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0. Introduction

We know already that the moduli space of stable bundles on an algebraic curve is always an unira-

tional algebraic variety. In particular, there is no regular 2-form on it.

In the surface case the situation is more interesting. Ellingsrud showed that if the underlying surface

is the projective plane, then the moduli space, like in the curve case, is a unirational variety.

But this is not always true. For an abelian or K3 surface, which has an everywhere non-degenerate
2-form, Mukai [Muk] proved that the moduli space has also such a 2-form. This shows that if the

moduli space is compact, then it is an irrational variety.

In general we prove the following:

Theorem 1

Let X be an algebraic surface with a non-trivial regular 2-form and an ample divisor H = Kx + Hy
where Kx 1is the canonical divisor and Hy is an ample divisor on X. Given a line bundle L on X
and an integer k, let M (L, k) be a resolution of singularities of a compactification of the moduli
space of rank 2 H-stable bundles with the determinant bundle det = L and second Chern class
¢o = k, then there exists an integer ko such that for k > kg every irreducible component of

M (L,k) has a non-zero regular 2-form.

We remark that

1) There always exists a stable bundle with large second Chern class. ([Mar], [Gi3], [Ta]).

2) It is not very difficult to show that at least one irreducible component has a regular 2-form, but

in general the moduli space is not irreducible ([F]).

One has the following remarkable corollary:

Every irreducible component of the moduli space of rank 2 stable bundles with large second Chern

class on an algebraic surface with a non-trivial regular 2-form is an irrational variety.



The idea of proof for theorem 1 is the following:

We construct a subvariety V in Hilb'(X), the Hilbert scheme of 0-dimensional subschemes of the

length I, in X with the properties:

1) The codimension of V in Hilb'(X) is smaller than 1dim Hilb!(X).

2) There is a surjective rational map & : V — M(L,k) with fibres birational to some projective

space.

On the other hand, every regular 2-form on X induces a quasi-symplectic structure on Hilb'(X).
(see [Mum], [Be])

Because of 1), we get a non-trivial regular 2-form on V from the restriction of the above quasi-

symplectic structure to V, and this 2-form can be pushed down on 1\7I(L, k) using e.

The properties are a consequence of the following vanishing theorem of generic vector bundle form

the moduli space M(L,k).

Let O(D) be a line bundle on X, we define three subvarieties in the moduli space M(L,k) respect
to the twisting O(D) as:

M} ={[E} € M(L,k)|H'(E(D)) # 0}
M3 ={[E] € M(L, k)| H*(E(D + K)) # 0}
M5 :={[E)e M(L,k)|3pe X HYI,®ED))#0} ,

where I, is the ideal sheaf of all regular functions on X vanishing at p.

Suppose that [E] € M(L,k), we denote n is the smallest integer so that x(E(nyH)) > 1, the
Hirzebruch-Riemann-Roch-formula gives ny =~ \/k/H?2.

Theorem 2

Suppose that X has the non-negative Kodaira-dimension, then there exist two natural numbers
ko and mg depending only on the Chern classes of X, H and L so that for any k > ko and
m > mg the subvarieties M (1 < i < 3) respect to the twisting O(mnH) are proper in the
each component of the moduli space M(L,»k).

Remark

1) It is easy to see that for any [E] € M(L,k) H2(E(mnkH)) always vanishes.
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2) D. Gieseker [Gil] and M. Maruyama [Mar] proved that for each M (L, k) there exists a sufficiently
large integer n(L, k) so that

HY(E(nH))= H*(E(nH)) =0 ,

and E(nH) is generated by its global sections, V[E] € M(L,k), Vn > n(L,k). Our theorem 2 gives
an explicit smaller number n(L,k) for generic [E] € M(L, k).

Another interesting consequence of theorem 2, which we will just mention here without proof, is the

following:

Taking a fix choosed integer m (> mg) In theorem 2, then there exists an integer ko so that for any

integer k > kg

1) A generic curve C in the linear system |L + 2mnH| Is the degenerate curve of two linearly

independent sections of a stable vector bundle E(mnyH), [E]€ M(L,k).

2) Let CCIQ(E(mnkH)) be the subvariety of the ca(E(mny))— fold symmetric product C.,(E(mn, H))
parametrizing effective divisors of degree co(E(mnyH)) on C moving in a linear system of the
dimension at least 1. Then there exist some components of CCI,(E(mnk g)) So that whose generic

element is the zero locus of a section of E(mnyH).

3) M(L,k) has the correct dimension is equivalent to say that the components in Cc12(E(mnk H))

have the correct dimension, namely the Brill-Noether number +1.

Donaldson [D2] proved recently that M(0, k) has the correct dimension, if & is sufficiently large,

hence the above components have the correct dimension.

Finally, I wish to thank Rebecca Barlow for introducing me to the work of Mumford. By this work
I learned how to construct 2-form on a subvariety of Hilb!(X). I would like to express my gratitude

to Professor F. Hirzebruch, and to the support of the Max-Planck-Institut fiir Mathematik in Bonn.
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1. Varieties of 0-dimensional subschemes in the special position respect to a linear

system

Let X be a surface, |L| be a non-empty linear system and z be a 0-dimensional subscheme in X
with the length [

The linear subsystem |I, ® L| is regarded as all curves from |L| containing z.

Clearly, we have the inequality:

dim|I, ® L| > dim|L| -1

We say that z is in the general position respect to |L|, if the equality holds. Otherwise z is in the

special position. More precisely, we consider the restriction map

0 —— HY(I,®L) —— H(L) —— H*(0,® L)

Given a positive integer 7 with 0 < I —1n < h°(L), we define the subvariety V;, of 0-dimensional

subschemes in the special position respect to the linear system |L| of the special degree 1 as

V, i={z € Hilb"(X) |dim(r :. HY(L) - HY (O, @ L)) =1 —1n}

Of course, V, is a proper subvariety in Hilb'(X), but the interesting thing is to give an upper

bound of the dimension of V;,. We give some answers in following two lemmas:

Lemma 1.1

Let X be a surface, ¢ be the irregularity of X, and V; be the variety defined in the above, then

we have the inequality

dimV, <2l—n+g¢q

The proof of lemma 1.1 is more or less classical, but we need the following:

Lemma ( Iarrobino [I] )

Let Sym!(X) be the I-th symmetric product of the surface X, ( which is the parameter space of
all O-cycles in X of the length 1) and

Hilb'(X) —— Sym!(X)
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be the canonical resolution of the singularities of Sym'(X).

Suppose m(z) = nyz; + ... + nyz,, then the fibre 7~ 1(n(z)) has the dimension I — s.

Lemma (Clifford theorem in the surface case)

If Dy and D, are effective divisors in X, then

hO(Dl + D) > ho(Dl) + ho(Dz) -1

The proof of Cliffords theorem in the surface case is exactly same as in the curve case ([Gi2]), but

we can not find a reference, which gives a proof. So we would like to give following:

Proof of the lemma (Clifford theorem in the surface case)

Suppose that h%(D;) = 1, then it is clear that

R°(Dy + D3) > h%(D,) = h%(Dy) + h°(Dy) — 1

As for the case h°(D;) > 2.

Let |M| be the moving part of |D;|, then
ho(M) = Rr%(Dy)
and

R°(Dy + D3) > h®(M + D)

Let t1,...,tgr, be a base of H®(M) and sy, ...,sg, be a base of H(Ds).

Because |M| is free from fixed components, we may choose t; so that the zero locus of ¢; and the

zero locus of s; have non common components.

Suppose
ays1ty +azs1ta + ...+ ag, sitgr, = bosaty + bysaty + ... + szsttl ,

then

sit=11s



Because s; does not vanish along any component of the zero locus of ¢;, therefore, ¢ vanishes
along the above zero locus. We get ¢t = At;, s = Asy and bgsy + ... + br,sr, = Asi, hence

A=by=..=bgp, =0 and a; =...=agr, =0.

This means that the Ry + Ra — 1 sections sit;, 512, ..., s1tR,, Sat1, sat1, ..., Sr,t1 in HO(M+ D)

are linearly independent, in particular,

hO(M—i-Dg)ZRl +Ry—-1

The lemma is proved.

Proof of lemma 1.1

Consider the natural map

Hilb'(X) —— Sym!(X)
w w
z o 3 Lz

We may assume that m is constant for each z from V := V,. (In fact m is constant for z from

a Zariski open set of V.) The larrobino Lemma says:

(1.1) dimV < dimn(V)+1-~m

Let 2z, := z;+ ...+ 2, be the reduced subscheme of z, then the natural inclusion I, < I, induces

the following exact sequences

0 —— H(I, @ L) —— H%(L) —— H(0, ® L) —

0 —— H(L,, ®'L) —— H(L) —— HY(0,, ®L) —— ,

and we get

dim(r: H(L) —» HY(0,, ® L)) =:1—n, <1l—7n, VzeV

We see that 7(V) is embedded in the subvariety

(1.2) V :={z € Hilb™(X),|dim (r : H*(L) - H°(®, ® L)) =1 —1,}

H
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where Hilb(X), denotes the Zariski open set of Hilb(X) contains all reduced subschemes.

In particular, we have the estimate

dim#7(V) < dimV,

Consider the subvariety V,, at first we want to separate the fixed components of the linear subsystem

I, ® L|, 2 € V;.

Let F, be the fixed component of |I, ® L| (F, can be empty). If we move z in V,, then F, is
moved in a subvariety of the parameter space C of all curves in X with the bounded degree LH,

where H is an ample divisor.

We know that the local dimension of C at the point C has the following upper bound

dimC|c < dim [C] + ¢(X)

Suppose that there are m —n points {zp41,...,2m} of z, z € V,., which lie on F},.

It is clear that the number m — n is constant for all z from a Zariski open set of V.

Sum up the above disscusion, we define (locally) a morphism as
! ,
v —  Hilb™™"(X), xC

w w
214+ .+ 2m —— (Zng1+ o+ zZm, F3).

The image f(V;) lies in the subvariety

(1.3) {(z, C) € Hilb™ "(X), x C|z C C} ,

which has the dimension < (m —n)+ (h%(C) — 1+ ¢(X)) at the point (z, C).

We want to understand fibres of f. Let z=21 4+ ... + 2p + 2Zng1 + ... + 2m € V; with zp41,...,2m

lieing on F,, then we have the exact sequence

0— HL,4 4., ®(L—F,)) — H(I, @ L) =5 H°(I, ® L ® OF,) — ...,

where r is the restriction of sections from H°(I, ® L) to the curve F,, i is the multiplication of
sections from H°(I,, 4. ., ® (L — F,)) with the section from H%(I,,,,+.. .4z, ® F:), which has the
zero locus F, and the image i(H°(I;,+.. 42, ® (L — F;))) can be regarded as the subspace of all
sections from H°(I, ® L), which vanish along F,.
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Because F} is the fixed component of |I, ® L|, r is zero map, hence we have the isomorphism

(1.4) HLyt. 40, ® (L= F2)) —— HL ® L)

and the linear subsystem |I,, 4. 4., ® (L — F;)| has non more fixed components.

Let R =h%L) and R’ = h°(L — F;), from (1.4) and (1.2) we get

(1.5) ho(Ley gz, @ (L= F2)) = h(I; ® L) = R~ (I = n,),

and

dim(r: H*(L = F;) =H%(0;,4..42, ® (L - F3)))
=R +l-n,-R (<R)

n—(n+R+n,—R';I)

in—n' (n'20)

with the following restriction map

0— Ho(Iz1+.-.+zn ® (L -F))— HO(L -F)— H0(0z1+..-+zn ®(L - FZ)) —_— ...

After the above discussion we see easily that the fibre of f is embedded in the following subvariety

(1.6) FHf@) =

{z14 ...+ 2z, € Hilb*(X),|dim (r : H*(L - F,) = H*(O,,4. 42, @ (L= F,))=n -1}

with |L — F;| is free from the fixed component.

The number n can be zero. ( for examples if |L — F,| is composed with pencil or L — F, = Ox.)
In this case we have
dimV;|, = dim f(V;)|s(z) £ m + h°(F.) — 1+ ¢(X).
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Since R\ —(R—1+1n,) =0 from (1.4) and Clifford lemma, we obtain

dimV,|, <m+h%(F,)-14¢X)+R —R+1—1n,
=l+m=1 +¢(X) + (R°(F) + h%(L - F) = 1 - k°(L)
<l+m = 4 ¢(X).

From (1.1) and (1.2) we have

dimV < 20— 7, +¢(X) < 20~ 1+ ¢(X).

Now suppose n > 0. We want to bound the dimension of the fibre f-1.

We analyse carefully the fibre f~1f(2). The linear system |L — F,| is free from fixed components,

because its linear subsystem |I;,4. 4., ® (L — F3)| in (1.4) is already free from fixed components.
Let B be the set of base points of |L — F,|.

Suppose there are n — s points {z,41,...,2,} from z; + ...+ z, € f~1f(2), which lie in B. The

number n — s is constant for z; + ...z, from a Zariski open set of f~!f(z).

Because 2541,...,2, are base points of |L — F,|, the exact sequence:

0— HO(Iz1+.uzn ® (L - F;)) — HO(Iz1+.‘.+z. ®(L—F,))— H0(01.+1+-~+2n ®(L-F,)) — ..

induces the isomorphism

(1.7) HY(Lyt. 420 © (L= F3)) S H (L4, ® (L= F))

Compare (1.5), we obtain

dim (r : H'(L = F2) = H'(Osp4..42, ® (L~ ) = n =1,

in the restriction map

0— H(Ly4.t2, ® (L= F)) = BY(L = F;) S H*(Osy4.ts, ® (L= F2)) — .

Therefore, we may define the morphism as



b: f7lf(2) ={z € Hilb*(X \ B),|dim(r : HY(L - F,) = H°(O,,4. 4., ® (L = F,))) =n—17'}

w w
21+ ...+ 2z VAT N o P

Because the fibre of b lies in the set of the base points B which has dimension 0, hence b~! also

has dimension 0, and we have

(1.8) dim f=1f(z) = dimbf~1 f(2)

Now consider the regular map induced by the linear system |L — F,|
¢ R'-1
X\B —— P

¢ maps the points {z3,...,2,} to t different points {wy,...,w;}, and t is constant for each z1+...+z,

element of a Zariski open set of bf~1f(z).

Let H denote the hyperplane section of PR'=1, then ¢ induces the isomorphism by pull back

: ¢
(1.9) Hoi4..qw, @ H| —— |14 42, @ (L — F3)|

This shows, the points {w;,...,w;} span a proper subspace pr-n'-1 iy pR'-1,
¢ induces also a morphism of Hilbert schemes in the following way

bf‘lf(z) _‘#“‘—* {wcC Hilbt(PR"'l),.|w €HX\B),w= pg—n'—l}

w w
214+ ...tz — wy + ...+ wy

We see easily that the fibre of ¢. is contained in the following subvariety

¢ (w) Cc {z € Hilb* (X \ B); |z C ¢~ Y(w1)U...Ud Hw,), 2N Hwy) #0(1 <5 < 1)}

The dimension of ¢~1(w;), (1 < i <t) must be zero. Otherwise the linear subsystems

Lyt 4z, ® (L — F2)| € | Ly 4. 42, ® (L — F;)| would have some fixed components ¢~!(w;) from

(1.9) and (1.7), but the above second linear subsystem is free from fixed components from (1.4).

Therefore, we obtain
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dim¢;1=0

hence

(1.10) dimbf~1f(2) = dim@,bf 1 f(2)

The image ¢.bf 1f(z) can be described better more in the following way:
Suppose the first n — 5’ points {w1,...,wn—y'} of w, w € .bf 1f(2) span already the linear

1
subspace PP-7 1,

If we move w in a Zariski open set of ¢.bf1f(z), then the sum of its first n—7’' points is naturally

moved in a subvariety of the following variety:

{we Hilt®~" (PE-1), |w Cc (X \ B)} ,

and they span always a subspace of dimension n — 5’ — 1.

It means that we can (locally) define a morphism ” the projection to the first n — 7’ points”

$bf~1f(2) —— {w € Hilb* 7" (PF'~1), |w C ¢(X \ B)}
g t— wy + W+ Wn—gp!

The fibre of p is embedded in the following subvariety

P (p(w)) =
{p(w) + Wpegrgp1 + ...+ Wt € Hilbt(PRl—l)rl{wn_,,l+1, ...,wt} C ¢(X \ B) N Pg—q'—l} .
The dimension of the intersection ¢(X \ B)NP2~""~1 must be zero. Otherwise the linear subsystem
|I, ® H| in (1.9) would have a fixed component, whose pull back under ¢ is a fixed component in

the linear subsystems |I,, 4. 4+,, ® (L — F;)| & | L, 4. 42, ® (L — F)|, this is impossible.

Therefore, we obtain
dimp™t=0 ,
this implies

dim¢.bf =1 f(2) = dimpg.bf 1 £(2) < 2(n — )

From (1.10), (1.8) and (1.5) we get an upper bound of the fibre dimension
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dim f~1(f(2)) <2(n - 1)
<2n—-n" (7'2>0)
=2n—(n+R+n — R 1)
=n+1—n+h%(L-F,)-hr(L) ,

hence from (1.3) and Clifford lemma we obtain

dim V; |, =dim f(V;)|z) + dim f~1(f(2))
<(m—n)+h(F,) -1+ ¢(X)+n+1—n, +h°(L — F,) - h%(L)
Sm+1—77r+‘1(X)

Finally (1.2) and (1.1) follow the inequality

dimV <2l —n, + ¢(X) < 21— n+ ¢(X)

Lemma 1.1 is done.

Under some stronger conditions on L we have the following observation :

Suppose that L is ample line bundle and z is 0-dimensional subscheme of the length I. We look

at the exact sequence

0—~HI, ® (L+K)) = HY(O(L + K)) - H*(0, ® (L + K)) —
—SHY (L, ®(L+K))— H'(O(L+K))—0 ,

clearly, we have H!(O(L + K)) =0 from the Kodaira-vanishing theorem.

If we have some furthermore suitable assumptions for L so that A%(L + K) > [, then z is in the

special position respect to |L + K| if and only if H}(I, ® (L + K)) # 0.

Motivated by the above observation we have the following:

Lemma 1.2
Let X be a surface of the non-negative Kodaira dimension with canonical divisor K, and the

irregularity ¢. Suppose that L is an ample divisor in X with
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L? > 4l
and

6(L) ;== min{LC|allcurvesCC X} >4 ,

then the subvariety

Vi={ze Hit(X)|H(I, @ (L+ K)# 0}

has

dimV < 21— §(1)/4+q

The proof ot lemma 1.2 is a consequence of the Bogomolov T-stability theorem [Bo], [Reid] and the
technique due to I. Reider, M. Beltrametti, P. Francia and A. J. Sommese in the proof of vanishing
theorem of rank 1 torsion free sheaves [Reider], [BFS]. We have to use again Iarrobino lemma and

the following;:

Lemma ( Gieseker [Gi2] )

Let X be a surface of the non-negative Kodaira dimension, and D be a divisor in X with D? > 0,

whose linear system has non fixed components and non base points, then

2
R(D) < l—;— +2

Proof of lemma 1.2

It is clear that Eztl,(I, ® L,0) ~ H(I, ® (L + K))¥ has a constant positive dimension for all z

form a Zariski open set in V' by using the upper semi-continous theorem:.

Noting ampleness of L, we have always Extd (I, ® L,0) ~ H°(—L) = 0. This implies, there exists
a family of rank 2 torsion free sheaves £ on X x Vj so that £|x,, =: E;, comes from the following

extension:

0—O0 —FE, —ILQL—0

bl

with a non-trivial extension class in Emtb(]z ® L,0), where V{ is a little smaller open set in V. (

In claim 2.1 in 2.1 we give an exact proof of existence of such a family.)
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Let EYV be the bidual of E,, then EYV isrank 2 vector bundle, and the canonical map E, — EYY

induces the following commutative diagram:

0—0—E, —I,QL—0

T £

0—>O—>EZV——»I1'®L——>O ,

where 2’ is a subscheme of z. The inclusion ¢ defines the homomorphisms

¢ : Exth(I, ® L,0) —s Ezth(I, ® L,0)

which maps the extension class of the second exact sequence e’ to the non trivial extension class of

the first one. (see [Ty], prop.1.2 and lemma 1.2)
In particular, e’ # 0. This implies I,; # @, otherwise Exzt}(I,» ® L,0)~ H*(L+ K)¥ = 0.

The difference of the two lengthes ! — |2’| is just the length of the singularities locus of E,, and it
is a constant number ! — m for all z from a little smaller Zariski open set Vy of Vj.
Therefore the rk-2 bundles EYV, 2z € Vy have the same determinant bundle L and the second

Chern number |2| = m, and it forms a family of bundles. ( more exacly we should say, in some

smaller open set of Vj.)
Formally we also define a ”bidual ” map
vv
Vo —— Hilb™(X)

w w
z — 2

(1.11)

We want to understand better more the subvariety V V (V).

Look at the exact sequence:

0 —0O—EY —>LK®L—0

Because EYV is a rank 2 vector bundle and c?(EYY) = L? > 41 > 4m = 4¢3(EYY) > 0, from the
prop. (1.4) in [BFS] we get the following:

There exists a curve D,, in X, which contains the subscheme 2’ and satisfies the inequalities

(1.12) LD, —m< D% <LD,/2<m
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By using the Hodge index-theorem and the Gieseker lemma we have the following:

Claim

The linear system |D,s| has the dimension < m/2.

Proof

Suppose |M| be the moving part of |D,|, then

LM/2< LD, /2<m
from (1.12).
The Hodge index-theorm gives:

LiM?/4 < (LM)?/4 < m?

Since L?/4 > 1> m, we obtain M? < m.

Case 1

| M| is not composed with pencil.
Blow-up the base points of |M]|

c: X —X |

then the linear system of proper transformation |1TJ\ | has following properties:
1) IJ/W\ | is free from base points.

2)0 < M2 < M2,

3) |1\7 | and |[M| have the same dimension

Therefore, we can apply the Gieseker lemma and get:

hO(M) = hO(M) < M?/2+2< M?/24+2 <m/2 +2

Case 2

|M| is composed with pencil. (see [BPV] page 113-114)

There exists 1-dimensional algebraic system in X, whose generic element is a smooth irreducible
curve F, so that M is algebraic equivalent to [F' with dim|M| <.
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From the following inequalities

IFL=ML< D,yL<2?m, FL>4 ,

we obtain

dim|M| <1< m/2

The claim is done.

Now we want to bound dim V' by using the similar method in the proof of lemma 1.1.

Consider the canonical maps:

Hilb(X) ——  Sym!(X)
u U

(1.13) . Vo —— m(%)
w v
z —_— Z:=1 liz;

then we have

dimVy < dimm (Vo) +1—s

from the Iarrobino lemma. So we have to estimate dimm(Vp). It is easy to see that m(Vp) is

canonically embedded in Hilb*(X).

On the other hand we look at the bidual map (1.1), 2’ = VV (z) is a subscheme of 2. This follows
that under the map

T

Hilb™(X) —— Sym™(X)
v |V
VV (Vo) —— mm(VV(V0))

v w
2z — Z?:l Iz
we have
(1.14) {21, 2p} C {21,y 25}

16



<, (1<ig<n)

The prop. (1.4) and our claim just say that the points {z},...,z.} lie on the curve D, with
dim|D,:| < m/2. Therefore, m(V;) lies in the subvariety:

{zn+ ..+ 20+ .. 42, € Hilb*(X) {21, ..., 2} C C, C € Crmy2}

where C,,/, is the parameter space of all curves C' in X with dim|C| < m/2.

We see easily that the above subvariety has dimension < 2(s —n)+n+m/2 + ¢(X).

From (1.13) we get:

dim V, 523:1,- —s+(é(s—n)+n+m/2+q(X))

i=1

=m/2+q(X)+il,~+ 2’: li+(s—n)

i=1 i=n+1
n n n n s
=m/2+q(X) =Y L+ O U=-Y ) +2 b+ Y Li+(s—n)
i=1 i=1 i=1 i=1 t=n+1 .

Because m > LD,//2 > imin.{ LC |all curves C C X} =:§(L) in (1.12), 31, li=m,

1=1"%

U<k, (1<i<n)in (1.14) and §; > 1, (1 < i < s), the above last inequality implies:

dimVo <m/2+ q(X)—-m+2> Li+2 > &

i=1 i=n+1
=21 + q(X) - m/2
1
<2+ q(X) — 76(L)

Lemma 1.2 is proved.

17



2. Basic definitions, constructions and a vanishing theorem for generic rank 2 stable

bundles

The goal of this section is to show theorem 2. We give the outline of our proof as the following:

Let M(L,k) be the moduli space of rank 2 H-stable bundles with det = L and ¢ = k. By twisting
E with O(ngH) we may assume L is ample. This is nothing but because of some technique
reasons in the proof of lemma 2.1. We will often denote E(nH) by E(n), det(E(n)) by det(n),
and ca(E(n)) by ca(n). Suppose that nj is the smallest integer so that x(E(ngH)) > 1, the
Hirzebruch-Riemann-Roch-formula gives nj = \/W . If k is sufficiently large, then for any [E]
from M(L,k) the twisted bundle E(ngH) has at least one non-trivial section, this is because of
the Serre-duality and the stability of E.

A section of E(n) with 1-dimensional zero locus C is naturally regarded as a section of E(ny)(—C)

with the isolated zero locus z, and induces the exact sequence
(2.1, ) 0— 0 — E(ni)(-C) — I, @ (det(n) —2C) — 0

With another words we say, all elements [E] from M(L,k) come from the extensions of the rank 1

torsion-free sheaves I, ® (det(ni) — 2C) by the structure sheaf O.

So it is natural to study the moduli space FO of all extensions (2.1, n;). By standard arguments,

there exists a stratification of F?©.

FO= UFgmi
5

/B

Roughly say, the moduli space an comes from three contributions. The first part is the global
extension group Ezt} (I, ® (det(ni) —2C),0) (~ HY(I, ® (det(ni) + K —2C))Y =~ C") with the
fixed torsion-free sheaf I, ® (det(ny) — 2C).

The second part is the moduli space of all torsion-free sheaves I, ® (det(ny) — 2C) with the fixed
line bundle O(C), HC =6, and dim H(I, ® (det(nx) + K — 2C) = 5. This moduli space is the
following subvariety of Hilbl*l(X)

(2.2) Vini(C) := {z € Hilb*!(X)|dim H(I, ® (det(ny) + K — 2C)) =1}

And the third part is the irreducible component Ls; of the moduli space L5 of line bundles O(C)
with the degree HC = §, which is relatively smaller and has the bounded dimension < ¢(X).

In 2.1 we show that there exist two canonical morphisms in a obvious way
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0 (e.p)
Féyﬂ)'. —_— M(L,k) X ﬁ&li _— M(L,k) y

the fibre of the morphism (e,p) over ([£],O(C)) is identified with a Zariski open set of the global
sections space HY(E(n;)(—C)) via the block-map.

More deeply, we want to know that for which an,i, the image e(F 60,17,i) is a Zariski open set in

M(L, k). We analyse carefully the extension group Ezt}, (I, ® (det(ny) — 2C),0)
~ HY(I, ® (det(ni) + K — 2C))Y ~ C", and the variety Vs, ;(C).

Looking at the exact sequence

0 =H%0, ® (det(nk) + K — 2C))/r(H(det(nk) + K — 2C)) — H'(I, ® (det(ni) + K — 2C)) —
—H'(det(ny) + K —2C) =0

and by using the Riemann-Roch-theorem, the Hodge-index-theorem, and the Gieseker Lemma we

have an upper bound of h!(det(ni)+ K — 2C).

The quotient space

HYO, ® (det(ni) + K — 2C))/r(H(det(ny) + K — 2C)) ~ C"
just measures the special position of the subscheme 2 respect to the linear system |det(ni)+K—2C]|.

Our lemma 1.1 gives the upper bound

dim Vs 5,:(C) < 22| — 1’ + ¢(X).

We put all inequalities together and get in lemma 2.1 the following estimate

dim Fj ,, ;(C) < the virtual dimension of M(L, k) — cVkHC + dVk

where ¢ and d are some positive constants only depending on the Chern classes of X, H, and L.
This shows that '

There exist two constants kg and 6o only depending on Chern-classes of X, H and L so that for

any k > ko the variety (Js<s, €(Fy, ;) =t Mo(L, k) is a Zariski open and dense set in M(L, k). ‘

The result is expected. To get the extension (2.1, ni) for a generic element [E] from M(L,k) we
have to twist E with line bundle O(nxH—C), which is not very different to the line bundle O(nyH)

19



arising from the inequality E?:o ki (E(ng)) = x(E(ng)) > 1 from the Hirzebruch-Riemann-Roch-

formula.

Now we limit our attention to the subvarieties Vj,; (2.2). By Standard arguments we show in

lemma 2.2:

The subvarieties Vs, ;(C), 6 < 6y defined in (2.2) has the following upper bound of the codimen-
sion in Hilbl*l(X)

(2.3) COdimHnblzl(x)V&,ﬂ,i(C) < avk )
where d is a constant only depending on the Chern-classes of X, H and L.

Now we twist again E(n), [E] € Mo(L,k) with O((m — 1)nyH) and get the twisted exact

sequence from (2.1,n;)
(2.4) 0 - O((m-1)ny H+C—-K+K) — E(mny) — L,Q((m—1)nyH+det(ny)-C—K+K) — 0

where z € V;, ;(C) and HC < §.

We find two big but constant integers ko and mg so that for any k& > kg, m > my, and any curve C
in X with HC < éo the line bundles O((m—1)ny H+C—K) and O((m—1)n;H +det(ng)—C—K)
in (2.4) are both ample. Furthermore, the second line bundle also satisfies the coditions in lemma

1.2 namely, for z € Vs, ;(C)

[(m - V)niH + det(ny) — C — K] > 4|2|
and for any curve D in X.

[((m — 1)nH + det(ny) — C — K]D > 4hVk

where h is a constant bigger than the coefficient d in (2.3).

We look at the cohomology exact sequence induced by the exact sequence (2.4)

— HY((m=1)n H+C—K+K) — H'(E(mni)) = H*(I,®((m—1)ni H +det(ny)—C— K+ K)) — .

The ampleness of the line bundle O((m — 1)nxH + C — K) implies H!(E(mny)) is embedded in
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HY(I, ® (m — 1)niH + det(ny) — C — K + K)).

Therefore if H1(E(mny)) # 0, then the subscheme z in the above exact sequence must lie on the
following subvariety of Hilbl*l(X)

Vi={z€ Hib*(X)|HY(I, ® ((m — )nx H + det(n;) —C — K + K)) £ 0}

On the other hand, lemma 1.2 gives the lower bound of the codimension of V' in Hilbl*|(X)

codimH,-,b|.|(x)V > h\/ic- - q(X)

Hence from (2.3) we obtain

codimy, , ;(cyVeni(C)NV > (h— d)Vk — ¢(X) > 0

This shows that all bundles [E] from My(L,k) with H(E(mni) # 0 form a proper subvariety of

Moy(L, k). With similar arguments we prove also the rest statements in theorem 2.

2.1 We begin to exactly construct the moduli space F° of all extensions (2.1, ng). More generally,
suppose that n is a fixed integer so that for any element [E] € M(L,k) there exists the exact

sequence

{2.1,n) 0— 0 — E(n)(-C)— I, ®(det(n) —2C) -0 ,
where the subscheme z in (2.1) has the length

(2.5) A |z] = e2(n) + C? — det(n)C

The stability of E and effectivity of C give the following inequalities
(2.6) 0<é6:= HC < Hdet(n)/2

Let L5 (0 <6 < Hdet(n)/2) be the moduli space of all line bundles O(C) on X with at least one
non-trivial section and the fixed degree HC = 6. It is clear that L5 is a quasi-projective variety of

dimension < ¢(X). We have the decomposition of the irreducible components

Ls = U Ls,i
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We consider the product space Hilb"(X) x L5; with [; := ca(n) + C? — det(n)C, O(C) € Ls;.
There is a universal subscheme

Z%(X) Cc X x Hilb"(X)

flat of degree I; over Hilb"(X) so that for each locally noether scheme Z C X x T, whose direct

image p2.(0z) is a locally free Op-modul of rank I;, there exists exactly one morphism

f: T — Hilb"(X)

satisfying

Z = (1x x )" (25(X)

The ideal sheaf T of Z'(X) is just the universal ideal sheaf of all ideal sheaves, which defines
0-dimensional subschemes of the length I; in X (see [G&], page 19).

Let C be the universal line bundle on X x Ls;. From the projections ¢i, ¢2 and px

X x (Hilb%(X) x L5;) —s X x L5; —2s X

.|

X x Hilbh(X)

we get a family of sheaves I, ® (det(n) — 2C)

91 (Z) ® g3(px (det(n)) — 2C)

1

X x (Hilb'(X) x Ls3).

For a fixed integer 7 the subset

Vi = {(2,0(C)) € Hilb'{(X) x Ls,;| dim Exty (I, ® (det(n) — 2C),0) =5}

is a quasi-projective subvariety of Hilb'"(X) x Ls; from the upper semi-continuous theorem.

By taking an elemment (z,0(C)) € Vs, and an extension class e € Ezt}, (I, ® (det(n) — 2C),0),
we get a rank 2 torsion-free sheaf E with det(E) = L and c2(E) = k from the extension (2.1,n).

To get the moduli space of all such extensions is just glueing all elements (z, O(C), e) together.

More exactly, let us look at the subfamily
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91 (Z) ® ¢3(px (det(n)) — 2C)

1

X x V&),,’,'.

Because for any (z,0(C)) € Vs, the extension group Ext}, (I, ®(det(n)—2C), O) has the constant
dimension 7, the relative extension group Eztl (gi(Z) ® ¢5(p(det(n)) — 2C),0) respect to the
projection 7y : X x Vs, i — Vs ,.i is a rank 7 vector bundle Fj,; on Vs, :. We see that Fj, is
the moduli space of all extensions (2.1, n) with the fixed dates (6,7,¢). Furtheremore, we have the

following:

Claim 2.1

There exists a family of torsion-free sheaves £ on X X Fi, ;, so that the restriction &|(x :0(c)e)

is isomorphic to E(n)(—C) coming from the extension (2.1, n) with the extension class e.

The proof is a combination of the argument for the case n = 1 ( see [OV], page 366) and the
argument for the case I, ~ O ( see [NR], page 19, prop. 3.1).

Proof

By [BPS], page 137 there exists a spectral sequence
HP (Bt} (41(Z) ® ¢3(px (det(n)) — 2C),  (Fgly i)

= Bztgld . (61(T) @ g3 (P (det(n) — 20), 7y (F3y )

Oxx s,y

Because for any (z,0(C)) € V;,ni noting (2C — det(n))H < 0 we have

Eztd (I, @ (det(n) — 2C),0) ~ H°(O(2C — det(n)) =0 ,

therefore Extd (¢} (Z)®4¢3(p% (det(n))-2C), my (F},

.n,i)) = 0, hence from the above spectral sequence

we obtain the isomorphism

Eatb,,,. (4i(T) ® ¢}(px (det(n)) — 2¢), 7} (FYy )
(2.7) ~H(Extl, (¢}(2) ® 3 (P (det(n)) — 20), 7 (F, )

~H"(Fs,i ® F5ly3))

On the other hand, let

T: XX Fspi — X X Vsgi
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be the natural projection, then the composition of the base change morphism (see [BPS], page 137)

Eztg,,y,  (41(2) ® 63 (px (det(n)) — 2), mu(OxxFy, i)

Ve, n

— Bty p,  (77(¢1(T) ® 45 (px (det(n)) - 2C)), 7 (1 (Ox x Fs,,.:)))

>N
and the canonical morphism

T (Tu(OxxFs,pi)) = OXxFsp; = T (OxxVs,y.:)

gives the morphism

Ezty,,, (41(Z) ® 63 (px (det(n)) — 2€), mu(Ox xFs,5.:))

—Batp  (7(a1(T) ® g3 (Px (det(n)) — 20)), 7 (Ox xvi.p.)

Noting the inclusion 73 (Fy, ;) < mu(OxxFs,:) We get the morphism

Eath,,,, . (41(Z) ® a3 (P (det(n)) — 2€), 73 (FY,))

(2.8)
—Ezto,r, (1(41(Z) ® 65 (pX (det(n)) — 2)), 7* (Oxxvs,,,:))

The canonical element in H°(Fj4; ® Fy, ;) gives rise to an element in

Emt‘lvxxf‘a,.,,a (m(¢1(T) ® g3 (px (det(n)) — 2C)), 7*(Oxx Vs, ;) Via the ismorphism (2.7) and the mor-

phism (2.8). Finally, the extension &

0 — 7" (Oxxve,,:) = € = 7°(41(Z) ® g5 (Px (det(n)) — 2C)) — 0

corresponding the above extension class is exactly as required in our claim. Claim 2.1 is done.

Because ”locally free” and ” H-stable” are both open conditions in the parameter space of a fam--
ily of torsion free sheaves, we get a Zariski open set Ft?,q,i C Fsq,i, so that all extensions with

(2, O(C), ) € FP, ; are H-stable vector bundles.

The universal extension £ induces a morphism

e: Fg,;— M(L,k)

In fact, e is just the correspondence:

(z, 0(C), e) — [E] ,

24



where E comes from the extension (2.1, n) with the extension class e.

The projection p: Hilb"(X) x Ls; — Ls; induces the following morphisms:

6,n,4
5
"1 B
0 14
%,'],i £6"

(2.9)

D MLk x Lo

b

M(L,k).

0
Fmi

We describe fibres of the morphism (e, p) in the following way:

Given an element ([E], O(C)) € (e, p)(Fg, ), then E has the representation (2.1,n).

Let H°(E(n)(—C))° be the set of all sections in H°(E(n)(—C)) with isolated zero locus, which is
a non-empty Zariski open set, because the above extension just gives such a section.

Suppose that s is a section from the above Zariski open set, then s induces the exact sequence

(2.1, n) with the zero locus z of s and the extension class e.

‘We compare the block-map defined in [T], and define the generalized block-map simply as:
H(B(n)(-C)° ——  Ff,,

w w

s — (2,0(C),¢)

It is easy to see that the image p(HC(E(n)(—C))°) is eaxctly the fibre (e, )" ([E], O(C)).

Becuase E(n)(—C) is stable, hence is simple, it implies that ¢ is injective (see [T], lemma 2.3). In
particular, the fibre (e,$)~!([E]),O(C)) has the dimension h°(E(n)(=C)).

2.2 Now let ni be the smallest integer so that x(E(ni)) > 1, the Hirzebruch-Riemann-Roch-
formula and some calculations give ny = \/k/H? + ak~! + b, where a, b are numbers depending

on k but are bounded.

If k is sufficiently large, then H2(E(nt)) = 0 from the Serre duality and the stability of E, hence
H°(E(ny)) # 0, and we have the moduli space F° = J;, ; F§,; of all extensions (2.1, ny), which
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are H-stable and locally free. We want to know that for which FP ., the image e(Fy, ;) of the
morphism e in (2.9) is a Zariski open set in the moduli space M (L, k). This is the following:

Lemma 2.1

There exist positive integers ko, ¢ and d which depend only on the Chern classes of X, H and L

so that for any k > kg and any Fgﬂ’i we have

dimFy, ; < 4k — cVk6 + dvk.

We know thaig the moduli space M(L,k) has the dimension > 4k + constant . Lemma 2.1 just
means that generic [E] € M(L,k) come from the extension (2.1, ng) with the curve C of smaller
degree HC =6 <d/c+ 1 =: 6.

Proof

We look at the diagram (2.9). Since Ls; has bounded dimension < ¢(X), it is sufficient to show
that the dimension of the fibre 5~1(C) =: F{, ;(C) has the following upper bound

dimFp, /(C) < 4k — cVks + dVk
We analyes carefully the fibration
72 Fy, i(C) — p7(C) =: Vi 4(C)
The bace space V{, ;(C) is a Zariski open set in the subvariety
Vsni(C) =:{z € Hilb"(X)|h'(I, ® (det(nx) + K —2C)) =17} ,
with

l; = CQ(E(nk)) + 02 - dei(E(le))C

(2.10)
=nlH 4+ nyHL+k+C? - C(2n:H + L)

and the fibre m~1(z) is a Zariski open set in the global extension group
Ezt} (I, ® (det(ng) — 2C), 0) ~ HY(I, ® (det(ni) + K — 2C))V of the dimension 7.

So it 1s sufficient to estimate
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(2.11) dim Vs 4(C) + n < 4k — cVES + dVk

Applying the Riemann-Roch-theorem to the line bundle
O(det(ny)+ K —2C) ~O@2ntH+ L+ K —2C)
noting h2(det(ni) + K — 2C) = h%(2C — det(nx)) = 0, since (2C — det(nk))H < 0,
we get
R%(det(nk) + K — 2C) — h'(det(ny) +. K -2C)
=x(0) + %[(211;;1{ +L+K-2C)’ - (2nH + L+ K —2C)K]

1
=x(0) + 5L(L+ K) + 2n2H? + n H2L + K) — CK + 2[C? — C(2n:H + L)]
We replace the last term 2{C% — C(2ny H + L)] in the last equality by (2.10) and get

R°(det(ny) + K — 2C) — h'(det(ni) + K — 2C)
(2.12) 1
=2l — 2% — CK +neHK +x(0) + 5L(L + K)

We relate the dimension 7 = h!(I, ® (det(n;)+ K —2C)) with the degree n” of the special position
of the scheme 2 respect to the linear system |det(n;) + K — 2C| by the following exact sequence

0 — HO(I, ® (det(ng) + K — 2C)) — H (det(ni) + K — 2C) —
(2.13) — HY%0, ® (det(ng) + K — 2C)) — H(I, ® (det(n) + K -2C)) —
— H(det(ng)+ K —2C) =0,  2€ Vi

We have two cases:
1) ho(det(nk) + K — 20) <.

2) ho(det(nk) + K — 2C) > ;.
As for the first case. Suppose in the exact sequence (2.13) we have

dim {r : H(det(ni) + K — 2C)) — H%(0, ® (det(ny) + K — 2C))}
=h%(det(ni) + K — 2C) — 7/
(2.14)
=l; — (I; — R%(det(ny) + K — 2C) +7")
=Ii _ T[" ,

27



here 7/ and %" are non-negative integers, then from (2.13) and (2.12) we get the relations bewteen

n,n' and n”

n =h!(I, ® (det(ni) + K — 2C))
=l; — (h°(det(ng) + K — 2C)) — 1') + h*(det(nx) + K — 2C)
(2.15) =l; — (h°(det(ng) + K — 2C) — n')
+ hO(det(ng) + K — 2C) + 2k — 2% + CK — ny HK — x(0) = L(L + K)/2
=2k —l;+ 7'+ CK —nyHK — x(O) — L(L + K)/2

On the other hand, from (2.14) we see that V;, i(C) lies on the following subvariety

{z € Hilb"(X) |dim {r : H(det(ng) + K —2C) — H°(O, ® (det(ng) + K —2C)} = — 0"}

If o >0, then 7 > 0 and !; — 5" < h%(det(ni) + K — 2C). The above subvariety is just defined

in lemma 1.1, hence we obtain

dim Vs 5,:(C) <2l — 0" + ¢(X)
(2.16) =2l; — (I; — R%(det(nz) + K — 2C) + 7') + ¢(X)
<2 — 7' +q(X) (I — hO(det(ni) + K — 2C) > 0)

If n’ =0, we have automatically the last estimate.

Hence from (2.15) and (2.16) we get

(2.17) N+ dim Vs ,4(C) < 2k + (I + CK) = n HK — x(0) — L(L + K)/2 + ¢(X)

To bound the term I; + CK in (2.17).
Since CH < det(nx)H/2 =nyxH? + LH/2,

the Hodge- index-theorem gives

CH)(CH) LH

02 S ( T2 S (nk + m)CH

Noting H = K + Hy, we have simply

CK =C(H - Hy) <CH
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Combining the above two inequalities we obtain

L+ CK =nlH*4+k+nHL - C(2ntH + L)+ C* + CK
LH
<niH®4k+nHL —C(2npH + L) + (ni + m)CH +CH
LH

=nfH?+k+n HL — (n — 5z ~ VCH -CL

<niH?+k+nHL— (ny, — % ~1)CH (CL>0) |,

and from (2.17) noting nx = /k/H? + ak~! 4+ b, we find positive integers ko, ¢ and d depending
only on the Chern classes of X, H and L so that if k > kg, then

1+ dim Vs, :(C) < 4k — cVECH + dVk

We have proved (2.11) for case 1.

To case 2. Suppose in the exact sequence (2.13) we have
dim {r : H(det(n) + K — 2C)) — H%(O, ® (det(nz) + K — 2C))}
zli - ’7' ’
where 7’ is a non-negative integer. Then the exact sequence (2.13) gives

n =hY(I, ® (det(ny) + K — 2C))

(2.18)
=h'(det(ny) + K — 2C) + 7/

Similar as in the first case Vs, i(C) is embedded in the subvariety

{z € Hib"(X) |dim {r : (H°(det(ni) + K — 2C)) — H°(O, ® (det(nx) + K —2C)} =i — 7'}

In this case we have always l; — n/ < l; < h%(det(ni) + K — 2C). If o' > 0, then applying lemma

1.1 again we get

dim Vj,,4(C) < 2l; — 0’ + ¢(X)

If n” =0, we have trivially the above inequality.
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Using (2.18) and (2.12) we obtain

7+ dim Vg,,,,,'(C)
(2.19) <2l; + hl(det(ni) + K — 2C) + ¢(X)
=2k + (h%(det(nk) + K —2C) + KC) —ni HK — x(0) — L(L + K) /2 + ¢(X)

We have to bound the term h%(det(ni) + K — 2C) + KC in (2.19)
Let |M| be the moving part of the linear system |det(n;) + K — 2C)|.

If |[M] is not composed with pencil, we can apply the Gieseker lemma same as in the proof of lemma

1.2 and obtain:

h®(det(ni) + K — 2C) = h°(M) < M?/2 +2

Using the Hodge-index-theorem again we have a upper bound of M?/2

(MH)
2H?
(det(nk) + K — 2C)H)?
2H?
_ [20xH? — 2CH + (L + K)H)?
- 2H?

M?*/2 <

<l

2CH
H?2

=2niH? — 4n,CH + CH +dyCH + dyny + d3

<2niH? - 4n,CH + (2n; + ’;{—IZ)CH +diCH +dyng +ds (CH < niH> + LH/?)

LH

=2TL%H2 + (F

— 2nk)CH +diHC +dong +d3

where d; are some constants depending only on the Chern classes of H, L and K.

Noting CK < CH, the above two inequalities give

(2.20)  h%(det(ny) + K —2C) + CK < 2n2H? + (%—f +dy +1-2n)CH + +dzni + ds

If |M| is composed with pencil, then there exists a 1-dimensional algebraic system, whose generic
element F is a smooth irreducible curve so that M is algebraic equivalent to [F, and dim |M| <1

(see [BPV], page 113-114). [ is easy to bound as the following
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MH

| =——

FH
<MH
<(det(ni) + K — 2C)H
(2.21) =(2n:H+L+ K -2C)H
<2nyH? +d,
=2n2H? — 2nZH? 4 2n,CH — 2n,CH + 20, H? + d,4
<2niH? - 2n,CH + n,(2H? + LH) + d,
(2n,CH < 2n2H? + nLH)

Combine (2.20) and (2.21) we have always

R%(det(ny) + K —2C) + CK < 2niH? — dinyHC + dyny, + dy
and from (2.19) and ny = \/k/H2 + ak~! + b we find two constant ¢ and d so that
n+ dim Vs, (C) < 4k — cVEHC + dVk

for case 2.

Lemma 2.1 is completed.

We look at the diagram

P 0 ML) x Los —— M(L k)

|
Vi — Hilb"(X) x L5 ——  Ls;

2 A

Lemma 2.1 just says that the variety (J 5 e(Féon ;) is a Zariski open dense set in the moduli space
6- o i

M(L, k), where &y is a constant depending only on Chern classes of X, H and L.

Now we restrict our attention to the subvariety p~!(O(C)) =: V2, /(C) C Hilb"(X). More precisly,

we have the following:
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Lemma 2.2

There exist two constants ko and d so that for any k > ko and any 6 < §g if e(Fgﬂ’i) is a Zariski
open set in M(L,k), then

-+ codimp x)Viy i(C) < dVk

Proof

Under the assumption HC < 6y, and by standard arguments we show little later that

(2.22) dim Hilb' (X) < 4k + dyVk = dim M(L, k) + d,Vk + constant |,
and
(2.23) dim HO(E(m)(—=C)) > n— doVk, V[E] € e(F, ;)

On the other hand the fibre (e,p)"1([E],O(C)) is identified with a Zariski open set of
HO(E(nt)(=C)) via the block-map (see the end of 2.1), hence from (2.23) it holds

dime™! > dim (e, )"
>n—daVk
=dim7~! — dyvk

If dime(Fy, ;) = dimM(L,k), then

dim Fg, ; = dimM(L, k) + dime™?
> dim M (L, k) + 6 — doVk
=dimM(L, k) 4+ dim7~! — dyvVE

hence

dim ‘/6(,)7],1' =dim F&O’n"' — dim 7[_...1

> dim M (L, k) — dyvVk

Applying the sime-continuous theorem to the morphism p : Vé?n,i — p(Vé?n ,‘-) we get for any
O(C) € p(Von,i)
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dim Vg, ;(C) > dimVy, ; — dimp(Vy, ;)

> dim M(L, k) — d2Vk — ¢(X)

Finally from (2.22) we obtain

codimpgiyi(x)Van,i(C) < dVE .

Now we begin to prove (2.22) and (2.23).

It is well known that all curves C in X with the bounded degree HC < 6y form an algebraic
variety. This shows that for any such curve the numbers C?, KC and LC are bounded.

From (2.10) and noting ny = \/k/H2 + ak™! + b we get easily

dim Halb" (X) = 2i;
=2niH 4+ k+nHL+[C? — C(2niH + L))
<4k +dVE

Similar as the above, we find a positive integer ko so that for any & > k; and any curve C in
X with HC < 6y the line bundle O(det(n;) — 2C) is ample. Kodaira vanishing theorem gives
H'(det(nt) + K — 2C) = 0. Therefore from the exact sequence

0 — H°(I, ® (det(ni) + K — 2C)) — H°(det(ny) + K — 2C) —
— H%(0, ® (det(ni) + K — 2C)) — HY(I, ® (det(ni) + K — 2C)) — 0

we obtain

RO(I, ® (det(nk) + K — 2C))
=hY(I, ® (det(ni) + K — 2C)) + (h°(det(ni) + K — 2C) — I;)
=n+ (ho(det(nk) +K-2C)-1)

Noting (2.12), (2,10) and ny = \/k/H? + ak~! + b we get an upper bound

|R®(det(ni) + K — 2C) — 1]
=| -2k +1; —CK + i HK + x(0) + L(L + K) /2|
=|-2k+k+niH?+n HL+C? -~ C(2nkH + L) — CK + ni HK + x(0) + L(L 4+ K) /2|
<aiVk,
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hence
(2.24) RO(I, ® (det(ny) + K — 2C)) > n—a1Vk

We want to compare H°(I, ® (det(n;) + K — 2C)) and H(I, ® (det(ni) — 2C)). We take a fixed
choosed effective divisor D in X so that linear systems |D| and |D — K| are free from fixed

components and base points.
For each z € V2, ;(C) we find D € |D| and D' € |[D — K| so that zND=0=2ND".

Look at the following exact sequences

0 — H%(I, ® (det(ny) + K — D — 20)) — H°(I, ® (det(ny) + K — 2C)) —
— H°(O(D) ® (det(ng) + K — 2C)) — ...

and
0 — H(I, ® (det(ny) + K — D —2C)) — H(I, ® (det(n;) — 2C)) —

— HY(O(D') ® (det(ni) —2C)) — ...
From the first exact sequence and (2.24), noting the Clifford theorem in the curve case
R°(O(D) ® (det(ni) + K —2C))
g%(det(nk) + K -2C)D

SG'Z\/E )

we obtain

R%(I, ® (det(ni) + K — D — 2C))
>h%(I, ® (det(ng) + K — 2C)) — (azVk)

>n— (a1 + az)\/E )

hence from the second sequence we get immediately

RO(I, ® (det(ny) — 2C)) > n — (a1 + ax)Vk

Finally from the exact sequence

0 — O — E(n)(-C) — I, @ (det(ng) — 2C)) — 0
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we have

BO(B(ni)(=C)) > K(I, ® (det(ni) — 2C)) — K*(0)
> n— (a1 + a2)Vk — ¢(X)

>n—dyVk

lemma 2.2 is proved.

By taking a line bundle O(D) on X we define three subvarieties in the moduli space M(L,k)
respect to the twisting O(D) as the following:

M} ={[E] € M(L,k)|H'(E(D)) #0}
M; ={[E] € M(L,k)|H'(E(D + K)) # 0}
M2 ={[E)€ M(L,k)|3pe X HI,® E(D)) #0}

‘We have the main theorem in this section:

Theorem 2

Let ni(~ /k/H?) be the smallest number so that x(E(ng)) > 1, then there exist two positive
integers ko and mg so that for any k > ko and any m > myg the subvarieties M{, M3, and M3

‘respect to the twisting O(mnyH) are proper in the each component of the moduli space M(L,k).

Proof

We prove at first the statement for M;, and will see later that the rest cases are easily reduced to

this case. We consider little more general situation:

Suppose ¢ is fix choosed positive integer, then there exist two positive integers ky and mi so that
for any integers k > ki, m > m; and —c < n < c the subvariety M; respect to the twisting
O(m(ny + n)H) is proper in M(L,k).

Because all curves C' in X with the bounded degree HC < éy form an algebraic variety and
ny = \/k/H? + ak~! + b, we may find two positive integers ky and mg so that for any integers

k> ko, m > mp, —c < n < c and any curve C in X with HC < 6y the line bundles
O({((m — )ng + mn)H + C — K) and O(det(ng) + ((m — 1)ng + mn)H — C — K) are ample.
Furtheremore, noting I; = n2 H2 4+ nyHL +k + C? — C(2nH + L) we may assume ko and mq are

big enough so that the second bundle satisfies the conditions in lemma 1.2 namely,
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[det(ng) + ((m — Dng + mn)H — C — K)]? > 41,

and for any curve D in X it holds

[det(ng) + ((m — 1)ng + mn)H — C — K|D > 4hVk,

here h is an integer biger then the coefficient d in lemma 2.2.

We look at the Zariski-open dence set | J 32 e(Fg, ;) in M(L,k) from lemma 2.1. So it is sufficient
=%
to show that for any Zariski-open set e(Fg, ;) the intersection M} Ne(Fy, ;) is a proper subvariety.

Let F?_. be such a variety, we consider the following diagram
6,n,8 g diag

Fos o M(L, k) x Lsi — M(L, k)
I 4
Vini —— Ls;

It is also enough to prove for each fibre §~1(O(C)) =: Fy, ;(C) the intersection M} Ne(Fy, (C))
is a proper subvariety in e(Fy, ,(C)).

Let [E] € e(F§,, ;(C)), we look at the following twisted cohomology exact sequence induced by (2.1)

— HY((m=1)ng+mn)H4+C—K+K) — HY(E(m)(ng+n)) = HY(I,@(det(ny)+((m—1)ng+mn) H—C~K+K) —

The Kodaira vanishing theorem gives H!((mni + mn)H + C) = 0. If the [E] € M{ Nne(F3, (C)),
then from the above exact sequence we see that the subvariety me~!(M; Ne(F3, .(C)) C VP, (C)

C Hilb'i(X) lies also on the subvariety

{z € Hilb"(X)| H (I, ® (det(ni) + (m — Vng + mn)H —C) #0}

which is exactly defined in lemma 1.2.

Therefore we obtain

COdimH;‘zb'e(x)We_l(Mf n e(Fgm,-(C)) > bk - ¢(X)

By using lemma 2.2 we get

codimys (cyme™ (M} Ne(F], (C)) 2 (h— d)Vk - g(X)>0

Look at the pull back of 7, we have
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codimpp ‘,(C)e'l(Mf Ne(Fg, :(C)>0

hence

codim,(r, . (cyM; N e(Fg,”,»(C)) >0

The statement is proved for M. 1’ .

By the exactly same argument we also show that M3 is proper in M(L,k).

As for M3. We replace rank 2 H-stable bundle E, [E] € M(L,k) by rank 2 H-stable torsion-free
sheaf I, ® E, p€ X, [E] € M(L,k).

The bidual of I, ® E' is just E. This shows that I, ® By ~ I,, ® Ey iff I,, ~ I,,, and E; ~ E,,
hence the moduli space M'(L,k) of all such sheaves is isomorphic to M(L,k) x X. In particular
dimM'(L,k) = dim M (L, k) + 2.

For M'(L,k) we have the exactly same construction as (2.9)

0
6,n,8

NS

b4
V/O ———y AC&,;'

6n,8 )
FS D ML, k) x Lo,
\ l

M'(L,k)

Let nj be the smallest integer so that x(I, ® E(n},H)) > 1, it is easy to see that |n} — ng| is

constant.

By the same argument in lemma 2.1 we have the following estimate of the dimension for Fj5 ;

respect the twisting O(n} H)

dim F° ; < 4k — d'Vk + ¢ Vk

1’1)’

Hence we may take the Zariski open dense set M{(L,k) := U:’;’&‘ e(F3% ;) in M'(L,k) so that
N ",

(2.25) dili(L’k)(M'(L, k) \ M(’)(L, k)) 2 3

If e(F3) ;) is a Zariski open set in M'(L, k), we have also the same inequality as in lemma 2.2
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codimpzgy: (x) Vi, (C) > dVE
Taking a line bundle O(D) on X we define also a subvariety in M’(L, k) respect to the twisting

(D)

M ={[I, ®E|€ M'(L,k)|H' (I, ® E(D)) # 0}

Let ¢ be a fix choosed positive integer. By the same argument in the proof of lemma 2.3 for M7
we find two constants k3 and mjs so that for any k > k3, m > m3 and —c¢ < n < ¢ the subvariety

M7* respect to the twisting O(m(n}, + n)H) satisfies

COdimM‘S(L’k)M{Q n M(I)(L,k) Z 3

From (2.25) we get also

COdimM/(L,k)M{" n M'(L,k) >3

On the other hand the bidual I, ® E — (I, ® E)Y = E induces the projection

PMm M’(L’k) - M(L)k)

We see that the image par(M]®) is exactly M3 respect to the tiwsting O(m(n}, + n)H), and is a
proper subvariety, since dim M{* < dim M'(L,k) — 3 < dim M(L, k).

Finally if we take ko := max (k1, k2, k3) and mo := max(m;, mz, ms) and ¢ = |n — n}|, then
for any two integers k£ > ko and m > mg the subvarieties M7, 1< i< 3 respect to the twisting

O(mniH) are proper in M(L,k). Theorem 2 is proved.
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3. Regular 2-form on the moduli space of rank 2 stable bundles on an algebraic surface

In this section we are going to prove theorem 1.

By taking mj := mony in theorem 2 we have the Zariski open dense set M(L,k)\ U3_; M; in the
moduli space M(L,k). Let Fy, be the moduli space defined in 2.1 of all extensions (2.1,m}) with
C =0 and 7 = dim Eztl, (I, ® det(ni), ©®) = 1. Furthermore, suppose that e : Fp; — M(L,k) is
the morphism in (2.9), then we have simply the following:

Proposition 3.1

e(Fg,l) = M(L,k)\ U?:lMis

Proof

Let [E] € M(L,k)\ UL M}, then HY(I, ® E(my)) =0, Vp € X, and H(E(m)(K)) = 0.
The vanishing of the first cohomology group implies that E(my) is generated by its global sections.
Applying the Bertinis theorem to the map (see [GH2))

X — G(2, H*(E(mx))")

follows that the set of sections from H°(E(m;)) with the isolated zero locus is a non-empty Zariski

open set. Thus each section from the above set induces the exact sequence (2.1,m) with C =0

0— O — E(mg) — I, ® det(my) — 0

We twist the above exact sequence with canonical divisor K, hence get the cohomology exact

sequence

— HY(E(mi)(K)) = HY(I, ® (det(my) + K) —» H*(K) —

Because H(E(mi)(K)) =0, HY(I, ®(det(my)+K)) ~ Ext} (I, ®@det(my),0)Y #0 and HZ(K) ~
HO(0) ~ C, we have 5= dim Ezt}, (I, ® det(my),0) = 1.

This means that all vector bundles [E] € M(L,k)\U3_; M} come from the extensions (2.1,m) with
C=0and n=1, ie. e(Fg;)= M(L,k)\ U}, M. Proposition 3.1 is proved.
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We denote simply that F := Fg, and V := Vi~ In 2.1 we have constructed an universal extension
£ on X x F. Because any non-zero extension classes from Ezt},(I, ®det(my),0) ~C, z €V give
the isomorphic bundles E form the extensions (2.1,m;), hence it is easy to see that the universal
extension £ on X x (F' \ the zero section of F) can be pushed down on X x V. This is in fact the

construction of the universal extension in [OV], page 366. Therefore we get a morphism

e: V— M(Lk) ,

the image e(V) is the Zariski open dense set M(L,k) \ U, M}, the fibre e~!([E]) is identified
with the Zariski open set of the projective space P(H°(E(my))) via the block-map (see end of 2.1).

By taking the Zariski-close of V respect e(V) in Hilb'(X) respect in M(L,k), a compactification

of M(L,k) (for example, the Gieseker-compactification), we get a surjective rational map

e: V— M(Lk)

Let V; be an irreducible component of V and M; := E(V,—) be the irreducible component of M (L, k),
then we have the following lemma, perhaps shoud be called as the global block-map:

Lemma 3.2

There exists a finite rational map g¢ : J\//.T, — M; induced by a Galois-extension of the function field
K(M;) so that for the fibre-product V; X 51, 11/4\. =: V; we have the following diagram of rational

maps

P x M; Vi V; » Hilb'(X)
) kL
M, —— ,

where P is the projective space identified by P(H°(E(my))), and ¥ is a birational map.

Proof

We consider the fibration V; — M; we may find a subvariety S C V; of the dimmension = dim M;

and meeting generic fibre of V; — M; in n points.

By the exactly same argument ” Branched covering trick” in [BPV], page 43, theorem (18.3) for the

Pl.bundle case we have a finite rational map g : IT/I\,, — M; coming from a Galois-extension of the

function field K (M;)
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ya

L — X
- of

N

,\ Q

so that the pull back of S in the fibre-product space V; x i M; =: Vi splits into n subvarieties
g*(S) = 51+ ...+ Sy, each S; meets generic fibre of V; — M; in one point.

The fibre of V; — M; over [/\E] is the fibre of V; — M; over [E] via the map g : M; — M;, which
is the image @(PH°(E(my))°), E € [E] of the block-map ¢ : PHY(E(my))° — V;.

On the other hand, let V; := e~ }(M; N (M (L, k) \ US_, M}#)), then any bundle E,(m;) from the

extensions (2.1,my)

0—-0— E,(m;) > I, Qdet(m) -0, z€V;

has the global sections space of the constant dimension x(E(my)). Therefore the direct image p.(£)
of the universal bundle £ — X x V; under the projection p: X x V; — V; is a rank h°(E,(my))
vector bundle W; on V;.

Because S; and J\/J\, are birational, the pull back vector bundle g*(W;) on on S; induces a vector
bundle W; on a Zariski open set M C M;, the fibre of W; over [E] is identified with the fibre of
Wi over E via the map gé=: M? — V;, which is just H°(E(my)).

Let Wf’ denote the Zariski open set containing all sections with isolated zero locus. We define the

global block-map

—_~ ‘P -~
PW?) — V;

\

as following

(B, s) — ([Eﬁ{ 2),

where z is the zero locus of the section s of the bundle E(my). The map ¥ is well defined, and

similar as the local block map ¥ is an isomorphism.
Because the projective space bundle P(W,) is birational to the trivial projective space bundle

P x ]\ZO and M; \ J\/J\io is a proper subvariety of M;, we get the diagram (3.1). Lemma 3.2 is done.
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Let w be a non-zero regular 2-form on X, then w induces a regular 2-forme ¢ on Hilb'(X) in a
canonical way. If w is everywhere non zero, this is exactly the cases that X is either a K 3 surface
or an abelian surface, then Beauville [Be] proved ¢ is everywhere non-degenerate on Hilb'(X),
i.e. the skew-symmetric form ¢, on the tangent space T,(Hilb'(X)) defined by ¢ is everywhere

non-degenerate. In general we have the following statement:

Lemma 3.3
Let X be an algebraic surface, w be a regular 2-form on X with the zero locus (w),, and

Xo = X \ (w)o. Then the regular 2-form ¢ induced by w Iis everywhere non-degenerate on
Hilb'(Xo). '

The following proof is same as in the compact case, namely, if X is a K 3 surface or an abelian

surface ( see [B] ).

Proof

Let X! denote the set of I-tuples (z1,...,z;) with at most two z; s equal, the I- th symmetric group

¥; operates naturally on X!.

We have the canonical resolution of the singularities of Sym'(X). := X!/%,

X,
10
Hilb'(X), —— Sym'(X)..
The map 7 is easy to understand, the fibre over each 2z; + Z:.=3 z; 1is just identified with the
exceptional divisor E,, of the blowing-up X — X at the point zj,
and 7 is the blov‘;ing—up of DN Sym!(X), in Sym!(X)., where A = 0=%(D) is the diagonal of
X!

Noting AN X! is smooth of codimension 2 in X!, if
Ba(X)) —/ X.

denotes the blowing-up of X! along A, then we have the following diagram

Ba(X}) 7 y X1
\BA (XI /

o) ——  Xo

| e

Hlib’(Xo),.. _— Sym’(Xo)*

Hilb (X)), i } Sym!(X).,
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where p is a Galois-covering with %; ramified simply along the exceptional divisor E’ of 7.

From w we deduce a 2-form ¢ on X' by ¢ := Z:=1 P} (w), which is everywhere non degenerate

on X}, where p; : X' — X is the i-th projection.

The pull back 5*(¢) is invariant under the X;-action, thus descents a holomorphic 2-form ¢. on
Hilb! (X)., with p*(p.) = n*(¢).

Let ¢' and ¢l be the I-times wedge product of ¢ and ¢.

From the generalized Riemann-Hurwitz formular of canonical divisor for branch covering, and the
formular of canonical divisor for blowing-up along a sub-manifold of codimension 2 (see [GH2], page

608), we have:

p* (div(pl)) =div(p* (¢')) — E'
=div(n*(¢")) — E'
=n*(div(¢')) + E' — E'
=n*(div(¢')).

Because ¢ is a symplectic structure on X|, thus

p* (div(pl | i (x0). ) = 1" (div(¢'|x0.) = 0,

this shows that ¢u.|ge(x,), is also a symplectic structure on H b (Xo)..
Because the subvariety Hilbl(X)\ Hilb'(X). has codimension > 2, by the Hartoges theorem ¢,

extends to a holomorphic 2-form ¢ on Hilb'(X).

We say di”(‘P1|Hilbl(xo)) = 0. Otherewise, it would be true
div(Pl i (x0).) = div(@ |mimi(xo).) > 0,

because the subvariety Hilb'(X,) \ Hilb'(Xo). has codimension > 2, it can not contain wholly
the divsor div(¢' |Frimi(x,))- But we know already, div(pl |Frimsi(x0).) = 0, this is a contradiction.

Lemme 3.3 is proved.

Remark

Mumford considered the restriction of ¢ to the little smaller Zariski open set H iy (Xo)r of all

reduced (-dimensional subschemes. ([Mu])
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Now theorem 1 is a direct consequence of theorem 2, lemma 3.2 and 3.3.
Proof of theorem 1

We consider the morphisms
; ——— Hilb'(X)

7
|
M;

where M; is an irreducible component of M(L,k) and & is a surjective rational map, the generic
fibre &~1([E)) is identified with PH®(E(my)) of the dimension x(E(my)) — 1 via the block-map.
Therefor we get

dim V; =dim M; + dime~?
> 4k + constant + x(E(mg)) — 1
> (4+ miH?)k + aVk+b
and
%dim Hilb'(X) =1
= Cz(E(mk))
<A +miHDE+dVE+Y

where a, b, a’ and b’ are some constants depending only on the Chern-classes of X, H, L and the

number mg in theorem 2. We see easily that if k is sufficently large, then

dimV; > %dim Hilb' (X)

On the other hand, let w be a non-zero regular 2-form on X, form lemma 3.3 w induces a regular
2-form ¢ on Hilb'(X), which defines a non-degenerate skew-symmetric form ¢, on the tangent
space Tp(Hilb'(X)), Vp € Hilb'(X \ (w)o). In particular, the maximal isotropic subspaces of ¢,

have the dimension .

We show that the intersection V; N Hilb'(X \ (w)o) =: Vio is a non empty open set by the following

simple argument:

Let [E] be a generic element M; N (M(L,k) \ U3_; M?), then E(m;) is generated by its global

sections. By using the Bertinis theorem again to the map

X — G(2, H°(E(m))Y)
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we may find a section s € H°(E(m;)) with isolated zero locus z such that z N (w)y = 0. It just
means that z € V; N Hilb' (X \ (w)o)

Let i be the the inclusion map of the smooth part Vp;, of Vp; in Hilb'(X,), then the restriction
i*(y) is not zero, since dim Voir > L Hilb'(X).

By taking resolutions of singularities of the varieties M;, V;, M;, and V; in the diagram (3.1) we

get

— ¥ ~
P x M! » V!

EN

9
M —

g

V; > Hilb'(X)
‘[a
M;.
Thus we obtain a non-zero 2-form *(p) on V;, hence a non-trivial 2-form ¥*g*i*() on P x 1\//.7{ .
The isomorphisms HO(I\/Z,-', Q?) — HO(P x J\’J\{, 0?) and ¥* : HO(P x @, Q?) — HU(IZ', Q?)

follow that ¥*g*i*(p) hence g*i*(yp) is pull back of a 2-form on M.

Because g*i*(y) is Gal(V//Vi)—invariant, therefore the above 2-form on M! is Gal(M!/M;)—

invariant, hence descends a non-trivial 2-form on M;. Theorem 1 is proved.
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