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Abstract. Let G be a reductive algebraic group defined over a
number field K and S be a finite set of places of K containing
the archimedean ones. Let G =

∏
v∈S

G(Kv) and Γ be an S-
arithmetic subgroup of G. Let R ⊂ S and TR =

∏
v∈R

Tv where
Tv is a sub-torus of G(Kv) containing a maximal Kv-split torus.
We prove that if G/Γ admits a closed TR-orbit then R = S or
R is a singleton. In addition, the closed TR-orbits are always
”standard”; this generalizes the result of [To-W]. When #S > 1
it turns out that for R = S there are no divergent orbits and
for #R = 1 all closed orbits are divergent. As an application,
we prove that if a collection of decomposable homogeneous forms
fv ∈ Kv[x1, . . . , xn], v ∈ S, takes discrete values at On, where O
is the ring of S-integers of K, then there exists an homogeneous
form g ∈ O[x1, . . . , xn] such that fv = αvg, αv ∈ K∗

v
, for all v ∈ S.

1. Introduction

Let G be a reductive algebraic group defined over a number field
K and let S be a finite set of places of K containing the archimedean
ones. Let Gv = G(Kv), where Kv is the completion of K with respect
to v ∈ S, and let G =

∏
v∈S Gv be a direct product of locally compact

groups. The group G(K) is identified with its diagonal imbedding in
G. We denote by Γ an S-arithmetic subgroup of G, that is, Γ is a
subgroup of G such that Γ ∩ G(O) has finite index in both Γ and
G(O), where O is the ring of S-integers of K. For any subset R of S
we let rankRG

def
=

∑
v∈R rankKv

G be the R-rank of G. (Recall that
if F is a field containing K, rankFG is by definition the dimension of
any maximal F -split torus of G.) One of the goals of this paper is to
describe the closed orbits under the action by left translations on G/Γ
of tori of maximal R-rank.

More specifically, for every v ∈ S, let Tv ⊂ G be a Kv-torus contain-
ing a maximal Kv-split torus of G. We suppose that there is a maximal
K-split torus D such that Tv ⊃ D for all v ∈ S. For every non-empty
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R ⊂ S, we set TR =
∏

v∈R Tv and DR =
∏

v∈RDv, where Tv = Tv(Kv)
and Dv = D(Kv). The torus of maximal R-rank TR is identified with
its projection in G and it acts on G/Γ by left translations

tπ(g) = π(tg),

where π : G → G/Γ is the quotient map. An orbit TRπ(g) is called
divergent if the orbit map t → tπ(g) is proper, i.e. if {tiπ(g)} leaves
compacts of G/Γ whenever {ti} leaves compacts of TR. In particular,
the divergent orbits are closed.

We prove the following:

Theorem 1.1. Let rankRG > 0 and g ∈ G.

(a) The orbit TRπ(g) is closed if and only if R = {v} is a singleton
and Tvπ(g) is divergent, or R = S and

g−1TSg = C.L,

where C is a compact subgroup and L = L(KS) with L a K-
torus of G;

(b) The orbit TRπ(g) is divergent if and only if the following con-
ditions are satisfied: R = {v}, rankKv

G = rankKG and

g ∈ ZG(Dv)G(K),

whereDv is identified with its natural projection in G and ZG(Dv)
is the centralizer of Dv in G.

Theorem 1.1 generalizes the following result by B.Weiss and the au-
thor, the second part of which has been earlier proved (though unpub-
lished) by G.Margulis for G = SLn(R) and Γ = SLn(Z) (cf. [To-W,
Appendix]).

Theorem 1.2. ([To-W, Theorem 1.1]) Let G be a reductive Q-algebraic
group, T an R-torus containing a maximal R-split torus, T = T(R) and
let x ∈ G. Then:

• Tπ(x) is a closed orbit if and only if x−1Tx is a product of a
Q-subtorus and an R-anisotropic R-subtorus;

• Tπ(x) is a divergent orbit if and only if the maximal R-split
subtorus of x−1Tx is defined over Q and Q-split.

When #R > 1, Theorem 1.1 implies a specific phenomenon:

Corollary 1.3. If #R > 1 and TRπ(g) is a closed orbit then either
R = S and TRπ(g) is never divergent, or R = {v} is a singleton and
Tvπ(g) is always divergent.
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An orbit TRπ(g) is called locally divergent if Tvπ(g) is divergent for
every v ∈ R. Theorem 1.1 will be deduced from the next theorem
about the locally divergent orbits.

Theorem 1.4. Let rankR(G) > 0. Then the orbit TRπ(g) is closed
and locally divergent if and only if the following conditions are fulfilled:

(i) R = S or R is a singleton;
(ii) rankR(G) = #R rankK(G);
(iii) g ∈ NG(DR)G(K), where NG(DR) is the normalizer of DR in

G.

When #R = 1 we can replace the normalizer NG(DR) in the for-
mulation of Theorem 1.4 (iii) by the centralizer ZG(DR). This is not
possible when R = S (see §6).

As a consequence of Theorem 1.4, one can easily see that the locally
divergent TR-orbits are also all ”standard”:

Corollary 1.5. Let g ∈ G. The orbit TRπ(g) is locally divergent if
and only if

rankR(G) = #R rankK(G)

and
g ∈

⋂

v∈R

ZG(Dv)G(K).

We also get the following result:

Corollary 1.6. (a) If rankR(G) > #R rankK(G) then there are
no locally divergent orbits for TR;

(b) Let G be semisimple, #R > 1 and rankR(G) = #R rankK(G) >
0. Then there exist locally divergent but non-closed orbits for
TR.

We apply Theorem 1.1 to obtain a characterization of the rational
decomposable homogeneous forms in terms of their values at the integer
points. Such forms appear in a very natural way in both the algebraic
number theory and the Diophantine approximation of numbers. (See,
for example, [Bor-Sha, ch.2] and [Mar, §2], respectively.)

We will first formulate our result in technically simpler particular
cases. Given a commutative ring R, we denote by R[ ~x ] the ring of
polynomials in n variables ~x = (x1, . . . , xn).

Theorem 1.7. Let f(~x) = l1(~x) . . . lm(~x), where l1(~x), . . . , lm(~x) ∈
R[ ~x ] are real linear forms. Suppose that l1(~x), . . . , lm(~x) are linearly
independent over R and that the set f(Zn) is discrete in R. Then
f(~x) = αg(~x), where g(~x) ∈ Z[ ~x ] and α ∈ R∗.
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The hypotheses that the form f(~x) is decomposable and l1(~x), . . . ,
lm(~x) are linearly independent over R are essential. (See §7 for simple
examples.) Note that in some particular cases (as, for example, when
m = 2) Theorem 1.7 can be easily proved without the use of Theorem
1.1. But, to the best of our knowledge, in order to tackle the general
case the classical approaches are not efficient. Finally, remark that in
view of [Bor-Sha, ch.2, Theorem 2], the form g(~x) in the formulation
of the theorem is a constant multiple of a product of forms of the type
NK/Q(x1 + x2µ2 + . . .+ xnµn), where µ2, . . . , µn are algebraic numbers
generating a totally real number field K of degree n and NK/Q is the
algebraic norm of K.

If f is a decomposable homogeneous form with complex coefficients
and we are considering the values of f at the Gaussian integer vectors,
we get:

Theorem 1.8. Let f(~x) = l1(~x) . . . lm(~x), where l1(~x), . . . , lm(~x) ∈
C[ ~x ] are complex linear forms. Suppose that l1(~x), . . . , lm(~x) are lin-
early independent over C and that the set f(Z[ i ]n) is discrete in C.
Then f(~x) = αg(~x), where g(~x) ∈ Z[ i ][ ~x ] and α ∈ C∗.

Let K, S and O be as above. For every v ∈ S, let fv = l
(v)
1 . . . l

(v)
m ∈

Kv[ ~x ], where l
(v)
1 , . . . , l

(v)
m are linearly independent over Kv linear forms

in Kv[ ~x ]. Denote by KS the direct product of the topological fields
Kv, v ∈ S. Both Theorems 1.7 and 1.8 are particular cases for K = Q
and K = Q( i ), respectively, of the next general theorem:

Theorem 1.9. With the above notation, assume that {(fv(~z))v∈S ∈
KS|~z ∈ On} is a discrete subset of KS . Then there exist an homoge-
neous form g with coefficients from O and an element (αv)v∈S ∈ K∗

S

such that fv = αvg for all v ∈ S.

In connection with Theorem 1.9 it seems natural to formulate the
following conjecture which generalizes a known conjecture for the real
forms f :

Conjecture. Let fv, v ∈ S, be as in the formulation of Theorem 1.9
with n = m > 2 or n = m = 2 and #S > 1. Additionally, assume that
there exists a neighborhood W of 0 in KS such that (fv(~z))v∈S /∈ W
for every ~z ∈ On, ~z 6= 0. Then there exist an homogeneous form g with
coefficients from O and an element (αv)v∈S ∈ K∗

S such that fv = αvg
for all v ∈ S.

The above conjecture can be reformulated in terms of Theorem 1.1
as follows: If G = SLn and rankSG > 1 then TSπ(g) is compact
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whenever TSπ(g) is relatively compact. In the case n = 3 and K = Q
the conjecture implies (see [Mar, §2]) the notable Littlewood conjecture
which states that

lim inf
n→∞

n〈nα〉〈nβ〉 = 0

for all α, β ∈ R, where 〈x〉 denotes the distance from x to Z. In
a recent paper [Ei-Ka-Li], M.Einsiedler, A.Katok and E.Lindenstrauss
proved that the Littlewood conjecture fails at most on a set of Hausdorff
dimension zero. Similar results in the p-adic setting have just appeared
in the M.Einsiedler and D.Kleinbock paper [Ei-Kl].

The paper is organized as follows. The basic notation and terminol-
ogy are introduced in §2. The proofs of the results about the structure
of the closed tori orbits are given in §§3 - 6. Our starting point is the
paper [To-W]. In §3, using [To-W], we prove an S-adic compactness
criterium in terms of intersections of so-called quasiballs with horo-
spherical subsets. Proposition 4.3, proved in §4, plays a crucial role in
revealing the dichotomy in Corollary 1.3. In §5 we describe the locally
divergent orbits in terms of minimal parabolic K-algebras. In order
to do this, we have to apply more intrinsic arguments than in [To-W].
For instance, the Galois type arguments in [To-W, §5] are replaced by
Proposition 5.4 which, alone, presents some interest. Theorems 1.1,
1.4 and their corollaries are proved in §6. The proof of Theorem 1.9 is
presented in §7. It uses Theorem 1.1 and the main result of M.Ratner’s
paper [Ra].

The author is grateful to Max Planck Institut für Mathematik where
the main part of this work was accomplished.

2. Preliminaries: notation and terminology

2.1. Numbers. As usual C, R, Q and Z denote the complex, real,
rational and integer numbers, respectively.

In this paper K denotes a number field, that is, a finite extension
of Q. For every place v of K we let Kv be the completion of K with
respect to v and |.|v be the normalized valuation on Kv (see [Ca-F, ch.2,
§7]). If v is a non-archimedean place then Ov = {x ∈ Kv : | x |v ≤ 1}
is the ring of integers of Kv.

We fix a finite set S of places of K containing all archimedean places
of K. The latter set is denoted by S∞ or, simply, ∞, if this does not
lead to confusion. We also put Sf = S \ S∞.

We denote by O the ring of S-integers of K, i.e., O = K
⋂

(
⋂

v/∈S Ov).
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For any non-empty subset R of S, KR

def
=

∏
v∈RKv is a direct prod-

uct of locally compact fields. Note that KR is a topological ring and
that the diagonal imbedding of K in KR is dense. As usual, we denote
by K∗

R the multiplicative group of all invertible elements in the ring
KR.

2.2. Norms. Let V be a finite dimensional vector space defined over
K. For every R ⊂ S (respectively v ∈ S) we write VR for V(KR)
(respectively, Vv for V(Kv)). Fixing a basis of K-rational vectors
e1, . . . , en, for every K-algebra A, we identify V(A) with An. For every
v ∈ S we define a normalized norm ‖ · ‖v on Vv as follows. If v is real
(respectively, complex) then ‖ · ‖v is the standard norm on Rn (respec-
tively, the square of the standard norm on Cn). If v is non-archimedean,
then ‖ · ‖v is defined by ‖x‖v = maxi |xi|v, where (x1, . . . , xn) are the
coordinates of the vector x ∈ Vv with respect to the bases e1, . . . , en.

For x = (x(v))v∈S in VR we define the norm of x as

‖x‖R = max
v∈R

‖x(v)‖v.

Also, if R = S we define the content of x as

cS(x) =
∏

v∈S

‖x(v)‖v.

Since all our norms are normalized and
∏

v∈S |ξ|v = 1 for every ξ ∈ O∗

[Ca-F, ch.2, Theorem 12.1], we have that

(1) cS(x) = cS(ξx), ∀ξ ∈ O∗.

By a pseudoball in VS of radius r > 0 centered at 0 we mean the
set BS(r) = {x ∈ VS |cS(x) < r}. We preserve the notation BS(r) to
denote the usual ball in VS of radius r centered at 0 with respect to
the norm ‖.‖S .

2.3. K-algebraic groups and their Lie algebras. We use boldface
upper case letters to denote the algebraic groups and boldface lower
case Gothic letters to denote their Lie algebras.

In this paper G is a reductive algebraic group defined over K (or,
shortly, G is a reductive K-algebraic group). Recall that the Lie al-
gebra g of G is equipped with a K-structure compatible with the K-
structure of G [Bo1, Theorem 3.4].

Given R ⊂ S, we usually denote GR

def
= G(KR) and gR

def
= g(KR).

The group GR (respectively, its Lie algebra gR) is identified with the

direct product
∏

v∈RGv (respectively,
∏

v∈R gv), where Gv
def
= G(Kv)
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(respectively, gv
def
= g(Kv)). If R = S we write G (respectively, g) for

GS (respectively, for gS).
We will use the notation prR to denote both the natural projections

G → GR and g → gR. (The exact use of pr∞ will follow from the
context.)

On every Gv we have a Zariski topology induced by the Zariski topol-
ogy on G and a Hausdorff topology induced by the locally compact
topology on Kv. The formal product of the Zariski (respectively, Haus-
dorff) topologies on Gv, v ∈ R, is the Zariski (respectively, Hausdorff)
topology on GR. In order to distinguish the two topologies, all topo-
logical notions connected with the first one will be used with the prefix
”Zariski”.

An element g = (gv)v∈R ∈ GR is called unipotent (respectively,
semisimple) if each v-component gv of g is unipotent (respectively,
semisimple). A subgroup U of GR is called unipotent if it consists
of unipotent elements. A subalgebra u of gR is unipotent if it corre-
sponds to a Zariski closed unipotent subgroup U of GR, i.e. if there
exists a subgroup U ⊂ GR such that U =

∏
v∈R Uv, each Uv is Zariski

closed in Gv, and u =
∏

v∈R uv where uv is the Lie algebra of Uv.
If H is a K-subgroup of G then Ru(H) denotes the unipotent radical

of H. The unipotent radical of the Lie algebra h is by definition the
Lie algebra of Ru(H).

If P is a subgroup of G then NG(P ) (respectively, ZG(P )) denotes
the normalizer (respectively, the centralizer) of P in G.

For any non-empty R ⊂ S the adjoint representation AdR : GR →
GL(gR), where GL(gR) =

∏
v∈R GL(gv), is the direct product of the

adjoint representations Adv : Gv → GL(gv), v ∈ R. We will use the
notation Ad (respectively, Ad∞) when R = S (respectively, R = S∞).

2.4. S-arithmetic subgroups. Recall that Γ is an S-arithmetic sub-
group of G if the group Γ ∩ G(O) has finite index in both Γ and
G(O). We assume that G is imbedded in SLn in such a way that
G(O) = SLn(O) ∩ G and g(O) = sln(O) ∩ g. In particular, g(O) is
invariant under the adjoint action of G(O). Let Γ′ be a subgroup of
finite index in Γ and let φ : G/Γ′ → G/Γ be the natural map. Since
φ is a proper map it is easy to see that Theorems 1.1, 1.4 and their
corollaries are valid for Γ if and only if they are valid for Γ′. Therefore,
we may suppose without loss of generality that Γ = G(O).

Let π : G → G/Γ be the natural projection. For every x ∈ G/Γ we
introduce the following notation. If x = π(g), g ∈ G, we denote

gx = Ad(g)g(O).
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Since g(O) is Ad(Γ)-invariant, gx does not depend on the choice of the
element g.

3. Compactness criteria in S-adic setting

3.1. S-adic Mahler’s criterion. Let G = SLn(KS), Γ = SLn(O)
and π : G → G/Γ be the natural projection. The group G is acting
naturally on Kn

S and Γ is the stabilizer of On in G. If r > 0 then BS(r)
(resp., BS(r)) is the ball (resp. pseudoball) in Kn

S centered in 0 and
with radius r (see §2.3).

We have

Theorem 3.1. (Mahler′s criterion) With the above notation, given a
subset M ⊂ G the following conditions are equivalent:

(i) π(M) is relatively compact in G/Γ;
(ii) There exists r > 0 such that gOn ∩ BS(r) = {0} for all g ∈M ;
(iii) There exists r > 0 such that gOn ∩BS(r) = {0} for all g ∈M .

The equivalence between (i) and (iii) is proved in [Kl-To, Theorem
5.12] and it is obvious that (ii) implies (iii). In order to prove that
(iii) implies (ii) note that, in view of the formula (1), every BS(r)
is invariant under the multiplication by elements from O∗. Now the
implication easily follows from the following lemma:

Lemma 3.2. (cf. [Kl-To, Lemma 5.10]) There exists a constant κ > 1
with the following property. Let x = (x(v))v∈S ∈ Kn

S be such that x
(v) 6=

0 for all v ∈ S. For each v ∈ S we choose a positive real number av in
such a way that cS(x) =

∏
v∈S av. Then there exists ξ ∈ O∗ such that

(2)
av

κ
≤ ‖ξx(v)‖v ≤ κav

for all v ∈ S. In particular, for every x as above there exists ξ ∈ O∗

such that

(3)
cS(x)1/m

κ
≤ ‖ξx‖S ≤ κcS(x)1/m,

where m = #S.

Proof. Let K1
S = {y = (y(v)) ∈ K∗

S|
∏

v∈S |y(v)|v = 1}. Then
O∗ ⊂ K1

S
and K1

S
/O∗ is compact [Ca-F, ch.2, Theorem 16.1]. Therefore

there exists a constant κ0 > 1 such that for every y = (y(v)) ∈ K1
S there

exists ξ ∈ O∗ such that

(4)
1

κ0

≤ |ξy(v)|v ≤ κ0, ∀v ∈ S.
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Let x and av, v ∈ S, be as in the formulation of the proposition.
There exists a constant c > 1, depending only on S, such that for
every v ∈ S there exists α(v) ∈ K∗

v with

(5)
c

|α(v)|v
≤ av ≤ c|α(v)|v

and
∏

v∈S |α(v)|v =
∏

v∈S av. So, cS(α−1x) = 1 where α = (α(v))v∈S ∈
K∗

S. Put κ = κ0c. In view of (4) and (5) there exists ξ ∈ O∗ such that

|α(v)|v
κ

≤ |ξx(v)|v ≤ κ|α(v)|v, ∀v ∈ S,

which proves (2).
In order to prove (3) it is enough to apply (2) with av = cS(x)1/n. �

3.2. Horospherical subsets. We need to prove a compactness crite-
rion which reflects the group structure of G.

We generalize the notion of horospherical subset from [To-W, Defi-
nition 3.4].

Definition 3.3. Let R ⊂ S. A finite subset M of gR is called R-
horospherical (or, simply, horospherical when R is implicit) if M =
prR(Ad(g)(M0)), where g ∈ G and M0 is a subset of g(O) which spans
linearly the unipotent radical of a maximal parabolic K-subalgebra of
g.

The next proposition provides a compactness criterion in terms of
the intersection of pseudo-balls (and balls) in g with gx, x ∈ G/Γ (see
2.1 for the notation). It generalizes [To-W, Propositions 3.3 and 3.5].

Proposition 3.4. Assume that G is a semisimple algebraic group.
Then the following assertions hold:

(a) There exists r > 0 (respectively, t > 0) such that for any x =
π(g) the subalgebra of g spanned by BS(r) ∩ gx (respectively,
BS(t) ∩ gx) is unipotent;

(b) (Compactness Criterion) A subset M of G/Γ is relatively
compact if and only if there exists r > 0 (respectively, t > 0)
such that BS(r) ∩ gx (respectively, BS(t) ∩ gx) does not contain
a horospherical subset for any x ∈M .

3.3. Proof of Proposition 3.4. For every t > 0 we let r =
(

t
κ

)m
,

where κ and m are as in the formulation of Lemma 3.2. It follows from
Lemma 3.2 that

BS(t/κ) ⊂ BS(r) ⊂ O∗BS(t).
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Now the validity of the proposition for the balls BS(t) implies easily
its validity for the pseudoballs BS(r).

Further on, the proof of the proposition breaks in two cases. (In
view of 2.4, we will assume that Γ = G(O).)

3.3.1. The case S = S∞. Let RK/Q be the Weil restriction of scalars
functor. Then H = RK/Q(G) is a semisimple Q-algebraic group and
h = RK/Q(g) is its Q-Lie algebra. Denote ∆ = H(Z), H = H(R)
and h = h(R). The following properties of the functor RK/Q are well
known and easily follow from its definition (see, for example, [Pl-R,
ch.2, §2.1.1]). There exist continuous isomorphisms µ : G → H and
ν : g → h such that µ(Γ) = ∆, ν(g(O)) = h(Z) and

ν(AdG(g)x) = AdH(µ(g))ν(x)

for all g ∈ G and x ∈ g. Moreover, ν maps bijectively the family of the
horospherical subsets of g to the family of the horospherical subsets
of h and µ induces an homeomorphism G/Γ → H/∆. Hence, when
S = S∞ the proposition follows from the case K = Q considered in
[To-W, Propositons 3.3 and 3.5].

3.3.2. The case S ! S∞. We introduce the topological rings Of
def
=

∏
v∈Sf

Ov and Kf
def
= K∞ ×Of (see 2.1). So, O∞ = O ∩ (K∞ ×Of ) is

the ring of integers of K.

If G̃ is the simply connected covering of the algebraic group G

then G̃/Γ̃ is naturally homeomorphic to G/Γ, where G̃ = G̃(KS) and

Γ̃ = G̃(O). In view of this and of Theorem 4.1 below, we may (and
will) assume without loss of generality that G is simply connected and
without K-anisotropic factors. Then the diagonal imbedding of Γ into∏

v∈Sf
G(Kv) is dense. (This fact follows immediately from the strong

approximation theorem [Pl-R, Theorem 7.12].) Therefore

G = G(Kf)Γ.

Every g ∈ G can be writhen in the following way

(6) g = g∞gfγ,

where g∞ ∈ G∞, gf ∈ G(Of ) and γ ∈ Γ. Let Γ∞ = G(Kf ) ∩ Γ. Then
G/Γ is homeomorphic to G(Kf)/Γ∞ and the projection of G(Kf) on
G∞ yields the following map

ϕ : G/Γ → G∞/Γ∞, ϕ(π(g))
def
= π∞(g∞), ∀g ∈ G,

where π∞ : G∞ → G∞/Γ is the natural map. In view of the compact-
ness of G(Of), ϕ is a proper continuous map.
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Let A be a subset of g∞ and x = π(g) for some g ∈ G. Set Af =
A × g(Of ). Using (6) and the fact that g(O) is invariant under the
adjoint action of Γ, we obtain

pr∞
(
gx ∩ Af

)
= pr∞

(
AdS(g)

(
g(O)

)
∩ Af

)
=

pr∞

(
AdS(g∞gf)

(
g(O)∩Af

))
= g∞,y ∩ A,

(7)

where y = ϕ(x) and g∞,y = Ad∞(g∞)g(O∞). (Recall that pr∞ denotes
the natural projection g → g∞.)

Let B̃(t) = B∞(t) × g(Of ). Applying (7) with A = B∞(t), we get

pr∞
(
gx ∩ B̃(t)

)
= g∞,y ∩ B∞(t).

Since the restriction of pr∞ to gx is injective, we obtain that the sub-
algebra spanned by gx ∩ B̃(t) is unipotent if and only if the subalgebra
spanned by g∞,y ∩ B∞(t) is unipotent. This, in view of 3.3.1, proves
(a).

Let us prove (b). If M is compact, it follows from the continuity of
the adjoint action that if t > 0 is sufficiently small then BS(t)∩gx does
not contain horospherical subsets for all x ∈ G/Γ. In order to prove the
inverse implication, letM ⊂ G/Γ and t > 0 be such that BS(t)∩gx does
not contain horospherical subsets for any x ∈M . Assume the contrary,
that is, that there exists a divergent sequence {xi} of elements in M .
Then the sequence {yi = ϕ(xi)} is divergent in G∞/Γ∞ (because ϕ is
proper). Since the proposition is true for G∞/Γ∞, for every ε > 0 there
exists i � 0 such that B∞(ε) ∩ g∞,yi

contains a horospherical subset.

Set B̃(ε) = B∞(ε)× g(Of ). By (7) (applied with A = B∞(ε)) and the

injectivity of the restriction of pr∞ to gx, we obtain that B̃(ε) ∩ gxi

contains a horospherical subset. Now, using Lemma 3.2, we conclude
that BS(t)∩ gxi

contains horospherical subsets for all sufficiently large
i. Contradiction. �

3.4. Expanding transformations. For every v ∈ S, we fix a max-
imal Kv-split torus Tv of G. We denote Tv = Tv(Kv) and TR =∏

v∈R Tv where R is a non empty subset of S.

Proposition 3.5. With the above notation, for every real τ > 1 there
exists a finite set t1, . . . , ts of elements in TR such that if u is a unipotent
subalgebra of gR then there exists an element ti such that

(8) ‖Ad(ti)(x)‖R ≥ τ‖x‖R
for all x ∈ u.
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Proof. It is easy to see that it is enough to prove the proposition
when R is a singleton. Let R = {v}. If v is real then the proposition
is proved in [To-W, Proposition 4.1]. Here we present a shorter proof
for an arbitrary v.

Let u+
v and u−

v be invariant under the adjoint action of Tv maximal
unipotent subalgebras of gv which are opposite to each other. Then

(9) Cv = {d ∈ Tv| lim
n→+∞

Ad(dn)x = ∞, ∀x ∈ u+
v }

is the interior of the Weil chamber corresponding to u+
v (see [Bo1]).

Denote by U+
v and U−

v the unipotent subgroups of Gv with Lie algebras
u+

v and u−
v , respectively.

Now let uv be any maximal unipotent subalgebra of gv. There exists
g ∈ Gv such that Ad(g)u+

v = uv. By Bruhat decomposition g = aωb,
where ω ∈ NGv

(Tv), a and b ∈ U+
v and ω−1aω ∈ U−

v . We can write
uv = Ad(ωa−)u+

v , where a− = ω−1aω. Let x ∈ u+
v and fv ∈ Cv. We

put y = Ad(ωa−)x and dv = ωfvω
−1. Using (9) and the fact that

limn→+∞ fn
v a

−f−n
v = 0, we get

lim
n→+∞

Ad(dn
v )y = lim

n→+∞
Ad(ω(fn

v a
−f−n

v )) ◦ Ad(fn
v )(x) = ∞.

Therefore, taking t = dn with n sufficiently large, we obtain that

(10) ‖Ad(t)z‖v > τ‖z‖v

for all non-zero z ∈ uv.
Since the stabilizer of every maximal unipotent subalgebra is a min-

imal parabolic subgroup and all minimal parabolic subgroups are con-
jugated, the set of all maximal unipotent subalgebras can be identified
with the compact homogeneous space Gv/P

+
v , where P+

v is the para-
bolic subgroup of Gv with Lie algebra u+

v . It is easy to see that (10)
is true for all subalgebras in a neighborhood of uv. Now the existence
of the elements t1, . . . , ts as in the formulation of the theorem follows
from the compactness of Gv/P

+
v by a standard argument. �

4. Closed orbits of reductive K-groups

4.1. Reductive groups. Recall the S-adic version of a well-known
theorem of Borel and Harish-Chandra. (As usual, G = G(KS) and
Γ = G(O).)

Theorem 4.1. (cf.[Pl-R, Theorem 5.7 ]) Let G be a reductive K-group
and let XK(G) be the group of K-rational characters of G. Then

(a) G/Γ has a finite invariant volume if and only if XK(G) = {1};
(b) G/Γ is compact if and only if G is anisotropic over K.
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Because of the lack of appropriate reference we will prove the follow-
ing known proposition.

Proposition 4.2. With the above notation, let H be a reductive sub-
group of G defined over K and H = H(KS). Then Hπ(e) is closed in
G/Γ.

Proof. Using the Weil restriction of scalars, one can reduce the
proof to the case when K = Q. In view of [Bo2, Proposition 7.7] there
exists a Q-rational action of G on an affine Q-variety V admitting an
element a ∈ V(Z) such that H = {g ∈ G|ga = a}. Since the map
G → V, g → ga, is polynomial with rational coefficients, there exists
a non-zero integer n such that γna ∈ V(O) for all γ ∈ Γ. Therefore
ΓH is closed in G, equivalently, Hπ(e) is closed. �

4.2. Algebraic tori. We will need the following

Proposition 4.3. Let T be a K-torus in G and let R be a non-empty
subset of S. Suppose that TR is not compact. Then the orbit TRπ(e) is
divergent if and only if the following conditions are fulfilled:

(i) R = {v◦} is a singleton, and
(ii) rankKT = rankKv◦

T > 0.

Proof. In view of Proposition 4.2 the orbit T(KS)π(e) is closed and,
therefore, homeomorphic to T(KS)/(T(KS)∩Γ). So, we may suppose,
with no loss or generality, that T = G.

Assume that the orbit TRπ(e) is divergent. Let Ta (respectively,
Td) be the largest K-anisotropic (respectively, split over K) subtorus
of T. It is well known that T is an almost direct product of Ta and Td.
This implies that if there exists v ∈ R such that rankKv

T > rankKT

then Ta(KR) is not compact. But Ta(KS)π(e) is compact (Theorem
4.1). Therefore, TRπ(e) can not be divergent, a contradiction. So,
rankKv

T = rankKT for all v ∈ R. In this case Ta(KR) is compact
and, since TR is not compact, Td is not trivial. Note that TRπ(e) is
divergent if and only if Td(KR)π(e) is divergent.

In order to prove (i) consider the character group XK(T) of T. It
is well known that XK(T) is a free Z-module of rank equal to dimTd

(cf. [Bo1, 8.15]). Let χ1, . . . , χr be a basis of XK(T). Define a homo-
morphism of K-algebraic groups χ = (χ1, . . . , χr) : T → Gr

m, where
Gm denotes the one-dimensional K-split torus. Let T = T(KS) and
T◦ = {(tv)v∈S ∈ T |∏v∈S |χi(tv)|v = 1 for all i}. It follows from [Ca-F,
ch.2, Theorem 16.1] that Γ is a co-compact lattice in T◦. Set ϕ : T →
Rr, ϕ((tv)v∈S) =

(
log(

∏
v∈S |χ1(tv)|v), . . . , log(

∏
v∈S |χr(tv)|v)

)
. It is
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clear that ϕ is a continuous surjective homomorphism of locally com-
pact topological groups with ker(ϕ) = T◦. Since T◦/Γ is compact, ϕ
induces a proper homomorphism ψ : T/Γ → T/T◦. Now let R contain
two different valuations v1 and v2. It is easy to find sequences {ai} in
K∗

v1
and {bi} in K∗

v2
such that log |ai|v1

→ +∞, log |bi|v2
→ −∞ and

the sequence {log |ai|v1
+ log |bi|v2

} is bounded. We define a sequence

{si = (s
(v)
i )v∈R} in TR as follows:

s
(v)
i =






1, if v ∈ R \ {v1, v2};
χ1(s

(v1)
i ) = ai and χj(s

(v1)
i ) = 1 for all j > 1;

χ1(s
(v2)
i ) = bi and χj(s

(v2)
i ) = 1 for all j > 1.

We have that {si} is unbounded and that {ϕ(si)} is bounded. (Recall
that TR is considered as a subgroup of T , so that the notation ϕ(si)
makes sense.) Since ψ is proper, siπ(e) is bounded. Therefore the
orbite TRπ(e) is not divergent. This contradiction completes the proof
of (i).

Assume that R contains only one valuation v◦ and that rankKT =
rankKv◦

T > 0. It follows from the above definition of ϕ and the fact
that χ is an homomorphism with compact kernel, that if a sequence {ti}
in TR diverges then {ϕ(ti)} does too. Therefore TRπ(e) is a divergent
orbit. �

Proposition 4.3 implies:

Proposition 4.4. Let T be a K-torus and let R be a non-empty subset
of S. Then the orbit TRπ(e) is closed if and only if one of the following
conditions holds:

(1) R = S;
(2) rankKv

T = 0 for all v ∈ R, equivalently, TR is compact;
(3) R = {v◦} and rankKT = rankKv◦

T.

Proof. Note that if R 6= S and TR is not compact then TRπ(e) is
closed if and only if it is divergent. Now the proposition follows easily
from Proposition 4.3. �

5. Parabolic subgroups and divergent orbits

5.1. Main proposition. Recall that, given a subset R ⊂ S, we use
the notation prR to denote depending of the context the projection
G→ GR or the projection g → gR.

The goal of this section is to prove the following
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Proposition 5.1. Let G be a reductive K-algebraic group, R be a
non-empty subset of S, g = (gv)v∈S ∈ G and x = π(g). Assume that
rankKG > 0 and that for every minimal parabolic K-subalgebra b of g

containing the Lie algebra of D there exists a horospherical subset Mb

of gR such that Mb ⊂ prR(gx) ∩ bR. Then the following assertions
hold:

(a) For every v ∈ R the orbit Dvπ(g) is divergent;
(b) If gR = prR(g) then

(11) gR ∈ ZGR
(DR)prR(G(K));

(c) There exists a maximal K-split torus S of G such that

(12) Sv = gv
−1Dvgv

for all v ∈ R, where Sv = S(Kv).

In order to prove Proposition 5.1 we will need some facts from the
algebraic group theory.

5.2. Intersections of parabolic subgroups. The next three propo-
sitions remain valid for any field K.

Proposition 5.2. [Bo1, Propositions 14.22 and 21.13] Let P and Q be
parabolic K-subgroups of G.

(i) (P ∩ Q)Ru(P) is a parabolic K-subgroup;
(ii) If Q is conjugate to P and contains Ru(P) then Q = P.

We also have

Proposition 5.3. [To-W, Proposition 5.2] For every minimal parabolic
K-subgroup B containing D we let PB be a proper parabolicK-subgroup
containing B. Then

(13)
⋂

B

PB = ZG(D).

Keeping the notation and assumptions of Proposition 5.3, we prove:

Proposition 5.4. Let n ∈ NG(ZG(D)). Assume that for every B the
group nPBn

−1 is defined over K. Then n ∈ NG(D). The projection
of n into the Weyl group WK = NG(D)/ZG(D) is uniquely defined by
the map B → nPBn

−1.

Proof. The uniqueness of the projection of n into WK follows imme-
diately from Proposition 5.3 and the fact that every parabolic subgroup
coincides with its normalizer.
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We will assume that for every B the group PB is minimal among the
parabolic K-subgroups P containing B and such that nPn−1 is defined
over K.

Assume that there exists B such that B = PB. Let B′ = nBn−1.
Since all minimal parabolic K-subgroups are conjugated under the ac-
tion of WK and NG(D) = NG(D)(K)ZG(D) [Bo1, Theorem 21.2],
there exists n◦ ∈ NG(D)(K) such that B = n◦B

′n−1
◦ . Therefore,

B = n◦nB(n◦n)−1 which implies that n◦n ∈ B. Since NG(D) ⊂
NG(ZG(D)), we get n◦n ∈ NB(ZG(D)). Now, the proposition follows
from the fact that ZG(D) = NB(ZG(D)) [Bo1, Corollary 14.19].

Assume that PB ' B for all B. Choose a PB with the minimal
dimension and set P = PB. Let Φ(D,G) be the relative root system
of G with respect to D. (See [Bo1, 21.1 and 8.17] for the standard
definition of a system of K-roots.) Since P ' B, there exists a long
root α ∈ Φ(D,G) such that ±α are roots of the group P with respect to
D. Recall that all roots of the same length in Φ(D,G) are conjugated
under the action of WK [Hu, 10.4, Lemma C and 10.3, Theorem].
Therefore there exists a minimal parabolic K-subgroup B+ containing
D such that α is a maximal long root of B+ relative to D. Let ∆+ be
the set of simple roots corresponding to B+. Then in the expression of
α as a linear combination of the roots in ∆+ all coefficients are strictly
positive [Hu, 10.4, Lemma A]. It follows from the explicit description
of the standard parabolic K-subgroups (see [Bo1, 21.11]), that −α is
not a root of any parabolic K-subgroup containing B+. Similarly, α is
not a root of any parabolic K-subgroup containing B−, where B− is
the minimal parabolic K-subgroup opposite to B+. As a consequence,
one of the K-subgroups (PB+ ∩P)Ru(P) or (PB−∩P)Ru(P) is strictly
smaller than P. Let P 6= (PB+ ∩P)Ru(P). Since (PB+ ∩P)Ru(P) is a
parabolic K-subgroup (Proposition 5.2(i)) and n(PB+∩P)Ru(P)n−1 is
defined over K. The latter contradicts the choice of P, which completes
our proof. �

Remark 5.5. In connection with the above proposition, let us note
that in many cases NG(D)  NG(ZG(D)). As a simple example one
can consider the special unitary group SU3(h), where h is an hermitian
form with coefficients from K of indice 1. This is a quasisplit group of
type A2. Therefore NG(ZG(D))/ZG(D) is isomorphic to the symmet-
ric group S3 and NG(D)/ZG(D) is a group of order two.

5.3. Proof of Proposition 5.1. We start the proof with a general
remark. With the proposition assumptions and notation, for every
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b there exists a finite subset M•
b

of g(O) which spans linearly the
unipotent radical of a maximal parabolic K-subgroup P•

b
of G and

such that Mb = prR(Ad(g)(M•
b
). So, if v ∈ R, we have

gvRu(P
•

b
)(Kv)g

−1
v ⊂ B(Kv),

where B is the K-algebraic subgroup of G the Lie algebra of which
is b. It follows from Proposition 5.2(ii) that there exists a parabolic
K-subgroup Pb containing B such that

(14) Pb = gvP
•

b
g−1

v

for all v ∈ R.
Let us prove (a). (Remark that (a) follows a posteriori from (b) and

Proposition 4.3.) Fix v ∈ R. We want to prove that the orbit Dvπ(g)
diverges. Let {di} be a divergent sequence in Dv. Put si = g−1

v digv. It
is enough to prove that the sequence {siπ(e)} is divergent. Passing to
a subsequence we may assume that {d−1

i } belongs to the Weyl chamber
corresponding to some minimal parabolic K-subgroup B. Let u be the
Lie algebra of Ru(P

•
b
). Let m be the dimension of u and let

∧m Ad
be the adjoint representation of G on the m-th exterior power

∧m
g.

Since u is defined over K, there exists a non-zero K-rational vector
z ∈ ∧m

g corresponding to u. It is known (see the proof of Proposition
5.4) that if α is a maximal root of B with respect to D then α is a
root of every standard parabolic subgroup containing B and, given the
choice of {di}, limi→∞ α(di) = 0. Since Pb = gvP

•
b
g−1

v and Pb is a
parabolic containing B, we obtain that

lim
i→∞

‖
m∧

Ad(di)gvz‖v = 0.

This implies

lim
i→∞

cS(
m∧

Ad(si)z) = 0.

It follows from Theorem 3.1 (ii) that {siπ(e)} diverges. This completes
the proof of (a).

Note that (c) follows immediately from (b). So, it remains to prove
(b). Let P•

b
be as above. Set H =

⋂
b
P•

b
. Since Pb is a K-parabolic

subgroup of G containing B, in view of Proposition 5.3, we get that

(15) H =
⋂

b

g−1
v Pbgv = g−1

v

(⋂

b

Pb

)
gv = g−1

v ZG(D)gv

for all v ∈ R.
Note that the groups ZG(D) and H are reductive and defined over

K. Let Z (respectively, Z•) be the Zariski connected component of the
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center of ZG(D) (respectively, H). It follows from (15) that

(16) Z• = g−1
v Zgv

for all v ∈ R. Since D is a maximal K-split torus of G, we have that
D = Zd, where Zd is the largest K-split subtorus of Z.

Denote by Z•
d the largest K-split subtorus of Z• and assume that

Z•
d is not maximal in G. Let Z•

a be the largest K-anisotropic subtorus
of Z•. Fix v ∈ R. Since every K-torus is an almost direct product
over K of its largest K-split and its largest K-anisotropic subtori [Bo1,
Proposition 8.15], it follows from (16) that there exists an element t ∈
Z•

a(Kv)∩gv
−1D(Kv)gv such that {tn|n ∈ N} is a divergent sequence. In

view of (a), {gvt
ngv

−1π(g)}, and therefore {tnπ(e)}, are also divergent
sequences. The latter contradicts the fact that the orbit Z•

a(KR)π(e) is
compact (see Theorem 4.1). Therefore Z•

d is a maximal K-split torus
of G.

Since the maximal K-split tori are conjugated under G(K) [Bo1,
Theorem 20.9], there exists q ∈ G(K) such that Z•

d = q−1Dq. Also,
ZG(Z•

d) = q−1ZG(D)q, ZG(Z•
d) ⊃ H and dimH = dimZG(D). There-

fore,
H = q−1ZG(D)q.

In view of (15), we have

gvq
−1 ∈ NG(ZG(D)), ∀v ∈ R.

Given v ∈ R, the group

qg−1
v Pb(qg

−1
v )−1 = qP•

b
q−1

is defined over K for every b. It follows from Proposition 5.4 that there
exists n ∈ NG(D)(K) such that

(17) nqg−1
v ∈ ZG(D), ∀v ∈ R.

Since n is the same for all v ∈ R, (17) implies (11), which completes
the proof. �

6. Proofs of Theorem 1.4 and of its corollaries

6.1. Proof of Theorem 1.4. Let the conditions (i)-(iii) in the for-
mulation of the theorem hold. Since rankKv

G ≥ rankKG, it follows
from (ii) that rankKv

G = rankKG for all v ∈ R. Therefore, TR/DR

is compact. So, TRπ(g) is closed and locally divergent if and and only

if DRπ(g) has this property. In view of (iii), g−1DRg = D̃R, where

D̃R = D̃(KR) and D̃ is a K-split torus. Using (i) and Proposition 4.3,

it is easy to see that D̃Rπ(g), and therefore DRπ(g), are closed locally
divergent orbits.
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Let the orbit TRπ(e) be closed and locally divergent. In view of
Theorem 4.1(b), rankKG > 0. Moreover, since every Tv is a product
of a maximal Kv-split torus and a compact, we can suppose without
loss of generality that Tv is a maximal Kv-split torus.

Denote by S the connected component of the Zariski closure of
g−1TRg ∩ Γ in G. Suppose that S is not trivial. Then R = S. Set
S = S(KS). Since S is not compact, Sπ(e) is locally divergent and S is
Kv-split, v ∈ S, it follows from Proposition 4.3 that S is K-split. Set
H = ZG(S), H = H(KS) and ∆ = H ∩ Γ. Let πH : H → H/∆ be the
natural projection. Remark that H is a reductive group [Bo1, 13.17,

Corollary 2]. Choose a maximal K-split torus S̃ of H. Then S̃ ⊃ S

and there exists q ∈ G(K) such that

(18) S̃ = q−1Dq.

Denote S̃v = S̃(Kv), v ∈ S, and S̃ = S̃(KS). There exists h =

(hv)v∈S ∈ H such that h−1
v S̃vhv ⊆ g−1

v Tvgv for every v ∈ S. Denote

T̃v = hvg
−1
v Tvgvh

−1
v and T̃ =

∏
v∈S T̃v. Then S̃ ⊂ T̃ ⊂ H and T̃ πH(h)

is a closed locally divergent orbit. Suppose for a moment that the the-
orem is valid for H. Then the conditions (i) and (ii) in the formulation
of the theorem are automatically fulfilled because rankKG = rankKH

and rankKv
G = rankKv

H, v ∈ S. Since h = zd, where z ∈ NH(S̃) and
d ∈ H(K), using (18), we obtain

D = gh−1S̃hg−1 =gdS̃d−1g−1 =

= gdq−1Dqd−1g−1.

Therefore, g ∈ NG(D)G(K), which proves (iii). The above discussion
reduces the proof to the case when S is a central K-split torus in G.
In this case G is an almost direct product over K of S and a reductive
K-group. Factorizing by S, we can further reduce the proof to the case
when S is trivial.

So, in order to complete the proof of the theorem, it is enough to
consider the case when TRπ(g) is a divergent orbit. The rest of the
proof breaks in two cases according to whether or not the assumptions
in the formulation of Proposition 5.1 are satisfied.

Assume that for every K-subalgebra b of g containing Lie(D) the
intersection prR(gx) ∩ bR, where x = π(g), contains a horospherical
subset. Then (iii) follows from Proposition 5.1(b), and (ii) from Propo-
sition 5.1(c) and Theorem 4.1(b). The condition (i) follows easily from
(ii), (iii) and Proposition 4.3.

Now assume the contrary, that is, that there exists a minimal para-
bolicK-subalgebra b of g containing Lie(D) and such that prR(gx)∩bR
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does not contain a horospherical subset. We will prove that this as-
sumption leads to contradiction. (As in [To-W], our argument is in-
spired by Margulis’ one, cf.[To-W, Appendix].) Let u− be the unipo-
tent radical of the minimal parabolic K-subalgebra opposite to b. For
every positive integer n we let Bn be a ball of radius n in g. Since gx

is discrete in g, the family of the horospherical subsets in prR(gx)∩ bR

is finite. In view of this and the assumption that prR(gx) ∩ bR does
not contain horospherical subsets, for every n there exists an element
sn ∈ DR such that Ad(sn) acts as an expansion on u−

R
and

(19) Ad(sn)M * Bn

for every horospherical subset M ⊂ gx ∩Bn.
Using Proposition 3.4(a), we fix a compact neighborhood W0 of 0

in g such that W0 ⊂ Bn and for every x ∈ G/Γ the subalgebra of g

spanned by gx ∩W0 is unipotent.
Proposition 3.5 and the choice ofW0 imply that there exist a constant

τ > 1 and a finite set t1, . . . , tl in DR such that for every y ∈ G/Γ there
exists t ∈ {t1, . . . , tl} satisfying

(20) ‖Ad(t)a‖R ≥ τ‖a‖R, ∀a ∈ gy ∩W0.

We put

W = W0

⋂( l⋂

i=1

Ad(ti)W0

)
.

Given a positive n ∈ N, we define inductively a finite sequence
p0, p1, . . . , prn

as follows. We put p0 = sn. Assume that p0, p1, . . . , pi

are already defined. If Ad(pi . . . p0)(gx) ∩W does not contain a horo-
spherical subset then p0, p1, . . . , pi is the required sequence. If not, we
put pi+1 = t, where t satisfies (20) with y = pi . . . p0x. With the same
y and pi+1, remark that if b ∈ gy and b /∈ W0 then Ad(pi+1)b /∈ W .
This and (20) imply the following

Claim: If p0, p1, . . . , pr are already defined, 0 ≤ i < r, y = pi . . . p0x,
b ∈ gy and b /∈ W0 then Ad(pj . . . pi+1)b /∈ W for every j such that
i ≤ j ≤ r.

The claim implies that the cardinality of Ad(pi . . . p0)(gx) ∩W does
not increase with i and, moreover, the sequence {pi} is finite. Put gn =
prn

. . . p1p0. It follows from Proposition 3.4(b) that the sequence {gnx}
is bounded in G/Γ. Since the orbit TRx is divergent, the sequence {gn}
is bounded in TR. Also note that, given the above definition of sn, the
sequence {sn} is unbounded. Again by Proposition 3.4(b), passing to
a subsequence, we may assume that rn > 0 for all n.
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Let hn = p−1
rn
gn and Mn be a horospherical subset of Ad(hn)(gx)∩W .

Assume that Ad(h−1
n )(Mn) ⊂ Bn. Then it follows from (19) that

Ad(p0h
−1
n )(Mn) * Bn. The Claim implies that Mn * W , which

contradicts the choice of Mn. Therefore,

Ad(h−1
n )(Mn) * Bn.

Since Mn ⊂ W and W is compact, the sequence {h−1
n } is not bounded.

Therefore, {gn} is not either. Contradiction. �

6.2. Remarks. (a) It follows from the proof of Theorem 1.4 that if
#S > 1 and the orbit Tx (where T = TS) is closed and locally divergent
then the Zariski closure of g−1Tg ∩Γ in G contains a maximal K-split
torus.

(b) Since NG(D)(K) meets every coset of the quotient NG(D)/ZG(D),
we have that ZG(Dv)G(K) = NG(Dv)G(K) for every v. On the other
hand, it is easy to see that ZG(DR)G(K) $ NG(DR)G(K) whenever
#R > 1 and G is a semisimple K-isotropic group.

6.3. Proof of Theorem 1.1. Let us prove (a). The implication ⇐
is trivial. Assume that TRπ(g) is closed. Let S be the connected
component of the Zariski closure of g−1Tg∩Γ. If R 6= S then S = {1}
and TRπ(g) is divergent. Let R = S. Set H = ZG(S), H = H(KS)
and ∆ = H(O). Since H is an almost direct product over K of S and of
a reductive K-group, the proof can be easily reduced to the case when
S is trivial, i.e., when TRπ(g) is divergent. The case when TRπ(g) is
divergent follows from (b).

The part (b) of the theorem follows easily from Theorem 1.1 and
Proposition 4.3. �

6.4. Proof of Corollaries 1.3, 1.5 and 1.6. Corollary 1.3 follows
from Theorem 1.1 (a) and Remark 6.2 (a), and Corollary 1.5 follows
from Theorem 1.4 and Remark 6.2 (b).

Let us prove Corollary 1.6. The part (a) is immediate from Theorem
1.4. In order to prove (b), remark that

(
NG(D) ×NG(D)

)
diag(G)  

G × G, where diag(G) is the diagonal imbedding of G into G × G.
Therefore, there exists (g1, g2) ∈ (G × G)(K) such that (g1, g2) /∈(
NG(D) ×NG(D)

)
diag(G). Let v1 and v2 be two different valuations

in S and let g = (gv)v∈S ∈ G be such that gv1
= g1, gv2

= g2 and gv = 1
for all v ∈ S\{v1, v2}. It follows from Theorem 1.4 (iii) and Proposition
4.3 that the orbit TRπ(g) is locally divergent but not closed. �
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6.5. Remark. In connection with Corollary 1.6 (a), note that if K =
Q and D∞ is a real split torus of G = G(R) with dimD∞ > rankQG,
it was proved by B.Weiss [W] that there are no divergent orbits for
the action of T∞. The following generalization of [W] should be also
true: If v is any place of K and Dv is a Kv-split torus of G such that
dimDv > rankKG then G/Γ, where G and Γ are as in the formulation
of Theorem 1.1, does not admit divergent orbits for the action of Dv =
Dv(Kv).

7. Number theoretical application

Let KS [ ~x ] be the ring of polynomials in n variables ~x = (x1, . . . , xn)
with coefficients from the topological ringKS . Let f(~x) = l1(~x) . . . lm(~x)
∈ KS[ ~x ], where l1(~x), . . . , lm(~x) are linearly independent over KS lin-
ear forms.

The following is a reformulation of Theorem 1.9 from the Introduc-
tion:

Theorem 7.1. With the above notation and assumptions, suppose that
f(On) is a discrete subset of KS. Then f(~x) = αg(~x) for some α ∈ K∗

S

and some g(~x) ∈ O[ ~x ] .

The following examples show that the hypotheses in the formulations
of Theorem 7.1 are essential and can not be omitted.

Examples. Let α ∈ R be a badly approximable number, i.e. there
exists a c = c(α) > 0 such that

∣∣∣∣α− p

q

∣∣∣∣ ≥
c

q2

for all p/q ∈ Q. (Recall that the quadratic irrationals, such as
√

2,
and the golden ratio (

√
5 + 1)/2 are badly approximable.) Consider

the form f(x, y) = x2(αx − y). Then the set of values of f at the
integer points is discrete but f is not a multiple of a form with rational
coefficients. The reason is that f is a product of linearly dependent
linear forms.

The hypothesis that f is decomposable is also essential. In order to
see this it is enough to consider a form f(x, y) = x2 + βy2 where β is a
positive irrational real number. It is obvious that f(Z2) is discrete in
R.

We put G = SLn. So, G = SLn(KS) and Γ = SLn(O).) The
group G is acting on KS[ ~x ] according to the low (σf)(~x) = f(σ−1~x),
where σ ∈ G and f ∈ KS[ ~x ]. We denote f0(~x) = x1x2...xm. It is
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clear that if f ∈ KS[ ~x ] is as in the formulation of Theorem 7.1 then
f(~x) = α(σf0)(~x) for some σ ∈ G and α ∈ K∗

S
. We will denote by Hf

the stabilizer of f in G.

We precede the proof of Theorem 7.1 by the following general propo-
sition.

Proposition 7.2. Let f(~x) = (σf0)(~x) for some σ ∈ G . Assume that
f(On) is a discrete subset of KS . Then Hfπ(e) is closed in G/Γ.

Proof. Let π(a), a ∈ G, belong to the closure of Hfπ(e). Fix a
sequence hi ∈ Hf such that limi→∞ hiπ(e) = π(a). There exist γi ∈ Γ
and bi ∈ G such that limi→∞ bi = e and hiγi = bia. Since f(On) is
discrete, for every ~z ∈ On there exists a real number c(z) > 0 such
that

(21) f(γi~z) = f(hiγi~z) = f(βia~z) = f(a~z) ∈ f(aOn) ∩ f(On)

for all i > c(z).
Let χ1, χ2, ..., χl ∈ K[ ~x ] be the set of all monomials of degree m.

We consider χ1, χ2, ..., χl as homomorphisms of multiplicative groups
K∗n → K∗. Since χ1, χ2, ..., χl are linearly independent over K, i.e.
whenever we have a relation

α1χ1 + α2χ2 + . . .+ αlχl = 0,

with αi ∈ K then all αi = 0, there exist ~z1, ~z2, ..., ~zl ∈ On such that
det(χk(~zs)) 6= 0. In view of (21), there exists c > 0 such that

(22) f(bia~zs) = f(a~zs)

for all s and i > c.
The form f can be regarded as a collection of forms fv ∈ Kv[ ~x ], v ∈

S. Since det(χk(~zl)) 6= 0, using (22), we get that

fv(bivav~x) = fv(a~x)

for all v ∈ S and i > c, where biv is the v-component of bi and av is the
v-component of a. Hence bi ∈ Hf for all i > c. So, we obtain that

π(a) = b−1
i hiπ(e) ∈ Hfπ(e),

which proves that Hfπ(e) is closed. �

Given a subgroup L ofG, we will write Lu for the subgroup generated
by the Zariski closed in G unipotent subgroups of L.

The following is a particular case of Theorem 3 from [To].
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Proposition 7.3. Let L be a closed (for the Euclidean topology) sub-
group of G. Assume that Lπ(e) is closed and Luπ(e) is dense in Lπ(e).
Let P be the connected component of the Zariski closure of L∩ Γ in G

and let P = P(KS). Then

(i) P ⊃ Lu and there exists a subgroup of finite index P ′ in P such
that Lπ(e) = P ′π(e);

(ii) If Q is a proper normal K-subgroup of P, there exists v ∈
S such that (P/Q)(Kv) contains a unipotent element different
from the identity.

Proof of Theorem 7.1. Let H0 be the Zariski connected compo-
nent of Hf0

. It is easy to see that

(23)

H0 =

{(
d a
0 s

)
| d ∈ Dm, a ∈ Mm×(n−m)(KS) and s ∈ SLn−m(KS)

}
,

where Dm is the group of all diagonal matrices in SLm(KS). Since
f = σf0, we have that

H = σH0σ
−1

is the Zariski connected component of Hf .
Let Fm be the KS-module of all homogeneous polynomials of degree

m in KS [~x]. A simple calculation shows that KSf0 is the submodule
of all H0-invariant elements in Fm. Therefore,

(24) KSf = {h ∈ Fm|σh = h, ∀σ ∈ H}.
It follows from [Ra, Theorem 2] that there exists a closed subgroup

L of G such that Lπ(e) = Huπ(e). Let P be the connected component
of the Zariski closure of L∩Γ in G and let P = P(KS). By Proposition
7.3, Lπ(e) = P ′π(e) where P ′ is a subgroup of finite index in P . On the
other hand, since Hfπ(e) is closed (Proposition 7.2) and H has finite
index in Hf , Hπ(e) is also closed. Therefore, P ′ ⊂ H. Since Hu ⊂ P ′,
it follows from Proposition 7.3 (ii) and from the description (23) of H0

that Hu = P and Lπ(e) = Pπ(e).
Let Q be the commutator subgroup of NG(P). It follows from (23)

that Q is a semidirect product over K of P and of an algebraic group R

defined over K which is isomorphic over Kv to SLm for all v ∈ S. (Note
that R is isomorphic to SLm over a finite extension ofK but, in general,
R is not isomorphic to SLm over K itself.) Let R =

∏
v∈S Rv(Kv) and

T = R ∩H. Then T =
∏

v∈S Tv(Kv), where Tv is a maximal Kv-split
torus in R, and H = TP . Since the projection of H into Q/(Q ∩ Γ),
where Q = Q(KS), is closed, the projection of T into R/(R ∩ Γ) is
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closed too. Applying Theorem 1.1, we get a torus T in R defined over
K such that T = T(KS). Therefore, H = H(KS), where H = TP is
an algebraic group defined over K.

It follows from the above that H(K) is Zariski dense in H. Note
that given σ ∈ H(K) the coefficients of all h ∈ Fm such that

σh = h

can be regarded as the space of solutions of a system of linear equations
with coefficients from K. Therefore, in view of (24), there exist g(~x) ∈
O[~x] and α ∈ K∗

S such that f(~x) = αg(~x). �
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