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Abstract

The author gives the new method of proof of the constructibility of exceptional
bundles and exceptional collections on P2

Introduction.

Exceptional bundles on P? were first investigated by Dreset and Le Potier in {3] where they
gave a description of these bundles in terms of their slopes.

Using these results A. L. Gorodentsev and A. N. Rudakov [1] gives a constructive de-
scription of the set of exceptional bundles on P? by showing that they can all be obtained
from invertible sheaves by the canonical operations of mutation. This description uses the
fact that exceptional bundles on P? can be put together into so-called exceptional triples
such that the ranks in each triple vield a solution to the Markov equation. Moreover, the
mutations of the solutions of the Markov equation one to one correspond to the canoni-
cal mutations of the exceptional triples. Because of the set of all solutions of the Markov
equation can be obtained from the one of them by mutations, the authors get that any
exceptional triple of bundles is obtained from one of them by mutations.

Further, using the stability of exceptional bundles on the projective plane A. L. Goro-
dentsev and A. N. Rudakov prove that any exceptional bundle £ on P? is included in an
exceptional triple. Whence £ is obtained from the line bundles by mutations.

Besides, the authors generalize the exceptional triples and their mutations to exceptional
collections of bundles on P™. But the question about constructive description of exceptional
bundles on P* when n > 2 is open.

In the present paper the author gives the new proof of the constructibility of exceptional
bundles on P? which does not use the Markov equation and the stability of exceptional
bundles. The author hopes for generalization this proof to exceptional bundles on P™.

Notations.

Let r(F) be the rank of a coherent sheal /" on P™;
O be the trivial line bundle on P™
O(1} be the line bundle corresponding to the generator of the Picar group of P
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1 PRELIMINARY INFORMATION.

O(n) < O(1)e";

F'(n) is the tensor product of a sheaf F' and O(n);

F* is the dual sheaf, that is the sheaf of local homomorphisms Home(F, O);

Hom(E, F) is the space of global maps from E to F;

hi(E, F) denote the dimension of space Ext'(E, F);

x(E, F) is the Euler characteristic of any two sheaves, which equals 3"(=1)h(E, F);

x(E) is the Euler characteristic of sheaf, which equals (O, E);

We identify a bundle with the sheaf of its local sections. Sometimes we will arrange
a long cohomology sequence associated to an exact triple into a table. For example, the
application of functor Ext’(F,-) to the exact triple

0 —A—B—C—0

gives
k1 Ext®(F,A) — Ext®(F,B) — Ext*(F,C)
0 * ? *
1 0 ? 0
2 * ? *

This table calculates Ext'(F, B) . In particular, Ext}(F, B) = 0.

1 Preliminary Information.

In this section using the results of A. L. Gorodentsev and A. N. Rudakov ([2], [1]) we provide
the initial information about exceptional bundles and exceptional collections on P™.
DEFINITION. A coherent sheaf £ on P" is called ezceptional if

Ext®(E,E)=C and Ext(E,E)=0 for i>0.

It is easy to see that these cohomological conditions imply that £ is homogeneous, and
therefore an exceptional sheaf on P™ is automatically locally free. Because of this we shall
speak about exceptional bundles on P".

DEFINITION. An ordered collection of bundles o = (Ey, E,, Fy,.... Ey) is called an
exceptional collection if all the bundles are exceptional and

Ext*(EL,E))=0 if k>1,

Ext"(E;, E)=0 if k>0

when 0 </ <y <k

[t is clear that if o = (Fy, £y, £, ..., Et) is an exceptional collection then the collections
o = (Er,... B} EY) and o(m) = (Ly(m), E\(m),. .., Ex(m)) are also exceptional.

DEFINITION. Let (A, B) be an exceptional pair on P*. Suppose there exist the following
exact sequences of bundles:

cun

0 — LaB — Hom(A, B)@ A — B — 0,

0 — A5 Hom(4, BY @ B— RgA — 0,



where the map can € Hom( A, B)" @ Hom(A, B) corresponds to the identity endomorphism
of the vector space Hom( A, B). In this case the bundle L4 B is called the left shift of B and
the bundle RgA is called the right shift of A. The pairs (L4 B, A) and (B, RgA) are called
the left and right mutations of (A, B).

1.1 PROPOSITION. Let 0 = (Ey, ..., E;, Eip1, ..., Ex) be an exceptional collection.

1. If the left mutation of (E;, F;y,) is defined then the collection
Lio = (Lo,...,Lg, Eigr, Eiy ..., Ey)

is also exceptional, and the right mutation of the pair (Lg Ei+. E;) is defined and
equals (Ei, Eigy).

2. If the right mutation of (E;, Ei4,) is defined then the collection
RH_IO' = (EO, ey E{+1, RE-'+1 E,', ey Ek)

is also exceptional, and the left mutation of the pair (Eiy., Rg.,, E;) is defined and
equals (E;, Eifr).

The collections L;o and Ky 0 are called the left and right mutations of o.

DEFINITION. Let o = (Eq, Ey, £4,..., E,) be an exceptional collection of bundles on
P~ It is called full provided the bounded derived category D*(P") of sheaves on P* is
generated by o, i.e., the set of all objects of D*(P™) can be obtained from the elements of
o by taking the direct sum and forming cones of all possible morphisms.

For example, the collection of the line bundles on P* oy = (O, O(1),...,0O(n)) is the
full exceptional collection. Further, we call this collection the basic collection.

We see that the left mutation L;oq is defined for : = 0,...,n — 1 and the right mutation
R;o is defined for 1 = 1,...,n.

DEFINITION. Suppose that for an exceptional collection of bundles on P?

o = (Eo,El,Eg,...,Ek)
there exist exceptional bundles Fyyq,..., £, such that the collection
UI - (EOa---:EkaEl:+l7'-':En)

is exceptional and full. Assume, it addition, that ¢’ is obtained from the basic collection
op by mutations. Then the collection o is called constructible.

1.2 PROPOSITION. Let 0 = (Ey, E\. [y, ..., E) be a constructible exceptional collection
of bundles on P*. Then

1. the left mutation Lo is defined for i = 0,...,k — 1 and the right mutation R;o is
defined fori =1,...,k,

2. dimHom(FE;, i) > 2 fori=0.1.....k = 1.



4 I PRELIMINARY INFORMATION.

1.3 REMARK Let o0 = (Fy, E\, Eq,..., E) be a constructible exceptional collection, then

1. each of the bundles E\, Fs, ..., E; can be obtained by the right shift over Ey, i.e.,
there exists the constructible exceptional collection oy = (F_y,..., E_y, Eo) such that

Ry - Ry Ry = o;

2. each of the bundles Ey, Fy, ..., Ei_ can be obtained by the left shift over E).

1.4 PROPOSITION. Let 0 = (Ep, E\, Ea, ..., E,) be a full constructible exceptional collec-
tion of bundles on P". Then

1. the left and right mutations of o are full exceptional collections.

2. the following relations are valid:
R’n, v RQR[U = (E[, ey En, EU(TL —+ 1)),

LO"' Ln_gLn_le = (En(—??-— l), E{),...,En_l).

Because of the last properties we can consider an infinite periodic collection of excep-
tional bundles on P*
BBy B B,

such that VA  Frpnyr = Ex(n+1)  and (Ey, ..., Eryn) is the full exceptional collection.
This collection is colled a helix.

1.5 PRropoSITION. If ... E_ |, FEy,..., Ey, Enpy, ... is a helix, then
1. for any pairi < j the canonical map can : Hom(E;, E;)@ E; — Ej; is the epimorphism;

2. for any pair1 < j the canonical map can : E; = Hom(F;, ;)" @ E; is the monomor-
phism.

1.6 LEMMA. Let (A, B,C) be a constructible exceptional collection on P™ then
LaLgC = LgLsC, where B' = L4B,

RcRpA = RgnRe A where B" = R¢B.

Looking at this lemma we see that the mutations of constructible exceptional collections
define the action of the braid group on the set of all constructible exceptional collections
with fixed number of elements. In particular, the braid group acts on the set of all full
constructible exceptional collections.

DEFINITION. We shall say that a subcategory in D*(P") is generated by an exceptional
collection o = (Eqg, ££1, 42, ... Ei) if any its object can be obtained from the elements of



o by taking the direct sum and forming cones of all possible morphisms. This subcategory
we denote by (Eo, E1, ..., Ex)eat.

1.7 PROPOSITION. Let (Eo, £, Es, ..., E,) be a full exceptional collection and F' be a
sheaf. Then

L (Ext(F,E)=0 Vk and i=0,1,...,5) &= (F€(Eopr, Eara,. .-, Eneat)s

2. (Bxt*(E, F)=0 Yk and i=s+1,....n) & (Fe(B, Er,. .. Ear).

DEFINITION. Let o = (Ey, Ey. Esa..... E;) be a constructible exceptional collection.

The collection ¢¥ = (EY,.... EY, Eq), where
EY = Lg,E\, E) = Lg,Lg,Ey, ..., El = Lg,Lg, - Lg,_, Ex
is called right dual to o. The collection Yo = (Ey,YEr_y, ..., Ey), where
VEx_1 = Rg, Ex\, ..., YEo = Rg, ... Rg, Eo

is called left dual to o.

1.8 REMARK. It is easy to see that the left dual collection to ¢¥ and the right dual
collection to Yo are equal to o. Besides,

0 when 1#

Ext*( £, EY) :{ C when i1=j5=5"

[n the previous notation the following theorem hold.

1.9 THEOREM. Let o = (Lo, Fy, Fa, ..., E) be a constructible exceptional collection of
bundles on P*. Then for any sheaf () belonging to the subcategory generated by o
(Q € (Lo, Ev,. ... Ex)esr) there exist two spectral sequences associated to the right
and left dual collections to o. The F\-term of the first sequence has the form

B = Ext'(E_,, Q)@ E\_'p.
The [,-ierm of the second sequence has the form
£ = Ext? Q. E_,) @ VE_,.

Both these sequences converge to (Q on the main diagonal, i.e., E?? =0 forp+q #0
and C;I(Q) = (EU-U o—-1,1 el E‘;n,n).

o ¢ o
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2 Subcategory Generated by Pair.

In this section we study the subcategory generated by a constructible exceptional pair on P*
and prove that any rigid sheaf belonging to this subcategory is the direct sum of exceptional
bundles.

DEFINITION. A sheal F on P" is called rigid if Ext'(F, F) = 0. It is called superrigid if

Ext'(F, F) =0 when ¢ > 0.

Let us introduce some notation using in this section. Consider a constructible excep-
tional pair (Fy, E,) on P". By definition, put

Eovi=Reg Enoy for n>0 and E_yyy=Lg_Ei-n for n2>0.

Denote by e, the images of £, in i def Ko(P™) @ Q. The vector space K inherits the
bilinear form x(-,-). Denote it by (-,-}. By definition of the exceptional pair and 1.2 we
have

(eo,e0) = (er,e1) =1, (er,e0) =0, (en,e1)=nh>2.

Furthermore, by definition of the mutation, we obtain that
€nt1 = Nen — €y, (en,en) =1, (eng1,6n) =0, (€n:€np1)=h.

Let F be a sheaf belonging to (£o, £1)ca:. Denote by f the image of F in K. It is
obvious that f belongs to the linear span (eg,¢;) C i
In the above notation the following lemma is valid.

2.1 LEmMMA. The inequality (f. f) > 0 holds if and only if there exist an integer n and
numbers a, b such that f = ae, + be .y witha-b> 0.
PROOF. [t is easy to prove by induction on n that

en = Tp€] — Tp€g (n21) and e_, = z.4160 — Tuey (0 2> 0),

where zp =0, 2y =1, 2,41 = ha,, — @uy > 0.
[t can be proved that the sequence P decreases and the sequence :._rf:T increases. Let
- . * n= n
us calculate the following limit
o 1

=i — lim =h—-Il_=h-—.
n—yo Thn_i n—00 Tnt1 +

Therefore, {+ and {_ are the roots of the equation % — ha +1 = 0.
Thus we obtain that for all n

Loy Ty

>ly>Iio>
Tna Tni

This implies that for any vector f = we; — g with @ > [, there exist a positive integer n and
nonnegative «, b such that [ = «ae, + be, 4. Analogously, if f = ey —ze; with 0 <z < {_,
then f = ae_, + be,_, for some positive integer n and nonnegative «, b.

On the other hand, if f = +(xe; — eg) with positive 2, then (f, f) = 22 — ha + 1, i.e.,
(f,f) <0ifand only if x € [I_,15]. This completes the proof.
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.2 COROLLARY. I. Suppose that for any integer n > 0 there exist positive numbers
@n, buyy such that [ = b,y eqs — aneq; then f2 < 0.
2. Suppose that for any integer n < 0 there exist positive numbers a,, b,y such
that f = anen — bpyr€ngr; then f2 <0,

(S

.3 COROLLARY. Suppose that I' € {Ey, E1)eae and x(F, F) > 0; then there exists an
integer n such that x(E,, F') 2 0 and x(E.+1, F) <0.

PROOF. It follows from the previous lemma that there exists an integer m and non-
negative ¢, b such that f = ae, + benyi. It can easily be checked that (e,4,, f) = b
and (emi2, f) = —a. On the other hand, (ex, f) = y(Ek, ) for all integer k. Hence the
statement holds provided n = m + 1. '

2.4 LEMMA. Suppose a sheaf F helongs to the subcategory {Eo, E1)cat; then
1. Ext*(F, F) = Ext*(E,, F) = Ext*(F,E,) =0 Yn€Z and k > 2,
2. if x(Eo, F) > 0 and x(E, F) < 0, then F is decomposable.

PROOF. Since {Ep, Ei)eat = (Eny Eng1)ear Vn € Z, it is sufficiently to check the first
statement for n = 0.

Consider the spectral sequence associated to the right dual pair (EY, Eo) = (E_y, Eo)
(by our notation) to (Eo, £1) and converging to I (1.9 ). Its E,-term has the form:

El—l.n — Ext"(El, F) ® E_, _d> Elo'" = EXt“(Eo, F) ® Ey
ET" = Ext'(B, F)@ E, -5 E}' = Ext'(Eo, F)® Eo W

Ef™ = ExtYE,F)© E_, -5 EY = ExtY(Ey, F)® Eo
The fact that this sequence converges on the main diagonal implies that £;"% = EJ? when
g > 2. Since E_; # Ey, we obtain that Ext?( £, ') = Ext?(Eo, F') = 0 for ¢ > 2.
Similarly, to prove the equality Ext*(F, £y) = 0 VA > 1 we can consider the spectral
sequence associated to the left dual pair to (Eg, £y).
Besides, spectral sequence (1) splits into 3 exact triples:

00— FM —VeFk,— W L, —0,
00—Vl — W@ FEy — Fs — 0,
0 — Fy— F — | — 0,
where V, = Ext?( £y, I'); W, = Ext?( Lo, ).

To show that E.\'tl(Fl, Fy) = 0 we use the cohomology tables associated with these exact
triples.

L TVoo Ext®(Eo, E_)) — Wo@ Ext®(Ey, Eo) — ExtF(Eo, F3)
0 0 * ?
l 0 0 ?
2 0 0 ?
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E [Vo@Ext"(E_\,E_;) = Wo@Ext*(E_,Ey) — Ext*(E_,, F;)
0 * * ?
1 0 ?
2 0 0 ?
n 0 0 ?

k| Wr@Ext*(Ey, Fy) — V7 @Ext"(E_,F) — Ext*(F,F)
0 * * 7

1 0 0 ?

2 0 0 ?

n 0 0 ?

Thus we get. Ext*(F, F3) = 0 when k>0 and F = FL & F, (but either Fy or F, can he
equal to the zero sheaf).
In the same way we can check that Ext*(fy, F|) = 0 when k > 1

E|Ext®(Fy, F) — W;QExt* (B, F) — V5 @Ext*(E_, Fy)
0 ? * *
1 ? 0 0
2 ? 0 0
7 ? 0 0

This table implies that Ext*(Fy, F3) = 0 when & > 2. The analogous fact for Fy is checked
in the similar way.

Since F' = F) & F3, the above calculation implies the first statement of the lemma.

Suppose now that y(Ep, F) > 0 and y(E), F) < 0. It follows from the first statement
that

x(Eo, F) = h°(Ey, F) = h'(Eqy, F).
Hence Ext®(Eq, F) # 0, i.e., [, # 0. Similarly,

X(Ey FYy=h(E,F)=h'(E, F).
Therefore Ext'( £,, £) # 0 and Fy # 0. This completes the proof.
2.5 PROPOSITION. Let F' be a rigid sheaf belonging to the subcalegory generaied bv an
exceptional pair (Eqy, £1); then
1. The sheafl I’ is superrigid.
2. The sheaf I' is the direct sum I' = 0, I, @ Tnugy Lnyr, where @, 2,4, are nonnegative

integers and (L, [V, 4+1) is an exceptional pair of bundles obtained from (Ey, E\) by
mutations.



PROOF. The first statement follows from the assumptions and the previous lemma.
Hence x(F,F) = h°(F,F) > 0. By corollary 2.3 there exists an integer n such that
X(En, [') 2 0 and x( £y, £1) 0.

Assume now that F is indecomposable, then it follows from lemma 2.4 that either
N(Eq, F) or y(Ens, F) equals 0. Without loss of generality it can be assumed that
X(En, F) >0 and x{Engr, F)=0.

On the other hand, lemma 2.1 implies that the images F in A" has the form f =
aen + be, g for some integer m and nonnegative «, b. It is easy to prove by induction on

n that
E\'tU(Ek, ENV#0 +<— Lk <m, (2)
ExtY (B En) #0 <= k>m+1. (3)
Therefore,
0 when k—m=1
N(EL En) = (ersem) =< hgm >0 when k<m.

him <0 when k>m+1

Thus the indecomposable superrigid sheaf F from (g, E1)eee has the form £, for an integer

n. Hence in the general case we get ' = EB Tn En,.. Now we see that conditions (2), (3) and

the fact that F is superrigid imply that s 2, and |n; —nq| £1, ie,
F = :t:nEn EB Lntt En+1-

This concludes the proof.

3 Universal Extension.

DEFINITION. Let £ and F' be a objects of an Abelian category. The extensions determined
by the element of the groups

Ext'(F.Ext'(F, E) @ E) = Ext"(F, E)" @ ExtY(F, E)

and

Ext!(Ext!(F, E)@ F, E) = Ext'(F, E)" @ Ext'(F, E)

that corresponds to the identity endomorphism of the vector space Ext!(F, £):

0 — Ext(FEYS L — ' — F— 0, (4)
0 =L —> F" S Ext(F.EYOF —0 (5)

are called the universal extensions.

3.1 REMARK. For sequence (4) the coboundarv homomorphism
§:Hom(E. E) @ Ext'(F, E) — Ext'(F, E)

is epimorphism.
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For sequence (5) the coboundary homomorphism
§ : Ext'(F, EY®@ Hom(F, F) —s Ext!(F, E)

is the epimorphism also.

3.2 LEMMA. Let E be an exccptioaalaud F be a rigid sheaves on P? such that Ext?(E, F) =
0 for ¢ > 0 and Ext*(F, E) # 0: then the sheaf F’ from the universal extension (4)
satisfies the following conditions:

1. Ext'(F',E) = 0 and Ext?(F’, E) = Ext'(F, E) when ¢ = 0,2,

2. the map Hom(F’, E) — Ext'(F, EY@ Hom(E, E) that is obtained after the applica-
tion of the functor Ext'(-, E) to (4) is trivial,

3. Ext'(F’

.F) =0 and Ext*(F', F) = Ext*(F, F),

4 Ext!'(F', F') = 0 and Ext}(F', F') = Ext}(F. F) & Ext'(F, E)" @ ExtX(F, E).

PRoOF. The proof is immediate if we consider the following cohomology tables:

k|Ext*(F,E}) — Ext*(F',E) — Ext!(F, E)®E\t "(E, E)
0 [ ExtO(F, E) ? Ext'(F, E)

1| Ext!(F, E) ? 0

2 | Ext}(F, B) ? 0
k|Ext®(F,F) — Ext®(F'.F) — Ext'(F,F)® Ext"(E,F)
0 * ? *

1 0 ? 0 ’
2 | Ext?(F, F) ? 0

k| ExtY(F, EY Q Ext®(F'.E) = Ext*(F,F) — Ext*(F,F)
0 * ? *

1 0 ? 0

2| Ext(F.E) @ Ext}(F, E) ? Ext?(F, F)

It is not hard to prove the dual statement:

3.3 LEMMA. Let E be an exceptional and F be a rigid sheaves on P? such that Ext!( I, E)
0 for ¢ > 0 and Ext'(E. F) # 0; then the sheal F’ from the universal extension

0— P — F' — ExtY(E.F)@ E — 0 (6)

satisfies the following conditions:
I. Ext!

(F,F') =0 and Ext'(E, F') 2 Ext'(E, F) when ¢ = 0. 2.

2. the map Hom(E. I} — Ext (£, F)@ Hom(E. E) that is obtained after the applica-
tion of the functor Ext'(E,-) to (6) is trivial.
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3. Ext'(F, F") = 0 and Ext*(F, F) = Ext*(F, F),
4. Ext'(F', F') = 0 and Ext®(F', F') =2 Ext*(F, F) @ Ext"(E, F) @ Ext*(E, 7).

3.4 LEMMA. Let 0 — Ext!(F,E)" @ E = F' — F — 0 be the universal extension
of an exceptional bundle E and a rigid sheaf F' on P?; then F' cannot be equal to
E @ F” provided Ext'(F, E) # 0.
PROOF. Suppose F' = E & F". Denote by 7 the projection 7 : F' — £ — 0. Since the
extension is universal, we obtain that the map

Hom(F', E) — Ext'(F, F) @ Hom(E. E)

is trivial. In particular, 7 - ¢ = 0. Therefore F is the direct sum F = E @ F| and
Ext!(F, E) C Ext'(F, F) = 0. This contradition concludes the proof.

The dual statement is formulated in the following way.

3.5 LEMMA. Let
0 — F— F —Ext"(E,F)QE — 0

be the universal extension of an exceptional bundle E and a rigid sheal F' on P%
then F' cannot be equal to E @ F" provided Ext'(E, F') # 0.

4 Conditions of Decomposability of Sheaves.

4.1 LEMMA. Let F be a sheaf and E be a simple sheaf (Hom( £, E) = C) on a complex
variety .X. Suppose that Hom(F, £) # 0 and Hom(FE, F) # 0, then F = F' & F
whenever one of the following conditions holds: for some finite-dimensional vector
space V there exists either an epimorphism o : V @ E — F or a monomorphism
p:F=VOE.

PROOF. Since the statements of the lemma are dual, we can prove the first of them
only.

Let ¢ be a nontrivial morphism from F/ to £, then the composition p-a: V@ E — F
1s nontrivial as well. Let us show that there exists an inclusion 7 : £ = V @ £ such that

ool #£ 0.

Consider an arbitrary inclusion /' : £ = V'@ E suth that the following exact triple splits
0—E—=EaV ol VeE—D0
If o - =0, then there exists the commutative diagram:

0 — E 5 EaVoE = Vi E — 0
l ol vl

0 — E — ) — 0
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Denote by 7! the morphism from V' ® E to V @ E such that 7 - 7= = id. It is clear that

=710 -a#0. Since dimV’ < dim V', by inductive hypothesis there exists inclusion

i": E - V'@ E such that 77! - - a " #0. Hence? = 7" -¢" is the required map.
Thus we have the sequence:

E-SVOESsF-%SE

By definitton, put § = ¢ -« - # 0. Since § is the nontrivial endomorphism of the simple
sheaf F, we get that § = A - idg for A € C*. Without loss of generality we can assume that
A=1

Thus we have the morphisms o« - : £ — F and ¢ : ' = E such that ¢ - (o -1) = idg.
Therefore, ¥ = F' & E.

4.2 LEMMA. Let F be a nonzero sheaf on P* and 0 = (E_, ..., Eo) be a full constructible
exceptional collection on P*. Suppose Ext'(F,E_;) = 0 when ¢ > 1 > 0, and
Ext?(F, Eq) = 0 when q > 0; then Hom(F, Ey) # 0 and either Hom{Fy, F) = 0, or
F = F' & a2 Ep for some sheaf F' and a positive integer « such that Hom(Ey, £') =0
and

FrelBoy,. ... Bl

Proor. Consider the spectral sequence associated to the left dual collection {which we
denote here by (Eg, Ev, Ea, ..., E,)) to o and converging to F' (1.9 ). The diagram of the
E)-term looks as follows:

Voo @ Ey Vor @ Ey Voo @ E S Vo, @ F,
ET V=0 [ BT =00 V0 E, e (Vi QE,

El—n.o — O Ell—ﬂ,cl — 0 E]Z—H,U — 0 .. E?,O — 0

where V;; = Ext'(F.E_;)". The diagram implies that EZ%* =0 when i = 0,1,...,n — 1.
Since

Gr(F) = (BX B B™) = B,

we see that V50 = Hom(F, Ey)” # 0. On the other hand, EZ™" = ker(d;™"). Therefore
there exists an inclusion I < V450 @ Eg.

Assume that Hom(Ey, ) # 0, then the previous lemma implies that Ey is the direct
summand of I7. Without loss of generality it can be assumed that £ = F' @ 2 Ey and
Hom{ Ey. F') = 0 (in the opposite case Ej is the direct summand of F").

Further, by the assumptions of the lemma we have Ext?([Z,, F') = 0 Yq. Therefore
proposition 1.7 proves the statement.

By the same argument, the following lemma is proved.

4.3 LEMMA. Let F be a nonzero sheaf on P" and o = (Fy, ..., [2,) be a full constructible
exceptional collection on P*. Suppose Lxt¥(£;, ') = 0 when ¢ > ¢ > 0, and
Ext?(Ey, ') = 0 when g > 0; then Hom({ g, F) # 0 and either Hom(F, Ey) =0, or
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F = F'&zE, for some sheaf F' and a positive integer = such that Hom(F', Fp,) =0
and

FI € (El: sy En)cat-

4.4 LEMMA. Let o = (Ey, E,, E3) be a full constructible exceptional collection and F be
a nonzero sheaf on P?. Suppose, Ext?(E,, F) = 0 when ¢ > 0; then Ext*(E;, F) =0
for 1 = 0,1 and one of the following possibilities takes place:

1. F= Fg %, Fl. where EXtQ(E'z, Fl) =1 Vq. i.e., F1 S (EO,EI>cat;
2. Ext!(Eo, F) = Ext!(E,, F) = 0;

3. Hom(E;, F)=0 with/=0,1,2.

ProoF. Consider the spectral sequence converging to F and associated to the right dual
collection (E_,, E_y, Ep) to o (1.9 ). By assumptions we have the following E;-diagram:

ET* =0 Ext* (£, F)® E_, | Ext*(Eo, F) ® Eq
Ef* =0 Ext' (£, F)@ E_; | ExtY(Eq, F)® Eg
EXtU(EQ,F)@)E_g EXtU(El,F)®E_1 EXtU(ED,F)®E0

This diagram vields, Ext?( E;. F) @ E_, = Ext}(Ey. F) ® Ep. Since E_; ¥ Eq, we get,
Ext*( £y, F) = Ext*( £y, F) = 0.

Besides, the £-term of the spectral sequence splits into the following exact triples:

0 — F, — Ext'(Ey, F)@® E-; — Ext!(Eo, F)© Ey —s 0, (7)
0 —s Ext®(Eg, F) @ E—g — Ext®(Ey, F)@ E_y — Q — 0, (3)
0 — Q — Ext(Ey, FY© Ey — Fy — 0, (9)

0 —m gy — F— FL—0. (10)

It follows from (8) that the map
Ext®(E\, ) @ Ext}(E_;, E_)) — Ext*(E_,,Q)
is the epimorphism. Since E_, is exceptional (in particular, Ext*(E£_;, E_;) = 0) we get
Ext?(£_,,Q) = 0.
From (9) follows the exact sequence

Hom( £y, F)® Ext'(E_, Ey) — Ext'(E_,, o) — ExtQ(E_l.Q).
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Since (E_;, Ep) is the exceptional pair, Ext'(E_,, Eg) = 0 and by the equality proved before
we obtain,

Ext!(E_, Fp) = 0.

Next, it follows from exact sequence {9) and the fact that Ey is the exceptional bundle
that
Eth(Eo, FQ) =0.

Finally, sequence (7} and the equalities proved before imply
Eth(Fl, FO) =0.

Thus we see that F' = F\& Fy, and from (7) one follows that F, € (E£_y, Eo)ear = {Eo, E1)car-
Suppose that F; = 0, then by sequence (7), Ext'(E,, F') = Ext'(Ey, F) = 0. On the
other hand, in the case Fy = 0 we get the following exact sequence

0 — Ext®( £y, F)@ E_; — Ext°(E\, F)® E_, — Ext’(Ey, F)® £y — 0.
Since Ext!'(Ep, E_3) = 0, we obtain that
EXtO(El, F) ® E-] = EXtO(Eg, F) @ E_'z & EXtO(Eo, F) ® Eo.

This is impossible, since E_, is indecomposable and E_; 2 E_;, £_; 2 Ey. Therefore in
the case Fy = 0 we have

Ext®(E;, F)=0 for :=0,1,2.

In the same way we can prove the following statements.

4.5 LEMMA. Let ¢ = (Eqg, F\, E3) be a full constructible exceptional collection and F be
a nonzero sheaf on P2 Suppose, Ext?(F, Ey) = 0 when ¢ > 0; then Ext*(F,E;) =0
for i =1,2 and one of the following possibilities takes place:

I. F=Fy&F,. where Ext/(F, Ey) =0 Vq. le.. Fi € (£, E2)cat;

A

. Ext!(F, E\) = Ext'(F, Ey) = 0;
3. Hom(F, E;) =0 with:i=0,1,2.

4.6 LEMMA. Let o = (E_o, Ly, Ey) be a full constructible exceptional collection and I’ be
a nonzero sheaf on P2, Suppose, Ext?(F. Ey) = 0 when ¢ < 2, then Ext®(F,E_;} =0
fori=1,2 and F=F, & F,, with I, and I, from the exact sequences:

0 — F| — E\tl(F E__.l)-® E] — EXtI(F, E_Q)- () Eg — 0,

0 — Ext}(F, Ey) © Ey — Ext(F,E_))" @ E, — ExtY(FE_3) @ E; — [}, — 0,
where E\ = R, E_y, E; = E_,(3)
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4.7 LEMMA. Suppose that a constructible exceptional collection (E_;, E_,, Epy) and a
nonzero rigid sheaf F' satisfy the following conditions:
1) Ext¥( £y, FY=0 for ¢ > 0,
2) Ext(F,E_3) =0 for ¢ < 2,
3) Hom(F, E_;) = 0 for i=0,1.2.
4) Ext'(F,E_;)# 0 fori =0, L.
Then one of the following statements is valid
(1) either FF € (E_1, Eo)cat
(2) or the sheaf F' from the universal extension

0— Ext(F.E) QOFE — F — F—0 (11)
is rigid and isomorphic to the direct sum
Fl'=Ext'(F.E_\) @ Rg,E-, ® [,

where F, satisfies the conditions:
a) Ext'(E_i(3),F2)=0 forg>0, :=0,1,2;
b) there exists an epimorphism Hom(E_5(3), F2) ® E_2(3) = F..
PROOF. Suppose that Ext?(F, E_;) = 0, then by assumption 2) Ext!(F, E_;) = 0 Vq.
Therefore, F € (E_y, Ep)ear (1.7 ).
Now suppose, Ext*(F, E_;) # 0. Applying lemma 3.2 to universal extension (11), we
obtain

Hom(F", Ey) = Ext'(F', Ep) = Ext'(F', F') = 0,

It follows from the long cohomology exact sequence associated to (11) and assumption 2)
that

Ext'(F/,E_y) =0, Ext}(F',E_;) = Ext}(F, E_;) # 0, Ext'(F',E_y) #0.
The previous lemma vields that
F'=Ext(F,E.\) @ R, E_1 & I
and there exists an epimorphisin
ExtY(F.E_) 0 F, — F, — 0.

[t follows in the standard way that Ext?(£, £_;) = 0 when ¢ < 2 and : = 0,1, 2. Therefore
by the Serre duality we have

Ext{E_;(3).F)=0 forg>0, :=0.1,2.
4.8 LEMMA Let E be a constructible exceptional bundle and I be a sheaf on P? such

that Ext'(E, F) =0 and Ext‘(££, F) # 0 when ¢ =0, 2. Then F = Fy @ F,, where
Ext?(E, Fy) =0 for ¢ > 0 and Ext¥(E, [3) =0 for g < 2.
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PrRoOF. Consider the full constructible exceptional collection containing £ ¢ =
(Eo, £, Ey). Denote by ¢¥ = (A, B,C) the right dual collection to ¢ and consider the
spectral sequence associated to o and converging to F. Its E-term has the form:

ExtX(E, F)®@ A|Ext*(E, F)@ B | Ext*(Ey, F)@ C

Ext' (B, F)@ A Eftt =0 |ExtY(Ey, F)@C |
Ext®(E, F)© A | Ext’(E, F) @ B | Ext’(Eo, F)@ C

We see that the spectral sequence splits into the exact triples:
0 — Ext®(E,F)@ A — Ext®(E,F)@B — Q — 0,

0—Q — Ext’(Ep.F)C — @' — 0,
0 — ExtY(E, FOA—Q — Fy — 0,

0 — G — Ext}(E,F)® B — Ext}(Ey, F)@ C — 0,
0 — G — ExtY(E,FY@A— G — 0,
0— F,— G — ExtY(E;, FY)®C — 0,

0— Ffh— F— F;, — 0.

It can be shown by the standard method that Ext!(Fy, Fp) = 0 and Ext‘(E, Fg) = 0 for
g>0, Ext/(E,F;)=0forqg<?2.

4.9 COROLLARY. Let E, and E3 be nonisomorphic exceptional bundles on P2 Suppose
that Ext'( Ez, E\) = Ext'(Ey, ;) = 0: then one of the spaces either Ext*(E,, ;) or
Ext?(E,, E\) is trivial.

PROOF. Assume the converse. Since F; are indecomposable, the previous lemma implies
that
Hom( £y, 73) = Hom( K, £,) = 0.
But Ext?(E,, E;)” & Ext®(E,, E;(—3)) and there exists a monomorphism E,(—3) — E,
i.e., Hom( E,, Ey) # 0. This contradiction proves the statement.

5 Indecomposable Superrigid Sheaves on r.

5.1 LEMMA. Let E be a constructible exceptional bundle and I be an indecomposable
superrigid sheat on P? such that Ext'(F, F) = Ext'(E,F) = 0 when ¢ > 0 and
Hom(E. F) # 0, Hom(F, E) # 0; then = F.

Proor. Taking into account lemma 4.4 , we obtain that for any constructible excep-

tional collection (A_;, 4y, E)

Exti(d;, F) =10 for ¢>0,:1=0,-1. {(12)
Similarly, by lemma 4.5 it follows that {or a constructible exceptional collection (£, By, By)

Ext'(F.B;)=0 for ¢>0,i=0,1. (13)
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Since the bundles A_;, Ay are obtained by the left shifts over £ (1.3 ), we have the
exact triples
0 — A — Hom(E,B])® £ — B; — 0, (14)

0 — Ay — Hom(E, By) @ E — By — 0, (15)

where (£, By, By) is a constructible exceptional collection. Using equalities (13) we apply
the functor Ext’(F,-) to exact triple (14) to obtain

Ext*(F,4;,) =0 i=-1,0. (16)

For the similar reason, Ext?(B;, I') = 0.

If Ext'(F, Ag) = 0, then by lemma 4.2 it follows that either Hom(E, ') = 0 or E is the
direct summand of F. By assumption Hom({E, ') # 0 and the sheaf F is indecomposable.
Therefore, £ = F.

Suppose now, that Ext!(F, Ag) # 0 and consider the universal extension:

0 — Ext'(F,A)) @ 4g — F/ — F — 0. (17)
Combining our assumptions, lemma 3.2 and (16), we get,
Hom(F’, Ag) & Hom( F, Ag), Ext'(F’, Ap) = Ext?(F', 4¢) = 0,
Ext'(F/, F) = Ext*(F',F) =0, Ext'(F,F)=Ext*(F,.F)=0

Besides, applying the functors Ext’(:, £) and Ext’(-, A_;) to sequence (17) we get the fol-
lowing cohomology tables:

k1 Ext*(F,E) — Ext®(F',E) — Ext'(F, Ao) @ ExtF(4,, E)
0 * ? *
1 0 ? 0
2 0 ? 0
E{Ext®(F.A_)) — Ext®(F',A_]) — BExt'(F, Ag) ® Extf(Ag, A_))
0 * ? 0
1 * 7 0
2 0 ? 0

Therefore the superrigid sheaf I’ and the constructible exceptional collection
(AZy, Ao, E)

satisfy the assumption of lemma 4.2 . Hence either F' = F”" @ o £ or Hom(E, F') = 0. But
the application the functor Ext'(E,-) to (17) vields that Hom( £, F) = Hom £, # 0.
Thus

F'=F"g 2z and Hom(E, F")=10

Since £V is superrigid, we get Ext?( £, ") C Ext?(F’, F') = 0 when ¢ > 0. Therefore,
F” € ("4'—17 AU)cut'
Taking into account proposition 2.5 , we obtain

= :U"“ln b ZAn-+-I
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for some constructible exceptional pair obtained from (A_,, Ap) by mutations and nonneg-
ative integers y, z. Without loss of generality we can assume that y > 0. Suppose that
n < 0, then it follows from equality (1) that Hom(Ay, A,) = 0. Hence A, is the direct
summand of F. Since F is indecomposable, we obtain that FF = A,. But it is impossible,
because of by assumption Hom(£, F) # 0 and Hom(E, 4,) = 0.

The case n = 0 with y > 0 is impossible also (3.4 ). On the other hand, Ext!( F’, Ag) = 0.
Hence by equality (2), n < 1.

Thus we see that F' = yA; @z E, where (Ag, Ay, £) is constructible exceptional collection.
Now sequence (17) has the form:

0 — Ext'(F. A40) ©® Ag — yA, @ aE — F — 0. (18)

[t is easy to check that x = h%(E, F') = x(E. F'). Moreover, if we assume that £ % F, then
for any exceptional pair (4,, 4n,41) € (Ao, A1)ear there exists the exact triple .

00— hn."ln — yn+l-4n+l & 2k — F — 0.

Denote by a,, e, f the images of the sheaves A,, £ and F in K" = Ky(P?) ©Q respectively.
Then for each integer n we have

[ —2e = Ynp1tnsr — haan
with positive integers yn4, and h,. By lemma 2.1 these equalities imply that

(f —xe, f—ze) <0.

Note that (f — ze, [ —xe) = [+ a%(e,e) —z(e, f) —2(f.e) = f2 — a2y, where y = (f,e) =
Y(F, E). Let us prove that f2 —zy > 0.

Since (An, Ant1. £) is constructible exceptional collection, by 1.5 we obtain that the
canonical map Hom(A,4, £) ® A4y — E is the epimorphism. Besides, the sheaf F is
the quotient of y,41 Auyr B xE. Therefore the canonical map Hom( 4,4, F)@ Ay — F
is epimorphism as well.

Suppose that Hom(F, A,,,) # 0, then it follows from lemma 4.1 that A,.; is the direct
summand of F. But this is impossible. Hence Hom(F. 4,4,) = 0. Moreover, the last
equality hold for all integers n. In particular, Hom( F, 4g) = Hom(F, 4,) = 0.

Let us apply the functor Ext'(F,-) to (13). We see that

0 — wHom(F, E) — Hom(F. F) = Ext'(F, 40)" @ Ext!(F, 4o)

is the exact sequence. Since sequence (18) does not split, the coboundary homomorphism
§ is nontrivial. Therelore zh°(F, ) < h°(F. F), i.e., xy < f%. This contradiction concludes
the proof.

5.2 COROLLARY. Let E) and [ be nonisomorphic exceptional bundles on P?. Suppose that
Ext' (£, E\) = Ext}( £y, Ey) = 0: then either Ext®(Ey, £y) = 0 or Ext®(E,, Ey) = 0.
PROOF. Since E; is indecomposable, lemma 4.8 1mplies that one of the spaces either

Hom(E,. Eq) or Ext*(Ey, E,) is trivial. Suppose, Hom(E,, E;) # 0 and Ext*( £, £y) = 0.
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Similarly we see that one of the spaces ether Hom(E,, E;) or Ext’(E,, Ey) is trivial.
Assume, Hom(Eq, E1) # 0 and Ext*(E,, E,) = 0; then by the previous lemma, £; = E,.

5.3 LEMMA. Let [ be a constructible exceptional bundle and F be an indecomposable
superrigid sheaf on P? such that

Ext'(E,F)=0when ¢>0. Ext}(F,E)=0, Ext(F,E)#0

then
1) Hom(F, E) =0,
2) there exist nonnegative integers z,, x2 and the full constructible exceptional
collection containing E (E. E,, E;) such that the following sequence

0 — Ext'(FE)YQFE — 21E, @ 2B, — F — 0 (19)

is exact,

3) ExtY(E,, F) = 0 when ¢ > 0 and x3 = h(E,, F),

4) Ext*(F, E;) = 0 and either Ext!(F, Ey) # 0 or F' is the constructible excep-
tional bundle.

5) the canonical map Hom(E,, F}® Ey — F is epimorphism provided z; > 0,

6) there exist nonnegative integers yo, ¥ and the full constructible exceptional

collection containing £y (E}, E|, E3) such that the following sequence

0 — wly @y kb, — xFy — F — 0 (20)

is exact,
7)Ext?(E,F)=0whenqg>0,i=0,1and Ext?(F,E!) =0 wheng# 1, i =0, 1.
ProoF. Consider the universal extension

0 = Ext'(F,EY@F — F — F — 0. (21)

By lemma 3.2 the sheaf F’ satisfies the following conditions:
Ext!(F',E) = Ext'(F', F') = Ext(F', F)=0 when ¢>0; Hom(F', F)= Hom(F,E).
29
[t is easy to see that Ext(E, F') = 0 wL]en g > 0 and Hom{E. F") # 0. Without (i:):l
of generality we can assume that F' = @ x;[;, where [I; are indecomposable superrigid

=1
sheaves, x; > 0 and F; # F; when ¢ # j. Suppose that Hom(E, F;) = 0 for some index
t. Then it follows from (21) that the sheaf F; is the direct summand of I’ and, since
F is indecomposable, F = F;. But this is impossible because of Ext'(F, £) # 0 and
Ext'(F;, E) C Ext'(F', E) = 0. Thus.

Hom(E, F;)#0 forany i=1,2,...,s.

Suppose that Hom(F, £) # 0. Then from ( ) we have Hom(f”, ) # 0. Therefore there
is an index 7 such that Hom( F;, £) # 0,Hom(E, F;}) # 0 and Ext"(E Y =ExtY(F,E)=10
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when ¢ > 0. The previous lemma implies that in this case F; = FE. Taking into account
lemma 3.4 , we see that this case is impossible. Therefore,

Hom(F, E) =0,

i.e., the first statement of the lemma is valid.

Thus we have, Ext?(F', E) = 0 for any ¢q. Hence F' € (E), E})cq for some exceptional
pair such that (£, Ey, E3) is the full constructible exceptional collection. Using proposition
2.5 , we can assume that F' = x| E| @ 22 £, with nonnegative integers x,, x2, i.e., sequence
(19) takes place.

It follows from (22) that Ext?( £y, F') C Ext?(F', F') = 0 when ¢ > 0. Besides, applying
the functor Ext’( £y, ) to sequence (19), we obtain that

zoHom( E;, By) = Hom( E,, F).

Since E, is simple, this equality implies that zo = h°(E,, F'). this proves statement 3 of our
lemma.
Applying the functor Ext'(F,-) to sequence (19) we get

ExtX(F, E,) = 0.

Suppose that Ext'(F, E;) = 0 and Ext’(F, E;) # 0, then the constructible exceptional
bundle F; and the indecomposable superrigid sheaf F' are isomorphic (5.1 ). But this case
is impossible, since Ext!(E, £) = 0 and Ext!(F, E) = 0. Therefore either

Ext!(F, Ey) # 0

or Ext'{F. E3) =0 Vq. In the last case we see that F' belongs to the subcategory generated
by a constructible exceptional pair and consequently it is constructible exceptional bundle.
This completes the proof of statement 4 of the lemma.

Combining proved statements 2, 3 and 4 we see that the constructible exceptional bundle
E5 and indecomposable superrigid sheaf [ satisfy the assumptions of our lemma. Therefore
Hom( F', £;) = 0 and there exist the full constructible exceptional collection (£, E3, Ey) and
nonnegative integers w3, x4 such that the following sequence

0 — ExtY(F By @ Ey — 23E3 @ ayby — F — 0

is exact. By proposition 1.5 we get that the canonical maps Hom(F£,, £;) © E, — E;
are epimorphisms for i = 3, 4. Therelore the last exact sequence yields statement 5 of the
lemma.

Now let us consider the following exact sequence

0 — ker(can) — Hom(E,, F)@ E; =5 F — 0. (23)
Recall that
Ext' (£, FF) =0 when ¢>0 and Ext?(/,FE;) =0 when q# L.

Since the map Hom(£,, F) @ Hom( £y, £9) — Hom(E,, F') that is obtained after the
application the functor Ext'(£;,-) to sequence (23) is isomorphism, Ext?( £, ker(can)) =0
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for any q. That is ker(can) € {Ej, E1)cat for some exceptional pair such that (Ej, £}, E) is
the full constructible exceptional collection.

By the standard method we can show that ker(can) is the superrigid sheaf and the
following relations are valid:

Ext?(ker(can), F) =0 when ¢ > 0; Ext?(F,ker(can)) =0 when g # L.

Therefore ker(can) is the direct sum of exceptional bundles. Without loss of generality it
can be assumed that
ker(can) = yo £y by .

This completes the proof.

5.4 LEMMA Let the exceptional bundle E and the indecomposable superrigid sheaf F
satisfy the assumptions of the previous lemma; then F is the constructible exceptional

bundle.
PROOF. By the previous lemma we have the following exact sequences:

0—)$0E—}$1E|@$2E2—)F—)0,

0 — yoFo @k, — 23E; — F — 0

with nonnegative integers zo, @1, ¥2, Yo, y1 such that (E, Ey, E;) and (Eg, EY, E2) are the
full constructible exceptional collections. Moreover, Ef and F satisfy the assumptions of
the previous lemma as well. It is easy to prove that y, = h'(F, £}). Therefore, there exist
the following exact sequences:

0— yoE, — ZlE{’ & ZQE;, — F— 0,

0 — woky & w ) — mE) — F — 0,

and so on...
Note that the ranks of the bundles from these exact sequences satisfy the f{ollowing
inequalities:

Hw0B) 2 My By ® i ) > r(yo") > r(wo By & wi E) > .
Since the rank of a sheaf is nonnegative, we see that in this sequence of the inequalities
there is an equality. For example suppose that r(zoF) = r(yo £y @ y1 £]). In this case we

obtain that z, =0, 1.e.,
0 — a0l — 29y — F — (

and F € (E, E2)ear. Hence by proposition 2.5 F' is the constructible exceptional bundle.
This completes the proof.

The results of this section can be summarized as follows.

5.5 PROPOSITION. Let E be a constructible exceptional bundle and F be an indecompos-
able superrigid sheaf on P2. Suppose that

Hom(E.F)#0, Ext(E,F)=0 when ¢ >0 and Ext*(F,[£)=0;
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then F is the constructible exceptional bundle.

PROOF. Let us consider 3 cases.

Case 1: Ext(F,E) =0 VYq.

In this case F belongs to the subcategory generated by a constructible exceptional pair
(Eo, Ev) such that (E, Eg, E1) is the full constructible exceptional collection. Therefore our
statement follows from proposition 2.5 .

Case 2: Ext(F,E)=0 ¢ >0, Hom(F,£E)#D0.

It follows from lemma 5.1 that FF = E and consequently F is the constructible excep-
tional bundle.

Case 3: Ext*(F,E) =0, Ext'(F,E)#0.

In the last case the proof follows from lemma 5.4 .

6 Proof of the Main Theorem.

It follows from Serre’s theorem ([4]) that for a nonzero bundle F on P? and integers 1 < 0
the following condition is valid

Ext/(O®G), FY=0 for ¢ >0, Ext®(O@), F)#0. (24)

Denote by (v (F) — 1) the maximal integer satisfying this condition. On the other hand,
for all integers ¢ 3> 0 we have
Hom(O(:), F') = (25)
25

)-

Denote by v.(£) the minimal integer satisfving (

6.1 LEMMA. Let F' be an indecomposable rigid bundle on P?, then one of the following
statements hold:
(1) the bundle F is constructible exceptional bundle,
(2) Ext}(O(n), F) = Ext}(O(n + 1), F) = 0,
Ext'(O(n), F) # 0, Ext'(O(n + 1), F) # 0, where n = y(F).

PROOF. By choice n we see that either F\t"((?(n), F) = 0 Yq or at least one of the
spaces Ext?(O(n), ), Ext'(O(n), F) is nontrivial. In the first case the sheaf F belongs
to the subcategory generated by the constructible exceptional pair (O(n — 2),0(n — 1)).
Therefore F is the constructible exceptional bundle (2.5 ).

Let us show that Ext*(O(n), F) = 0 in the second case . Consider the constructible
exceptional collection (O(n — 2), T'(n = 3), O(n — 1)), where T is the tangent bundle on P2
We have the exact sequence

0 — T(n—3) — HYO(1)) ©O(n = 1) — O(n) — 0. (26)

Combining lemma 4.4 |, the indecomposability of F and the relations: Hom(O(n — 1), F) #

0. Ext'{O(n — 1), FF) = ExtY(O(n — 2), ') = 0, when ¢ > 0, we get
Ext!(T(n—=3),F)=0 for q> 0.

Therefme from exact sequence (26) it follows that Ext*(Q(n),F) = 0. Thus we have

Ext'( Fy#£0.
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Now consider the collection (T'(n — 3), R, O(n — 1)), where R = Rr(_3O(n —2). As
before, we see that

Ext’/(R,F)=0 when ¢q>0. (27)
By proposition 1.4 we obtain that O(n + 1) = Rom-1) R, i.e., there exists the exact triple
0 — R— Hom(R.O(n - 1)) ®O0(n—-1) — O(n+1) — 0.

Using this sequence and (27), we get Ext*(O(n + 1), F) = 0. Hence bu choice n we see
that either Ext'(O(n 4+ 1), F) # 0 or Ext?(O(n+1),F) = 0 Vg (i.e., F is constructible
exceptional bundle). This concludes the proof.

G.2 PROPOSITION. Any indecomposable rigid bundle F on P? is constructible exceptional
bundle.
PROOF. The proof is by induction on A(F) = v,.(F) — »(F) 2 0.
Suppose that A(F) = 0, then it follows from the definitions of v(F), v.(F) and the
previous lemma that either F' is constructible exceptional bundle or

Ext?(O(n), F) =0 when ¢ =0, 2 and Ext'(O(n), F}#0
(here n = y(F) = v.(F)). By Serre’s duality we have
Ext?(F,O(n—3)) =0, when ¢ =10, 2 and Ext'(F,O(n —3)) # 0. (28)

Besides,
Ext?(O(n —3), F) =0, when ¢ >0 and Ext°(O(n - 3),F) #0. (29)

Consider the universal extension
0 — Ext'(F,On =3 @0n—-3) — F — F — 0.
Combining (28), {29), lemma 3.2 and the fact that F is rigid, we obtain that
Ext!(F',On-=3))=0, Yq, Ext'(F,F)=0; (30)

Ext?(F', F') = Lxt*(F, F) (31)

From equalities (30) and proposition 2.5 one follows that F” is superrigid. In particular,
Ext*(F', F') = 0. Therefore Ext*(F, ') = 0 (see (31)). Thus we obtain that F is superrigid.
Hence the line bundle O(n — 3) and the indecomposable superrigid sheaf F' satisfy the
assumptions of proposition 5.5 . i.e., ¥ is constructible exceptional bundle.

In the general case without loss of generality we can assume that v F) = 4. Suppose F
is not constructible exceptional bundle. Hence lemma 6.1 implies that

Ext?(O(3), F) =0 when ¢ > 0, Hom(O(3), I} # 0.

Ext*(OQ3:), F) =0, and Ext'(O), F)#0 when i =4, 5.

By Serre’s duality we have

Ext/(F.Q) =0 when ¢ >0, Ext*(F,0)#0,
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Ext®(F,O(i)) = 0, and Ext'(F,0()) #0 when i=1, 2.

Besides, by definition v (F) Ext?(O(2), F) =0 for ¢ > 0.
Hence the application of lemma 4.7 to the collection (O, O(1), O(2)) and the sheaf F
yields that the rigid sheaf F’ from the universal extension

0 — Ext'(F,O012) 002) —F — F—0 (32)

is isomorphic to the direct sum F’ = z,F, & Fy, where E;(—1) is the tangent bundle on P?
and the rigid sheaf F; satisfies the conditions:

Ext?(O(), Fo) =0 for ¢ >0, 1 =3, 4, 5; (33)

there exists an epimorphism Hom(O(3), F7) ® O(3) — F. (34)

It is clear that each indecomposable direct summand of F, (Es, Fs,. .., Ex) 1s rigid and
satisfies conditions (33), (34).
Let us show that for y = 2.3,...,k

3 < v (E;) < v, (F).

In fact the left inequality follows from (34). To prove the right inequality note that if
Hom(O(i), E;) # 0 for @ > 2, then exact sequence (32) implies Hom(O(7), F) # 0.

Taking into account (33), we may assume that Hom(O(5), £;) # 0 when 3 = 2,3,... .k,
since in opposite case E; is constructible exceptional bundle (2.5 }. Therefore using (33),
we get v(E;) 2 6. Thus,

A(E;) = v (E;) —w(E;) v (F)—6 < A(F)

for each indecomposable direct summand of F'.

By the induction hypothesis, all E; are the constructible exceptional bundles. Since
F' = @z;E; is rigid, Ext'(E;, ;) = 0 ¥i,j. Now using corollary 4.9 , we may assume that
Ext?*(E;, E;) = 0 for i < j. Therefore, Ext?(f", E}) = 0 when ¢ > 0.

The application of the functor Ext' (O(2),-) to sequence 32 yields

Ext’(O(2), £) =0 when ¢ > 0.

[t follows from the cohomology table

¢ |Ext'(F. Ex) — Ext/(F', Eq) — Ext(F,O0(2) @ Ext/(O(2), Ex)
0 ? * *
| 7 0 0
2 7 0 0
that
Ext*(F, E) = 0. (33)

Using (3.2 ), we get Ext'(F’, F) = 0, in particular

Ext'(E;,F}=0 forj=12,..k. (36)
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It is easily shown that
Ext®(E;, F)#0 forj=1,2,..,k. (37)

Now if we combine (36), (37), lemma 4.8 and the fact that F' is indecomposable, we get
Ext(E;,F)=0 forj=1,2, ..,k (38)

Therefore Ext*(F’, F) = 0 and lemma 3.2 yields that F is superrigid. Finally, using (35),
(36), (37),(38) we can apply proposition 5.5 to the constructible exceptional bundle £, and
indecomposable superrigid sheaf F'. This completes the proof.

6.3 THEOREM. 1. Any rigid hundle on P? is the direct sum of constructible exceptional
bundles.
2. Any superrigid bundle I’ on P? has the form

F=aylo®a ks,

where z; > 0 and (Fy, F\, F2) is the constructible exceptional collection.
3. Any exceptional collection of bundles on P? is constructible.
PROOF. The first statement follows [rom the previous proposition.

Let F be a superrigid sheaf on P?. Then F = é z; F;, where F; are constructible
.

exceptional bundles. Taking into account corollary 5.2 , we may assume that Hom(F;, F}) =
0 when ¢ > j. On the other hand, since [ is superrigid, we have

Ext(F;, ;) =0 V¢ whent > 3.

Therefore s < 2 and 7 = (Fp, £1, F2) is exceptional collection. To prove the constructibility
of T note that Fy is constructible. Hence there exists the constructible exceptional collection
(Fo, F\, E2) containing Fy. By proposition 1.7 , Fy, F2 € (E1, F2)ce. Now using proposition
2.5 , we have that the pair (I}, F;) is obtained from (E), E;) by mutations. Thus 7 is
constructible.

Finally, for any exceptional collection 7 = (Fy, Fi, F2) we may construct the superrigid
sheal F' = Fy @& Fy & F, and the constructibility follows from the second statement. This
completes the proof.
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