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§ 1. Introduction

1. The explicit formula for Hilbert’s symbol which was obtained in the article [V1] gave an
impulse to obtaining explicit formulae both in various fields and for various objects (formal
groups, for example, see [V3], [V4], [BV]). As the local class fields theory developed, the
scope of local fields was extended for which the methods of [V1] are applicable.

The present article is devoted to complete fields to discrete normalization by rank n, which
have the characteristic 0. In those fields we construct in explicit form the pairing on
topological K -groups, for which the sum of dimensions is equal to n + 1. In particular,
the explicit formula for Hilbert pairing in the fields of normalization by rank n also is
obtained. Such fields may be represented as a chain of the complete discretely valued field
s: kO ... k() =k where the field k(1) is a residue field for the field ¥, 1 <i < n.
We suppose also that the first residue field has a characteristic p and the last residue field
k) s perfect. In the ascertained terminology, the fields, whose last field is finite are called
to be the multidimensional local fields. Their theory was developed in the articles by Parshin
A.N. and Kato K. (see [P], [K]).

A.N. Parshin gave the complete classification off multidimensional local fields. We shall
quote it for the case of differently-characteristic fields with O—characteristic.

The field &{{t1}}- - {{tn—1}} where ¢, ---,t,_; are independent variables will be called
standard n-dimensional local field. Parshin’s classification is the following: every n-
dimensional local field of null characteristic whose first residue field has a characteristic p
(different-characteristic n -dimensional field) contains a standard field as a finite subextension,
and besides, such a field is contained in a finite standard extension, i.e. there are numerical
local fields £ and &' and the systems of local parameters ¢,---,%¢,_1 and tll, e ,t;_l
such that

E=k{t}} - {{tn-ly c K k{6 }} - {{tam}} = K,

and K/E, K'[K are finite extensions.

We introduce the basic notations.

K - is a complete field relative to discrete normalization by rank n with the characteristic 0.
F - is a first residue field of of K, ie. F = k{(n=1)

7 - is a prime element of K by rank 1 relative to discrete normalization.

t1, -+ ,tn—1,7 are local parameters of /{ (a lift of prime elements of residue fields k()
which define the field K ).

T = (v(l),--«,v(“)) : K* — (Z)" is a normalization by rank n correspondent to the

chosen local parameters; (Z)" is ordered as (my, -+, my) < (mrl,---,m;‘) if m, =
1

1 ! . . . [} .
My, -+, Mig1 = M1, but m; < m; for some :. where ox is a ring of normalization
by rank n

My is the unique maximal ideal of og
v = v(® is a normalization by rank 1 of K as a discrete valued field

e = v(p) is a ramification index of K relative to normalization by rank 1
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z= (e(l),...,e(n)) = Tx(n)
¢ is fixed p™ of unity, which is contained in K.

Fy is a maximal perfect subfield in the residue field F' of the field K which is supposed
to be non-algebraically closed.

op = W(Fp) is a ring of Witt vectors for Fj

R is Teichmiiller system of the representatives of field elements Fp in the ring op
ko is a field of relations for og

A is the Frobenius automorphism in ko

p(a) = a® — a is the Cartie operator over the completion of the maximal unramified
extension of the ring oq.

a = f mod (p,p™) in the ring oy means that & = § + p(y) + p™+', where v,7' € op.
a= f or a =0 mod (K*)’ means that the elements @ and 8 from K are different
by p™ -power in K.

Ko = ko{{t:1}}---{{ta}} is a standard absolutely unramified field of normalization by
rank n + 1 ( t1,---,t, are independent variables). o = op{{t1}} - {{tn-1}} is a ring of
normalization by rank n in the field ko{{t1}} - {{tn—1}} C K o' = o((ty)) is a ring
of Laurent series H,, = (o')* is a group of invertible elements of the ring o'.

The Frobenius operator A in the ring o{{f,}} is

A
At | =) a2t P an €
ayty n - t7IA | n o Oy 0,
i

N
(one should note that the operator A depends on the choice of local parameters #,---,¢, ).
deg f denotes the order of Laurent

f(&:) = amzm + am+1$m+l +oey ie.m = deg f

The congruence
f =g mod (p", deg s)

means that the coefficients whose powers are less that s, are congruos mod p".

Remark. The above definitions are given in the sense that they are lexicographically ordered
for the series with a few variables.
2. For any invertible in the ring o{{¢,}} series f the next function is well defined
1
1(f)=;105f”/f‘3 (1.1)
because fP = f© mod p (see also [V1], prop. 1 and [V5]). For any series ¢ from the ideal
zof[z]] the Artin-Masse function is well defined

E(g)=exp| > ¢*"/p"

m>0



Besides the following assertion holds (see [VS5]).

Proposition 1. The functions | and E give the reciprocally inverse isomorphisms between the
multiplicative 1, -module 1 + t,0([t,]] and the additive 7, -module t,o{t,})]. In particular
any series £(tp) from 1 + tyo0[[ts])] may be uniquely represented in the form

e(ta) = E(n(ts)) (1.2)
where n(ta) = I(e).

For the element o from the field K let us denote the series in the ring o{{{,}} as a(ta). It
is obtained from the expansion of the element « into series in the prime = from K whose
coefficients are in o. Thus

Q(tﬂ)|tn=r =« (13)
Let
$r(tn) = C% (ta) — (1.4)
p-l . .
Ur(tn) = $e/src1 =p+ »_ CiF1SE, (1.5)

i=1
(we shall omit an index for » = m in the series s,(¢s) and wu,({) ).
3. Expansion into series.

We denote the prime element of the field K relative the discrete normalization by rank 1 as
7. The set of multi-indexes / C Z(®) is said to be admissible if for any fixed set of integer
U4+1s " "y tny, 1 £ 1< n, in the set of all multi-indexes 7 = (ry,-- -, 7, 7141, -+, Tp) from [
for which the indexes rjy;,---,7, coincide with the indexes 2;,),---,7, respectively, the
index r; is bounded from below, i.e. there exists the integer ¢, such that r; > ¢ for any
T = (71, , "1, 5 tg) from I

Any element o from K is uniquely represented as the following series
=) OAf -t (1.6)
el
where [ is the admissible set and # € R (see [VZF], Lemma 2).
Let o' = o((tn)) be a ring of L series, where o = op{{t1}} -~ {{tn-1}}. We shall write

TF=t1{1"'t:1"
Any element «(ty) of the ring o’ is uniquely represented in the form

afty) = Z a7T", a7 € og 1.7
rel

where [ is an admissible set.

We shall denote the multiplicative group of the ring o' as H,,. There is the surjective
homomorphism (uncanonical)

M - Hy — K*

a(T) - a=aoty, -, tp_1, ) (1.8)



4. Consider the series u(t,) constructed in (1.5). As in [V1] we proof

Proposition 2 Let (t,;) = 1 + a1ty + --- be an invertible series from the ring o|[t,]]. If
e(w) =1 for prime w from K then there is the series {(t,) € o[[t,]) such that e(7) = 1+u.

In the group H, we consider the subgroup
Um = (1 +u(tn)p(tn)) (1.9)

where ¢ € o[[ta]], ¥(0) = 0.

Proposition 3. There is the exact sequence

1—=U, > Hy B K 1

where 1y, is the homomorphism from (1.8).

Proof: From the definition of the epimorphism 7, and that of the series u(?,) any element
from the subgroup U,, it turns into 1 under 7,,. Conversely, if 5,,(h(t;)) = 1 for some
series h € Hy, then A(y,---,ts—1,m) = 1. To finish the proof the proposition 2.2 should
be used.

§ 2. Primary elements

Remember, an element w € K is said to be p™ -primary if the extension K(p™\/w)/K in
the unique unramified (i.e. may be obtained when the residue field k(®) is extended). This
elements in a multi-dimensional local field have been constructed in [V5].

Let K be a maximal abelian unique unramified p extension of the field K. If for the
maximal complete subfield Fo = k(*) in the residue field K we have Fy/p(Fo) = @ 1/pl
X

then the Galois group of the maximal abelian p-extension of the field Fj is isomorphic to
[1Z, and hence
b

Gal(R/K) 2 Gal (™ [ Fo) 2 [] 2.
X

Let op = W(Fp) be a Witt vector ring and of" be an integer ring of the supplement of the
maximal unramified extension kg (i.e. the field of quotient for the ring oy ).

Lemma 1. For any element a € oy there is an element A € of", which satisfies the next
equation
p(A) =A% - A =a, (2.1)

Besides for any automorphism ¢ from Gal K /K') the element a, = A¥ — A isan p-adic
integer, which does not depend from a choice of the root A.

Proof: The equation p(z) = @ where @ is a residue of a in the field Fy is solvable in
the extension F} ® Using the method of successive approximations we obtain the solution
of the equation (2.1). If p € Gal (I? /K ) then a2
to op, then a¥ = a. Hence ag‘ = a, S0 a, € Z,. Obviously a, does not depend from

the choice of A. The lemma is proved.

—a, = a¥ — a. An element a belongs



Let { be a primitive p™ — th root of unity, which is contained in the field K and let ((z)
be a series from the ring of[z]] that is obtained from the expansion the element ( into a
power series in the prime element 7. As before s(z) = ((z)P — 1.

Theorem 1. Any p™ -primary element « of the field K may be represented (with precision
to p™ -th powers) as follows

o ~ w(a) = B(as(c))|yor (2.2)

for some a € oy. Vice verra, for any a € oy the element w(a) of the form (2.) is p™ -primary.
Besides the element w(a) does not depend from the expansion of the root ( into series in the
prime element w. Further

Vw(a) o = (A4 = e (2.3)
for any automorphism o of the Galois group Gal(f? /K ) At last

w(a) =1 & a = p(ag)mod p™, ap € oy (2.4)

Corollary. Let (2 be a group of p™ -primary element of the field X' and p,~ be a group of
p™ — th roots of unity. If Fy = k) is a finite field and ¢ is the Frobenius automorphism
in K/K, then

and there is an isomorphism x such that

X:QOQNK? Sy,
xX(w(a)) = ¢,
where tr is the trace operator in ko/Q,.

Proof: Let ¢ = pf denote the number of elements of the field Fy. Then ¢ = A7 and
hence a, = AY — A = AY A =a+a® 4 - +a2"7 = tra. Hence the formula (2.2)
follows from the equality (2.5) of the theorem. The second statement of corollary follows
from the formula (2.4) of the theorem.

(2.5)

Proof of theorem: 1. We shall firstly verify that if « is a p™ -primary element of K then
it may be represented in the form (2.2). The next judgement belong 1. Fesenko whom the
author is profoundly grateful.
Really, for the series s)(z) = gl’(:c) — 1, where (7 =1, the next comparison is obviously
holds
_ P pe’ pe' pe,
si{z) = (gl(az) - 1) =Pt et e 4 -+ mod p

where ¢ = 1, the next comparison is obviously holds

si{z) = (Ql(z) - 1)p =P {Pen=1 gpen +--- mod p

n—1



where ¢ (z) =1+ ¢t} - ;mlgen + ... . Hence, using the properties of the function £
we have

E(SI(I)) ? E(cptﬁwl - tpe'n-;mpe:,)

1 ’ I
. . . o s . _ pe pe, . "
The element « is o is p™ -primary, so it is p-primary, hence a = 1+a,t77" --- ¢ "' wPen 4
.- for some a, of oy. Then, there is ag € oy such that

n—1

E(ags1(z))|z=x = (cpaot’l’cl -..tpe"":zpen> |z=xr = & mod KI*P

ie. a = E(ags1(z))|z=x B? for some B, vx(B—1) > &.
To obtain the following equality
B(a081()ls=r = E(pao 10g ¢, () ) le=x - 7
(for some v € K* ) we shall use lemma 9 from [V1]. Further, for ¢ = *™\/{; we have
E(paﬂ loggl(m))l:l::x = E(Pao 108£($)pm_ )Ix:x =
= E(p™ag logg_(a:))h;:,, = E(aos(z))|o=x - (71)1’, ¥ € K"

Hence we obtain a = w(ag) - o}, the element @y will be p™~! -primary. By induction
one could suppose that

a1 = E(p™ e log Cnet(2))lo=x = E(615())]a=r mod K7,

Then o = w(ag + a;) mod K**” and the decomposition (2.2) is proved.

Let now consider an element of the form

w(a) = E(as(z))|zs=rx

We shall verify that this element is p™ -primary. Suppose

H(a) = B(p"4%1(((=)) ) lo=r
where A is a root of the equation p(z) = a. The following equality

H(a) = E(p"alog{(2))}z=r (2.6)
is verified by analogy with lemma 9 from [V2]. To obtain the relation

w(a) ﬁn H{a) (2.7)
one could use lemma 9 of [V1].
It is more easy to verify the H(a) is primary then to do that for w(a). Namely as follows
from (2.6) the element H(a) belongs to the field K. But H(a) is p™ -th power of the
element E(A%){(¢{(z))]s=r, which obviously belongs to the unique unramified extension



K of the field K, because the element A is in K. Thus, p™ -primaryness of the H(a)
(and also w(e) ) is proved.

Now we shall verify the element (2.) does not depend from the choice of expansion of the
root ¢. As (2.7) holds, it is sufficiently to verify the analogical independence of the element
H(a.) Let ¢ ()(z) be a series corresponding to some another expansion of ¢. Then we have

H(a) = E(p™ A21(((2) Ylomr = E(p™421((D(@)) Y foms - 7" 2.8)

where 7 = E(AAI(Q(a:))/Q(I)(:c))|¢=,. It remains to verify that n € K. Let ¢ be an

arbitrary automorphism of the Galois group Gal K/K). Then we have A%" — A% = ¢ =
g P

a, € Zp. Asthe function E is Z, -multiplicative and the functions £ and ! are reciprocally

inverse we obtain (see Proposition 1) ¥ = 1;;-1‘3‘(1(_C_(:z:)/g(])(:c)))ﬂw|z=.,,r =7 (EZCT%) =

n- (%) = n. Hence 5 € K. The independence of the element H(a) (and simultaneously
with it w(a) ) from the expansion in a series in the prime element 7 follows from the last
relation and the formula (2.8).

We shall verify (2.3) for the element H(a). Using the formula (2.7), the definition of H(a)
we obtain

Al = VA = B((4 = 4)i(¢(2))lomr =
= E(aﬁl(ﬁ(ﬂ))l:::-

But a, € Z, hence a@ = a,, besides we can use the proposition 1 for the functions E
and [ :

B(a21(¢(®))lomr = BU(C(e))122e = C(m™ = ™

Thus the equality (2.3) is obtained. It remains to verify the condition (2.4). From the formula
(2.7) and the definition of the element H(a) we have

we)~1l e Ha)~l &q= H(Aaz@(z)))|m,, € K.

The last condition is equivalent to following: for any automorphism ¢ of the Galois group
Ga.l(]?/]() n¥ = 5. But

7#1 = B( (4% - Aﬂ)z(g(x))) lomr = (%,

where A%Y — A% = a2 = a, € Z,. Hence n € K & a, = 0 mod p™ & A¥ —

A = 0 mod p™, and the element A may be represented as A = ag + p™A;, where
ap € oy, A1 € op*. It immediately follows that

a = p(A) = plas) + p"p(A1) = p(ao) mod p™
and (2.4) is proved. Thus the proof of the theorem is completed.
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§ 3. Maps Y(r) and L'ty

We shall construct the mapping from (i 4+ 1) -th copy of the group H,, into the ring oy.
Afterwards we shall realize this map as that from (m + 1) -th copy of the group K* into the
group of p™ -primary elements €. Let (T') = (11,---,ts) be a system of local parameters

in the field ko{{t1}}--- {{tn}}. In the ring o{{ts}}, where o0 = oo{{t1}} -+ {{ta=1}},
the function

l(a) = —l—log aP[a®
p

is defined for any inverse series oT). Further, for a series o7") of the ring o{{{,}} we
shall denote the : — th logarithmic derivative as §;(a), i.e.

$i(a) = %a, 1<1<n.

Remember that the series Q(tn)”m — 1 was denoted as s(t,) (see (1.4)).
For p # 2 we shall define the map

YT) s Hp X -+ X Hm — 0p mod (P, Pm) 3.1)
7(T)(ala"'aan+l)=res ¢ty any1)/s '

where
$lor, -y angr) = Homg1) Dagr — How) Dy + - 4+ (=1)" (01 ) Dy,

1 81(cri—1) -+ bnleizq)

= 7| 61(ah,) - 8ulah)

61 (afﬂ) o 5,,(a£+1)
Further in particular case will be used. Let the sets of indexes [ = (33 < 13 < -+ < iy—1)
and J = (j1 < j2 < - < ju—1), where v+ v = n — 1, be such that they compose some
permutation (1,2,---,n) together with some «, ie. zJU(k)UJ = (1,2,---,n). Then
we have

1<i<n+l.

d’(tin e 7tin_1aa1 tj]) Ty tju—lyﬂ) =
= (2 (UB)8a) + (1w 6 (5°))

where ‘K is the number of inversions in the permutation (7, «, J).

Proposition 4. The mapping ~r) is well-defined (i.e. is invariant relatively the choice of
local parameters ty,---,t, of the field K ). This one is multiplicative in all its arguments,
skew-symmetry, proportional, Le.

7(T)("')ai1"'a_afa"') ~ L.
Besides this mapping satisfies the Steinberg relation

'Y(T)("'aal':"'a]-_al')"')%1'



The proposition can be verified similarly to the proposition 2 of [V5]. Consider the subgroup
U = (1 + u(tn)ib(tn))
(see (1.9) in the group H,.

Proposition 5. The subgroup Uy, belongs to the kernel of the mapping vty in all its
arguments, so ~y(t) induces for p # 2 nontrivial mapping (denoted by the same letter)

my ntl
vy (Mo UMy ) = 0 mod (p, p™).
Proof: We verify first that

7(T)(t11"';tm€) = 0 mod (P, pm) (32)
for any series £(tn) from I/,. By definition of ) we have
Yyt s tn€) = reseryty ! o 17 (uh) /s
where € =1 + ui. Taking into account the congruence (5) from [V5] this we obtain (3.2).

'Further, any element o of H,, can be represented as the product of local parameters.
Hence, from the relations proved above the congruence (3.2) and from multiplicativity and
invariance of 1) the congruence follows

"}’(T)(Ql, tte )aﬂle) = 0 mod (p1 pm)
where aj,--,an € Hy, and € € Up,.

From this and skew-symmetry of ) follows the assertion of the proposition. The exact
sequence (see proposition 3)

1= Uy = Hm B K =1

determines the isomorphism

et K = Hon/Un (3.3)
which is defined as follows: every element o« € K* is expanded into the series in the local
parameters ty,--+,t,—1, 7 afterwards the prime = of the field K is replaced by variable ,,.

According to proposition 5 the homomorphism 7;, is well-defined and is the isomorphism.
With the help of the constructed isomorphism the mapping ~7) is transferred in the field
K. Namely, for p # 2, we shall define the mapping

Tery : (K" — /0"
Liry(ai, -, anpr) = (1)
where vy = Yy(m(@), -, m(@ntr)). .
Proposition 6. The mapping I'(yy for p # 2 is I, -multiplicative, in all its arguments,
invariant in relation to the choice of local parameters ty,---,t,_1,7 of K, independent of

the expansition way of the elements «1,---,an41 into series on the system ty,---,tp_y, 7.
Besides one satisfies Steinberg relation

F(...,a"1...,1 -.-.a"...)(T) %1
for any o; # 1 of K*.
Proof: The Z, -multiplicativity, invariance and Steinberg relation follow from the correspond-

ing properties of the mapping ~T) (see proposition 4). Independence from the expansion of
elements into series follows from the proposition 5 and isomorphism 7;,.
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§ 4. The pairing on topological K -groups

1. Let K,(K) be u— th Milnor group of the field K, u > 0. We shall choose the most
strong topology on K, (K) in which the map (K*)* — K,(K) is sequentially continuous on
every argument and if =, — z, y, — v, then z,+y, — z+y and —z, — —z in K,(K).
Let A,(K) be a subgroup in K, (/) which is the intersection of all the neighbourhoods of
zero in K,(K). Then we define the topological Parshin’s K -group as follows

K2P(KY) = Ko(K)/Au(K)
(see [P]).

In this section we shall define nondegenerated pairing on K -groups which has values in
the group of p™ -primary elements ). Let K contain all the p™ — th roots of the unity.
The mapping I'(y constructed in the preceeding section, induces the pairing in K -groups
K°P(K) and Ki°P(K), where u4+v =n+1:

(0 - KRP(K)[p™ x K2P(K) 5™ — 0/,

which is defined on the symbols « = {1, -, ay} and 8= {f1, -+, B} as follows
(Q, ‘B)E;)) = F(T)(Q’], trty Qg ﬁla Tt aﬁu)-
(u)

The pairing (, ) (1) is extended on the remaining elements by linearity.

Theorem 2. The pairing { , )E;“)) for p # 2 is well-defined, non-degenerate on both arguments.
Remark From skew-symmetry of ['(;,) follows the property

uv

(o B = (Br )iy

Proof of the theorem. From the properties of T'(y (see proposition 6) it follows that T'(r)

defines the well-defined pairing { )E;)) on K -groups. Non-degenerative is verified in the
same way as in proposition 3 of [V5].
§ 5. The pairing (, )(T) and Hilbert symbol
1. Let us consider the K -groups K,(K) and Ki(K) = K* and the pairing
(ry = () KB ™ x K[ = /0" (5.1)

in context of preceeding section. If the field K is a multidimensional local field with null
characteristic (i.e. the last residue field £(®) of K is finite) then the character y defined on
the group of p™ -primary elements as

X(w) — pwa—l — Ctr a’

where A is Frobenius automorphism in the unramified extension K( *\/w)/K and tr is
the trace operator in ko/Q,p, sets the isomorphism

X L2 ppm = (). (52)
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Thus the pairing (5.1) induces the mapping

X (@) : Kall)p™ X KK = iy,

Equally to the constructed map (5.2) in the multidimensional local field the Hilbert norm
residue symbol is defined on the same set

()t Ka(K)/p™ x K*[K*" = ppm
({ala Tty an}: ﬁ)m = Pw P({or,an})—1

where 1 is a canonical reciprocity homomorphism
i Kn(K) — Gal(](ab/l{)

(see [P], [K])-
Theorem 3. For any o € Kq(K) and any € K*, where p # 2, the following equality
holds

(e B = x({e B)(r) ) (5.3
which sets Hilbert symbol the explicit form with the help of the formula (3.1).

Proof: According to isomorphisms (5.2) the mapping x(( , )(T)) coincides with the pairing
(, )r,» which was constructed in the theorem 3 of the article [V5]. Then the theorem 4 from
this article sets (5.3).

Now we consider the complete discrete valued field K by characteristic 0 with the perfect
residue field F' by characteristic p > 0 . The field F' is not algebraically closed. In the
context of this article the field K is the field of normalization by rank 1. The reciprocity
map for such a field is constructed as follows (see [F]).

Let L/K be a totally ramified Galois extension by power p™, then
(,L/K): Uy g [Ny Uy = Hom (Ga,l(f?/f(), Ga.l(L/K)ab) (5.4)

where U g is the group of principal units, K is the maximal abelian unramified p -extension
of K, and Hom are continuous Z,-homomorphisms. We shall note that

Gal(R/K) = ]2,
F
where F/pF = @ Z/pZ the direct sum of z items Z/pZ. Besides, it’s clear, that the group,
z

which is in the right side of (5.4) is noncanonically isomorphic to P Gal(L/K)ab.
T

We set Hilbert symbol of p™ -power in the field K which contains all the p™ — th roots
of the unity

(+)m  Urie % K* = Hom(Gal (/K ), pm
(e, ﬁ)m o PW”"((”)_I

11



where ¢ € Ga,l(ff/K), ca(ip) is the extension (o, M/ k)(¢) on Ga.I(I?( P"\'/ﬁ)/f?), M/K
is totally ramified extension, such that

K - M

I

K - K (*VB).
It is easy to see that, the symbol ( , ),. is multiplicative in both arguments, skew-symmetrical,
ie. (o,f),, =(8,0);}, if o, € Uy,k, and satisfied Steinberg relation (1 — o, a),, =1
for any o = 0 mod 7. Besides it’s clear that the symbol (, ),, induces the nondegenerative
pairing _

Uk /U x K* QK — Hom(Gal(l?/K), p,,m)

where ) is the group of p™ -primary elements of K. Using the skew-symmetry property

one could extend the symbol (,),, on K* x K*, for (7,«a), a € Uy g, we set

(7, @) = (q, 1r)-l

and (7, 7) = (—1,7). Then the pairing (, ),, induces the nondegenerative Hilbert pairing

() KK x KK = Hom(Gal (f(/f(),p,,m).
Let A : Q/Q7" - Hom(Gal(f?/K),p,,m)

Aw)(p) = "Vw?™".

Then the mapping A is an isomorphism and Hilbert symbol (,)
composition

m coincides with the

Br(K) 5 a/an kK’ 3 Hom(Ga,l(f?/f(),ppm)
where u is defined as follows. Any cyclic pair (e, 8) can be uniquely represented as
(o, ) = (7, w), where w is p™ -primary element (see [W]). Then pu(a,) = w. The
pairing {, )g;)) constructed in § 4 in our case has the form. Let o, 8 € K* then
Tr: KK x KK =/
I‘r(aa B) = w(7a,;3)

where
Ta0 = ress (I@)(B)' - UB /B + 1(B)e! /) /s (5.5)

( a(z) denotes the series 7;,(«), see (3.3)). Along with the pairing I'y which defines the
mapping into the group of p™ -primary elements it is natural to consider the pairing

() K x KT — Hom(Gal(f{/K), p,,m)
which is the composit of I'y and the isomorphism
A+ @/ — Hom(Gal (K/K ), uym)
Aw)(p) = "V ®™!
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ie. (0,f), = ATx(a )

Theorem 4. The pairing 'y and also ( , ), is bilinear, skew-symmetrical, well-defined. Both
pairings satisfy the Steinberg relation, i.e. Tx(a,1 —a) =1, (,1 -0a), =1, a #0; 1.
Besides, if the field F is not algebraically closed, then both pairings set nondegenerated with
the precision to p™ — th powers mappings. Both pairings have a non property.

Proof: All the properties of the pairings I'y and (, ), are proved in § 3. On the norm
property see theorem 7 in the paper [VS5].

One should verify the main result of this section. Let /& be a complete discrete valued field
whose residue field is perfect, not algebraically closed, and has a characteristic p > 0 . Let
the field K contain all the p™ — th roots of unity and (, ),, -Hilbert symbol in the field
K. We shall consider the isomorphism

A: 0/ — Hom (Gal (K/K), upn )
Aw) = *Yw L.

In the group of principal units we shall use Shafarevich canonical decomposition (see [Sh]),
which in our case may be represented as follows. Let e be ramification index of KX and
€1 = pfl. Let, further, K contain all the p™ — th roots of unity and » - a prime element
of K.

Proposition 7. Any principal unity € of the field K up to terms of p™ — th powers is
uniquely represented as

€ = w(ag ) E(we(x))| z=x (5.6)
where we(z) = Yez', 1 < i < pey, (i,p) = 1. Besides ¢ € K <+ a, =
0 mod (p,p™), we(z) = 0 mod p™.

Theorem 5. Let p # 2, then

(aa IB)m = /\(w(7a,ﬂ))’
where
Ty = res; (H@)I(8) - ) + B+ 1(B)a/a) /s

Proof: Consider first the case a« = 7, f = e. Mark that as the pairing (e, 8), =

x

AMTx(e, B)) = AMw(Xa,p)) has the property of independence, any expansion of the unity
¢ into power series on the prime 7 may be used. Hence we shall represent ¢ in the
canonical form (5.6). Then from (6.6) we obtain

(m,€)y = A(w(ac))-

On the other hand, the unity E(cr’), p 1 i, is the norm in the extension K(*y/7) (see,
[Sh]). Hence for Hilbert symbol we obtain

(m, E(we(z))|o=x)m = 1-

So
(7€) = (1, w(ac)),, = Mw(ae))

13



and equality

(7, 8)m = (7€)

is verified. '
If ¢,n7 be the principal units of the fielf K, then supposing T = w¢ and using invarience
property of the pairing {, ), we obtain

x

-1
x

(&), = (e, ) - (mym)3t = {7, m), - (7, )

From this and the properties of (, ), follows the general case. The theorem is proved.

More concrete exposition will appear in Adv. in Soviet Math., 1993.
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