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§ 1. Introduction

1. The explicit formula for Hilbert's symbol which was obtained in the article [VI] gave an

impulse to obtaining explicit formulae both in various fields and for various objects (formal

groups, for example, see [V3], [V4], [BV]). As the loeal elass fields theory developed, the

scope of local fields was extended for which the methods of [VI] are applieable.

The present article is devoted to complete fields to discrete normalization by rank n, which

have the characteristic O. In those fields we eonstruct in explicit form the pairing on

topological !( ·groups, for which the sum of dimensions is equal to n + 1. In particular,

the explicit formula for Hilbert pairing in the fields of nonnalization by rank n also is

obtained. Such fields may be represented as a chain of the complete discretely valued field
s : k(O),' .. ,k(n) = k, where the field k(i-I) is a residue field for the field k(i), 1 ~ i ~ n.

We suppose also that the first residue field has a characteristic p and the last residue field

k(O) is perfeeL In the aseertained terminology, the fields, whose last field is finite are called

to be the multidimensionallocal fields. Their theory was developed in the articles by Parshin

A.N. and Kato K. (see [P], [Kl).

A.N. Parshin gave the complete classifieation off multidimensional loeal fields. We shall

quote it for the ease oi differently-eharaeteristic fields with O-characteristic.

The field k{ {tl} } ... {{tn-l}} where tI,"', tn-1 are independent variables will be ca))ed

standard n -dimensional loeal field. Parshin 's classification is the following: every n­

dimensional local field of null characteristic whose first residue field has a eharacteristic p

(different-characteristic n -dimensional field) contains a standard field as a finite subextension,

and besides, such a field is contained in a finite standard extension, Le. there are numerical

loeal fields k and k' and the systems of local parameters t.,···, tn-I and t~, ... , t~_1

such that

and !(/ E, !('/!( are finite extensions.

We introduce the basic notations.

J< - is a eomplete field relative to diserete normalization by rank n with the characteristie O.

F - is a first residue field oi of J(, Le. F = k(n-l),

7r - is a prime element of !( by rank 1 relative to discrete normalization.

tI, ... , tn-I, 7r are local parameters oi !( (a lift of prime elements of residue fields k(i),

which define the field J( ).

VK = (v{l), ... , v(n)) : ](* -t (Z)n is a normalization by rank n eorrespondent to the

chosen local parameters; (Z)n is ordered as (m],"', mn ) < (m~, ... ,m~) if m n =
, , ,

m n , ... , mi+1 = mi+ l' bu t mi < m 1 for some i. where 0 K is a ring oi normalization

by rank n

m1K is the unique maximal ideal oi 0 K

v = v(n) is a normalization by rank 1 of J( as a discrete valued field

e = v(p) is a ramification index of J( relative to normalization by rank 1
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e = (e(1\ ... ,e(n») = VK(n)

( is fixed pm of unity, which is contained in !(.

Fo is a maximal perlect subfield in the residue field F of the field J( which is supposed

to be non-algebraically closed.

00 = W (Fo ) is a ring of Witt vectors for Fo

n is Teichmüller system of the representatives of field elements Fo in the ring OQ

ko is a field of relations for OQ

L\ is the Frobenius automorphism in ko

1'(a) = a~ - a is the Cartie operator over the completion of the maximal unramified

extension of the ring 00.

a =ß mod (1', pm) in the ring 00 means that a = ß + p(I) + pm,..y', where 1'/' E 00.

a ~ ß or a =ß mod (](*)p
m

means that the elements a and ß from !( are different

by pm -power in ](.

J(3 t = ko{{tl }} ... {{tn}} is a standard absol utely unramified fie Id of normalization by

rank n + 1 ( tl," . ,tn are independent variables). 0 = 00 {{tl} } ... {{tn-l}} is a ring of

normalization by rank n in the field ko{{t 1} } ... { { tn -1}} c ]( 0' = o( (tn ) ) is a ring

of Laurent series 'Hm = (0')* is a group of invertible elements of the ring 0'.

The Frobenius operator D.. in the ring o{ {t n }} is

(

"" a-tTl ••• i TQ ) e:,. = ""' a~tPTl .•. tPTn a- E 00L....J 1] 1 n L....J 1] 1 n' 1] ,

~ ~

(one should note that the operator D.. depends on the choice of local parameters tJ, ... ,in ).

deg f denotes the order of Laurent

f(x) = amx
m + am +1 Xm+1+ "', i.e. m = deg f.

The congruence

f == g mod (pT, deg s)

means that the coefficients whose powers are less that s, are congruos mod pT.

Remark. The above definitions are given in the sense that they are lexicographicaHy ordered

for the series with a few variables.

2. For any invertible in the ring o{ {in}} series f the next function is weH defined

l(f) = ~ log fP / f~ (1.1)
p

because fP =f~ mod p (see also [VI], prop. 1 and [V5]). For any series g from the ideal

xo([x]] the Artin-Masse function is weH defined
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Besides tbe following assertion holds (see [V5]).

Proposition 1. The functions I anti E give the reciprocal/y inverse isomorphisms between the

multiplicative Zp -module 1 + tno[[tn]] and the additive Zp ·module tno[{tn]]. In particular

any series c:(tn) from 1 + tno[[tn]] may be uniquely represented in the form

(1.2)

where 1](tn) = l(c:).

For tbe element 0: from tbe field !( let us denote tbe series in tbe ring o{ {in}} as 0:( in). It

is obtained from the expansion of tbe element 0: into series in tbe prime 7r from !( whose

coefficients are in o. Tbus

(1.3)

Let

(1.4)

(1.5)
p-l

ur(tn) = sr/Sr-l = P+L C;+l S:-l
i=l

(we sball omit an index for r = m in the series sr(tn) and ur(tn) ).

3. Expansion into series.

We denote the prime element of the field ]( relative tbe discrete nonnalization by rank 1 as

1r. Tbe set of multi-indexes ! C z(n) is said to be admissible if for any fixed set of integer

il+), ... ,in, 1 ~ 1~ n, in the set of aH multi· indexes r = (r), ... , rl, r,+), ... ,rn) from I
for which the indexes q+l,···, r n coincide with the indexes i l+),···, in respectively, the

index q is bounded from below, i.e. there exists the integer i, such that r, ~ i for any

r = (rI,"', Tl, il+1,' .. ,in) from I.

Any element 0: from ]( is uniquely represented as the following series

(1.6)

where I is the admissible set and () E R (see [VZF], Lemma 2).

Let 0' = o( (t n)) be a ring of L series, where 0 = oo{{tl} } ... {{tn-l} }. We shall write

Any element o:(tn) of the ring 0' is uniquely represented in the form

o:(tn) = L arT':, ar E 00

rEI
(1.7)

where I is an admissible set

We shall denote the multiplicative group of the ring 0' as 1tm . Tbere is the surjective

bomoroorpbism (uncanonical)

17m : 1im --+ 1(*

o:(T) 1---+ 0: = 0:( t), ... , tn-I, 1r)

3
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4. Consider the series u(t n ) constructed in (1.5). As in [VI] we proof

Proposition 2 Let e( tn) = 1 + altn + . .. be an invertible series /rom the ring o[ [t n]J. If

e(1r) = 1 for prime 1r from ]( then there is the series 'ljJ( tn) E o[[tnll such that e( 7r) = 1+U1f'.

In the group 'Hm we consider the subgroup

(1.9)

where ep E o[[t n ]], ep(O) = O.

Proposition 3. There is the exact sequence

1 -t Um -t 'Hm ~ ]<+ -t 1

where 7Jm is the homomorphism from (1.8).

ProoC: From the definition of the epimorphism "lm and that of the series u( t n) any element

from the subgroup Um it turns into 1 under "lm. Conversely, if 7Jm(h(tn)) = 1 for some

series h E 'Hm then h(tI, ... , tn-l, 7r) = 1. To finish the proof the proposition 2.2 should

be used.

§ 2. Primary elements

Remember, an element w E ]( is said to be pm -primary if the extension ]«(pmVWJ/]< in

the unique unrammed (Le. may be obtained when the residue field k(O) is extended). This

elements in a multi-dimensional loeal field have been eonstrueted in [V5].

Let ]( be a maximal abelian unique unramified p extension of the field ](. If for the

maximal eomplete subfield Fo = k(O) in the residue field !( we have Fo/p(Fo) ;; ffi Z/pZ
x

then the Galois group of the maximal abelian p -extension of the field Fo is isomorphie to

nZp and henee
x

Gal(K/!() ;; Gal (Fc,ab /Fo) ;; II Zp.
x

Let 00 = W(Fo) be a Witt vector ring and 0ö r be an integer ring of the supplement of the
maximal unramified extension ko (Le. the field of quotient for the ring 00 ).

Lemma 1. For any element a E 00 there is an element A E oör , which satisfies the next

equation

p(A) = A~ - A = a. (2.1)

Besides for any automorphism <.p from Ga} (K/]() the element arp = A rp - A is an p ·adie

integer, which does not depend from a choice of the root A.

Proof: The equation p(x) = a where Ci is a residue of a in the field Fo is solvable in
the extension FÖ,ab. Using the method of suecessive approximations we abtain the solution

of the equation (2.1). lf ep EGal Ci(/]() then a~ - alt' = a ip - a. An elementa belangs

to 00, then aip = a. Hence a~ = atp so atp E Zp. Obviously arp does not depend from

the choice oi A. The lemma is proved.
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Let ( be a primitive pm - th root of unityJ which is con tained in the field K and let f (x )

be aseries from the ring o[[x]] that is obtained from the expansion the element ( into a

power series in the prime element 1r. As before s(x) = ~(x )pm - 1.

Theorem 1. Any pm ·primary element a 0/ the field I( may be represented (with precision

to pm ·th powers) as follows

a::::: w(a) = E(as(x))lx=~ (2.2)

for some a E 00. \lzce verra, for any a E 00 the element w(a) ofthe form (2.) is pm ·primary.
Besides the element w( a) does not depend {rom the expansion of the root ( info series in the
prime element 7r. Further

p\!w(a) rp-l = (A~A = (a"..

for any automorphism cp of fhe Ga/ais group Gal (R /!(). At last

w(a) ::::: 1 <=> a == p(ao)mod pm, ao E 00

(2.3)

(2.4)

Corollary. Let n be a group of pm ·primary element of the field I< and J-1. pm be a group of

pm _ th roots of unity. lf Fo = k(O) is a finite field and cp is the Frobenius automorphism

in K/K, then

and there is an isomorphism X such that

• m "'"'
X : n/n n I( p ~ f-Lpm

x(w(a)) = (tra,
(2.5)

where tr is the trace operator in ko/Qp.

Proof: Let q = pi denote the number of elements of the field Fo. Then cp = /j"f and
C!1J 6, 6,1- 1

hence arp = AI;J - /j" = A - A = a + a + ... + a = tr a. Hence the formula (2.2)
follows from the equality (2.5) of the theorem. The second statement of corollary follows

from the formula (2.4) of the theorem.

Proof of theorem: 1. We shall firstly verify that if a is a pm ·primary element oi !( then

it may be represented in the form (2.2). The next judgement belong I. Fesenko whom the

author is profoundly grateful.

Really, for the series Sj(x) = ~i(x) - 1, where (i = 1, the next comparison is obviously

holds

( )

p I I I

Sj(x)= .(j(x)-l =cPt~el···t~~lxpen+... modp

where (i = 1, the next comparison is obviously holds
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I I I

where ~1 (X) = 1 + C t~l ... t:~11Xen +... . Hence, using the properties of the function E
we have

I I I

The element 0' is 0' is pm -primary, so it is p-primary, hence 0' = 1+a*tfe1 ". t::ll7rpen +
for same a* of 00. Then, there is ao E 00 such that

i.e. 0' = E(ao.sl(x))lx=x- . ßP for same ß, VK(ß - 1) > el.
To obtain the following equality

E( aOsl (x) Jlx=x- = E (paolog ~I (x)) Ix=x- . ,p
(for same, E j(* ) we shall use lemma 9 from [VI]. Further, for (= pm-V(} we have

E (paolog ~I (x)) Ix=x- = E (pao log ~(x lm-l) lx=x- =

= E(pm ao log ~(x)) Ix=x- = E(ao.s( x)) Ix=•. (,')P, " E j(*.

Hence we obtain 0 = w( ao) . a{, the element 01 will be pm-I -primary. By induction
one could suppose that

0'1 - E(pm-lallog~m_l(x))IX=1l" _ E(al s(x))lx;;1l" IllOd ](*pm-l.

Then 0 == w( aO +aI) mod ](*pm and the decomposition (2.2) is proved.

Let now consider an element of the form

w(a) = E(as(x))jx;;1l"'

We shall verify that this element is pm -primary. Suppose

where A is a root of the equation p(x) = a. The following equality

is verified by analogy with lemma 9 from [V2]. Ta obtain the relation

w(a) ::::::: H(a)
pm

(2.6)

(2.7)

one could use lemma 9 of [VI].

It is more easy to verify the H( a) is primary then to do that for w(a). Namely as follows
from (2.6) the element H(a) belongs to the field ](. But H(a) is pm -th power of the
element E(All)I~(x))lx=1l"' which obviously belongs to the unique unramified extension
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!( of the field !(, because the element A is in ](. Thus, pm -primaryness of the H( a)
(and also w(a) ) is proved.

Now we shall verify the element (2.) does not depend from the choice of expansion of the
root (. As (2.7) holds, it is sufficiently to verify the analogical independence of the element

H(a.) Let {(l)(x) be aseries corresponding to some another expansion of (. Then we have

where 1] = E(A~l(~(x))/~(l)(x))lx=x-. lt remains to verify that 1] E !(. Let'P be an

arbitrary automorphism of the Galois group Gal (K/](). Then we have A~ 'f' - A~ = a~ =

a~ E Zp. As the function E is Zp -multiplieative and the funetions E and 1 are reciprocally

inverse we obtain (see Proposition 1) TJI' = TJoE(l(f.(x)/f(I)(x)) r'lx=~ = TJO (lll~:)r' =

1] . (~) alp = 7]. Hence 1] E !(. The independenee of the element H( a) (and simultaneously

with it w( a) ) from the expansion in aseries in the prime element 1r follows from the last

relation and the formula (2.8).

We shall verify (2.3) for the element H(a). Using the formula (2.7), the definition of !f(a)
we obtain

p\!w(a)~-l = p\!H(a)rp-l = E((A~'f' - A~)l(f(x)))lx=x- =

= E(a~l(~Jx)) )Ix=x-.

But a~ E Zp henee a~ = arp, besides we ean use the proJXlsition 1 for the funetions E
and 1 :

Thus the equality (2.3) is obtained. It remains to verify the condition (2.4). From the formula

(2.7) and the definition of the element H( a) we have

The last condition is equivalent to following: for any automorphism <p of the Galois group

Gal(K/!() TJI;? = "I. But

where A6 tp - AÖ = a~ = arp E Zp. Henee 1] E !( {::} atp - 0 fiod pm {::} A~ ­
A =0 fiod pm, and the element A may be represented as A = ao + pm Al, where

ao E 00, Al E 00, lt immediately follows that

and (2.4) is proved. Thus the proof of the theorem is eompleted.
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(3.1)

§ 3. Maps f(T) and r (T)'

We shall construct the mapping from (7n +1) -th copy of the group 1im into the ring 00.

Afterwards we shall realize this map as that from (m + 1) -th copy of the group 1(* into the
group of pm -primary elements n. Let (T) = (tl," . ,tn ) be a system of local parameters
in the field ko{{tl}}'" {{t n}}. In the ring o{ {t n}}, whe~e .0 = oo{{tl}}'" {{tn-I}},
the function

1(0') = ~logaP/aL.\
p

is defined for any inverse series a(T). Further, for aseries a(T) of the ring o{ {t n }} we
shall denote the i - t h logarithmic derivative as bi (0'), Le.

a
bi(a) = -a0, 1::; i::; n.

ti

Remember that the series {(tn)pm - 1 was denoted as s(tn) (see (1.4)).

For p :f. 2 we shall define the map

1'(T) : H m x ... x H m ~ 00 lTIod (p, pm)

1'(T) (ab' .. , an+I) = res 4>(ab ... , an+d / s

where

D· __l~
I - pn-i+I

bl(a~+l)'" 8n(a~+1)

Further in particular case will be used. Let the sets of indexes I = (i1 < iz < ... < iu-d
and J = (jI < j2 < ... < jv-l), where u + v = n - 1, be such that they compose some
permutation (1,2,"', n) together with some "", i.e. zI U (~) U J = (1,2,"', n). Then
we have

4>(tin' .. , ti n _ 1, 0', tjll ... , t jv-l ,ß) =

= (-1)'litll ... t~ ... t;;-I (I(ß).5,,(oe) + (-1 t-,,+vl(oe)~.5" (ß6) )

where .1t is the number of inversions in the permutation (I, "", J).

Proposition 4. The mapping 1'(T) is well-defined (i.e. is invariant relatively the choice o[

loeal parameters tI,"', t n 0/ the field !( ). This one is multiplicative in all its arguments,

skew-symmetry, proportiona~ ie.

""(T) (. .. a· ... - a' ...) ::::: 1I ,I" I, .

Besides this mapping satisfies the Steinberg relation

""(T) (. .. a' ... 1 - a' ... ) ~ 1I ,I" I, .
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The proposition can be verified similarly to the proposition 2 of [V5]. Consider the subgroup

Um = (1 + u(tn)~(tn))

(see (1.9) in the group 'Hm .

Proposition 5. The subgroup Um belangs to the kernei of the mapping I(T) in all its

arguments, so I(T) induces for p =I 2 nontrivial mapping (denoted by the same letter)

( m) n+l
1(T) 1im/Um'Hfn -+ 00 mod (p,pm).

Proof: We verify first that

1(T)(tl,"" tn, e) =0 mod (p, pm) (3.2)

for any series e( tn) from Um. By definition of I(T) we have

1(T)(tI,"" in, e) = res(T)t1
1

••• r;;ll(u'lj;)js

where e = 1 +u~. Taking into aecount the congruenee (5) from [V5] this we obtain (3.2).

Further, aoy element Q of 'Hm ean be represented as the product of loeal parameters.
Hence, from the relations proved above the congruence (3.2) and from multiplicativity aod
invariance of 1(T) the congruence follows

1(T)(Q},"" Qn)e) 0 mod (p, pm)

where eq,"', an E 1im, and e E Um-

From this and skew-symmetry of I(T) follows the assertion of the proposition. The exaet
sequence (see proposition 3)

1 -+ Um --+ 1im ~ 1(* --+ 1

determines the isomorphism

1J:n : 1(* ;;; 'fim/Um (3.3)

whieh is defined as follows: every element a E 1<* is expanded into the series in the loeal
parameters tI,"', tn-I, 1r afterwards the prime 1r of the field I< is replaced by variable tn.

Aecording to proposition 5 the homomorphism TJ:n is well-defined and is the isomorphism.
With the help of the eonstrueted isomorphism the mapping I(T) is transferred in the field
I<. Namely, for p =I 2, we shall define the mapping

f(T) : (K*)n+1 --+ fl/fl,Pm

r(T)(01,"', an+d = W('(T»)
where I(T) = I(T)(1J~(OI),"" 1J:n(an+I)).

Proposition 6. The mapping r (T) for P =I 2 is Zp -multiplieative} in all its arguments}

invariant in relation to the ehoice 0/ loeal parameters i), - - - , tn-l, 1r 0/ 1(, independent 0/
the expansition way 0/ the elements a},"', a n+1 into series on the system iI,"', in-I, 1r.

Besides one satisfies Steinberg relation

r( ... ,Qi, ... ,1 - ai ... )(T) ~ 1

for any Qi =I 1 of 1<*.

Proof: The Zp -multiplieativity, invariance and Steinberg relation follow from the correspond­
ing properties of the mapping 1'(T) (see proposition 4). Independence from the expansion of
elements ioto series follows from the proposition 5 and isomorphism 1J:n.
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§ 4. The pairing on topological !{ -groups

1. Let l<u(l<) be u - th Milnor group of the field I<, u ~ O. We shall choose the most

strong topology on l<u(K) in which the map (/<*)U ~ !(u(/<) is sequentially continuous on

every argument and if X n ~ X, Yn ~ y, then X n+ Yn -io X + y and -Xn ~ -x in !(u( I<).
Let Au(/() be a subgroup in /(u(/() which is the intersection of all the neighbourhoods of

zero in !(u(!<). Then we define the topo10gical Parshin's /( -group as follows

(see [PD.

In this section we shall define nondegenerated pairing on 1( -groups which has values in
the group of pm -primary elements O. Let !( contain all the pm - th roots of the unity.

The mapping r (T) constructed in the preceeding section, induces the pairing in !( -groups

!(~OP(I() and /(~OP(!(), where u + v = n +1 :

( , )~~) : I(~OP(I()/pm x /(~OP(I()/pm -io fl/fl pm
,

whieh is defined on the symbols 0' = {0'1, ... , Q'u} and ß = {ßl, ... l ßv} as follows

( Q', ß) ~~) = r (T) ( 0'1, ... , an, ß1, ... , ßv ).

The pairing (,) ~~) is extended on the remaining elements by linearity.

Theorem 2. The pairing ( , )~~) for p f= 2 is well-defined, non-tiegenerate on both arguments.

Remark From skew-symmetry of r (T) follows the property

(u) (-Ir'"
(0', ß)(T) = (ß, a)(T) .

Proof oe the theorem. From the properties 0/ r(T) (see proposition 6) it /ollows that r(T)

defines the weU-defined pairing ( , )~~) on K -groups. Non-degenerative is verified in the
same way as in proposition 3 0/ [V5J.

§ 5. The pairing (,) (T) and Hilbert synlbol

1. Let us consider the I( -groups /(n(I() and I(I(I() ;; 1(* and the pairing

( , )(T) = ( , )~~) : l<n(/()/pm x /(* / /(*pm ~ O/Opm (5.1)

in context of preceeding section. If the field I( is a multidimensional loeal fie1d with null

characteristic (Le. the last residue field k(O) of !( is finite) then the charaeter X defined on
the group of pm -primary elements as

where ß is Frobenius automorphism in the unramified extension !«( PVWJ//( and tr is

the traee operator in ko / Qp, sets the isomorphism

(5.2)
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Thus the pairing (5.1) induces the mapping

Equally to the constructed map (5.2) in the multidimensional loeal field the Hilbert norm

residue symbol is defined on the same set

( , )m : J(n(!()/pm x J(* / J(*pm -+ ILpm

({a], ... , an}, ß)m = P\Iß 1/J({at,"',O'n})-l

where tf; is a canonical reciprocity homomorphism

(see [P), [Kl).

Theorem 3. For any a E J(n(I() and any ß E I(*, where p ~ 2, the following equality
holtls

(5.3)

which sets Hi/hert symbol the explicit form with the help 01 the lormula (3.1).

Proof: According to isomorphisms (5.2) the mapping X (( , ) (T)) eoincides with the pairing

(., )r, which was constructed in the theorem 3 of the article [V5). Then the theorem 4 from

this article sets (5.3).

Now we consider the complete discrete valued field J( by eharaeteristie 0 with the perfect

residue field F by characteristic p > 0 . The field F is not algebraically closed. In the

context of this article the field ]( is the field of normalization by rank 1. The reciprocity

map for sueh a field is eonstrueted as follows (see [FD.

Let L/!( be a totally ramified Galois extension by power pm, then

where U1,K is the group of principal units, J( is the maximal abelian unramified p -extension

of !(, and Horn are continuous Zp -hornomorphisms. We shall note that

Gal (K /!() ~ TI Zp
x

where F/pF = EB Z/pZ the direet surn of x items Z/pZ. Besides, it's clear, that the group,
x

which is in the right side of (5.4) is noneanonically isomorphie to EB Gal(L/](tb
,

x

We set Hilbert symbol of pm -power in the field !( which contains all the pm - th roots

of the unity

( , )m : U1,K X !(* -+ Horn ( Gal (K /J( ) , tLpm)

(a, ß)m : <P 1--+ P\Iß ua(~)-l
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U1,K /Ui.~ x j(* /Oj(*pm -+ Hom(Gal (K /[(), Ilpm)

where 0 is the group of pm -primary elements of [(. Using the skew-symmetry property

one could extend the symbol ( , )m on ](* x K*, for (-7r, a), 0' E U1,K, we set

where c.p E Gal(K/j(), O"a(c.p) istheextension (o:,M/k)(c.p) on Gal(R( pV!J)/i<) , M/j(
is totally ramified extension, such that

j( M

1 1
!( ]( (PV!3) .

It is easy to see that, the symbol ( , )m is multiplicative in both arguments, skew-symmetrical,

Le. (0:, ß)m = (ß, o:)~/, if 0:, ß E U1,K, and satisfied Steinberg relation (1 - a, a)m = 1
for any 0' =0 rnod 1r. Besides it's clear that the symbol ( ')m induces the nondegenerative
pairing

and (1r, 1r) = (-1, 1r,). Then the pairing ( , )m induces the nondegenerative Hilbert pairing

( , )m : j(* / j(*pm x j(* / j(*pm -+ Horn ( Gal (K /j( ) , Ilpm) .

Let ..\ : O/O,Pm -+ Hom(Gal (j( /!(), fipm)

..\(w)( Cf') = P'VW ~-l.

Then the mapping ..\ is an isomorphism and Hilbert symbol (')m coincides with the

composition

pmBr([() ~ %n](*pm Ä Hom(Gal(R/]()' fl pm)
where JL is defined as follows. Any cyclic pair (0', ß) can be uniquely represented as

(0', ß) = (1r, w), where w is pm -primary element (see [W]). Then fL(O', ß) = w. The

pairing ( , )~~ constructed in § 4 in our case has the form. Let Q, ß E [(* then

r 1[' : K* / [(*pm x ](* / K*pm -+ D./O,pm

r 11"(a, ß) = w( la,P)

where

IG,ß = resx (l(a)l (f))' - l( Q')(1 /!!.. + I(f.)o:' / 0:) / s (5.5)

( 0'(x) denotes the series 1]~(0:), see (3.3)). Along with the pairing r 11" which defines the

mapping into the group of pm -primary elements it is natural to consider the pairing

which is the composit of r 11" and the isomorphism

A: D./D.pm -+ Hom(Gal(K/]() ,Ilpm)

A(W)(c.p) = p'VW~-1
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Le. (Ci,ß).,; = A(r.,;(Ci,ß))·

Theorem 4. The pairing r.,; and also ( , )7 is bilinear, skew·symmetrical, well-defined. Both

pairings satisfy the Steinberg relation, i.e. r 'Ir ( Ci, 1 - Ci) ::::::: 1, (Ci, 1 - Ci) 'Ir = 1, Ci f=. 0; 1.

BesidesJ il the field F is not algebraically closed, then both pairings set nondegenerated with

the precision to pm - th powers mappings. Both pairings have a non property.

Proof: All the properties of the pairings r'lr and (,) 'Ir are proved in § 3. On the norm

property see theorem 7 in tbe paper [V5].

One should verify the main result of this section. Let !( be a complete discrete valued field

whose residue field is perfect, not algebraically closed, and has a characteristic p > 0 . Let

the field ]( contain all tbe pm - th roots of unity and (, )m ·Hilbert symbol in the field

](. We shall consider tbe isomorpbism

A: n/Dl
m

-+ Horn (Gal (RIJ(),ppm)
A(W) = p~~-l.

In the group of principal units we shall use Sbafarevich canonical decomposition (see [Sh]),

whicb in our case may be represented as follows. Let e be ramification index of ]( and

el = p~l' Let, further, J( contain all tbe pm - th roots of unity and 1r • a prime element

of J(.

Proposition 7. Any principal unity e 0/ the field !( up to terms 01 pm - th powers is

uniquely represented as

e = w( a~ )E(w~(X ))Ix=.,; (5.6)

where w~(x) = L: Cixi, 1 ::; i :s; pe}, (i,p) = 1. Besides e E J(*pm {=> a~ ==
o mod (p,pm), w~(x) =0 mod pm.

Theorem 5. Let p f=. 2, then

where

r O',ß = resx (l( a)l(t?)' - 1(Ci)!! +~ + l(PJCi' lCi) I s.

Proof: Consider first tbe case a = ?T, ß = e. Mark that as the pairing (a, ß) 'Ir =

A(r.,; (Ci, ß)) = A(W ( AO' ,ß)) has the property of independence, any expansion of the unity

€ into power series on the prime ?T may be used. Hence we shall represent e in the

canonical form (5.6). Then from (6.6) we obtain

(?T,e)'lI'" = A(w(a~)).

On the other hand, the unity E( C?T i ), P f i, is the norm in the extension !«( pyr,r) (see,

[Sh]). Hence for Hilbert symbol we obtain

So

13



and equality

is verified.

If e,1] be the principal units of the fielf K, then supposing T = 1re and using invarienee

property of the pairing (,) 'I" we obtain

(e, 1])11" = (1re, 1])1(' (?r, 1]);1 = (r, 1])"/(' (1r, 1]);1.

From this and the properties of ( , )"/( follows the general ease. The theorem is proved.

More conerete exposition will appear in Adv. in Soviet Math., 1993.
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