphism ¢ F — E of vector
bundles on algebraic (or differentiable) variety X. The main tool of inve-
stigation of vector bundles E— X are the Chern classes ci(E) i=1,...
.,PkE . Let us assume that here, for simpliclity, by X we wlill denote
always a smooth variety . Recall that the Chow group of X, denoted A'(X),
is the group of algebraic cycles on X mbdulo the rational equivalence. It
is graded by the dimension .Thus, denoting by Ak(X] the group of k-dimen-
sional cycles modulo the ratlonal equivalence we have A (X) = o Ak(X).
Putting Al(x) = Ad“m_l(x), the group A"(X)= ® A'(X) has a structure of
a commutative graded ring (with the multiplicative structure given by
intersectlon theory [F]1)' For a vector bundle E on X, the i-th Chern
class ci(E) is given by an element of A'(X).( 1n the case of a singular
X, cl(E) is defined to be an operator on A _(X).) One of the fundamental
problems In the investigation of concrete subvarieties of a given variety
X is a computation of its fundamental class in terms of given generators
of A'(X). For instance, Giambelli's formula mentloned above gives the
fundamental class of the (projective) determinantal variety in the inter-
section ring A'(P(Matm(m))a. In 1957 R.Thom ({T]) proved that for
sufficiently general morphisms @ F — E , there exists a polynomial,
depending solely on c.(E), c.(F), which describes the fundamental class

of Dr(w). This polynomial has been found subsequently by Porteous:

— *
det[ C oy (EF) ]mp’q;m_r )

where ck(E-F) is defined by:
1+cl(E—F)+cz(E—F)+... = (1+cl(E)+c2(E)+...)/ (1+cl(F)+c2(F) + ...)

Different variants and generalizations of (*) were considered later
in [K-L].[L]l.[J-L—P].{H-T]1 and recently in [F]2 (compare Sect.3). The
second domain of research concerning (smooth) degeneracy locl is the cal-
culation of their Chern numbers (see [H], [N] and [H-T]z). Finally, the
third kind of problems stems from a study of different type homology of

Hore preclsely, Giambelli calculated, in a form of a determlinantal expre-

ssion, the degree of the D () for a general map ¢@: O(ml)G) 0(m2)® N
r

O(nIJG) O(nz)GJ ... . As Lascoux points out, there is only a little step to

pass from Glambelli’s result to (*).



degeneracy loci (see a survey article [Tul). It turns out that all these

questions are closely related with the following

Problem Which polynomials in the Chern classes of E and F are univer-

sally supported on the r-th determinantal/degeneracy locus ?

More precisely let | :Dr(w) — X be the inclusion and let
r
(1r)_: A.(Dr(w)) —> A _(X) be the induced morphism of the Chow groups.

Fix Integers mn > 0 and r z 0. Introduce m+n variables cl,...,cn;

c;....,c; such that deg c, = deg c; =1 . Let Zlec.,c'.] =

= Z[cl.....c .c;.....c;] be the polynomial algebra. Following [P]] 5 e
n [

say that P € Z[c.,c’.] is universally supported on the r-th degeneracy

locus 1if
P(°1(E)""'Cn(E)'°1(F)""’Cm(F)) € Im(ir),

for any morphism ¢:F — E of vector bundles on X such that n=rkE,
m=rkF. Denote by ?P the set (ideal) of all polynomials universally sup-
ported on r-th determinantal/degeneracy locus. The polynomials (*)} descri-
bing lew) for isr belong to ?r , but they do not generate this ideal. An
analogous problem can be stated for symmetric (resp. skew-symmetric) mor-
phisms: F = EY , wv = ¢ (resp. wv = -p). In this case the corresponding

ideal Tf {resp. ?:B r-even) is contained in Z[cl,...,c ] = Zlc. ]
n

It follows from the main thecrem on symmetric polynomials that for a

sequence of varlables A = (ai,....a ) the assignment
n

c, —— (i-th elementary symmetric polynomial in A)

defines an isomorphism of Z{c.] and #%ym(A) - the ring of symmetric po-
lynomials in A. Similarly, by considering an analogous assignment for the

’ r

c ; s and a second sequence of variables B =(b1,...,bm}. we get an lso-
morphism of Z[c.,c’.] with Pym(A,B) - the ring of symmetric polynomials
in A and B separately. Therefore we can treat ?r , ?: (resp. P°%) as

r

ideals in ¥ym(A,B) and Sym(A).

Their description requires two families of symmetric polynomials.



(1) Let I=(i1""'1k) be a sequence of integers. We define

SI(A-B) = det [Slp-p+q(A_B)]1Sp,q5k'

where sl(A—B) is a homogenous polynomial of degree i such that

E s (A-B) = N—H (1-a )7} H—H {(1-b )
12w ! =1 ' j=1 .

(i1) Let I=(11....,1k) be a sequence of nonnegative integers. Assume

that k is even (we put ik=0, If necessary). Define

QI(A) = Pfaffian [Ql . (A)] , where for
P q 15p,qSk

© n
Q(t) =z Q,(4) t' = H (1+tal)(1-tai)-1 , We put
1

{=-m
Q . (A) =Q(A) Q(A) +2 t(-l)" Q  (A) Q_ (A)
1..‘ 1 .J ‘+p J-p
p=1
( The above matrix is skew-symmetric because Q{(t)Q(-t)=1. ) The members of
the first family are often called supersymmetric polynomials — for a

particularly simple account to their properties we refer to [P-T]. The

members of the second family are called (Schur) Q-polynomials.

Now, let E and F be two vector bundles on X. Then SI(E—F)- is an
element of A‘(X), which is obtained from SI(A-B) via the specialization

c,i= cl(E) , 1=1,...,n ; c3:= CJ(F) , J=1,...,m. Similarly we define

Q,(E) € AT(X)

Recall that by a partition we understand a sequence of integers

I=(il,...,ik) , wWhere 111122...31k20 . For partitions I,J we write I>J
if 112J1’ 122j2, ...; the partition (i,...i) (r-times) is denoted by (1)";
finally the partition (k,k-1,...,2,1) 1is denoted by P, -

Theorem 1 [P]1 (i) The ideal ?r is generated by sI(A—B) , where I runs

,3
over all partitions I > (m-r)" " .



(i1) The ideal ?: is generated by QI(A) , where I runs over all parti-

tions I > pn_r

A similar description exists in the skew-symmetric case. The statement

of the theorem remains true, when we consider also singular varieties.

For further investigations we need the following definitions.
For two partitions I,J by I*J we denote the sequence
g 43 s . <.
(11_J1'12'J2"")' and by I,J the sequence (11,12....,31,32,...).
To prove that the quoted polynomials belong to ?r . ?: , the key

tools are the factorization formula the push-forward formula in the Gras-

smannian bundle.

Proposition 2 (Factorization Formula) Let I = (11""'1 ), J =
n
(Jl,.;.,Jp) be two partitions, Jlsm . Then
(1) s (A-B) = s (A) s (A-B) s (-B)
n 1 n J
{m) +I,J (m)
131 4

= {-1) SI(A) s n(A-B) sJ~(B)

(m)

(i1) Q, (A =0, (A) s (A)

n-1 n-1

( {i1) is a result of Stanley, references for (1) are discussed in [L]ZL

Proposition 3 Let = G=GY(E) — X be the Grassmannian bundle parame-

trizing g-quotients of E. Let 0 «— Q EG e R «<— 0 be the tauto-—

logical exact sequence of vector bundles on G.

(1) ([J—L—P].[P]a) For every vector bundle H on X ,

n s (Q-H ) s (R-H =5 E-H
_[IQGJJG) L (R,
I-(n-q) ,J
4
For a given partlition I, we write [1]:= 2 I - the sum of parts of I,
P
and I~ denotes the partition (hl,hz,...) where h =card{q:} Zp}.
p q



(ii) ([P]3 4) Let I=(11,...,ih), J=(J1,...,Jk) be two sequences of
positive Integers, h=q , k=n-q. Then

L

T | €y (FOQ) (@ QR | = 0 (E)

A proof that the ideals Tr and ?: are actually generated by the
above polynomials is based on the investigation of the universal tauto-
logical determinantal variety Dr ¢ Hom(F,E) (the fiber of Dr over a
point x € X is equal to { f € Hom(F(x),E(x)) | dim Im £ = r }. The bundles
E and F occuring in this construction are some "universal enough" vector
bundles over the product GG of two Grassmannians (see [P]B). In fact, in
{P]s, two proofs of this assertion are given. The first one uses a certain
desingularization of Dr. The second one goes by induction on r with the

help of exact sequence
A(D ) — A(D) — A(D-D ) — 0 ,
r-1 r r r-1
and a detailed analysis of A(Dr—D 1)
r-

Theorem 1 is valid also for singular homology, Borel-Moore homology
and étale homology instead of the Chow groups. Since the same applies to
Proposition 3, the proof that the quoted polynomials belong to ?r and ?:,
1s the same. On the other hand the proof that the ideals ?r, ?i are gene-
rated by the above polynomials is based on the following compactification
of Dr. Let us embed the above Hom(F,E) into a Grassmannian bundle G=
Gm(F@E) by assigning fiberwise to fe Hom(F(x),E(x)) its (graphlof f) e
Gm( F(x)eE(x) ) , x belonging to the base space GG. On G there exists a
natural tautological extension of the universal morphism on Hom(F,E) and
its degeneracy loci together with their desingularlization serve to prove
the assertion. An important advantage of the above compactificatlion is the
vanishing of its odd homology groups — this is not the case of Dr. For
details see [P~R]f

Propositions 2 and 3 allow one to prove the following results conce-

rning the structure of the ideals in question.



il

Theorem 4 (P, (1) ? [s (A-B) , I ¢ {r)“"] ,
r (m-r)n-rﬂ

(11) P° [Q LA Tc (r)“"] ,
r pn-r

- thus these ideals are generated by (:) elements.

Note that it is still an open problem to show that these sets form

minimal sets of generators of ?r and ?: , for mzn.
The additive structure of the ideal ?r is described in:

Theorem 5 [P]3 The polynomials s (A-B) s (A) where Ik contains
" K

n-bd. E(Jk)sk 5 , form a Z-basis

(m—k)n‘k, and does not contain (m-k+1)
of P .
r

Moreover, the ideal ?r is prime ([P]2) , and is a set-theoretical
complete intersection ( is equal to the radical of an ideal generated by

a regular sequence of length r+1 )

The methods developped in the proof of Theorem 1 (especially Propo-

sition 3 ) allow us to obtain the following applications.

a) An algorithm for computation of the Chern numbers of the Kernel and

Cokernel bundle and the Chern numbers of Dr(w).

Let ¢:F——=E be a general morphism6 of C"-vector bundles on a complex
manifold X. Assume that Dh4(¢) = @. Then, Kery and Cokeryp are vector bun-
dles on Dr(w) of ranks respectively m-r and n-r. In [H_T]z' the authors
posed the following problem : "“Calculate the Chern numbers of Kerg and

Cokerg (whenever we speak on Chern numbers we assume X compact, as it
is standard). In fact, in loc.cit., an algorithm is constructed, which,

however, leads to the necessity of performing of many cancellations of

S
For a glven partition I, we denote by £(I) the number of Its nonzero

parts.

6
We say that @: F > E is general if the induced section X - Hom(F,E)} ls

transwerse to all tautological degeneracy loci.



pairwise opposite elements. The algorithm constructed in [P]3 has a
combinatorial character (it requires no cancellations) and is based on

the following
Theorem 6 [P]3 :

(1) (1), s(C) s (-K) =5 (E-F) ,

r

{(m-r} +1,J
(i) If F=E and ¢:E — E is symmetric then

(1r) sI(C) = Qp +1(E) .

n-r

»

A similar formula exists for the skew-symmetric morphism (see [P]al

Using Theorem 6 one constructs, for a manifold X and holemorphic
morphism ¢ , an effective algorithm for the calculation of the Chern num-
bers of Dr(w) ( Dr(w) is smooth under the above assumptions ). In parti-
cular, if d = dimDr(¢). then (assuming mzn) one obtains a closed formula

c,(TD (9)) n [Dr(p)] ( = Euler characteristic of D (¢)):

1,J~ n-r d—lI]-lJl(X) (#)
{m~r) +1,J

z LALLM s (E-F) ¢

where the sum is over partitions I,J with &(I)=n-r , &(J)=n-r ; and

the coefficient DI 5 is the following determinant of binomial coefficients

D = Det [ [ 1P+Jq+m+n-2r—p—q ] ]
1,J
1p+n—r-p

Similar algorithms (involving Q-polynomials) were found in [P]3 to
compute Chern numbers in the symmetric and skew-symmetric cases. Since the
Segre classes of - ® - , S?(-) and A%(-) play a significant role in the
calculations of the Chern number cd(TDr(Q)), we will come back to this

problem in Section 2.

Let us denote the expression (#) by g(r) and drop now the assump-

tion D (¢)=@.
r-1

Theorem 7 [P-P]1 - Let ¢ be a general holomorphic morphism of vector bu-

ndles over a complex compact manifold. Then, the (topological) Euler cha-



racteristic of Dr(wJ is

): (-l)k (n-rzl-k) g(r-k)

k=0

Theorem 6 1s not valid if the codimension of D (¢) has the expected
r

value, (m-r){(n-r), even if Dr(w) is a divisor - compare [P-P]1 3

b) A calculation of the Chow groups of the determinantal schemes,

A prototype of these results is the following result of Bruns ([B]).
Let R be a normal, noetherian ring, X - a mxn matrix of indeterminates, I
- the ideal generated by (r+l1)-minors of X. Then, the divisor class groups
satisfy: Cl(R[X]/I) = Cl(R)eZ.

The geometric analogue of Cl is Al ( the Chow group of codimension 1

cycles modulo the rational equivalence ).

Let Matmxn(K) be the affine space of mxn matrices over a fleld
K. Let D ¢ Matmxn(K) be the subscheme defined by the ideal generated
r

by all minors of order r+i.

Theorem 8 [P]1 3 If mzn then the Chow group of D graded by the codime-
— R r

nsion, is isomorphic to the Chow group of the Grassmannian Gr(Kn)

There exists a relative analogue of this Theorem (see [P}3 Proposi-
tion 4.3 ), which gives, in particular the following corollary. For every
K-scheme X, Ak(XxDr) ~ o A1) | the sum over all partitions I c

(r)™". For k=1 this is a geometric analogue of the result of Bruns.
We end this Section with fellowing algebraic digression.

c) A generalization of the resultant of two polynomials.

. n m
Let A(x) = x"+ ¥ clx"'t , B(x) =x"+Yc' x

i=1 1=1 .

m- }

be two polynomials in one variable with generic coefficlents. It follows
from the classical algebra, that there exists a polynomial in {cl}, {c;}
called the resultant whose vanishing (after a specialization of {cl}.{c;}'in
an algebraically closed field) implies that the corresponding polynomials

have a common root (see [le’ for instance).

10



Now, let 9r be the ideal of all Pe Z[c..c'.], which vanish if, after
a specialization 1In a field, A(x) and B(x) have r+1 common roots.

Surprisingly (or not) we have

Theorem @ [P]
- 2,4

ﬂr = [ s B, T« (r)™ " ]

r
{m-r) +1

In other words 9r = ?r in the above notation. It would be ihteresting to
have an intrinsic proof of this equality. A similar interpretation is gi-

ven in [P]4 for the ldeal ?: generated by Q-polynomials.

2. FORMULAS FOR THE SEGRE CLASSES OF TENSOR OPERATIONS
AND APPLICATIONS

This Sectlion summarizes some results from [L-L-T] and [P]s'
Let E,F be vector bundles of ranks n and m respectively. Assume mzn.
We state
Theorem 1 (i) ([L-L-T]) The total Segre class of the tensor product EeF is
given by ‘ .
s(EeF) = ¥ D'I‘:j s (E) s (F) :

where the sum 1s over partitions I,J of length =n and
op - oee [ [ BT ] ]
! i +n-p 15p,q=n
P

(i1) ( [L-L-T] & [P]S) The total Segre class of the second symmetric power
S°E is given by
S(S'E) = L ((I+p__)) s (E) ,

where the sum is over all partitions I and the definition of ((J)}) is
as follows. If #=£(J) is even, define ((J)) to be the Pfaffian of the

& skew-symmetric matrix [a ] where

P

a =7 [ 1p+Jq ] ( the sumover J < J< j ),
P.q J q P

j
and if ¢ is odd, then ((J)):= ¥ (-1)P 2P (NG D).

11



(1i11) ( [L-L-T] & [P]3 ) The total Segre class of the second exterior po-
wer AZE is given by

S(AE) = T [1+p_ 1 s (E) ,

where the sum is over all partitions I and the definition of [J] is as
follows. If £&=&(J) is even, define (J] to be the Pfaffian of the &xé-
skew-symmetric matrix [ (Jp+Jq—1)!/ Jp! Jq! ] ; if £ is odd then [J]=0

unless Jj,;=0 where (J] = TJI.---.JE_ll-

Remark 2 See [L-L-T] for other approaches to the numbers ((J)) and [(J].
The history of formulas for S(SEE) and s(AzE} is as follows. At first, one
of the authors of [L-L-T] has informed the author about recursive formulas
for ((J)) and [J] obtalined with the help of divided differences. (We will -
explain and use this extremely: powerful technique in Section 3 and 4.)
Using this recursion the author has found and proved the above pfaffian-
formulas in [P]a‘ Finally, the authors of [L-L-T] managed to give a self-
cointained, full and elegant account of all these formulas based on an
interplay between the original recursive formulas, pfaffian expressions
from [P]3 and formulas which present ((J)) and [J] as sums of minors in
some matrices of binomial numbers. Consequently, there are no divided dif-
ferences in the final version of [L-L-T}. ("The power was eliminated by

the elegance"!)

As it was mentioned in Section 1, Theorem 1 can be applied in the
calculation of the Euler characteristic of D (¢). Besides the formula (#)
r

after Theorem 6 in Sect.1 one has also (in the notation of Sect.1):
Theorem 3 [P]3 Assume X is compact, ¢ is general and Dr_l(w)=z.

(1) If ¢ is symmetric, d:= dimX-(n-r)(n-r+1)/2 then

20 (e=F -0 (e )0 X).

o +I(E) cd-lll(

n-r

(i) If ¢ is skew-symmetric, d:= dimX-(n-r)(n-r-1)/2 , r-even, then

[1]

x(D_(p))=F (-1)' " (1o TP (E) ., (X).

[ 1]

n-r-1

The proof 1s based on Theorem 1 (fi).(iii] and Theorem 6 from Sect. 1.

12



Another application of Theorem 1 was given in [L-L-T] to enumera-
tive properties of complete correlations and quadrics. Let us limit ourse-

lves to the latter case.

Let us fix a positive integer r and a projective space P. By a camp-
lete quadric of rank r we understand a sequence Q.: Qlcch...ch (n can

vary) of quadrics in P, such that

1) Q1 is smooth,
2) the linear span L(Ql) of Qi is the vertex of Q1+1 , I=1,...,n-1,
3) dim L(Qn) = r-1.

There exists a natural structure of a smooth algebraic projective variety
on CQ(r} - the set of all rank r complete quadrics (see e.g. [L-L-T]). Let
M€ A (CQ(r)) (i=1,...,r) be the class of the locus of all complete qua-

drics Q. such that Qn is tangent to a given (codimension i)-plane in P.

Now let G= Gr(P) be tha Grassmannian parametrizing (r-1)-dimensio-
nal linear subspaces of P. Fix a sequence I=(1511<12<...<1r£dimP) of inte-
gers and consider the flag L':L1CL2C"'CLr of linear subspaces in P where
dlmLJ=1J ,J=1,...,r. Let Q(I) be the class in A.(G) of the Schubert cycle
{LeG: dim(LﬁLJ)ZJ-l ,J=1,...,r}. We have a map f: CQ(r) — G such that

£(Q.) = L(Q). Let w(I) := £a(1).

Classics of Enumerative geometry like Schubert, Giambelli ...were in-
terested in computation of the number of complete quadrics Q. such that

Qn is tangent to mJ fixed planes of codimension j in general position in P
and such that dim (L(Qn}nLJ)zj—l for each member of a flag L. as above.
This questlion makes sense if il+...+1r+r—1 = m1+...+m because then

r

m m m

" “22 . u}r-w(l) in A,(CQ(r)) represents a O-dimensional cycle. The
answer to the question (under the above assumption) needs besides the
numbers ((J)) defined at the begining of this section, also the function
a(p; k,j) defined by alp;k, j):= (:) + (T) p+ ... 4 (:) pJ if jzo0,

- 0 otherwise. In fact, the following result answers a more general

questlon:

13



Thecrem 4 [L-L-T] Assume that p iIs a number such that 0 s p< r and

m1+...+mq > 1r+1r-1+”'+1r-q+1 +g-1 for q=1,:..,p—1. Then
m1 m2 mp+1
By oMy e B w(l) =

m
1, 2 P p+l _ . _ o . ,
1 2%..p° [ (p+r1) "7 ((I)) ):oc(p.mpd.mw1 Ht=(r-p) € ((J))-((3")) ]
where the sum is over all (card r-p) - subsequences J in I ; J'=I\J and
cJ=sign(J,J').

There 1s similar formula for complete correlations which, in turn,

uses the numbers D?’T (see [L-L-T]).

3. DIVIDED DIFFERENCES AND FLAG DEGENERACY LOCI

This Section summarizes some of the results of [Fla'

Conslder the flagged vector bundles

F ¢F ¢... ¢ F =F and E=E — ... = E —» E
1 2 m n 2 1

over a variety X and let ¢: F — E be map of vector bundles. Assume that
a function r:{1,...,n} x{1,...,m} — N 1is given ( we will refer to r

as to rank fonction ). Define
Dr(¢) = { xeX, rk ( Fq(x) — Ep(x) ) = r(p,q) ¥p,q }

In [F]2 the author gives the conditions on r , which guarantee that for

"generic" o, Dr(w] is irreducible. Then, a natural problem arises, to find
for such a r and ¢ a formula expressing [Dr(w)] in terms of the Chern

classes of E. and F..

It turns out that the crucial case is the case of complete flags i.e.
rkEl=rkFl=i and m=n. The desired formula in every other case can be
deduced from that one. In this situation the degeneracy loci Dr(w) are

parametrized by permutations pe S , and
n

rp(p,q) = card{ isp, u(i) =q}.

14



Let XH(E"F') =D, (¢). Then the expected (i.e. maximum, if nonempty)

i
codimension of x“(E..F.) is &(u) (the length of u). In order to descri-

be a formula for the fundamental class of XN(E.,F.) assoclated with a ge-
neric ¢ we need some algebraic tools developed in [B-G-G],[D] and [L-S]z
Let A=(a1,...,an), B=(b1,...,bn) be two sequence of independent and
commuting variables. We have divided differences
61 : Z[AB] — Z[AB] (of degree -1)
defined by

al(f)=(f - slf‘)/(al - al+1) i=1,...,n-1,

where s, denotes the i-th simple transposition. For every reduced decom-

i
1 k 1 k

on Z[AB] of degree -&(u). In fact a# does not depend on the reduced decom-

position pu= CRIER s, 7 one can define 8 =8 o ...oa1 - an operator

position chosen. Finally, for a permutation peSn, we give, following
[L-S]z, [L.]3 :

Definition 1 of a (double) Schubert polynomial X“(A,B).

X (AB) = 8 (H (al-bJJ),

How {+jSn

vwhere w is the permutation with blggest length in Sn. Note that the ope-

rators act here on A-varlables; however it can be shown that

X (a8) = -1}y (B,
B !

Specialize now

a:=c(Ker E —s E ) and b :(=c¢c( F / F )
i 1 ! 1-1 t 1 1 i-1

and assume X is smooth, for simplicity. Then we have

7
Writing here and in the sequel sl s El we mean that we per-

form first Bl , then -~ s etc.
1 2
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Theorem 2 [F]2 If codimx(xp(E.,F.))=£(p) then
(X (E.,F.)] = X (A,B) Cin AL(X).
M H *

The key point in the proof of Theorem 2 in [F]2 is a geometric inter-
pretation of the divided differences with the help of the correspondences
in the Flag bundles.

This theorem generalizes in an uniform way the formulas for the fun-
damental classes of Schubert varieties in the flag varieties from [B-G-GJ],
[D] and [L-S]l, and -with the help of some algebra of Schubert polynomials
([L-S]a) -other formulas for degeneracy loci like the Giambellli-Thom-
Porteous formula (see Section 1)} as well as determinantal formulas for

flag degeneracy loci from [K-L], [L]1 and [P,(8.3)]d

Example 3 In the above notation we put E=E1 for all 1 , and consider the

locus:
D ={ xe€X : dim Ker ( Fj(x)——aE(x) Yz 3, J=1,...,m }

then Theorem 2 specializes to the Kempf-lLaksov formula asserting that

the fundamental class of D is

Det [ ¢ (E-F ) 1
3 1

rkE-rkFl+ 154, §jSm ’

A combinatlon of Theorem 4 with [G]2 glves some interesting formulas

for specialization of Schubert polynomials.

Finally, note that (double) Schubert peolynomials are a useful tool
in computation of Chern classes of the tangent vector bundles to the Flag

and Grassmannlan varieties (see [Lla)

4. SYMPLECTIC & ORTHOGONAL DIVIDED DIFFERENCES AND THE
INTERSECTION RINGS OF ISOTROPIC GRASSMANNIANS

In this Section we summarize some results from [H-BI, [P,Sect.S]4

and [P-R]2

Let G denote the Grassmannian of n-dimensional isotropic subspaces in

16



c* with respect to a non-degenerate symplectic form on Czn. Let F denote
the flag variety of (total) isotropic flags in ¢ (with respect to the
same symplectic form). By p we will denote the partition (n,...,2,1).
Let Icp be a strict partition I=(11>12>...>1k>0). We associate to I the

element wI of the symplectic Weyl group W :

= s ... S S ... S o0 8 S S Le. S S
1 n-1k+1 n-1 n n-12+1 n-1 n n-11+1 n-1 n

where sj stands for the j-th simple transposition in W (see [H-B,Sect.2]
for detalls about W) °.

From the theory in [B-G-G] and [D] we get a Schubert cycle XH €

1
| 1]

AIII(F) which in fact belongs to AIIl(G) ¢ A" (F). Denote this element

in Alll

(G) by o(I), for short.

As usual, we will assocliate to a partition I a dlagram DI. The elem-
ents of the DI will be boxes (and not dots). This will allow us to speak
about "connected components"” of differences between diagrams without

misunderstandings.

The following result was proved originally in [H-B}.

Theorem 1 Let I=(11,...,1k) C p be a strict partition. The following
equality holds in A‘(G) (p=1,...,n)

(1) olp) = ¥ 207 o),

where the sum is over strict partitions J such that ih_lzjhzih (10=n.

ibn:O) , 1J1=|1l+p and m(I,J) is the number of connected components

of DJ\DI not meeting the first column.

Example 2 n=7
o(632) o(5) = 2 ¢(763) + 2% ¢(7531) + 2 o(7621) + 2 o(7432) + o(6532).

8
Footnote 7 applies here with S replaced by W.
n
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7 , 7 777
77 M ]
Z :/{1 7]41
Z , 7Z
L] 7 ]
Z Z

We sketch now a proof of this Theorem due to Jan Ratajski and the
author in [P-Rla' This proof is much simpler than the proof in [H-B]; it
uses essentlally the symplectic divided differences from [B-G-G] and [D].

Let A=(a1,...,an) be independent variables. It follows from [B-G-G]
and [D] that A'(F) is identified with Z[Al/§ , where % is the ideal gene-
rated by symmetric polynomials in af,...,ai without constant term.

s
Also, A‘(G) is identified with (Z[A)/$) " 1i.e. with the quotient of the

symmetric polynomials modulo $ restricted to the ring of symmetric poly-

nomials.
We have "symplectic divided differences”:
8: Z[A] — Z[A] (of degree ~1), i=1,...,n, defined by
38 (f)=(f -sf)/(a -a ) i=1,...,n-1,
i i i i+
4 (f) = {f -sf)/2a
n n n
The key tool for our purposes is a Leibnitz-type formula:
6l(f-g) = (alf)-g + (slf)°(alg).
For every reduced decomposition WES s, one can define 6w =

1 k

Gi ° ...06l - an operator on Z[A] of degree -&(w). In fact 6" does not de-
1 k

pend on the reduced decomposition chosen. There exists a ring homomorphism
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c: ZIAl — AT(F)
{called the characteristic map) defined for a homogeneous f € Z[A] by

clf) = T a8(f) X

8(w)=degf

For instance, denoting by ep the p-th elementary symmetric polynomial in
A , we have

cle ) = olp) = X e AP(G)
P ...8 s

([H-B, Lemma 2.13’1).
The operators 6" give rise to operators on AT(F) (denoted by the
same letters) and these two families of operators commute with ¢ . More-

over for w,v , aw(xv) =1 iff w=v.

Let fI be such that c{fl) = o(I). Our goal is to find coefficients
m, appearing in
cf fI-ep) =Lm o(J)

Consider D < DJ. The boxes in DJ which belong to D will be called D-
boxes; the boxes in DJ\D will be called non D-boxes. We associate with
D the following operators 52 and gﬁ . For technical reascns we will

use, from now on, the following coordinates for indexing boxes in Jcp :

n n-1 ... 2 1

-

In Definitions 3,4 we read DJ row by row from left to right starting
ting from the first row.

Definition 3 of QE : Read DJ. Every D-box in the i-th column glves us

the S, Every non D-box in the i-th column gives the 61. Then gj is the

composition of the so obtained s 's and 61’5 (the composition written

from right to left).

Definition 4 of r, Read DJ. Every D-box in the i-th column gives us

18



the 51' Non D-boxes have no influence on rD. Then rD is the word obta-

ined by writing the so obtained sl's from right to left.

Definition 5 of 3°: 8> : = 8
J J r
D
Example 6 J=(763), n=7.
76 5 4 3 21
772 |
% %l (D-boxes are "dark" here)
A

8% = 3 o5 _oS_oS_oS_o8 o5 _oS o5 _od o3 03 oS oS5_oS_oS ,
=J S 8 7 2 3 4 5 6 7 1 2 3 4 856 7

-3
n

§8S8855S55SS5_,
D B8723567 4567

Q
n

8 08 08 08 o3 08 o3 _od o8 o3 o8
8 7 2 3 5 B 7 4 S5 8 7

Proposition 7 In the above notation,

=D D
m = ¥ BJ(fI) Qd(ep) )
where the sum is over all DcDJ such that rDe R(wI)g and Qg(ep): 0.
This 1s a consequence of consecutive applications of the Leibnitz

rule wused in this way: we apply only the al’s {and the identity opera-

tors) to fI ;: and both the si’s and al's to e .
P

One proves that if &(J) > £(I) + 1 or Jh+1> ih for some h ,then
QE(E)=0 for every DCDJ such that re R(wl)

Moreover, fix a strict partition Icp. Let J be a strict partition
such that IcJcp, &(J)=E(I)+1 , Jnusih for every h. Then there exists

exactly one DI'J < DJ such that r.€ R(wl) and g?(E):O for D=DI’J.

g
By R(w)} for w In W, we denote the set of reduced decompositions of w.
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The idea of constructing such a D'’ can be easily explained picto-

rially. The boxes from DI < DJ are shadowed on the picture below. A part :

of the diagram DICDJ is deformed to

&\\\\\\\\\\\\\\\\& |

of the diagram DIcDJ is deformed to

SSSsSSsSSSNNS
—

=
A

?

21



The deformations are performed in the direction South - North.

Fix a strict partition 1I<p and a number p=1,...,n. Let J be a
strict partition such that Icdcp, [JI=|I]+p , &(J)=e(I)+1 , th51h for

every h. Let p=D""7, Every 61 involved in Qg is associated to a box in
DJ\D. It turns out that the connected components of DJ\D play a crucial

role in the computation of Qd(ep). Namely, in the above notation

where m(I,J) is the number of connected components of D\DJ not meeting the
n-th component. Changing the numbering of columns to the usual order, this
can be easlily restated as: m(I,J) is the number of connected components of

DJ\DI not meeting the first column.
This finishes the sketch of the proof - for detalls see [P-R]2

(632),J

Example 8 The diagrams D for partitions J appearing in the de-

composition ¢(632) ¢(5), are

We end with a geometric interpretation of the ¢{(I)'s. Let V be a 2n-

dimensional vector space endowed with a symplectic nondegenerate form ¢:

VxV — €. Let (vl,...,vn) be a basis of an isotropic n-subspace of V.
Let VICVZC ce cVn be a flag of isotropic subspaces spanned by the first
i vectors in the sequence (vi,...,vn). Then c(il....,ik) is the class in

AIII(G) of the cycle of all isotropic n-subspaces L in V such that
dim ( LnV ) 2 h, h=1,...,k.
n+1-1h>

The Schubert Calculus for usual Crassmannians is based on three main
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theorems: Pleri’s formula, Giambelli's determinantal formula and the Basis
theorem ( see for example [F]1 }. In the case of the isotropic Grassma-

nnian G, a Pieri-type formula is described in Theorem above.

In [P, Sect.S]4 the author has deduced from Theorem 1 the following
Giambelli-type formula. ,

Theorem 9 [P]4 Let I=(11,...,ik) ¢ p be a strict partition, k -even
( we can always assume it by putting 1u=0 1f necessary). Then

o(I) = Pfaffian [ 0'(ip! iq) ] 1=p<qSk

q
where o(i ,1 ) =o(i)o(i) + 2} (-1)® o(i +h) o(i -h) , and where
P q P q hel P q
o(i ,0) = (1 ).
p P
This formula is deduced in [P,Sect.B]4 from Theorem 1 using the pro-

perties of Schur Q-Polynomials.

A Basis-type theorem can be formulated as
Theorem 10 : ]
A(G) = e Z o(]) ,

the sum over all strict partitions Icp.

This result can be deduced from a general theory of the cellular
Schubert/Bruhat decompositions of homogeneous spaces (see [{B-G-G], [D]).
The cellular decemposition in the case of G was described in details in
[P,Sect.5]4. An another simple, conceptual proof of Theorem 10 is given in

[P-R],.

Using exactly the same method one can prove Pleri’s formula for the
Grassmannian of n-dimensional isotropic subspaces of (2n+1)-dimensional
vector space endowed with an orthogonal nondegenerate form {(for the pre-
cise Pleri-type formula in this case - see [H-B] ; and a Giambelli-type
formula - see [P.Sect.S]‘. For analogous results in the case of Grassma-
nnian of n-dimensional lsotroplc subspaces in an 2n-dimensional vector
space endowed with an orthogonal nondegenerate form - see [P,Sect.S](
Finally, note that a "triple Pieri intersection theorem" for Grassman-
nians of (not necessary top-dimensional) isotropic spaces, in the ortho-

gonal case, has been obtained recently in [S].
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