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TESTING THE COHEN-MACAULAY PROPERTY 

UNDER BLOWING UP 

by 

S. Ikeda, M. Herrmann, U. Orbanz 

INTRODUCTION. Let X be an algebraic variety and let 

X' --> X be a blowing up of X with arbitrary center Y. 

In general, the Cohen-Macaulay properties of X and X' are 

totally unrelated: If X is Cohen-Macaulay and Y is per­

missible, Xl need not be Cohen-Macaulay [15]; and if X 

is not Cohen-Macaulay, XI can be made Cohen-Macaulay by 

a suitable choice of Y [1], [2]. Replacing X by a local 

ring Rand Y by an ideal I of R I we try to relate the 

Cohen-Macaulay property of 

of the Rees ring R~(I/R) = 
X, = prOj(R~(I,R) • 

R to the Cohen-Macaulay property 

e In Col R[It] I and of 
n,=O 

One line of thought is this: Given some ideal I of R I 

which may be thought of as a "testideal"; what can we say 

about blowing ups defined by other ideals J containing 

I ? We restrict our investigations to a certain class of 

ideals I which we call equimultiple, and which are a 

common generalization of the two most important classical 

cases: 1) I is permissible (in the sense of Hironaka, e.g. 

the maximal ideal), 2) I is an ideal of the principal 

c"lass. From the algebraic pOint of view, this class of 
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ideals is characterized by the fact that grI(R) has a 

homogeneous system of parameters, at least in the equidi-

mensional case (see [11]). These properties of equimultiple 

ideals are essential in the proof of theorem 3.1. 

In section 2 we describe the influence of the multiplicity 

e(R/I) of R/I on the behaviour of + Re(M,R) • In section 3 

we compare the Rees rings of I and I + xR ,where x 

is a part of a system of parameters mod I • For this situ­

ation we prove a transitivity property for the Cohen-Macau­

layness of the Rees rings (and the graded rings $ I n / I n
+ 1 ), 

assuming that R itself is Cohen-Macaulay. This last 

assumption is necessary, as we show in theorem 3.8. This 

theorem and proposition 2.1 indicate that it will be some-

what complicated to construct examples of non-Cohen-Macaulay 

rings R with Cohen-Macaulay Rees rings + Re(I,R) , at least 

if dim R ~ 3 • We give several examples for R Cohen-Macaulay 

as well as for R non-Cohen-Macaulay, in which the Cohen-

Macaulay property of + Re (I 1 R) is tested for various ideals 

I • In the last section 4 we asked the same question as before 

in theorem 3.8 for the geometric blowing ups Proj R~(I1R) 

and Proj R~(J,R) • 

1. NOTATIONS. A) For any system x = {x1 ' ..• ,x } 
- r 

of 

parameters with respect to Ie R one has a numerical func-

(0) n n+1 tion H (n) = e(~,I /1 ), where e( ,) denotes the 

multiplicity symbol of Wright and Northcott. We know by [7] 

that H(1) (n) = :CH(O) (i) = ~ e(~iR/P) .H(n [IRpJ(n) 
i=O P€Assh(R/I) 
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where Assh (R/I) = {p E Ass (R/I) I dim Rip = dim R/I} and 

H(1) [IRpl is the usual Hilbert-Samuel function of the 

P~-primary ideal I~. For large n, H(1) (n) is a poly­

nomial in n with rational coefficients. If d is the 

degree and ad the highest coefficient of this polynomial, 

the number e(~,I,R) := dIad is called the multiplicity 

of I with respect to x. If ht(I) = dim R - dim R/I , 

then 

e{~,I,R) = l: e(~iR/p) e(IRp ) 
PEAssh(R/I) 

where e(IRp ) is the Samuel multiplicity of IRp. 

B) Let I be a proper ideal in the local ring R • Then 

we define here the reduction exponent r{I} of I as 

reI) = inf{nl there exists a minimal reduction J of 

I such that In = Jln- 1 } • 

C) I is said to be equimultiple, if ht(I} = ~(I) • R is 

said to be normally Cohen-Macaulay along I if 

depth (In/ln+ 1 )' = dim(R/I) for all n;;: 0 • If 

dim R = dim R/I + ht(I) then this condition implies equi­

multiplicity ht(I} = t(I) I s. [9]. 

D) An ideal I is said to be a complete intersection if 

it is generated by ht(I) elements. I is said to be ~ ge­

neric complete intersection if IRp is a complete intersec­

tion for all minimal primes P of I. 
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2. TESTIDEALS OF SMALL MULTIPLICITY 

In general if + Re (I, R) is Cohen-Macaulay for some I then 

R need not be Cohen-Macaulay. For the case I = M we know 

+ by [12] that depth R~ 2 if Re(M,R) is Cohen-Macaulay and 

dim R ~ 2 • So for dim R = 2, R must be Cohen-Macaulay. 

This is no longer true for dim R ~ 3 (see example 2.3). 

One result of this section (s. proposition 2.9) shows that 

by restricting the multiplicity of certain testideals the 

Cohen-Macaulay property of R follows from the same property 

of R~(I,R) • First we need a preliminary result. 

PROPOSITION 2.1: Let (R,M) be a local ring such that 

+ Re (M, R) is Cohen-Macaulay. If e (R) < dim R ,then R is 

Cohen-Macaulay. 

PROOF: Since + Re (M, R) is Cohe,n-Macaulay, R must be a 

Buchsbaum ring by [12J, theorem 0.1. Therefore we know by [5] 

the following inequality 

(*) 
d-1 

e(R)~1 + 1: (d-1)h i (R) 
i=1 i-1 

where hi{R) 

H;(R) • Since 

the assumption 

is the dimension of the cohomology 

depth R,=2 we get hO (R) = h 1 (R) 

e(R) < dim R implies also hi(R) 

2 ;$ i ~ d-1 • 

module 

= 0 . Then 

= 0 for 
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COROLLARY 2.2: Let (R,M) be a local ring with e (R) ~ dim R • 

Then the following conditions are equivalent: 

(i) + Re(M,R) is Cohen-Macaulay. 

(ii) '(R and) grMR is Cohen-Macaulay. 

PROOF: For dim R = 2 the implication (i) .. (ii) is true 

without any assumption on e(R) • 

If dim R ~ 3 , then (i)'" (ii) follows from proposition 2.1 

and [11], theorem 4.8. 

The implication (ii)" (i) is true for e (R) ~ dim R by 

Corollary 5.4 in [11]. 

The following example 2.3 shows that for e(R) = dim R the 

equivalence of (i) and (ii) is not true in general. 

EXAMPLE 2.3: 

where k is a field, and Xi'Y j are indeterminates. This 

ring is a non-Cohen-Macaulay Buchsbaum ring with 

+ e(R) = dim R = 3 I and Re(M,R) is Cohen-Macaulay, see 

[20]. 

REMARK 2.4: a) If e (R) = dim R and + Re (M,R) is Cohen-

Macaulay, 

For if R 

possible 

case 1: 

case 2: 

then R is not too far from being Cohen-Macaulay. 

is not Cohen-Macaulay, at most two cases are 

for hi = hi(R): 

h2 = 1 i hO = h 1 = h3 = ••• = hd- 1 = 0 

hd- 1 = 1; hO = h1 = .•• = hd- 2 = 0 

, 
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b) Assume that + Re (M , R) is Cohen-Macaulay again. Then 

we have: 

a) If R is not Cohen-Macaulay then e (R) ~ dim R by 

proposition 2.1. 

b) If R is a hypersurface (i.e. R is unmixed and 

emdim R;S dim R + 1), then e (R) ;S dim R by [11] I Cor. 5.5. 

c) For any Cohen-Macaulay ring R the Cohen-Macaulayness 

of ~(M,R) doesn't imply a special inequality between 

e(R) and dim R , as the following two examples show. 

EXAMPLE 2.5: 2 2 R = k[[X ,XY,Y ,XZ,YZ,Z]] , k a field, X,Y,Z 

indeterminates. R is a Cohen-Macaulay ring, see [11]. Since 

(X2 ,y2,Z)M = M2 we know [17], that grMR is Cohen-Macaulay, 

hence ~(M,R) is Cohen-Macaulay by [111, thm. 4.8. 

Furthermore we see that e(R) = emdim R - dim R + 1 = 4 , 

Le. e(R}>dimR. 

EXAMPLE 2. 6 : R = k[ [X] 1/I2 (X) , where X ;::: (X .. ) is the 
~J 

2 x 3 matrix of indeterminates Xij over a field k and 

I2 (X) is the ideal generated by the 2 )( 2 minors of X . 
Then R is Cohen-Macaulay, e (R) ;::: 3 < dim R = 4 , and 

emdim R = 6 • Therefore we have e(R) ;::: emdim R - dim R + 1 , 

i.e. M2;::: (~)M [17], where a is a minimal reduction 

of M. The same argument as in example 2.5 shows that 

~(M,R) is Cohen-Macaulay_ 

To make use of testideals the following auxiliary result is 

needed. 
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LEMMA 2.7: Let (R,M) be a local ring. If I is an 

equimultiple ideal in R which is a generic complete inter-

section then e (R/I) ;:: e (R) • 

PROOF: The condition ht(l) = 1(I) implies by [8], [9] 

the equality e(~,l,R) = e(l + ~R) for any system x of 

parameters of I. By assumption, lRp is a parameter ideal 

for all minimal primes P of I. Therefore we have 

, 

where Min(I) denotes the set of minimal primes of I. Hence 

we get: e(x,I,R) ~e(~,R/I) • 

Choosing a special system x of parameters for I which 

satisfies e(~,R/I) = e(R/I) we have finally: 

e{R) ~e{I + !.R) = e(~,I,R) $e(R!I) . 

REMARK: If in the lemma (R,M) is a Cohen-Macaulay ring 

with infinite residue field R/M, then I is a complete 

intersection already. This can be seen as follows: 

Let a l , ... ,at be a minimal reduction of I with t = ht(I) • 

For J:= (a1 , ••• ,at) c: I, we have JRp is a minimal re­

duction of IRp for all P E Min(I) = Min(J) . By assumption 

IRp is a complete intersection in Rp. Therefore, it has 

no proper minimal reduction by [141 § 4, thm. 4, hence 

J~ = IRp • Since J is an ideal of the principal class 
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in a Cohen-Macaulay local ring, it is height-unmixed. So 

we have the following primary decompositions for I and J 

I = Q n 1 

J = Q n 1 

where the Q1, ••• ,Qn are primary ideals associated to the 

P1 ,··· 'Pn € Min(I) and Qi contains all embedded components 

of I. Hence we get I = J • 

PROPOSITION 2.8: Let (R,M) be a local ring with a Cohen-

Macaulay Rees ring + Re(M,R} • Let I be an equimultiple 

ideal which is a generic complete intersection. If 

e (R/I) < dim R I then Rand grMR are Cohen-Macaulay. 

PROOF: Use lemma 2.7 and corollary 2.2. 

A result similar to proposition 2.8 is the following one. 

PROPOSITION 2.9: Let R be a local ring and let I be a 

complete intersection in R such that + Re (I, R) is Cohen-

Macaulay and e(R/I) = e(R) • Then R is Cohen-Macaulay. 

PROOF: 1) If dim R/I = 0 , we have e(R) = e(R/I) = 1(R/I) , 

hence R is Cohen-Macaulay. [Here we don't use + Re (I ,R) 

is Cohen-Macaulay.] 

2) In the general case we may assume that R has an in-

finite residue field. Let I = (Y1'.'.'Ys ) and let 

x 1 , ••• ,xr be a system of parameters mod I such that 
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X
1

, • o. ,xr € R/I form a minimal reduction of Mil in R/I • 

We put R = R/~R I x = x 1 , ••• ,xr ' 
+ Re(I,R) Cohen-Macaulay implies that R is normally 

Cohen-Macaulay along I. Therefore x is a regular 

sequence on In I rn+ 1 for n ~ 0 1 hence on R too. 

Note that e(R/I) = e«X
1

, •• o,xr » since (X1 , ••• ,xr ) is 

a minimal reduction of Mil • Furthermore 

e ((x
1

' • 0 oX ) = R.(R/I+xR) = e (R/I+.?:;R) ~ e (R/:!R) ~ e (R) since 
r -

R/I is Cohen-Macaulay. Therefore e(R} = e(R/IR) , i.e. 

R is Cohen-Macaulay by step 1, hence R is Cohen-Macaulay. 

3. TRANSITIVITY OF COHEN-MACAULAYNESS FOR REES RINGS 

Now we assume that the given ring R is Cohen-Macaulay. 

Then we consider equimultiple ideals J c:: I such that 

r = J + ~R I where x is part of a system of parameters 

mod J • For simplicity we are always working with an in-

finite residue field. 

THEOREM 3.1: (Transitivity of Cohen-Macaulay property.) Let 

(R,M) be a local Cohen-Macaulay ring with infinite residue 

field. Let J be an equimultiple ideal of R, let 

x = (x1 ' ••• ,xs ) be a part of a system of parameters mod J 

and let I = J + xR 0 

a} The following conditions are equivalent: 

(i) grJ(R) is Cohen-Macaulay. 

(ii) grI(R) is Cohen-Macaulay, and grJR (Rp) 
p 

is Cohen-Macaulay for all P E Min (I) • 
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(i) 

(ii) 
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ht (J) > 0 , the following conditions are equivalent: 

+ Re(J,R) is Cohen-Macaulay. 

+ Re(I,R) is Cohen-Macaulay, and 

is Cohen-Macaulay for all P E Min (I) • 

PROOF: a) Let y be a system of parameters mod I . Then 

~ U Y is a system of parameters mod J • 

(i) .. (ii) Clearly gr J~ (~) CO( gr J (R) ® Rp is Cohen-Macaulay. 

By [11], Prop. 4.5, grJ(R) is Cohen-Macaulay if and only 

if is Cohen-Macaulay and R is normally 

Cohen-Macaulay along J. This implies that R is normally 

Cohen-Macaulay along I ([7J, Satz 4.2, p. 132). Using 

grJ+~R+y~(R) = grI+yR(R) we see that grI(R) 

Macaulay (by [11], Prop. 4.5 again). 

is Cohen-

(ii) ... (i) By [7], Satz 4.2, p. 132 R is normally Cohen-

Macaulay along J, and grJ+~R+YR(R) = grI+yR(R) 

Cohen-Macaulay, so grJ(R) is Cohen-Macaulay. 

is 

b) By [11], thm.4.8, we know that + Re (J ,R) is Cohen-

Macaulay if and only if grJ(R) is Cohen-Macaulay and 

r (J) :ii ht (J) • 

(i) .. (ii) Obviously we have r (I) :ii r (J) :ii ht (J) :ii ht (I) , 

and also r (JRp) :ii r (J) :ii ht (J) = ht (JRp) • Therefore the 

assertion follows from a), (i) ... (ii) • 

(1i) ... (1) By a) and [11], thm.4.8, we have to show that 

r{J) :ii ht(J) . Equivalently, taking any minimal reduction 

JI of J and putting t = ht(J} , we have to show that 

JtcJ' (compare [11], thm. 4.8). Note that R/J' is 
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Cohen-Macaulay, and therefore Ass(R/J') = Min(J) . So 

we are reduced to prove that JtRQ C J'R
Q 

for all Q E Min (J) . 

Now if Q E Min (J) , we claim that QcP for some P E Min (I) . 

Otherwise we would have Q¢P~(I)P I and therefore Q 

would contain an element y which is a non-zerodivisor 

mod I • Since R/J is Cohen-Macaulay, any non-zerodivisor 

mod I is also a non-zerodivisor mod J , which gives a 

contradiction to Q E Min (J) • Now given P E Min (I) such 

that QcP, we know from assumption (ii) that JtRpCJ'Rp, 

and a forteriori JtRQCJ'RQ' which completes the proof. 

A class of examples is given by the following corollary. 

COROLLARY 3.2: Let (R,M) be a Cohen-Macaulay ring and 

let P be an ideal in R such that Rip is regular and 

i.e. httP) = R,(P} by [8]. If + Re(P,R) is 

+ Cohen-Macaulay then Re(QRQ,RQ) is Cohen-Macaulay for all 

+ prime ideals Q:::> P i in particular Re (M, R) is Cohen-

Macaulay. 

Assume that + Re (P, R) is Cohen-Macaulay for some equimultiple 

ideal P such that RiP is regular. In order to apply 

Corollary 3.2 to conclude that + Re (M,R) is Cohen-Macaulay, 

we need to show that R is Cohen-Macaulay. Some results in 

this direction are given in the next two propositions. 

PROPOSITION 3.3: Let P be an equimultiple ideal in (R,M) 

such that + Re(P,R) is Cohen-Macaulay. If Rip is regular 

and ht (l?) ~ 2 then Rand + Re (M,R) are Cohen-Macaulay. 
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PROOF: 1.case: ht(P) = 1 • Then P 1s generated by one 

element f, s. [10], proposition 1.5. This implies R is 

regular, since M = fR + (x
1

, ••• ,xd_ 1)R , where 

x
1

, ••• ,x
d

_
1 

form a regular system of parameters mod P • 

2.case: ht(P) = 2 • By assumption we have M = P + xR , 

where 

Since 

x = (x
1

, ••• ,x
r

) is a system of parameters mod P . 
+. 

Re(P,R} is Cohen-Macaulay and ht(P) = ~(P) ~ R 

must be normally Cohen-Macaulay along P, s. [10J. There­

fore x is a regular sequence on pn Ipn + 1 for n ~ 0 , 

hence on R too. Moreover putting R = R/~R and 

M = M/.!R know + - - + + is Cohen-, we that Re(M,R) liiI Re(p,RlIxRe(P,R} 

Macaulay, i.e. depth R ~ 2 = dim R , so R and R must 

be Cohen-Macaulay. Then 

theorem 3.1. 

+ Re (M,R) is Cohen-Macaulay by 

PROPOSITION 3.4: Let P # M be an equimultiple ideal in 

(R,M) with ht (P) ~ 2 . Assume that 

(i) 

(ii) 

+ Re(P,R) 

Rip 

(iii) e (R) = 2 

is Cohen-Macaulay 

is regular 

Then R and ~(M,R) are Cohen-Macaulay. 

PROOF: We may assume by [8] that M = P + xR , where 

~ = (x
1

' ••• ,x
r

) is a sequence of superficial elements with 

e(R/!R) = e(R) = 2 , r = dim Rip. 
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Putting R = R/~R and M = M/~R as in the proof of 

proposition 3.3., we see again that + -­Re (M,R) is Cohen-

Macaulay. Hence R is a Buchsbaum ring of multiplicity 2, 

which satisfies the Serre condition S2 • Using the 

inequality (*) in section 2, we get hi(R) = 0 for 

i F dim R • Therefore Rand R are Cohen-Macaulay rings, 

proving that + Re (M,R) is Cohen-Macaulay by theorem 3.1. 

PROPOSITION 3.5: Let (R,M) be a Buchsbaum ring of 

dimension d ~ 3 with an algebraically closed residue field 

k . Let P F M be an equimultiple prime ideal in R such 

that 

(i) 

(ii) 

If e(R) = 3 

rings. 

+ Re (P ,R) is Cohen Macaulay 

is prime 

then Rand + Re (M,R) are Cohen-Macaulay 

PROOF: Condition (i) tells us that depth R ~ dim Rip + 1 

by [10], proposition 1.5. Therefore R satisfies Serre's 

condition S2 . The high point of proof is to show that R 

is Cohen-Macaulay. For that we use the sharp relation 

(see [5]) 

(**) e(R) = 1 + £(M/J) + ~(1=n hi(R) 

1)The ideal of the initialforms of P with respect to M. 
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d 
where J = ,1: (x1 ,··· '*i'··· ,xd ) 

~=1 
a minimal reduction of M. 

and 

If we assume that R is not-Cohen-Macaulay then the 

equality (**) tells us that 

(1) d = 3 and 

(2 ) R.(M/J) = ° , 

since e(R) = 3 and hO(R) = h 1 (R) = ° , h 2
(R) = 1 • 

From (2) .we conclude by [4] that r(fei} = 2 and that grMR 

is Buchsbaum. Moreover by Ikeda [20] we know - up to 

isomorphisms - exactly this graded ring, namely 

From (1) we get ht (P) ~ 2 • Clearly ht (P) =J 1 if R is 

not-Cohen-Macaulay, s. [11J, proposition 4.11, i.e. 

ht(P) = R.(P) = 2 • Since G = grMR is Buchsbaum, we have 

ht(P*) = dim (G) - dim(G/P*) = 2 • 

Now, putting y i = Y i E G , i = 1,2,3, we get: 

Since p* is prime and ht(P*) = 2 , Q corresponds to 

a closed pOint in 

X3 ;. Q • Since k is algebraically closed, we must have 

Q = (X,-aX3 , X2-ax3) for some a,a E k • Hence G/P*;; k[Z], 
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where Z is an indeterminate over k I i.e. Rip is 

regular. But this property cannot occur together with 

~(P,R) is Cohen-Macaulay and httP) = ~(P) = 2 for a 

non-Cohen-Macaulay ring R, by proposition 3.3. Therefore 

R must be Cohen-Macaulay under the assumptions of 

proposition 3.5. But then we know by [17] that grMR 

is Cohen-Macaulay, since e(R) = 3 . Moreover we get that 

+ Re(M,R) is Cohen-Macaulay by [11], Corollary 5.4. This 

completes the proof. 

REMARK 3.6: Rip regular implies p* prime. 

QUESTION 3.7: Is the statement of proposition 3.5 true 

without the restriction on the multiplicity e(R) ? 

THEOREM 3.8: Let (R,M) be a local ring, J an equi-

multiple ideal of R, ~ = {x1 ' ••• ,xs } part of a system 

of parameters mod J and I = J + xR • Assume that s > 0 

and that + Re (J ,R) and + 
Re (I,R) 

R is Cohen-Macaulay. 

PROOF: Since ht(J) = ~(J) and 

are Cohen-Macaulay. Then 

+ Re(J,R) is Cohen-Macaulay 

we know that R 

~R n Ji = (~). Ji 

normally Cohen-Macaulay along J. Therefore 

for i ~ 1 , implying xR n Ii = (~). I i - 1 

We write: 

where 

and 

GJ = gr JR ; GI = grIR , 

GiO) = G
I 

; Gi j )= GI /(x1, ... ,xj) ,1::ij ~s 

is the initialform of with respect to 

is the shifting of by -1 • 

I , 
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Then we consider the exact sequence 

(1 ) o --> G(j}(-1) 
I 

·x* 
J'+1 (0) _..t.._--'-> G J 

I 
G(j+1) --> 0 

> I 

Now set G1 
= G (s) 

I and G2 = GJ/~GJ . Denote by MJ 
and 

~11 the unique maximal homogeneous ideals of + Re (J ,R) and 

+ Re (I,R) respectively. Then we get from (1) the long exact 

sequence 

where 

for the local cohomology: 

is defined by multiplying with x* s 

+ + + 
Now G

1
OtG2 over S Re(J,R)/~Re(J,R) oeRe(I/R)/(.!,~t) Ot 

Ot R[It]/ e (~R n In)tn • Since ~R~ (J,R) . is a regular 

+ sequence on Re(J,R) , S is Cohen-Macaulay, hence by [10} I 

proposition 1.5: 

(3) Hi - 1 (G) Ot Hi - 1 (G) = 0 for n ~ 0 , i S d - s 
MI 1 n MJ 2 n 

This implies that 

is injective. Therefore we get 

By induction on j we see that 

for n ~ - j , i ~ d - r + j , 0 ~ j Sr. 
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For j:; sand i;S d - 1 this implies in particular: 

o = R~ (G) = HMi(R} -M
l 

l-1 

since ht(l) :; t(l) and + Re(l,R) is Cohen-Macaulay, see 

[10], proposition 1.5. This completes the proof. 

REMARK 3.9: If J:; (0) in the above theorem, we have 

a similar conclusion as above, replacing the assumption 
+ on Re(J,R) by the assumption that I is generated by a 

regular sequence. For we know from + Re(I,R) Cohen-Macaulay 

that R/l is Cohen-Macaulay, hence the same is true for R. 

EXAMPLE 3.10: (Compare [3]): 2 3 R :; k [[s ,s ,st,tJ) , 
S,t indeterminates, is a non-Cohen-Macaulay Buchsbaum ring. 

We consider J:; (s2)R and I:; (s2,t)R • Since s2,t 

form a system of parameters in a Buchsbaum domain of dimen-

s10n 2 we know by [19J that + Re(l,R) is Cohen-Macaulay. 

Hence + Re(J,R) cannot be Cohen-Macaulay by theorem 3.8. 

[Compare also [11], proposition 4.11). 

At the end of this section we consider again the ring of 

+ example 2.3. We want to test the structure of Re(I,R) 

for various ideals I: 
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We consider these ideals: 

The following can be said about the Rees rings: 

a) 

b) 

c) 

d) 

e) 

Since R is not-Cohen-Macaulay + Re(P1,R) and 

+ Re(P2 ,R) are not-Cohen-Macaulay by theorem 3.8. 

+ Re(P3 ,R) Oo!REtP3t is finitely generated. Since R 

+ is not-Cohen-Macaulay, Re(P3 ,R) cannot be Cohen-

Macaulay. 

+ Re(Q2,R) is not-Cohen-Macaulay. Otherwise R would 

be normally Cohen-Macaulay along Q2 by [10J, i.e. 

in particular R/Q2 would be Cohen-Macaulay. 

+ Re(Q3,R) is not-Cohen-Macaulay. Otherwise we must 

have H! (R) = 0 for i::j: 1 , d by [18 J, theorem 3.1 I 

since Q3 is a parameter ideal in R. Hence we 

would have H;(R) = 0 , but this is a contradiction 

in our case. 

+ Re(Q1,R) is not Cohen-Macaulay. Otherwise R would 

be Cohen-Macaulay by [11], 4.11. 

REMARK 3.11: Ikeda [20] has recently shown that the ideal 

I = (x1,x2 'Y3) cR has a Cohen-Macaulay-Rees ring. Hence the 

Rees ring of J,= (x1,x2 ,x3 'Y3) or J 2 = (xi 'Y3)' i =1 or 2 

cannot be Cohen-Macaulay by theorem 3.8. 
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QUESTION 3.12: Relate + Re(J,R) and + Re (I,R) , 

where I ~ J + xR as in the theorem 3.8, to 

4. THE GEOMETRIC BLOWING UP 

If we replace the Rees rings and 

S n-1 

+ Re (J ,R) 

of 

in 

R • 

theorem 3.8 by the Proj's of these rings then the corres-

ponding question becomes more difficile. The exact question 

is as follows: 

"Let (R,M) be a local ring of depth R> 0 • Let 
=1= 

J be 

an equimultiple ideal and let I = J + !R , where x is 

part of a system of parameters mod J • Assume that 

(i) Proj(~ In) is Cohen-Macaulay and 

(ii) Proj(e In) is Cohen-Macaulay. 

Is R a Cohen-Macaulay ring?" 

In theorem 4.5 we will give a partial answer to this 

question. Before formulating this result we want to remark 

that the assumptions depth R ~ 0 and J is equimultiple 

are necessary: 

EXAMPLE 4. 1 : Let (S,N) be a regular local ring with 

residue field k. Consider the ring 

R = S [ X] / (X2 , NX) QI S e k 
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where X is an indeterminate. Then H~ (R) ~ k I hence 

R/H~(R) is Cohen-Macaulay. 

Now take I = (a1/ .•. ,ad ) and J = (a1, ... tai) , 2:;; i<d , 

where a 1 ' ••• , ad 

H~(R) c ker (R -> 

is a system of parameters in 

R[..!..] C R ) 
aj aj 

for K = I and 

R . Since 

K :::: J , 

we have proj (~ In) ~ proj ($ In) and 
n -n Proj (e J ) ~ Proj (ED J ) , 

where I and J are the images of I and J in R/H~R) • 

But -n Pr9j(Q'I I ) and Proj(<1' ;Tt) are Cohen-Macaulay, since 

I and J are formed by a regular sequence in R/H~(R) 

EXAMPLE 4.2: R = k [[s2,s3 ,st,t]l • We take J = (s2,s3,st) 

2 3 and I = (s ,s ,st,t) • Now J is not an equimultiple 

ideal in R, since (s2,st) is a minimal reduction of J, 

i.e. ht(J) = 1 and t(J) = 2 • 

Since Proj (tl ~) = Spec Rl U Spec R2 ' where 

and R2 = R[t,~] 1 we see that Proj(e In) is isomorphic 

to the blowing up of the plane at the origin, hence Cohen­

Macaulay. Furthermore proj{<1' In) is Cohen-Macaulay since 

R is a (non-Cohen-Macaulay) Buchsbaum ring of multiplicity 2 

[3]. 

[Note that R;(I,R) = • In is not-Cohen-Macaulay, otherwise 
n~O 

depth R would be 2, hence R would be Cohen-Macaulay.] 

Now we are going to specialize I to a complete intersection. 

We denote the blowing up Proj(e In) of R with center I 

by stIeR) • First we need an auxiliary result. 
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LEMMA 4.3: Let I be a complete intersection in the 

local ring (R,M) , and let R, be a local ring obtained 

by blowing up R with center I . If R1 corresponds to 

a closed point of Btl (R} , then dim R, = dim R . 

PROOF: We note that in general we have dim R1 ;;;; dim R 

without any assumption on I . (This can be shown by using 

[13J, 14.c for the irreducible components of Spec R .) 

Case ht(I) = dim R , i.e. I is generated by a sr:~em of ad] 

parameters a 1, ••• ,ad of R. We may assume R, = a-,""'~ N 

[
a 2 ad] for some maximal ideal N of R' = R --, ••• ,-- • Now, by a, a, 

the analytic independence of systems of parameters, we have 

R'/MR' OtR/M[T2 , ••. ,T
d

] , showing that every maximal ideal 

in R'/MR' has height d - 1 • Since R,/a,R, is, up to 

nilpotent elements, a localization of R'/MR' at a ,maximal 

ideal, we conclude that dim R,/a 1R1 = d - 1 , and therefore 

dim R1 = d . 

GENERAL CASE: If I = (a
1

, ••• ,as ) , s = ht(I);;;; dim R I 

we extend a 1 , ••• ,as to a system of parameters a"""ad 

of R and we put I' = (a" ••• ,ad)R . We may assume that 

lR1 = a, R, • Let R" = 'R[a2 , ••• I :d] = R[a2 , .•• I a s ][aS +1 , ••• , ad] 
a 1 1 a 1 a, a 1 a 1 

and assume that Rl = R[~"'" :~ IN . Put N" = NR"f::l , ... ,:~ ~" 
and R2 = RN" . Then R2 corresponds to a closed point of 

B1I ,(R) and therefore dim R2 = dim R by the special case 

above. On the other hand R2 is obtained by blowing up 
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(a, ,as +1"" ,ad) in R, I and therefore dim R2 :;; dim R, ~ dim R , 

which concludes the proof. 

REMARK 4.4: Using Ratliff's well developed theory of 

quasi-unmixed rings one can show that the statement of the 

lemma is true for any equimultiple ideal in a quasi-unmixed 

local ring. 

THEOREM 4.5: Let (R,M) be a Buchsbaum local ring with 

depth R > 0 • If B£I (R) is Cohen-Macaulay for a complete 

intersection I of R such that 2 ~ ht (I) < d = dim R , 

then R is Cohen-Macaulay. 

PROOF: Let s = ht(I) and let a 1 , ••• ,ad be a system of 

parameters of R such that I = (a" ••• ,as)R . We put 

[a2 a 1 R' = R -, ••• ,~ , 
a 1 a, r2 a ) N = MR' + -, •.• ,....! R' , 

a 1 ai 

R, = RN 

Since dim R, = d by the lemma, we see that 
a 2 as 

a1'a1"",~/as+"""ad is a system of parameters of R, • 

Using the Buchsbaum property of R it is not difficult to 

see that 
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where K = a
1

R + «a
2

, ••• ,as ) 

also 

a 1)R ' [6], and therefore 

Since was assumed to be Cohen-Macaulay and 

is part of a system of parameters of 

is Cohen-Macaulay. We consider the following exact sequence 

( 1 ) o ~ K/I ..,. R/I..,. R/K -+ 0 

Using again the Buchsbaum property of R one obtains 

(a2 , ••• , a ):M 0 
K/IC>! <a

2
, ••• ,!s) C>! HM{R/(a2 , ••• ,as» (2 ) , 

i.e. X/I is a vector space over R/M. From the sequence (1) 

and from the fact that R/K is Cohen-Macaulay we get: 

(3) for 0 ~ j < d-s 

and since dim K/I = 0 

(4) hj(R/I) = 0 for 0 < j < d-s 

From h j (R/xR) = h j (R) +h j +1 (R) (see [5], p. 494) we conclude 

by induction 

(5) for 0 ~ j < d-s 

and Similarly, together with (2), we have 

(6) 
s-1 

h O (K/l) = 1:: (5-1) h r (R) 
r=O r 

, 
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Putting j = 0 in (3) and (5) and comparing with {6} 

we obtain 

hj(R) = 0 for 0< j :;j s 

On the other hand, comparing (4) and (5) we also have 

hj(R) = 0 for s<j<d 

Finally hO (R) = 0 since depth R> 0 , and this completes 

the proof of the theorem. 

REMARK 4.6: Since depth R > 0 and R is Buchsbaum in the 

theorem 4.5, the ring R/H~ (R) Cot R is Buchsbaum. Hence 

B~H(R) = Proj(e Hn) is Cohen-Macaulay for H = (a1 , ••• ,ad ) 

by [6]; i.e. theorem 4.5 is indeed a special case of our 

question at the beginning of this section (for the pair of 

ideals I c H ). 
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