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Abstract

The author gives a survey of one aspect about Koecher-Maass series mainly from his
results on explicit forms for Koecher-Maass series and their applications.

1 Introduction

In this survey, one aspect about Koecher-Maass series will be presented. In particular the
author would like to explain his works on explicit forms for Koecher-Maass series and their
applications. As for more general and wide topics, there exist a valuable proceedings “On
Koecher-Maass series” [25] and beautiful papers “A survey on the new proof of Saito-Kurokawa
lifting after Duke and Imamoglu” [23] by T. Ibukiyama, “Bemerkungen über die Dirichletreichen
von Koecher und Maass” [7] by S. Böcherer. We recommend these articles to anyone interested
in Koecher-Maass series. Initially this series was introduced by Maass [39] and Koecher [33] for
holomorphic Siegel modular forms. Let

F (Z) =
∑
T≥O

A(T, F ) exp(2πitr(TZ))

be a holomorphic Siegel modular form of degree n, where the summation extends over all half-
integral positive semi-definite symmetric matrices T of degree n. Then the Koecher-Maass series
ηF (s) associated with F (Z) is defined by

ηF (s) =
∑

{T>O}/SLn(Z)

A(T, F )
ε(T )(detT )s

,

where the summation extends over all half-integral positive definite symmetric matrices T of
degree n modulo the action T → T [U ] = tUTU of the group SLn(Z) and ε(T ) = ]{U ∈
SLn(Z);T [U ] = T} is the order of the unit group of T . Some standard analytical properties of
ηF (s) are well known. The series ηF (s) converges absolutely for <(s) sufficiently large. It has
a meromorphic continuation to the whole complex s-plane and satisfies a functional equation.
An expression for its principal part of poles was obtained by Arakawa [2]. See [38] and [31] for
detail expositions.

In this paper we give a survey about some special topics about explicit forms for Koecher-
Maass series and their applications, mainly from the present author’s results. In case the degree
is two, our approach is based on the following observation: if the Fourier coefficients A(T, F )
satisfy a Maass type relation then the Koecher-Maass series ηF (s) is a convolution product
of two modular forms and can be studied by Zagier’s Rankin-Selberg method independent of
the modularity with respect to the inversion Z → −Z−1 on the Fourier series F (Z). Let us
explain these process more precisely. In section 2 we prepare some basic tools. Imai discovered
how one can apply the spectral theory on the upper half-plane to Siegel modular forms of
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degree two. Take a Fourier series on the Siegel upper half-space. Suppose that its Fourier
coefficients are unimodular invariant and have a reasonable growth condition. Let Z = it1/2W
be a variable on the Siegel upper half-space, where t > 0 and W is a positive definite real
symmetric matix of size two whose determinant is one. Identifying W with a variable τ on the
upper half-plane, we have a Roelcke-Selberg spectral decomposition of the Fourier series as a
function of τ . Then each of the spectral coefficients with respect to spectral eigenfunctions is
the inverse Mellin transform of the Koecher-Maass series twisted by the eigenfunction. Thus
we can analyze the Fourier series on the Siegel upper half-space by studying each spectral
coefficient, in other words by studying each Koecher-Maass series. Using this principle Imai
could formulate a converse theorem for Siegel modular forms. In order to study each Koecher-
Maass series (each spectral coefficient) without assuming the modularity with respect to the
inversion on the Fourier series, we use an explicit form of the Koecher-Maass series discovered
by Böcherer and independently by Duke-Imamoglu. Their result implies that if the Fourier
coefficients satisfy a Maass type relation then the Koecher-Maass series is a convolution product
of certain Dirichlet series. At the first glance it is just a convolution product. To regard
this convolution product as the Rankin-Selberg convolution of modular forms, Duke-Imamoglu
employ Katok-Sarnak’s correspondence for Maass forms. This allows us applying the Rankin-
Selberg method to study the Koecher-Maass series. In our applications, the convolution products
of two Eisenstein series arise frequently and we need to introduce Zagier’s Rankin-Selberg method
as the final key tool. Under these preparations, in section 3 we present two applications of these
tools to holomorphic Siegel modular forms. In particular we will explain Duke-Imamoglu’s new
proof of Saito-Kurokawa lift and an explicit determination for the Fourier coefficients of Siegel-
Eisenstein series on some congruence subgroups by the present author. Section 4 is devoted to
give an application to non-holomorphic case. An application to the Koecher-Maass series for a
real analytic Siegel-Eisenstein series will be given based on the works by Ibukiyama-Katsurada
and the present author. In each section, we will add some related works.

2 Some basic tools

Let P2 be the set of all positive definite real symmetric matrices of size two and PS2 be the
determinant one surface of P2. We identify PS2 with the upper half-plane H1 by(

v−1 −uv−1

−uv−1 v−1(u2 + v2)

)
→ τ = u+ iv.

We mean by a Maass form of weght 0 any function U(τ) on H1 = {τ = u+ iv; v > 0} satisfying
the following three conditions.

(i)U(γτ) = U(τ) for all γ ∈ SL2(Z).
(ii)U(τ) is a C2-function on H1 with respect to u = <τ, v = =τ which verifies a differential
equation ∆U = −λU with some λ ∈ C, where ∆ = v2( ∂

2

∂v2
+ ∂2

∂u2 ) is the Laplacian on H1.
(iii)U(τ) is of polynomial growth as v = =τ tends to ∞.

A Maass form U(τ) can be extended to a function on P2 by setting U(T ) = U(τT ), where τT
corresponds to (detT )−1/2T , in other words T ∈ P2 is identified with τT ∈ H1 by

T =
(

a b/2
b/2 c

)
→ τT =

−b+ i
√

det 2T
2a

.
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2.1 Koecher-Maass series as spectral coefficients (Maass, Imai)

For any Y ∈ P2 put Y = t1/2W , where t > 0 and W ∈ PS2. Take any Fourier series F (Z) =∑
T∈L+

2
A(T, F )e(tr(TZ)) on the Siegel upper half-space H2 = {Z =t Z ∈ M2(C);=Z > O},

where the summation extends over all T ∈ L+
2 , the set of all half-integral positive definite

symmetric matrices of size two and e(x) = e2πix. Set

F̃s(τ) =
∫ ∞

0
F (it1/2W )ts−1dt, τ = τW .

Assume that A(T, F ) = A(T [U ], F ) for any U ∈ GL2(Z) and there exists a positive constant
α so that A(T, F ) = O((detT )α). Then for <(s) sufficiently large, F̃s(τ) has a Roelcke-Selberg
spectral decomposition as a function of τ [58], [27], [34], [59]. Each spectral coefficient with
respect to a spectral eigenfunction U(τ) on H1 is given by

D∗(F,U , s) =
∫
SL2(Z)\H1

F̃s(τ)U(τ)
dudv

v2
.

Up to a gamma factor, this equals the Dirichlet series

D(F,U , s) =
∑

T∈L+
2 /SL2(Z)

A(T, F )U(T )
ε(T )(detT )s

,

where the summation extends over all T ∈ L+
2 modulo the usual action T → T [U ] = tUTU

of the group SL2(Z) and ε(T ) = ]{U ∈ SL2(Z);T [U ] = T} is the order of the unit group of
T . This Dirichlet series was introduced by Maass [39] and now called by Koecher-Maass series
twisted by a Maass form U(τ). Key tools to formulate Imai’s converse theorem are the spectral
decomposition on the upper half-plane and the Koecher-Maass series as the spectral coefficients.
Roughly speaking, for the Fourier series F (Z) as above, the modularity of F (Z) with respect to
the inversion Z → −Z−1 is equivalent to a holomorphy and a functional equation of the Koecher-
Maass series twisted by every spectral eigenfunctions. Note that the unimodular invariance and
translation invariance are already assumed for the Fourier series, and these transformations
combined with the inversion generate the full Siegel modular group.

Theorem 1. (Imai) Let k be an even natural number. If D∗(F,U , s) is entire, bounded in every
vertical strip in s and satisfies

D∗(F,U , s) = D∗(F,U , k − s)

for any even spectral eigenfunction U(τ) on H1, then F (Z) is a holomorphic Siegel modular
form of degree two and weight k.

See [23] by Ibukiyama for very detail exposition. The view point “Koecher-Maass series as
spectral coefficients” is very useful, in particular to investigate the question when two Siegel
modular forms coincide. In fact using a similar approach to the converse theorem, Breulman-
Kohnen [6] showed that Hecke eigen cuspforms of degree two coincide if their T -th Fourier
coefficients coincide for every T = nT1 with any primitive T1 and square-free natural number n.
We will see one more application of this view point in section 3.2. As for Weissauer’s converse
theorem, a generalization of the converse theorem to higher degree with level, see Sugano’s
exposition in [25]. A general theory of Koecher-Maass series associated with modular forms on
tube domains is obtained in [24].

3



2.2 Explicit forms for Koecher-Maass series (Böcherer, Ibukiyama-Katsurada)

In order to analyze each spectral coefficient without assuming the modularity with respect
to the inversion on the Fourier series, the following result due to Böcherer gives a starting point
(see Satz 3 [7] p.20). This is also observed by Duke-Imamoglu (Lemma 3 [10] p.350). This
implies that if the Fourier coefficients satisfy a Maass type relation then the Koecher-Maass
series (the spectral coefficient) is a certain convolution product.

Theorem 2. (Böcherer, Duke-Imamoglu) Suppose that there exists a function c(n), n ∈ N on
the set of all positive integers such that

A(T, F ) =
∑
d|e(T )

dk−1c

(
det 2T
d2

)
,

where e(T ) = (n, r,m) is the content of T =
(

n r/2
r/2 m

)
. Then one has

D(F,U , s) = 22sζ(2s− k + 1)
∞∑
n=1

c(n)b(−n)n3/4

ns
, (1)

where
b(−n) = n−3/4

∑
T∈L+

2 /SL2(Z), det 2T=n

U(T )ε(T )−1.

This is the origin of the theory of explicit forms. In [7], Böcherer also obtained an explicit
form of associated one for Klingen-Eisenstein series of degree two. The result turned out to
be Kohnen-Zagier’s type Dirichlet series. These were generalized to any degree by Ibukiyama-
Katsurada [16], [17], [18], [19]. They gave explicit forms of the Koecher-Maass series associated
with Siegel-Eisenstein series, Klingen-Eisenstein series and the images of Ikeda lift by a finite
sum (at most two) of products of shifted Riemann zeta functions and Dirichlet series defined
from modular forms of one variable. In the case of even degree, the later Dirichlet series are
similar to those appeared in Böcherer’s degree two case. For automorphic forms on other types
of tube domains, Krieg [32] showed that the Koecher-Maass series associated with quaternionic
Siegel-Eisenstein series of degree two is a product of four shifted Riemann zeta functions with
an additional 2-factor. For Hermitian-Eisenstein series of degree two over imaginary quadratic
fields whose class number is one, the present author [45] showed that the Koecher-Maass series
can be expressed by a finite sum of products of four shifted Dirichlet L-functions. Also we can
add results by Lippa [35], [36] who gave explicit forms of the Koecher-Maass series for some
Hecke eigenforms of degree two twisted by the non-holomorphic Eisenstein series E(τ, s) on
SL2(Z).

2.3 Katok-Sarnak correspondence (Katok-Sarnak, Duke-Imamoglu)

In some actual applications, at least as far as we know, one can assume that c(n) in (1) are the
Fourier coefficients of a modular form. We are interested in b(−n) which itself is an important
object. Katok-Sarnak’s correspondence implies that b(−n) are also the Fourier coefficients of a
(real analytic) modular form. To state the correspondence, we introduce Maass wave form of
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weight 1/2. Let

j(γ, τ) =
θ(γτ)
θ(τ)

, θ(τ) =
∑
n∈Z

e2πin
2τ , γ ∈ Γ0(4).

For r ∈ C let T+
r denote the vector space consisting of all functions g(τ) on the upper half-plane

H1 which satisfy the following conditions.

(i) Each g(τ) is a C2-function of u = <τ and v = =τ satisfying

g(γτ) = g(τ)j(γ, τ)|cτ + d|−1/2

for all γ ∈ Γ0(4) and it is of polynomial growth at all cusps of Γ0(4).
(ii)g(τ) has a Fourier expansion of the form g(τ) =

∑
n∈ZB(n, v)e(nu), where the Fourier

coefficients B(n, v) for n 6= 0 are given by

B(n, v) = b(n)Wsign(n)/4,ir/2(4π|n|v).

Here Wα,β(v) is the usual Whittaker function.
(iii)If n ≡ 2, 3 (mod 4) then B(n, v) = 0.

By Katok-Sarnak [28] for cusp forms and Duke-Imamoglu [10] (Theorem 4 p.350) for non-
cusp forms, we have the following.

Theorem 3. (Katok-Sarnak, Duke-Imamoglu) Let U(τ) be a Maass form of weight 0 in the set
consisting of a constant

√
3/π, the non-holomorphic Eisenstein series E(τ, 1/2 + ir) (r ∈ R) on

SL2(Z) and even cusp forms. Assume that ∆U = −
(

1
4 + r2

)
U with some r ∈ C. Then there

exists g(τ) ∈ T+
r such that

b(−n) = n−3/4
∑

T∈L+
2 /SL2(Z), det 2T=n

U(T )ε(T )−1, (n > 0).

One might recall Zagier’s Eisenstein series of weight 3/2 whose Fourier coefficients are the
Hurwitz-Kronecker class numbers [15]. Recall that the Hurwitz-Kronecker class number is a
(weighted) class number of positive definite binary quadratic forms of discriminant −n < 0, and
equals b(−n)n3/4 when U(τ) is a suitable constant function. In [41], [42] we obtain an analogous
result to Theorem 3 for automorphic functions on the three dimensional hyperbolic space. See
also [40], [46]. This has some applications to Hermitian modular forms.

2.4 Zagier’s Rankin-Selberg method (Zagier, Dutta Gupta, [44])

Assuming that c(n) in (1) are the Fourier coefficients of a modular form, Theorem 3 implies
that the series in (1) is a Rankin-Selberg convolution of two modular forms. Note that the usual
Rankin-Selberg method can not work frequently, because both modular forms are not always
cusp forms. If U(τ) is a non-cusp form then g(τ) in Theorem 3 comes from a real analytic
Cohen’s Eisenstein series F (k, σ, τ) (see section 4). Also c(n) might be Fourier coefficients of
Eisenstein series. Thus we present Zagier’s Rankin-Selberg method.

Theorem 4. (Zagier, Dutta Gupta, [44]) Even if a real analytic modular form is not of rapid
decay at all cusps, under suitable assumptions we can conclude a similar consequence about
analytical properties for the Mellin transform of its constant term as if we apply the usual
Rankin-Selberg method.
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For precise formulations, see [60], [12], [13], [14] and [44]. In Theorem 4, the Mellin transform
is of course renormalized as in the case of Hecke on Mellin transfrms of non-cusp forms. In other
words something wrong for the convergence of the integral transform are subtracted from the
constant term to take its Mellin transformation. Also note that, for a product of two (real
analytic) modular forms, the Mellin transform of its constant term is associated convolution
product. Kudla simplified Zagier’s “suitable assumptions” to the assumption that a real analytic
modular form applied a suitable invariant differential operator (a polynomial of the Laplacian) is
of rapid decay at all cusps. If we apply Kudla’s method then we can take the integral transform
directly without renormalization. The remaining process is completely the same as the usual
Rankin-Selberg method. See [44] for example. Zagier’s method is a basic tool to study Koecher-
Maass series as we will see in the following sections. For example if we treat Koecher-Maass
series for Siegel type Eisenstein series, we naturally arrive at a Rankin-Selberg convolution of
two Eisenstein series. Thus Zagier’s method is essential. As a related result, see [8] by Chiera.

3 Applications to holomorphic case

3.1 Saito-Kurokawa lift (Duke-Imamoglu)

Take a cusp form f(τ) in the Kohnen plus space S+
k−1/2(k : even). By definition this has a

Fourier expansion of the form

f(τ) =
∑

l≥1, l≡0,3 (mod 4)

c(l)e(lτ) ∈ S+
k−1/2.

Duke-Imamoglu gave a new proof of Saito-Kurokawa lift.

Theorem 5. (Maass, Zagier, Duke-Imamoglu) For f(τ) ∈ S+
k−1/2 as above, we define a function

F (Z) on H2 by

F (Z) =
∑
T∈L+

2

∑
d|e(T )

dk−1c

(
det 2T
d2

) e(tr(TZ)),

Then F (Z) is a Siegel modular form of degree two and even weight k.

See [11] for more details about Saito-Kurokawa lift. Especially the original proof and Hecke
equivalence are given. In their analytic proof, Duke-Imamoglu used some tools given in section
2. See [23] once more for very detail exposition. Roughly speaking, by Theorems 2 and 3
the Koecher-Maass series equals the convolution product of f(τ) and g(τ), where g(τ) is as in
Theorem 3. Then the Rankin-Selberg method implies the analytic conditions assumed in the
converse theorem (Theorem 1). Note that Zagier’s method is not necessary since f(τ) is a cusp
form. In [4] a converse theorem for not necessarily cuspidal Siegel modular forms was given and
Zagier’s Rankin-Selberg method was used. As for odd weight case, see [3].

3.2 Explicit form for the Fourier coefficients of Siegel-Eisenstein series ([47])

The tools given in section 2 are also useful to analyze each spectral coefficient in another
direction. These can be used for an explicit determination of the spectral coefficients of Siegel-
Eisenstein series on certain congruence subgroups without knowing its Fourier coefficients. Note
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that so far any explicit form of Koecher-Maass series (=spectral coefficients) was obtained by
using some informations of its Fourier coefficients. On the other hand, after working out this
calculation of every spectral coefficients for the Siegel-Eisenstein series, we can construct a Siegel
modular form which has the same spectral coefficients by Maass lift. As a consequence, it turned
out that the Siegel-Eisenstein series coincides with the image of Maass lift and this implies an
explicit form of the Fourier coefficients of the Siegel-Eisenstein series.

For any integer k > 3 and Dirichlet character χ mod N satisfying χ(−1) = (−1)k, the
Siegel-Eisenstein series E(2)

k,χ of weight k, level N and character χ is defined by

E
(2)
k,χ(Z) =

∑
{C,D}

χ(detD) det(CZ +D)−k, Z ∈ H2,

where the sum is taken over all pairs {C,D} which occur as the second matrix row of representa-
tives of Γ(2)

∞ \Γ(2)
0 (N), Γ(2)

0 (N) = {γ ∈ Sp2(Z);C ≡ O2 (mod N)}, Γ(2)
∞ = {γ ∈ Sp2(Z);C = O2}.

Theorem 6. Let k > 3 be an integer, N > 1 a square-free odd natural number and χ a primitive
Dirichlet character mod N satisfying χ(−1) = (−1)k. Then for any positive definite T ∈ L+

2 ,
the T -th Fourier coefficient of E(2)

k,χ is given by

A(T,E(2)
k,χ) =

(−2πi)kτN (χ)
NkΓ(k)L(k, χ)

∑
d|e(T )

χ(d)dk−1e∞χ

(
−det 2T

d2

)
,

where τN (χ) is the Gauss sum τN (χ) =
∑N

r=1 χ(r)e2πir/N , Γ(s) is the gamma function, L(s, χ)
is the Dirichlet L-function of χ, e(T ) is the content of T and e∞χ (D) has the form

e∞χ (D) =
πk−1/2χ(−4)

ik2k−2Γ(k − 1/2)
|D|k−3/2L(k − 1, χKχ)

L(2k − 2, χ2)

×
∏

prime p|N


1+ordpD∑
e=1

χ∗p(p
e)

p(k−1/2)e
ε3peC

∞
χ,p(D, p

e)

∑
d|f

µ(d)χK(d)χ(d)d1−kσ3−2k,χ2(f/d).

Here we use the following notations. Let µ be the Möbius function, ordpD an integer such that
pordpD is the exact power of p dividing D and σs,χ2(f) =

∑
d|f χ

2(d)ds. The natural number

f is defined by D = DKf
2 with the discriminant DK of K = Q(

√
D) and χK(∗) =

(
DK
∗

)
is the Kronecker symbol of K. We denote by χp the primitive characters mod p so that χ =∏
prime p|N χp and define χ∗p by χ∗p =

∏
prime q|(N/p) χq. As usual εd = 1 or i according to d ≡ 1

or 3 (mod 4). If we denote by τp(χ) the Gauss sum τp(χ) =
∑p

r=1 χ(r)e2πir/p for any character

χ mod p,
(
∗
p

)
the Legendre symbol and m = ordpD, then C∞χ,p(D, p

e) are given by
(a)for e ≤ m,

C∞χ,p(D, p
e) =

{
pe−1(p− 1), χp =

(
∗
p

)
and e is odd,

0, otherwise,

(b)for e = m+ 1,

C∞χ,p(D, p
e) = χp(D/pm)

(
D/pm

p

)m+1

pmτp(χp

(
∗
p

)m+1

),

(c)for e ≥ m+ 2, C∞χ,p(D, p
e) = 0.
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In the case of level N = 1, we know at least two methods to obtain explicit forms of the
Fourier coefficients. The first is due to Kaufhold [30] and Maass [39]. They used Siegel’s formula
which gives an Euler product expression for the Fourier coefficients and calculated each Euler
factor to get their formulas. The second is due to Eichler-Zagier [11]. They showed that the
Saito-Kurokawa lift of Cohen’s Eisenstein series coincides with the Siegel-Eisenstein series of
level one by employing a characterization of the series in terms of the Hecke operators and
zero-th coefficient. Our method in the case of level N > 1 is completely different from theirs.
However in some sense we owe several results and ideas to Kaufhold and Eichler-Zagier. First
of all we construct a Siegel modular form ME∞k,1,χ by Maass lift of a Jacobi Eisenstein series
E∞k,1,χ for the cusp ∞ on Γ0(N) n Z2. Then Theorem 6 follows from the coincidence of two

Siegel modular forms E(2)
k,χ and ME∞k,1,χ up to a scalar multiple. Note that the right hand side

on the main formula in Theorem 6 is exactly the Fourier coefficient of the image of Maass lift
and e∞χ (D) is the Fourier coefficient of E∞k,1,χ. One might recall that in Eichler-Zagier’s level one
case, the Saito-Kurokawa lift of Cohen’s Eisenstein series coincides with the Maass lift of Jacobi
Eisenstein series on SL2(Z)nZ2. To prove the desired coincidence of two Siegel modular forms,
unlike Eichler-Zagier’s case, we show a coincidence of associated Koecher-Maass series twisted
by an eigenfunction U (=spectral coefficient with respect to U) up to a scalar multiple for each
U as follows. D∗(ME∞k,1,χ,U , s) can be determined easily by a character analogue of Theorem 2.

To calculate D∗(E(2)
k,χ,U , s), we start to determine D∗(F (2)

k,χ,U , s) for the twisted Siegel-Eisenstein

series F (2)
k,χ(Z) = N−k detZ−kE(2)

k,χ(−(NZ)−1). An explicit formula for the Fourier coefficients

of F (2)
k,χ is available by the explicit form of the Siegel series [30]. This combined with Theorem 3

implies that D∗(F (2)
k,χ,U , s) can be regarded as the Rankin-Selberg transform of a certain modular

form on Γ0(N). By a general theory, we know D∗(E(2)
k,χ,U , k − s) = (−1)kD∗(F (2)

k,χ,U , s). Hence

we can compute D∗(E(2)
k,χ,U , s) from the explicit formula of D∗(F (2)

k,χ,U , s) by Zagier’s Rankin-
Selberg method (Theorem 4). We remark that involved modular forms are not always cuspidal
depending on Maass forms U(τ). Thus we can not apply the usual Rankin-Selberg method
and Zagier’s method is necessary. Roughly speaking, the coincidence of the Koecher-Maass
series (=the spectral coefficients) implies the coincidence of two Siegel modular forms E

(2)
k,χ

and ME∞k,1,χ up to a scalar multiple. The Fourier coefficients of the Maass lift ME∞k,1,χ can
be described easily in terms of those of E∞k,1,χ as given in the right hand side on the main
formula. Then our formula follows from an explicit calculation of the Fourier coefficients e∞χ (D)
of E∞k,1,χ. Strictly speaking we used the fact that two Siegel modular forms have the same Fourier
coefficients for any degenerate T . This follows from applying the Siegel operator and ensures
that a difference of two forms has a Fourier expansion supported by positive definite T ∈ L+

2 .
This difference turned out to be zero by above observation on the Koecher-Maass series and
thus we get the coincidence of two Siegel modular forms.

3.2.1 An example ([48], [49])

For primes dividing the level N , each Euler factor looks unusual. If the level N is a prime
p and a suitable linear combination of two Eisenstein series is chosen, then we can get a simple
formula. Let λp be the Legendre symbol, k > 3 an integer such that k ≡ (p−1)/2 (mod 2). Let
F

(2)
k,λp

(Z) = p−k detZ−kE(2)
k,λp

(−(pZ)−1) as before. Then one has E(2)
k,λp

, F
(2)
k,λp
∈ Mk(Γ

(2)
0 (p), λp),

the space of all Siegel modular forms of degree two, weight k and character λp on Γ(2)
0 (p). A
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linear combination of Siegel-Eisenstein series is defined by

E(2)
k,λp

=
−Bk,λp

2k
{E(2)

k,λp
+ (−1)kp1−kF

(2)
k,λp
}.

Recall that the Bernoulli numbers Bm and the generalized Bernoulli numbers Bm,χ are defined
by

∞∑
m=0

Bm
tm

m!
=

tet

et − 1
,

∞∑
m=0

Bm,χ
tm

m!
=

f∑
a=1

χ(a)teat

eft − 1

for any primitive character χ of conductor f .

Theorem 7. E(2)
k,λp

has a Fourier expansion

E(2)
k,λp

(Z) =
∑

T∈L2, p|det 2T

Ak(T )e(tr(TZ)),

where the summation extends over all T ∈ L2 (the set of all half-integral positive semi-definite
symmetric matrices of size two) such that det 2T is divisible by p and Ak(T ) are given as follows.
For degenerate T , the Fourier coefficients come from a degree one Eisenstein series, in other
words Ak(O2) = −Bk,λp/(2k) and Ak(T ) =

∑
d|e(T ) λp(d)dk−1 for rkT = 1. For T > O such

that det 2T is divisible by p, we have

Ak(T ) =
2Bk−1,χDK

B2k−2

∑
d|e(T )

λp(d)dk−1
∑
a|f/d

µ(a)χDK (a)ak−2σ2k−3

(
f/d

a

)
,

where Bk−1,χ and B2k−2 are the Bernoulli numbers, if we put p∗ = (−1)(p−1)/2p then DK is the

discriminant of K = Q
(√

− det 2T
p∗

)
, the natural number f is defined by −det 2T = p∗DKf

2,
χDK is the Kronecker symbol of K, e(T ) is the content of T , σs(n) =

∑
d|n d

s and µ is the
Möbius function.

This formula has some applications to a question raised by Nagaoka [53], [29]: if every
Fourier coefficients of Eisenstein series (of level one) are replaced by their p-adic limit, then
what is the resulting formal power series? Is it also a modular form? In [29], Katsurada-
Nagaoka introduced a p-adic Siegel-Eisenstein series G̃(2)

(k, p+2k−1
2

)
of weight k. Let E(2)

k = E
(2)
k,χ0

be the Siegel-Eisenstein series of degree two, weight k, level 1 and the principal character χ0.
This has a Fourier expansion with respect to e(tr(TZ)) indexed by T ∈ L2. Take a prime p
and a natural number k such that p > 2k and k ≡ p−1

2 (mod 2). Put km = k + pm−1(p− 1)/2.
If there exsist B(T ) such that infT∈L2{ordp(B(T ) − Am(T ))} → ∞ as m → ∞, then a p-adic
convergence is defined by

lim
m→∞

∑
T∈L2

Am(T )e(tr(TZ))

 =
∑
T∈L2

B(T )e(tr(TZ)) (p− adically).

They defined a p-adic Siegel-Eisenstein series by

G̃
(2)

(k, p+2k−1
2

)
= lim

m→∞

−Bkm
2km

E
(2)
km

(p− adically)

and described it mainly by some genus theta series. Our description is as follow and Theorem
7 was important.
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Theorem 8. For k > 3, we have

G̃
(2)

(k, p+2k−1
2

)
=
−Bk,λp

2k

{
E

(2)
k,λp

+ (−1)k
pk−2(1− p)
p2k−3 − 1

F
(2)
k,λp

}
.

See [49] for the proof. Also we can add one more example for a similar phenomenon [48].

4 Applications to non-holomorphic case (Ibukiyama-Katsurada,
[50], [51], [52])

In his lecture note [38], Maass raised a question “whether it is possible to attach Dirichlet
series by means of integral transforms to the non analytic Eisenstein series” and also said that
“already in the case degree is two difficulties come up which show that one can not proceed in
the usual way”. Because of complexity of Fourier expansions of non-holomorphic Siegel modular
forms unlike the holomorphic case, there are at least two main problems to study associated
Koecher-Maass series. The first is about the Mellin transform of Whittaker functions, and the
second is how one can delete the degenerate Fourier coefficients. In the holomorphic case these
are solved by Siegel’s formula on the Mellin transform of exponential functions and Maass’
differential operator. For a real analytic Siegel-Eisenstein series whose degree exceeds two, the
associated Koecher-Maass series was first introduced by Arakawa [1] directly from the Siegel
series (an arithmetic part of the Fourier coefficients). Some basic analytical properties were
established by Arakawa [1] and Ibukiyama-Katsurada [19] combined with our results in [50].
The later is also an application of the theory of explicit form and contains a simplification of
Arakawa’s functional equations. Ibukiyama and Katsurada got explicit forms of the Koecher-
Maass series as a finite sum of products of shifted Riemann zeta functions and the Rankin-
Selberg convolution of certain real analytic Eisenstein series of half-integral weight. Hence we
can concentrate our attention on this convolution product. By the tools in section 2 we can
show a meromorphic continuation and a simple functional equation for this Rankin-Selberg
convolution. In this section we would like to present some flavor of our study more precisely in
the case of degree two as a typical example (see [19] and [50] for the case degree exceeds two).
Moreover this degree two case has independent interests in the following sense. It seems natural
to expect defining associated Koecher-Maass series by

L(i)(s, σ) =
∑

T∈L(i)
2 /SL2(Z)

a(T, σ)µ(T )
|detT |s

,

where a(T, σ) is proportional to the Siegel series (an arithmetic part of the Fourier coefficients),
the summation extends over all half-integral symmetric matrices of size two and signature (i, 2−
i), µ(T ) is a certain volume associated with T introduced by Siegel. See [57], [22], [19] for the
precise definition for µ(T ) and note that in case i = 2, it is proportional to ε(T )−1. In case i = 1
it is known that if −detT is a square of a rational number then µ(T ) is not finite. This surves a
serious difficulty to define Koecher-Maass series reasonably. The same difficulty comes up when
we treat the prehomogeneous zeta function associated with the space of two by two symmetric
matrices. This was solved by Shintani [57]. There is another approach due to Ibukiyama-Saito
[23], [22] as an application of explicit forms of the zeta functions. They proved all of Shintani’s
results by using real analytic Cohen’s Eisenstein series of half-integral weight. Their method
gives us a reasonable definition of the zeta function very naturally. It seems possible to define
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and treat associated Koecher-Maass series by a “convolution version” of their approach as we
will see below. The purpose of this section is to explain our attempt in the case of degree two
and give a meromorphic continuation and a functional equation of the Koecher-Maass series for
positive definite Fourier coefficients. In the future we will use the results given below to get a
reasonable definition of Koecher-Maass series for the indefinite Fourier coefficients.

Let k be an even integer and σ a complex number such that 2<σ + k > 3. A real analytic
Siegel-Eisenstein series of degree two and weight k is defined by

E2,k(Z, σ) =
∑
{C,D}

det(CZ +D)−k| det(CZ +D)|−2σ, Z ∈ H2,

where the sum is taken over all pairs {C,D} which occur as the second matrix row of represen-
tatives of Γ(2)

∞ \ Sp2(Z). A Fourier expansion is given by

E2,k(Z, σ) =
∑
T∈L∗2

C(T, σ, Y )e(tr(TX)), Z = X + iY ∈ H2,

where the summation extends over all T ∈ L∗2 (the set of all half-integral symmetric matrices
of size two). If detT 6= 0 then the Fourier coefficients can be written as C(T, σ, Y ) = b(T, k +
2σ)ξ(Y, T, σ+ k, σ), a product of the Siegel series b(T, k+ 2σ) and a certain function ξ(Y, T, σ+
k, σ) (essentially the confluent hypergeometric function of degree two). See [55], [56], [38], [30].
Then following Ibukiyama-Katsurada [19], the Koecher-Maass series for positive definite Fourier
coefficients is defined by

L
(2)
2,k(s, σ) =

∑
T∈L+

2 /SL2(Z)

a2,k(T, σ)
ε(T )(detT )s

,

a2,k(T, σ) = γ2(k + 2σ)| det 2T |k+2σ−3/222b(T, k + 2σ), γ2(σ) = eπiσ
π2σ−1/2

Γ(σ)Γ(σ − 1/2)
.

Note that b(T, k + 2σ) has a meromorphic continuation to all σ.

Theorem 9. Suppose that σ /∈ 1/4 + Z/2. Then the Koecher-Maass series

L∗2,k(s, σ) = (2π)−2sΓ(s)Γ(s− 2σ − k + 3/2)L(2)
2,k(s, σ)

can be meromorphically continued to the whole s-plane. It satisfies a functional equation

L∗2,k(k + 2σ − s, σ) = L∗2,k(s, σ)

+ 2π−k−2σ+1/2 γ2(k + 2σ)ζ(k + 2σ − 1)
ζ(k + 2σ)ζ(2k + 4σ − 2)

× sinπσ sinπ(s− σ)
cosπs sinπ(s− 2σ)

Γ(s)Γ(s− 2σ − k + 3/2)
Γ(s− 1/2)Γ(s− 2σ − k + 1)

ζ∗(2s− 1)ζ∗(2s− 4σ − 2k + 2),

where ζ∗(s) = π−s/2Γ(s/2)ζ(s).

Our starting point is an explicit form of the Koecher-Maass series. An explicit formula of
the Siegel series [30] combined with Theorem 2 implies

L
(2)
2,k(s, σ) = 22s+2γ2(k + 2σ)

× ζ(2s− k − 2σ + 1)
ζ(k + 2σ)ζ(2k + 4σ − 2)

∑
d>0

H(d)L−d(k + 2σ − 1)dk+2σ−3/2−s.
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Here H(d) =
∑

T∈L+
2 /SL2(Z), det 2T=d ε(T )−1,

LD(s) =


ζ(2s− 1), D = 0

L(s, χDK )
∑
a|f

µ(a)χDK (a)a−sσ1−2s(f/a), D 6= 0, D ≡ 0, 1 (mod 4)

0, D ≡ 2, 3 (mod 4),

where the natural number f is defined by D = DKf
2 with the discriminant DK of K = Q(

√
D),

χDK is the Kronecker symbol, µ is the Möbius function and σs(n) =
∑

d|n d
s.

Following Ibukiyama-Saito [22], for an odd integer k, σ ∈ C such that −k + 2<σ − 4 > 0
and τ ∈ H1, the Cohen type Eisenstein series F (k, σ, τ) is defined by

F (k, σ, τ) = E(k, σ, τ) + 2k/2−σ(e2πi
k
8 + e−2πi k

8 )E(k, σ,−1/(4τ))(−2iτ)k/2,

where

E(k, σ, τ) = (=τ)σ/2
∞∑

d=1,odd

∞∑
c=−∞

(
4c
d

)ε−kd (4cτ + d)k/2|4cτ + d|−σ

and j(γ, τ) = (4c
d )ε−1

d (4cτ + d)1/2 is the same as in section 2.3. This is a real analytic modular
form of weight −k/2 on Γ0(4) and has a Fourier expansion

F (k, σ, τ) = vσ/2 + vσ/2
∞∑

d=−∞
c(d, σ, k)e2πiduτd(v,

σ − k
2

,
σ

2
), τ = u+ iv,

where τd(v, α, β) =
∫∞
−∞ e

−2πiduτ−ατ−βdu ([54], [43]). The d-th Fourier coefficient is given by

c(d, σ, k) = 2k+3/2−2σe(−1)(k+1)/2 πi
4

L(−1)(k+1)/2d(σ − k+1
2 )

ζ(2σ − k − 1)
.

As one can see from these facts, the Koecher-Maass series L(2)
2,k(s, σ) is the Rankin-Selberg

convolution of two Cohen type Eisenstein series. Thus our main tool to prove Theorem 9 is
Zagier’s Rankin-Selberg method (Theorem 4). The gamma like factor is the Mellin transfor-
mation of a product of two τd(v, α, β) and involves generalized hypergeometric series 3F2. Its
treatment is rather difficult and we employed two types of functional equations of 3F2 to remove
these unusual factors. Only the usual gamma functions remain in the gamma factor as stated
in Theorem 9. To apply Zagier’s Rankin-Selberg method, a useful observation is that there is a
correspondence between a real analytic Jacobi Eisenstein series of index one and the Cohen type
Eisenstein series by a similar way as in the holomorphic case. See [9] for the case k = −3 and
[51] for general case including a skew-holomorphic analogue. As a bonus, this correspondence
combined with the results in [5] implies a meromorphic continuation and a functional equation
of F (k, σ, τ) with respect to σ as given in [51].

As a corollary of Theorem 9, we can deduce that the Dirichlet series

ξ(s) = π−2sΓ(s)Γ(s− 1/2)ζ(2s− 1)
∞∑
d=1

H(d)2d−s

can be meromorphically continued to the whole s-plane, and satisfies a functional equation

ξ(2− s) = ξ(s) + 2−3π−3/2 Γ(s)
cosπsΓ(s− 1)

ζ∗(2s− 1)ζ∗(2s− 2).

In fact ξ(s) is the Koecher-Maass series for (non-holomorphic) Siegel-Eisenstein series of degree
two and weight two (k = 2, σ = 0).
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