A characterization of the Veronese surface

by
Edoardo Ballico

[^0]
A characterization of the Veronese surface Edoardo Ballico

Abstract. Here we prove a slight modification of a conjecture of Beltrametti-Sommese proving that the Veronese surface and a general intersection of 3 quadrics are the only smooth surface of $C P^{5}$ which are 2 -spanned.

The aim of this short note is the proof of a slight modification of a conjecture raised in [BS], conjecture 2.6, proving a slightly different and slightly more general result (see theorem 1). The main tools will be an enumerative formula, a well-known theorem on projective curves and the classification given in [BS], $\oint 5$, for embedded surfaces of sectional genus at most 5 . To state the result we need to introduce a few notations. We work over the complex number field. Let S be a smooth, complete surface, $\mathrm{L} \in \mathrm{Pic}(\mathrm{S})$ and $\mathrm{W} \subseteq \mathrm{H}^{0}(S, L)$. A finite subscheme Z of S is called curvilinear if it is contained in a smooth curve, i.e. if for all point $P \in \operatorname{Supp}(Z) Z$ is given around P by equations $x=y^{m}=0, x$ and y suitable local coordinates around P. According to [BFS] and [BS], we say that $\mathrm{W} k$-spans S, k an integer ≥ 0, if for all curvilinear subschemes Z of S with length $(Z)=k+1$, the restriction map from W to $H^{0}(Z, L \mid Z)$ is surjective.L is called k-spanned if $H^{0}(S, L) \quad k$-spans S : A smooth surface $S \subset \mathbf{P}^{h}$ is called k-spanned if the linear system on S determined by the embedding in $P^{n} k$-spans S. There are other, perhaps more natural, definitions of k-spannedness (see [BFS] , §4), but not only the one given here is the one used heavily in [BFS] and [BS],but also it seems the weakest one among the natural possible definitions, and so the one with which theorem 1 is stronger. It is easy to check that if W is $(k+1)$-spanned, then it is k-spanned. In [BFS], 0.4.1, it was noted that W is 1 -spanned if and only if it embedds S in a projective space (this is true even for non complete linear systems). In [BS],2.4, as a corollary of a more general result, it was proved that if $L k$-spans S for some $k \geq 2$, then H° $(S, L) \geq 6$. In $[B S], 2.6$, it was conjectured that if $L k-s p a n s S$ for some $k \geq 2$ and $H^{0}(S, L)=6$, then $S \cong P^{2}$ and L gives the Veronese embedding. It is easy to check that the Veronese
surface in P^{5} is 2-spanned; this follows also from general results in BFS : L is the tensor power of two very ample line bundles. This note contains only the proof of the following theorem.
Theorem 1 Assume that W 2-spans the smooth, complete surface S. Then $\operatorname{dim}(W) \geq 6$ and if $\operatorname{dim}(W)=6$, then either $S \cong$ P^{2} and W gives the Veronese embedding into P^{5}, or S is the intersection of 3 quadric hypersurfaces. In the latter case S is 2 -spanned if and only if it contains no line; the set of such smooth complete intersection containing at least a line form a non-empty hypersurface in the variety of all smooth complete intersection of 3 quadric hypersurfaces in P^{5}.
In particular note that the Veronese surface is the only smooth surface in P^{5} such that all smooth embedded deformations in \mathbf{P}^{5} are again 2-spanned.

Note that by definition if $S C P^{n}$ is a 2-spanned surface, then there is no line $D C S$ and no line $R \notin S$ with length $(R \cap S) \geq 3$ (a "trisecant line"). Thus $\operatorname{dim}(W)>4$. Consider S embedded in P^{n} by W . Then for any hyperplane $\mathrm{H}, \mathrm{H} \cap \mathrm{S}$ contains no "trisecant line". For general $\mathrm{H}, \mathrm{S} \cap \mathrm{H}$ is a smooth, irreducible space curve (Bertini's theorem). Set $\mathrm{d}:=\operatorname{deg}(\mathrm{S})$ and let g be the genus of $\mathrm{S} \cap$ H.

First assume $\operatorname{dim}(W)=5$. By the genus formula for plane curves and the genus' formula for $\quad .$. smooth plane curves , one sees immediately that for any point P of $\mathrm{S} \cap \mathrm{H}$, there is a "trisecant line" to $\mathrm{S} \wedge \mathrm{H}$ passing through P , unless $(\mathrm{d}, \mathrm{g})=(3,0)$ or $(4,1)$. If $\mathrm{d}=3$, then S is a minimal degree surface in \mathbf{P}^{4}, hence a scroll, hence it contains many lines, contradiction. Assume $(\mathrm{d}, \mathrm{g})=(4,1)$. Since $\mathrm{S} \cap \mathrm{H}$ is linearly normal, so is S . Note that $\mathrm{S} \cap \mathrm{H}$ is the intersection of two quadrics. From the exact sequence

$$
\begin{equation*}
0 \rightarrow J_{S}(1) \longrightarrow J_{S}(2) \longrightarrow J_{S A H, H}(2) \longrightarrow 0 \tag{1}
\end{equation*}
$$

and Bezout theorem, one sees that S is the intersection of two quadrics. There are several ways to check that any such S contains a line, contradicting the 2 -spannedness. One can work in the Grassmannian G of lines in P^{4}, take as X the codimension 3
([GH], p.739) cicle of lines contained in a fixed smooth quadric and note that $X^{2} \neq 0$. Or one can use the fact that S is a Del Pezzo surface, obtained blowing-up 5 suitable points; a line on S
is the strict transform on S of the conic through these 5 points ([D] in positive characteristic). Note that this part of the theorem, i.e. the inequality $\operatorname{dim}(W) \geq 6$, works even if the base field has positive characteristic.

Now assume $\operatorname{dim}(W)=6$. By a theorem of Le Barz ([LB] , p.182), the cicle of trisecant lines to $S \cap H$ has degree $t(d, g):=$ $(d-2)(d-3)(d-4) / 6-g(d-4)$; since by assumption $S \cap H$ has a finite number of trisecant lines (indeed none) this number represents the number of trisecant lines to $\mathrm{S} \wedge \mathrm{H}$, counted with suitable multiplicities. Thus $t(d, g)=0$. If $d=4$, then S is a minimal degree surface, hence either a Veronese surface or a scroll. Since a scroll contains infinitely many lines, the latter case is impossible. Thus we may assume $d>4$. Since $t(d, g)=0$, we find $\mathrm{g}=(\mathrm{d}-2)(\mathrm{d}-3) / 6$. Let $\mathrm{m}_{1}, \varepsilon_{1}, \mu_{1}$, be defined by: $\mathrm{m}_{1}:=$ $[(\mathrm{d}-1) / 4], \varepsilon_{1}:=\mathrm{d}-4 \mathrm{~m}-1, \mu_{1}:=1$ if $\varepsilon_{1}=3, \mu_{1}:=0$ otherwise. Set $\pi_{1}(\mathrm{~d}, 4):=m_{1}\left(m_{1}-1\right) / 2+m_{1}\left(\varepsilon_{1}+1\right)+\mu_{1}$. First assume $g>\pi_{1}$ ($\mathrm{d}, 4$). By [ACGH], p.123, if $\mathrm{d}>10 \mathrm{~S} \cap \mathrm{H}$ is contained in a minimal degree surface T of $H, \operatorname{deg}(T)=3$. T is either a smooth scroll or the cone over a rational normal curve in P^{3}. First assume that T is a cone. Let P be the vertex of T. Since $S \cap H$ has no "trisecant line" , it is smooth, and $g>0, S \cap H$ does not contain P and intersects each line of T in two points. The minimal desingularization of T is the Hirzebruch surface $F_{3} . \operatorname{Pic}\left(F_{3}\right)$ has as basis h, f (f is the fiber while h is contracted to P) with the relations: $h^{2}=-3, h \cdot f=1, f^{2}=0$. Furthermore the pull-back of the hyperplane class of T is $h+3 f$. The inverse image of $S \wedge H$ in F_{3} must have $2 \mathrm{~h}+6 \mathrm{f}$ as class. Thus $\mathrm{g}=2$, contradicting the classification (up to a case) of all 2-spanned polarized surfaces with sectional genus at most 5 , given in [BS], $\S 5$. Now assume that T is a smooth scroll. One check easily that T is isomorphic to the Hirzebruch surface F_{1}, with h and f as basis of $\operatorname{Pic}(T)$, with the relations $h^{2}=-1, h \cdot f=1, f^{2}=0$, and with $h+2 f$ as class of the hyperplane section. Since $H \cap S$ has $g>0$ and no "trisecant line", the class of $\mathrm{H} \wedge \mathrm{S}$ is represented by $2 \mathrm{~h}+\mathrm{bf}$ for some integer b. Hence $d=b+2$. By the adjunction formula, we find $g=b-2$, contradiction. The case $d=10$ cannot occur, since g is an integer.

Now assume $d=9$, hence $g=7$. Set $m:=[(d-1) / 3], \varepsilon:=d-$ $1-3 \mathrm{~m}, \pi(\mathrm{~d}, 4):=3 \mathrm{~m}(\mathrm{~m}-1) / 2+\mathrm{me}([\mathrm{ACGH}], \mathrm{p} .116)$. Note that $\pi(9,4)=7=\mathrm{g}$. By $[\mathrm{ACGH}]$, th. 2.5 (iii) p.122, $\mathrm{H} \wedge \mathrm{S}$ has infinetely many trisecant lines, contradiction.

Now assume that $g \leq \pi_{1}(d, 4)$. Checking the 4 possible congruence classes of $d \bmod (4)$, one sees that $d \leq 8$, hence $g \leq 5$. Furthermore $d=7$ is excluded since g is an integer. If $(d, g)=$ $(5,1)$ or $(6,2)$, the hyperplane bundle of $\mathrm{H} \wedge \mathrm{S}$ is nonspecial, hence $S \wedge H$ and S are linearly normal. If $d=8, S \cap H$ (hence S) must be linearly normal both if the hyperplane section is special or not. Thus we may apply the results in [BS] ,$\S 5$. By [BS], $\S 5$, to prove theorem 1 it is sufficient to consider the case of a smooth S, S intersection of 3 quadric hypewrsurfaces in P^{5}. Such a surface S is not 2 -spanned if and only if it contains a line, since a line R is "trisecant" to S if and only if RCS (Bezout's theorem). Let $G:=G(1,5)$ be the Grassmannian of lines in $\mathrm{P}^{5}, \operatorname{dim}(\mathrm{G})=8$, and $\mathrm{X}(\mathrm{Q})$ the class of the lines contained in a fixed smooth quadric $Q . X(Q)$ has codimension 3 in $G([G H], p .739)$. For every $g \in \operatorname{Aut}\left(P^{5}\right)=$ Aut (G), we have $\mathrm{g}(\mathrm{X}(\mathrm{Q}))=\mathrm{X}(\mathrm{g}(\mathrm{Q}))$. Hence by Bertini's theorem ($[\mathrm{K}]$) the general intersection of 3 quadrics contains no line.
Using Bertini's theorem one checks easily that there are smooth S containing a line, hence not 2-spanned; for completenss' sake, we give the details. Take a line R and let A be the set of quadrics containg R; take Q^{\prime} and $Q^{\prime \prime}$ general in A and set $V:=Q^{\prime} \cap$ $Q^{\prime \prime} ; V$ is smooth; since for every $x \in R$, the set $A(x)$ of quadrics $Q \in A$ with $T_{x} Q=T_{x} V$ has codimension 2 in A, the general $Q \in A$ is not tangent to V along R; by Bertini's theorem for general $Q \in$ $A, Q \cap V$ is smooth. Any such surface S is a $K 3$ surface; any line RCS has self-intersection -2 and $x+1$ as Hilbert polynomial; thus any such S contains at most finitely many lines. Counting dimensions, we see that the set of such S containing at least a line has codimension 1 in the set of smooth complete intersection of 3 quadrics.

This paper was thought and written in the warm atmosphere of Max-Planck Institut (Bonn).

References

[ACGH] E. Arbarello, M. Corralba, P. Griffiths, J. Harris: Geometry of algebraic curves, vol. l, SpringerVerlag, 1984.
[BS] M. Beltrametti,A.J. Sommese: On k-spannedness for projective surfaces, preprint Max-Planck-Institut (Bonn).
[BFS] M. Beltrametti, P. Francia, A.J. Sommese: On Reider's method and higher order embeddings, preprint.
[D] D. Demazure et al.: Seminaire sur les singularites des surfaces, Springer Lect. Notes in Math. 777, SpringerVerlag, 1980.
[GH] P. Griffiths, J. Harris: Principles of algebraic geometry, Wiley-Interscience, 1978.
[K] S.L. Kleiman: The transversality of a general translate, Compositio Math. $28(1974), 287-297$.
[LB] P. Le Barz: Formule multi-secantes pour les courbes gauche quelconques, in Enumerative geometry and classical algebraic geometry, p.165-197, Progress in Math. 24, Birkhäuser.
E. Ballico

Dept. of Mathematics, University of Trento
38050 Povo (TN)
Italy

[^0]: Max-Planck-Institut
 für Mathematik
 Gottfried-Claren-Str. 26
 5300 Bonn 3

