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Constrained Lagrangian submanifolds over singular constraining

varieties and discriminant varieties

by

Stanislaw Janeczko

Abstract. The notion of <constrained lagrangian submanifold

over regular constraining variety was introduced implicitely sy
Dirac [9l in his theory of generalized Hamiltonian dynamics.
Following Dirac, many authors [4],[17], {26} consider constrained
lagrangian submanifolds as the models for physical systems in
classical mechanics and field theory. Quite elementary exam-
ples from: variational calculus with bypassing of obstacle2];
geometrical approach to the thermodynamical phase transitions
(16] ; Kashiwara, Kawai, Pham theory of holonomic systems [22],
show that the constrained lagrangian subsets over singular con-
straining varieties play an important role in various theories
of mathematical physics. The aim of this paper is to give a
precise approach to constrained lagrangian varieties and indi-

cate their fundamental geometrical properties. We show that our

~notion of constrained lagrangian variety, restricted to the re-

gular strata of constraint, reduces to the standard co-normal
bundle notion. The homogeneous lagrangian varieties as the con-
strained lagrangian varieties over discriminant varieties were
investigated and classified. Some immediate consequences of
this classification for physical understanding of c¢lassical sys-
tems were established, especially for equilibrium of composite

systems. The notion of Morse family on manifold with boundary



was introduced and classification theorem for normal forms of
regular geometric interactions between holonomic components was
proved. We propose also the geometrical framework for the re-
cognition problem in the theory of constrained lagrangian varie-

ties some advantages of which can be directly applied.

1. Introduction.

Let (M,w) be a sympiectic manifold. Let KM be a subma-
nifold and let H: K —» IR be a differentiable function. The set
N = {weTM; Ty(W) €Ky <wWwAu,w> = - <u,di> for each ueTK

such that Zy(u) = 7,(w) |,

which is called a generalized Hamiltonian system in the symplectic
manifold (M,w) and was introduced by Dirac [9], is an example of
a constraineJ lagrangian submanifold in the symplectic space
(TM, &) - the tangent bundle with the canonical symplectic stru-
cture & = BndM, where B is the morphism of fibre bundles;
B: TM —» T'M, given by B(u) = 1uu3 anchM is the standard symplec-
‘tic form of the cotangent bundle T M. The constrained lagrangian
submanifolds (c.l1.s. for short) in some cotangent bundle, say
(T’Q,wb). with a constraint K which is a submanifold of Q, were
studied comprehensively in [25]. Many mechanical systems having
c.l.s. as a constitutive set were given in [26].

Let us give now an introductory éxamp1e, namely: wave
front evolution as a partial motivation for investigations of
c.l.s. with more general constraints, possibly exhibiting sin-
gularities.

Let @ be a configuration space {n-dimensional smooth mani-

fold) for some optical system (cf.{[14]). Let V, be a l-codim,



normally oriented submanifold of Q. We shall consider a c¢c.1.s.
LVo c T"Q (see (2.1)) as an initial wave front (usually the
submanifold Vo together with a choice of a positively oriented
co-normal‘e1ement T(x)e€ PT;Q at every point of Vo is taken as an
initial wave front [14]). The evo1utipn of the wave front is
determined by a one-parameter family of symplectic relations

(a symplectic relation is a certain lagrangian submanifold of
the product of two sympTectic manifolds, see also {4])

R, ¢ T"M = T™M,

t
such that the wave front at time t is given as an image of the
initial wave front ‘

L

= R, (Ly ).
v ity

t
Let us recall that the image of the subset Fc.P1 with respect
to the symplectic relation R ¢ (P; x Pz’“g“%' II'Jl), where “i:
Pyx Py — P, are the respective canonical projections, 1§ the
set R(F) = {pztePz; there exists pleF such that (pl,pz)e R} .
Infinitesemally Rt can be given by a homogeneous Hamilton fun-
ction H on T*Q - 0 (since the positive reals operate on T*Q -0
by multiplication in the fibres we can write H(%z) =‘RH(}) for
aHX?O.TeT”Q - 0), so Rt is defined by the flow

R, x (T*Q - 0) —» (T*Q - 0)
obtained by integrating the corresponding Hamiltonian field Xy -
We see that, for such flows, the mapping IQ°Rt:LVo — Q does
not depend on vELvor\ T;Q, so we get a map V_3x ——->“J“‘Q°Rt\vb(x),
the so-called ray map at time t (see([14]), which maps Vv, onto V..
We know that usually at some times ty the ray map will have
rank < dimQ - 1 and in these points th has singularities (see

Fig. below) and RtI(LV ) is a lagrangian submanifold defined over
()



Fig. 1.

a singular constraint th (see §2). If we consider, by extensin
the germ of Lvt at the singular point in the zero section of T'Q
then this germ itself is singular. The purpose of this paper is
to make precise the notion of c.l.s. over singular constraints
and to study their geometrical properties in some applications.

One of the motivations for our investigations comes from
the thermodynamics of phase transitions where the space of coexis-
tence states (coexistence of phases) turns out to be a c.1l.s.
over a singular constraint which represents a possibly very
complicated phase diagram (cf.[16),[17]).

The 'next important theory providing examples of sinqular
lagrangian varieties (and c.l.s.) is the theory of linear diffe-
rential systems (see(22], (18}, {19]1). A linear differential
system is a left coherent Dx-module, say M, where Dx is the sheaf
of differential operators of finite order with holomorphic coe-

fficients on a smooth complex analyti¢ manifold (X,c:x)



Remember that the characteristic variety of a differential

operator P = 2. ad(x)'aml'aix (a section of Dx in local coor-
%< m

dinates) of order m is the hypersurface V(P) of the cotangent

bundle T X defined by the principal symbol G(P) = 2 qx(x‘T ,
sl =m

which is a homogeneous function in coordinates ‘iz'(fl"°" n).
For the module of type"Dx/I (where I is a left ideal of finite
type in Dx) the characteristic variety V of the system DX/I is
defined by the principal symbols S(Pl),.... G(Pp) of the gene-
rators Pl....,Pp of I. The definition of the characteristic
variety of a general differential system M can be found in [22].
It appears that the characteristic variety of a system M is an
involutive subspace of T*X (cf. [21}). For maximally overdeter-
mined systems (called holonomic systems) dimV = dimX and V is
a homogeneous lagrangian subset of "X, Singularities of charac-
teristic varieties for holonomic systems have a special meaning
as corresponding to the correct generalization of integrable
connections (cf. [21] ,[22] ). One kind of singular system, for
which the characteristic variety V is a so-called regqular ané]y—
tic interaction, was considered in [20}, DQ] . As a main example
of such systems one can take the following system
(xoon ~X)Ju' =0
Dx1u = 0 . i =1,...,n.

In this paper we give the classification of normal forms of
characteristic (lagrangian) varieties for such systems.

In Section 2 we introduce the notion of constrained lagran-
gian submanifold over singular constraint and describe the geo-

metrical properties of such objects.



In Section 3 we show how to characterize the germs of
homogeneous lagrangian varieties by the special blowing-up
mappings and so-called prehomogeneous lagrangian submanifolds.
The local structure of such varities is investigated. The spe-
cial case of such varieties in generalized Hamiltonian systems
is considered and the corresponding normal forms are indicated.

The work in Section 4 is the direct generalization of the
notion of homogeneous lagrangfan variety by means of the methods
of composite systems, introduced in geometrical foundations of
classical physics. While the facts obtained in this section
may be of some interest in their own right it seems to us that
the geometrical methods used to formulate them have independent
physical interest. Here, in terms of constrained lagrangian
varieties, we give the new formulation of the Gibbs phase rule
and indicate the geometrical structure of the spaces of coexis-
tence states. As an additional example of c.l.s. we give this
one which appears in open swallowtail construction by symplectic
triads.

In Section 5 we prove the classification theorem for gene-
ric pairs of the so-called regular geometric interactions and
by the generalization of the standard notion of Morse family
we write their polynomial normal forms. 1In Section 6 the recogni-
tion problem for germs of constrained lagrangian varieties is

formulated and some basic results are established.

2. Lagrangian varieties over singular constraints.

Let Q be a smooth manifold and L C T*Q be a lagrangian

submanifold of its cotangent bundle (for the basic definitions



see [1]). If ﬁQ(L)C K<Q, where K is a submanifold of Q and

?b is the cotangent bundle projection, then L is called a con-
strained lagrangian submanifold ( c.1l.s. for short) of T*Q

(cf. [17],{25]). 1In this paper we generalize the notion of c.l.s.
by allowing X to have singularities. At first we generalize

the notion of lagrangian submanifold itself by passing to thel
purely local objects.

Definition 2.1. Let N be (the germ of) a subset of T'Q endowed

with a stratification into smooth submanifolds, say N = U Ni'

N is called a lagrangian subset of T*Q if every stratum ;ilis an
isotropic submanifold of (T*Q,w') and d1mN1= dimQ for the non-
empty maximal strata of N.

Let N be a semialgebraic subset of T Q (see [11}). Then
N is a lagrangian subset of (T*Q,wb) if and only if the maximal
strata of some Whitney stratification of N are lagrangian (for
the necessary basics of real algebraic geometry see e.g. {11},
(6], [27]).

As we know ({25}, Proposition 3.1), any c.l.s. L over a
nonsingular constraint K€Q can be described, using a smooth
function F on K, in the following way
(2.1) Ly F™ {peT*q; Xy(p) €K and <u,p> = < u,dF > for

each ueTKCTQ such that Ty(u) = %’Q(p)} .
Now we generalize this notion by taking more general constraints K.

Proposition 2.2. Let K be a semialgebraic subset of Q and F:

Q —» IR a smooth function. Let {K?}iel be maximal strata of

some Whitney stratification of K. The set

LK’F={|§E T*Q; (§) T(p) € KY and Cu,p> = <u,dF > for each
ueTK?C:TQ such that'Tb(u)=Wb(p) or (11) xb(p)=yE:Yc

- n
K 1‘EJIK1, pe[dF(y)} + Vy} ,



where Vy =-21:Vy’i ’ V‘y’1 ={PETyQ;<u.p>=0 for each ue "

Tim T K?(:T Q, where ye:K? k js a lagrangian subset of
Kiaqwy 977

(1T7Q,07,).

Proof. The canonical strata of L » Lon , defined as in
K.,F K1,F :

(2.1) are lagrangian (cf.[25], Proposition 3.1). It is easy

to check that the stratum T; F ={_pe T*Q; y =‘1b(p)e Y, p¢€

{dF(y)} + Vy}<:tK,F js contained in Ly £ which is lagrangian.

Here the submanifold Y is a stratum of K - U K?. So the stra-

~ iel -
tum LY.F{ as a submanifold of LY.F » 1s isotropic in (T Q,Ub).

Remark 2.3. (1) The function F appearing in (2.2) can be taken,

in the more general situation, to_be smooth only on the indivi-
dual strata of K. This is the case for the singular homogeneous
lagrangian sets introduced in the next sections. |

(i1) We easily see that, in a neighbourhood of any point of K,
IK.F can be described in the following form

K
aF , |
Py = 3q,(9)* El?*je”(q) L 4= 1,....dimQ, NER,

(2.3)
qe€K,

for some smooth functions eij'

Moreover, if q €K - singk we can take,
a2
e;4(q) ’aq1gj(Q)
in a neighbourhood of G, where {g;} are defining functions for

the germ (K,q)

2

Example 2.4. Let Q =IR™ and let K be defined by one of the equa-

tion--
a) g(x,y) = x% - y3 = 0, or

b) g(x,y) = x% - y% = 0.
In both cases 0 is an isolated singular point of K, but the di-



*
mensions of the respective singular fibres LRO} F - TOIR2 for
these two cases, are different (no matter what F is), namely
1 2 .3 1 2_ .3
a) K1= { Xx"=y“= 0, x<,0} ’ K2 = {_x -y = 0, x> 03 and V{O},1=
= V{O} 9 s thus LK F is described by the equations
px =,‘§—£(X..Y) +‘ 2>\xs

_RFE - 2
Py = ay(Xsy) 3Ny S, NER,

y
if 1 1
(x..‘/)€ KIUKZ’ or

Px’g‘{'(x’.\’) + N ’

- °F
y oy

if (x,y) = 0 (cf. Fig. 1.).

p (Xs¥) » NER

b) In this case we have V{0}= {(1.1), (-1,1)} y SO we can

write

P, = %—i(x.y) + N

p.= %g(x.y) $REa DopER, (xhy) = 0

and for (x,y)€ K, (x,y)#0 we have the standard representation
formula (2.3) (see e.g. Fig. 2.)

Fig. 2.
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It is also very easy to see that the initial data for
the wave front evolution (as in the Introduction) in a neigh-
bourhood of a singular point of a wave front form a singular

constrained lagrangian subset as introduced in Proposition 2.2.

3. Germs of homogeneous lagrangian varieties.

Let X, X be open subsets of Rp+1 containing zero. We
consider the following map
X 2 X —= Xy A (X)=F s N (R) = &y 1= 1,...,p
(the 21 can be interpreted as densities, or one can look at X
as a chart in a blowing-up construction).

Definftion 3.1. A germ of a lagrangian submanifold (I.(i;.O)) <

X% generated by a smooth function-germ F(X) = iof(il,....ip)

is called a regular, prehomogeneous lagrangian submanifold.

Proposition 3.2. let % # 0. Then (T*W(L).(0;X,,0)) s the

germ of the smooth homogeneous lagrangian submanifold given by

the following equations
yo= f(;lgoo. ) 2x1y1’ yj (X]"oo-’;p)’ j=1,¢o.’p
(3.1)

Xg= XoXys f=l,...,p.

If §;= 0 then (T’X&t),O) is the germ of the singular lagrangian
subset described by the following equations

. - P . - > N
yo=f(xl,...,xp)' ? X.iy.‘, Xo(yj' ﬁj(xl,...,xp))-o, j lgoco,p
(3.2)
x0

= io’ X;= xoxi, i=1,...,p.

Proof. We see that T'X can be written in the following form
Yoo Yo* %i‘iyi
TKX: yj= ;Oyj’ j = 1’---sps

Xg=Xg» X472 ;oii’ i=1,...,p.
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-~ . . . faf ~ -
Now taking L = {(y.x)e T°X: ¥ f(xl,...,x }s y1 3?1(x1"'°'xp)’
i=1,...,p } and substituting into the equations for T™X we

obtain immediately the equations (3.1) and (3.2).

Remark 3.3. A germ of a homogeneous lagrangian submanifold is

generated with respect to the canonical special symplectic
structure of T"X, by the germ at (i;,O) # 0 of a generating fun-
ction of the form

X1 XP
) z X f(- s e ey )-
p 0 X, Xy

The singular germ (T"X(L), 0) has no generating function with

G(xo.xl....,x

respect to T*X. However with respect to the special symplectic
structure ot: T*X —» T"Y ; A {y,x) — (x,y) 1its generating family

can be written in the following form
(3.3) ??(yo,...,yp.> Npree e a A )= X (Fae )=y ZJ\.y1

Everywere, except zero, the germ of QF is the germ of a Morse
family (see [28]).

Corollary 3.4. Let (L,p) be the germ of a homogeneous lagran-

gian submanifold (h.1.s. for short) in T"X. There exists a spe-
cial symplectic structure ' on T*X, which is equivalent to «
(see Remark 3.3) and such that the generating family for the
h.l.s. germ '(L),x'(p)) has the form (3.3) (equivalence of spe-
cial symplectic structures means composition with symplectomor-
phisms preserving the fibre structure 'Y —» Y). Thus with
respect to some special symplectic structure&: T"X — T"X, which
respects the canonical action of the positive reals on the fibres
of T™X, the h.l.s. (L,p) can be written in the form:

(B(L).&(p)) = (T X(T).%(p)),

for some pre-h.l.s.'[ < (Tki,uy).
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We see that to (the germ of) any h.l.s. 1in T"X we can
associate the following map germ (cf.[22])

F: (RPxRP,0) — ¥
(3.4) _ . N 2% .
F(X,y) = (f(xl....,xp)- . xiyi. yl,...,yp).

Let us denote by CF the set of critical points of F and by
A?CtRp+1 the set of critical values of F (the discriminant of F)
Then we have immediately

Proposition 3.5. Any germ of a h.l.s. in T*X, has the structu-

re of a germ of a co-normal bundle (def. see e.g. [22])
(TZFY, P)

with respect to an appropriate special symplectic structure

®: T'X —= T7Y on T*X.

Remark 3.6. In the classical thermodynamics of phase transi-

tions the singular germ (T X(L),0) has an important meaning
(the point when the new coexisfing phase appears [16]). It is

easily seen that this germ has two components

p
* ~ - ~ o~
A = (]AFY. 0)=( {(x,¥;; X% Xo¥q» Youf(RpaenanXp)- 2; XY s
= — X Y ¥ v p
V4= 55, (F1oeeo%p) for (Rpa.. R )eR J )

: p
B~= ( {(X)y); Xo=0; x1=0’ 1=1'ooo,p’ y°=f(X1....,Xp)' Ziiyi
1
for (il»---’ip)E'Rp} ,0)=( { (x,y):y € ImageF, x=0} ,0),

which are lagrangian and intersect along AF'

It turns out that the homogeneous generalized Hamiltonian
systems (introduced in §1) prdvide the examples of simple
Darboux normal forms. In what follows we will engage in the
local analysis of such systems.

Let (S,w) be a symplectic manifold. Let DC:(T*S,wg) be

a h.l.s. (also singular in the previous sense). The correspon-
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ding generalized Hamiltonian system D'C(TS¢J) is defined (cf.
[9],[25]) by the morphism of fibre spaces B: TS — T'S, i.e.
w= 8"w and 0'= 871(D). We also D will call the generalized
Hamiltonian system.

Proposition 3.7. Normal forms for the generic germs of genera-

1ized Hamiltonian systems defined over a smooth hypersurface,
the cusp variety and the swallowtail variety are generated by
the following generating families
Hypersurface
(A) 6(Rg»a:P) =N Py
cusp
(A,) 6(Ng»N28:P)= Ao (N Npy+qy)
swallowtail
(K3) 6 19:0) = Ng(N+Xpy#hagepy),
where (S,w) is endowed with the Darboux form Ezgdpi’\dqi; wr

Proof. Let D be a germ of homogeneous generalized Hamiltonian
system. For the generic D by diffeomorphic change of variables
in S we can reduce the corresponding mapgerm (3.4) to one of
the standard normal forms (see (11}, {29]). For the first three
stable Whitney maps, by the standard method of reduction of
parameters (so-called stable equivalence [29)), we obtain the
three normal forms for the corresponding generating families as
in Proposition 3.7. However by such procedure the symplectic
form W is not longer in Darboux form. So we have to ask for
the normal form of «¥ with respect to the group of diffeomor-
phisms of S preserving the respective constraining varieties
(hypersurface, generalized cusp and generalized swallowtail{3]).

Here we can apply the following known result of Arnold ([3], The-
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orem 1 and Theorem 2, in the smooth case proved by Melrose):

if 8, &= { (a,P)€ S; py= 0}. A2= {(q’p)ész pi- qfn 0} ,

AS= [(q.p)e W x4+p1x2+q2x+p2 has a root' of order 2} , is one
of the constraining hypersurfaces mentioned in the proposition ,
then generically the symplectic form w can be reduced to the
Darboux normal form by é diffeomorphism preserving the respective
constraining variety A1. So we obtain mutually the symplectic
structure wand generalized Hamiltonian system D in the desired

normal form.

n
Remark 3.8. D' C (TS, 121.(61dqi- d,dpy)) is a Hamiltonian dyna-

mical system. Let us assume that n=2 then the one-parameter fami-
lies of integral curves of D' form the lagrangian varieties appea-
ring in the variational problem of bypassing of obstacle. 1In

the (33) - case these varieties are called open swallowtails

[3],[2] (see Fig. 3.)

4. Composite homogeneous systems.

A simple generalization of the preceding notions, useful in

describing the space of coexistence states in classical phase
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transitions (cf.[16], [17]), can be carried out by considering

the following control map,

k k . k k
(4.1) X : X —x L3250, i, 250

i=1 1 1 1 P
Now the prehomogeneous composite lagrangian submanifold tk -

k
n Tki1 is generated by the function
i=1

k
a(xt,.... 5% = 2xlexh,
i=1
for some smooth function f: X — R. The corresponding homo-
geneous lagrangian subset is obtained as an image Thi(tk).
A closed, composite homogeneous system is defined to be
a pair (L,D), where tk is a prehomogeneous compositek1agrangian
submanifold and D is a cgisotropic submanifold of [l T X

1 js1 1

defined by an equation 2. io = const. = ¢ £ 0. The motivation

i=l
for this terminology comes from the geometrical formalism of
classical thermodynamics (cf. [16], [25] ), namely we have,

Corollary 4.1. The space of equilibrium states ™ for a thermo-

dynamical closed system has the form

k

(4.2) x(7) ¢ TXD)/~n = TV,
where 7 = T*i(tkrYD), T*i(D)/aa is a canonical symplectic
manifold associated to the coisotropic submanifold T*i(D)C'T'X
(cf.[4]) and X is its characteristic projection.

Suppose given a germ of a homogeneous lagrangian subﬁét
in T°x (§3) such that the corresponding map-germ F is stable
(cf.[11] ). We can parametrize the set of critical points of F

by (21,....§p) = x. Thus we have a mapping

p
) = ya(f(3)- 5.2 (xy, & (x ELNE
(4.3)  g(X) = FICF(x) (F(X) Eﬁxi?fi(x)' TPAGLEREE Hp(x)).

We define:

(4.4) M.(9) = {XeCps #(g7H(a(R))) = r ),
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(the r-fold points in the source of g),
(4.5) M= U n r(9).

ry?2
Proposition 4.2. For any stable homogeneous lagrangian sub-

set in T"X, there exists Vv € IN such that for every k >V we have

. * ¥ =
Proof. Let us fix k€IN. Then for Tti(fk) we can write the
equations 0
f(xbys y e 2Ry,
i=1
N K 2
f(x") + iny-[-
i=l
~1 f =1
Xo(yl‘ ‘ﬁ}:(x ))=0|--o’ (,Yp' 3—1()( ))80
(B)
~k, - Af =k <k A =k
xo(yl- %-:;:k(x )):0,,.,’ xo(yp- :a-x:k(x ))-0
1 p
i .
=J
X = X%,
0 i ]
. k‘
x= 2 XJxd
j=1
('T)
.35 el
xp = xpxo.

In the case xO# 0, the equations (o), (B) can be rewritten in
the form

a3y = ...-q(x%y.

For stable F and a sufficiently small neighbourhood of zero U

max{#g (y)} = dm]RE’p/ J(f) =s<oeo , (cf. [6],011]) ,
ye
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where a;p is the ring of germs at zero of smooth functions
RP — 1R, and J(f) is its Jacobi ideal (generated by the germs
of the first-order partial derivatives of f). Thus obviously
"we can take Yy =s £ p+l.
Let us define

C= (M), Dy= 9(M(9)), (i3 2).
Then it is obvious, on the basis of equations (y) that if yef;
then T;YnT*i(Ek) is an i-dimensional vector subspace of T;Y.

It is easily seen that for the smooth stratum f} we have

yLéJr' TyYnT X(T,) = LF o0 (koY)

and this completes the proof.

The co-normal bundle over a semialgebraic set considered
in §3 (see [21],[22]) is not a constrained lagrangian subset in
our sense. These two notions coincide only on the nonsingular
strata of the constraint. The aim of this paper is to provide
a direct motivation for the use of the symplectic geometrical
notions even though they exhibit singularities.

Let us consider a closed system (e.g. in physics, a system
with a fixed number of particles or moles hs]). The correspon-
ding equilibrium state space is defined in Corollary 4.1. On
the basis of this corollary and Proposition 4.2 we have

Corollary 4.3. (i) %(1) = LU Ly, where Ly, L, are lagrangian

submanifolds in T7Y defined as follows
>f -
{(x.y)ET Y ¥y= 33 1(x), X = cxi, i=1,...,p, xie R },

L2® Lyr),e6.

Here > is the projection 3t:(y0,y1,...,yp) — (yl,.-..yp) and

the function G does not necessary extend to a smooth function
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on Y.
(11) If I' is a smodth submanifold of Y then Ly and L2 inter-
sect regularly (cf. [20)) (along the so-called binodal curve

in the two dimensional case [17], see Fig. 4, in the simpler case).

Yo

\ v TR | D
—————
(1)

*
T Y
y

1

Fig. 4.

(1ii) B = WY(CrYlLl U CKY|L2) is a full bifurcation diagram
for F (see e.g.(5]).
(iv) Gibbs phase rule [24]
The number of coexisting phases y < dim(T*YnLA 0 )
Yy F?

This is a symplectic version of the catastrophe-theoretic formu-
lation of the Gibbs phase rule

RS codimIRIu_lTo + 1

(introduced in [24] p.663). In our terms the analog of this
inequality 1s the following

v £ codim Co | + 1
N 'IY LZ

To be more precise we can formulate the following
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Proposition 4.4. Lz is a constrained lagrangian subset over

K =3C(") (the phase diagram {17} ) with a generating function

where K3y — X(y) 1is given by an isomorphism g on the smooth
connected components of M,

Proof. Immediate. on the basis of the elementary properties of
discriminant varieties (see e.g. [5], [24]) and Legendre transfor-

mation of generating functions (cf. [25]).

Remark 4.5. At every point of the phase diagram K for L, we

can write

*

2= = ~’ 1'=lgooc’
Y5 'Bxi(x) P

~k-1

~ o~k ~
xg2 (X4- x1)%1+...+ (X5 k

~k
= XA exy,

where g(X) = 9(X}) = ... = q(%%), %' # % when i £ j, and
7\ ae Morse parameters (cf. [28] ). Hence taking the basis vec-
tors |

v ko= kK, ves B R 4e 1,0 ke,
we obtain the Clapeyron-Clausius formula in completely general

form:

if w ETyK then  wl{v,vi,..ohvi 1}

which can be written also in the form appearing in handbooks

p
MR i?)gyj - 0

i
—

. * .

p
~k-1_ -k _
g;%(xj - xj)ayj- 0, Syj € R.

We give now the example of c.l.s. appearing in the varia-
tional probiem of bypassing of obstacle in Euclidean space.

In [2) (p. 45) the following notion was introduced
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Definition 4.6. A symplectic triad in the symplectic manifold

(P,w) is the triplet (H,L,1) which consists of a smooth hyper-
surface H in P and of a lagrangian manifold L &P tangent to H
with first order tangency along a lagrangian manifold hypersurface
1.

Let U be a domain on the hypersurface (obstacle) in R".
Let us consider a geodesic f1ow Y on U with the given initial
front. We consider the distance along the geodesics of U, to the .
initial front as a function s:U — IR, such that (vs)zn 1 on U.
Let us consider a smooth extension of s, say s: R" —R. Thus
we can define:

Ly,5 = {(x,p)ET*R"; xelU, <v,p> = <v,ds > for each

veT Uc TR" }

and hypersurface H:
H = [(x,p)ET*R"; \p?u 1 } .
Proposition 4.7. The triplet (ﬁ,LU E’E”LU E) is the symplectic

triad. It generates the variety of rays tangent to the geodesics
of our geodesic flow y'on u.
Proof. We see that LU,E (cf. (2.1)) forms the set of all exten-
sions of the l-forms ds from U to the whole ambient space. Thus
the hypersurface 1 = ﬁnLU’g Cly g consists all extensfons of ds
which are vanishing on the fibresmof normal bundle to U (because
of (Vs)2= 1) (see also [2], p.45); The first order tangency of
LU,E to H is easily seen.

The new class of singular lagrangian sets, so-called open
swallowtails (cf.[3]) is provided by this kind of symplectic
triads, namely the lagrangian variety generated by the triad is

the image of 1, say %(1), in the canonical symplectic manifold
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of characteristics of H.

Hierarchy of the generic singularities provided by the
symplectic triads is determined by the mutual positions of the
flow m' and ‘the 1ine of asymptotic points on the obstacle sur-
face U. Let us fix n=3. If the source point, say xoe U, of
the germ of geodesic flow tr,xo) is outside of the line of asym-
ptotic points on U then X(1) has no singularities. If (Y %q)
is transversal to the line of asymptotic points at Xq then the
corresponding germ of Y(1) has the cusp structure (described
conveniently in the appropriate space of polynomials [2}) i.e.
is the product of the usual cusp singularity and Euclidean space.
to the mentioned 1ine of asympto-

0
tic points (which happens generically in isolated points of this

If T-is not transversal in x

1ine) then (1) has a structure of open swallowtail (introdu-

ced in [3]), as in Fig.3.

5. 0n regular geometric interactions between holonomic com-

ponents.

In this section we consider all of the previously introdu-
ced objects in the complex analytic category. We will study ano-
ther example of a singular iagrangian subset which appeared in
the microlocal analysis of differential systems (cf. 18}, [22]).

On the basis of §3 we see that every homogeneous lagran-
gian subset of T*Y can be described locally by the following ge-
nerating family (see Remark 3.3)

(5.1) ?(yo,...,yp,ao,%l,..'.,’%mp NoB(May)s N =(Apsen ).

Thus we can use the formalism of generating families (see [28],
[29]) to classify normal forms for the regularly intersecting

homogeneous lagrangian (holonomic [21]}, [22], [19])) components.
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We say the the pair (LI'LZ) of h.1.s. is a regular geomet-
ric interaction (intersection [20]) if Llan is a submanifold
of'L2 of codimension 1 and for every point xé:Llﬁ L2 we have

T (Lnly) = T, LNAT L.

Let G: (AxY,0) — € be an anylytic function-germ. Let
,Aocj\ be a hypersurface of A, OGEAO. We can choose an appro-
priate coordinate system on A such that

A= { (AgsereeNs N =0] .
As we know from the standard theory of generating famflies for
Tagrangian submanifolds (see e.g. [28]), the minimal number m of
parameters for which all singularities of the described lagran-
gian submanifold can be generated in this way is greater than or
equal to p (see[28]). However if we also allow an arbitrary
hypersurface<AoC I\ as an eventual parameter space, we have to
increase the minimal dimension of /\ to p+l.

Definition 5.1. A function-germ G: (A xY,0) —» € is called a

Morse family on the manifold A with boundary 'Ab if in appro-

priate coordinates on /\ and Y we have

26 6 roven. 28 (0)s
%yo(O)#O. @7;1(0) 0: rry'j(o) 0. 1-€j$pt 1$1$p+1.
and
2 2
2°6 "G
rankiaes Ty (0 7 P

Proposition 5.2. Let G: (A xY,0) — £ be a Morse family on

a manifold with boundary. Then the pair (Ll'Lz) generated by
?ﬁ(y,%ofk) =%°G(%,y) and ?é(y.?b.i) n)bG(O,a,y) respectively
is a regular geometric interaction.

Proof. Taking into account the condition (0) # 0, we can

0

o1
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directly build up the corresponding analytic, nondegenerate
(see[21} ) map-germ on manifold ¢P*1.¢P with the boundary {>1=0}.
F: (eP*cP,0) — (¢P*,0)
FMAT) = (FON5).9)
The corresponding characteristic variety (see {20}, [21}) of this
mapping forms a regular geometric interaction. The corresponding
components of this variety are generated in the standard way
by the families qi, qg mentioned in the proposition,

By [20],[21]) we have a direct correspondence between gene-
rating families on manifolds with boundary and the corresponding
mappings associated to the holonomic components of an interaction.
Hence after straightforward calculations we obtain immediately

'Proposition 5.3. For a germ of a regular geometric interaction

(Ll,Lz) in T'Y there exists a Morse family ?7 on a manifold with
boundary generating the pair (LI’LZ)'

A1l properties of regqularly interacting pairs can be for-
mulated in the language of Morse families on manifolds with
boundary, which is especially convenient in the classification
of their local normal fornms. Following [20] , [29] we introduce
the notion of equivalence of Morse families,

Definition 5.4. Let Fp (v, N N =A G (Ay)s Fply, R N =X 6y (N,y)

be Morse families for the two geometric interactions. We say

that qi and '?é are equivalent iff there exists an isomorphism
(M) —=BLy)= (9N y) p(y))eeP eP, preserving A xeP*! and
such that

G (Xsy) = G(B(Ny)) +X(y),

where of € <yc2>’y1"“’yp>0'

_ p+ 2 .
phic function-germs on € and (yo,yl....,yp>@,p+1 is the
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ideal generated by yg,yl,...,yp).

Proposition 5.5. Let n £ 5. For a generic set of regularly

-

interacting pairs (VI'VZ) of lagrangian submanifolds of T

we can reduce the corresponding generating family @F in 2 neigh-
bourhood of any point of Vlnvz. using the equivalence and a de-
fined above standard reduction of parameters, to one of the
following normal forms:

ne?2

ﬁﬁ(yo’yl’%o’%l)’%o(%% y1'>\1+ Yo)

nh=3, additionally
F (300715920 M) =X ]+ Ny 121 yp4y,)
F (30091092 00 NN D AP #2540y 1#25947,)

n=4, additionally
F(Yos91920Y3:00:2) = (NIHY N HY A #Y 32 #0,)
F2oe¥15Y2093: 0002 2) 22 O #2547 Ny ATy A4y
Fyg0¥15¥2:¥3: 2 M 20 = X (A 4y Aty Ay A Nty )

n=5, additionally

F(Ygr 304 R M)A T ATy N2y D+ A+ )

Fly

?F(yo,...,y4,%o,%1,%2)=>b(ﬁg+8%2%§+?1(y)%§+y1%2+%1y2+y3)¥+

5 a8 A3 A2
o0 3 0 A M)A NN A4y Moty Doy N5 +Y 4 Dty )
+.V4'>\2’>\1+.y0)! £3=‘En 45"‘27‘-?%(0)#03
F(Fgreeoa¥gdg N A0 =N (X540 (Y)NEN 42T Ay +Aoy ,+ Moy o+
*NNY Y ) s t{ag(O) £,
F(Wgren oYM A NN )N (3405 (Y INNGHENT+ A N 4y Dby A

sy Ay ANty ), €326, 27624493 (0) 40,
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Proof. (an outline). Following {15}, [23)we can carry out the
classification of analytic function-germs on manifolds with

boundary and can immediately obtain their universal unfoldings.
Hence we obtain the c1assif1catﬁon of the corresponding normal

forms for bundle codimension (4 (if ¢ is a codimension of the

germ and m its modality then bundle codimension b=c-m [23]),

namely
germ unfolding parameters| conditions
nE ™
N N
M AN
M NN
N A+ O3 PN
Mgt 23 Mo Mg
M Q\?Ag’g\g,/\;
Ao+ N Nya LA,
%g+&?é%%+a1%§ %z,ﬁl,ﬂi,%{)z g=¢, 4e+27a§#0
%g+aék§%1¥)§ %2,%1,%3,%£%2 a% # 4
MyragAAge AT AN DRy A5 00 £=,276%+4a340

Applying analogous arguments as for the classification of

ordinary lagrangian mappings (see [29] Theorems 5, 6, 7.),

after straightforward calculations we obtain the classification

list of Proposition 5.5.

Remark 5.6. The next important notion in the investigation of

Gauss-Manin systems corresponding to regular geometric inter-
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actions (cf. [20], [21]) is the notion of anuniversal unfolding
of such a system or equivalently the notion of unfoldings of
regular geometric interactions. First we have to introduce un-
foldings of lagrangian submanifolds. Let LC(P,s) be a lagran-
gian submanifold; an unfolding of L is a triplet ((P,&),P;,L),
where (P,&9) is a symplectic manifold, EZ is a fibre bundle with
base space Z whose fibres are coisotropic submanifolds of (5,&)
and LT € (P,&) is a lagrangian submanifold such that

Y, : P —-—Bzol»v« 2P, T (LA, ) =L

20 %o 2o 0

for an initial point zer of the unfolding. Extending this

notion to reguiarly intersecting pairs (Ll’Lz)’ Lic.T”Y, and

using our approach by Mor;e families on manifolds with boundary

we can give the classification of more degenerate intersecting
pairs. By specializing the above notion we obtain exactly the
notion of unfoldings of 1nter§ct1ng holonomic combonents intro-
duced in [20]. The classification of normal forms for the corres-
ponding universal unfoldings can be carried out by adapting
Wassermann’s results [27] . We shall leave this for a forth-

coming paper.

6. The local classification of cbnstrained lagrangian varieties,

the recognition problem.

In this section we consider only the c.l.s. in (T*ijk)
which are determined by pairs: (G,f), where G:(X,0) — URm,O) is
a map-germ representing the constraint K = G'l(O) and f:(X,0) —
~+ R is a function-germ generating the corresponding c.1l.s.

Let H be the group of germs of diffeomorphisms h:(X,0) —

+ (X,0), S the group of invertible (m+1)x(m+1l) matrices M = (Mij)
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over ZJX) (i.e. with entries which are smooth function germs

on X) such that My me1® 0 (i=1,...,m}, Misl mel™ 1.
We define the group
(6.1) Y= H = S

and the action

/uzs xB —» B, (h,M):F = M.(Feh),

2
n

and we think here of F&B as a column vector (?) .

("

. is the maximal ideal of the local ring an)

m
where B =mrnanxmz

Definition 6.1. La:ﬁ:(Glgfl). F2= (GZ’fz) represent the two c.l.s.

say LF R LFZ. We say that LF ’ LF are equivalent iff F1 and F2

1 1 2
are in the same J-orbit of the action/u, i.e. for some (h,M) S,

(hoM)'Fl = Fz-
We know that the above equivalence implies the symplectic

equivalence of L and LF by symplectic 1ifting of the diffeo-
2

F
morphism h:X — X% In analogy to the complex case (8] and using
the standard constructions in [41] we can introduce the tangent
space at the map F = (G,f) to its orbit
TF = me J(F) +£6>™1,
where J(F) is the Zin-submodule of nnn§$+1 generated by JF/ax,
(i=1,...,n). So we can define
codimF = codlp = dim °/TF
if this is finite.
Let F have finite codimension, and let F: Xlek ——+1Rm+1
be a k-parameter unfoliding of F (for the definitions see{11,{27] ),
then for the universal and stable unfoldings in this case we have
the standard result. |
Proposition 6.2. Let F be a k-parameter unfolding of F. F is a

universal unfolding of F if and only if T6, A= | ..., 2L )
1 k
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together span Z;ﬂ+1. A universal unfolding is locally stable

and the minimal number of its parameters is the codimension of F.
Proof. The universality of such unfoldings is immediate on the
basis of standard results in [11}.,[12]. The local stability of

F follows from [10](Proposit10n 2.2). We must only consider

the G(n,k) - stability problem with G the group of matrices defi-

ned in (6.1).

2

Example 6.3. Let us take F = (G(xX,y),f(x,y))=(xy,x"+ yz).

The tangent space to the orbit of F is following

TF = (ya2x?), (v2.2xy) s (k2. 2xy) (392 25%) 4 (%9500, (0,x9) ) By -

2 2

in fact it is enough to show that the corresponding map defined

We can easily see that TF is exactely equal to mt

by the following equality

2+bxy+cy2,dx2

(ax +exy+fy2)=(dxyﬁpy2+1x2+8xy+?xy,aszfPny+UZyx+
+52y2+6xy).
namely
(a,B,y,S,g,G) — (a,b,c,d,e,f)=([.u+8+q.6.2&,28+25+€,28)
has a maximal rank., But it is easy to check that it is so.
Hence for this germ of c.l.s. we have
codLF = 0.

We can also show that the considered germ is simple according
to our equivalence relation (cf.[8]).

| A more complete approach to the recognition problem for
c.l.s. can be done by using the notion of generating families
defined over constraints. Thus, in the general case, a germ of
c.l.s. is defined by a pair E = (G,f), where G:(R",0) — (R",0)

is as above and f: XA — IR is the corresponding generating family

over a constraint K = G'l(O)C X. This generating-family approach
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is not so direct and close to the standard one (cf.[28]) as it
was before for generating functions only.
In analogy to Definition 6.1, we define the corresponding

equivalence notion for generating famiiies. We define the group

il As -

G52 H xS
and the action

fr SxB— 8, (R.M)-€E = M-(E°h),

where B =nn&;ﬂx.¢n§+k, H is the group of germs of diffeomorphisms

. otk n+k > * aontk
h: (IR »0) — (R »0), Imnoh = Qo RN (ﬁanR

some diffeomorphism (P:(m".O) — UR",O) and S is the group of

— R™), for

invertible (m+1)x(m+l) matrices

A(x), O
w(x,A), 1/, A(x) a smooth m m matrix,

‘with smooth entries. We think here of E€¢ 8 as an element of

“ﬁ““dﬁz)*‘“iﬁ+k-

Definition 6.4. Let L. , L be c.1.s. determined by E, and E
E1 E2 1 2

respectively. We say that LE LE are equivalent iff El’ F.2 are
- » Lo

~

in the same 3 -orbit of the }l-action; i.e. for some (h,M) €5 ,

(R.M)-Ey = E,

Remark 6.5. On a smooth stratum of K, LE is defined by the

following standard generating famﬂym
FGAM) = F(x) 4 Elﬁei(x).
This provides some justification for the notion introduced above
of a generating family over a constraint.
In analogy to the standard tangent space of a map-germ
(cf. [11]) we define the following tangent space for a map-germ
E = (G6,f) €8,

TE = T1E + TZE’ where
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m
' RE JE
1§1<61"°"Gm>2—}ne1+ 'Ynn{,—b—x-l, ——i-n} .
TE= (<G 6, Yy +Mm L
2 1M B n+k< 39\1 Y m+1°’

e, (0...1...0).

-

This space has a standard 1nterpEetation in terms of orbits for
the equivalence relation defined above.

We say that E (as well as LE) have finite codimension if
dim, B/TE is finite. If this is so we define codE= dimy B/TE.
One can check (cf.[?]) that E has finite codimension if and only
if

dimmzamk/(@l.....e > Eonekt frrcn+k<%1 ag\k>)<oo

and
diqRaﬂ/(<G1,...,G > ot rnzn{?";1 ’gx} ) < o0
Using standard procedures one can write down the c¢lassi-
fication of normal forms for geﬁerating families over constraints
(¢f.[13] ). The complete classification in the case of small co-
dimensions will be left to a forthcoming paper.
Our group of equivalences is a subgroup of the group of

contact equivalences (cf.[11],[7]). It is easy to check the
following

L™

Proposition 6.6. The group S is a geometric subgroup (according
to Damon [7]) of the contact group. .

Hence we can apply the methods of [7] and construct the
corresponding unfolding theory. Let ueR" and set §r=
'rrzn”a':”x 'mr2|+k+r-' We say that Eﬁﬁr is an unfolding of E€8

i E|,.0°E. We write E,(0,x)=E(\,x,u)=(6(x,u)F(N,x,0)).

Proposition 6.7. Let EE'Er be an r-parameter unfolding of Ee&B

and let E have finite codimension. Then E is versal {if and only if
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Eont (<Gyo-ensbp > 5n+k+

The proof of this basic unfolding theorem follows in the tradi-

m .
E E
1Z=1<Gl""’Gm>Zne'l+ {ﬁl'---- X,

f f of?
t Znek S T AN YV Venert 'R{ﬁﬁi

m’( g

tional way from the standard theory of unfoldings (see e.g.(7],
[12],[11]).
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