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C~nstrained Lagrangian submanifolds over singular constraining

varieties and discriminant varieties

by

Stanislaw Janeczko

Abstract. The notion of constrained lagrangian submanifold

over regular constraining variety was introduced implicitely by

Dirac [g} in his theory of generalized Hamiltonian dynamics.

Following Dirac. many authors [41. LI7}. \26\ consider constrained

lagrangian submanifolds as the models for physical systems in

classical mechanics and field theory. Quite elementary exam­

ples from: variational calculus with bypassing of obstaele[21.

geometrieal approach to the thermodynamical phase transitions

[16}; Kashiwara. Kawai. Pham theory of holonomic systems [221 t

show that the eonstrained lagrangian subsets over singular eon­

straf'ning varfetfes play an fmportant role in various theories

of mathematical physfes. The aim of thfs paper is to give a

precise approach to constrained lagrangian varieties and indf­

cate their fundamental geometrieal properties. We show that our

notion of constrained lagrangian variety. restrieted to the re­

gular strata of constraint. reduees to the standard co-normal

bundle notion. The homogeneous lagrangian varieties as the con­

strained lagrangian varieties over discriminant varieties were

investigated and classified. Some immediate consequences of

this classification for physieal understanding of classical sys­

tems were established. especially for equilibrium of composite

systems. The nation of Morse family on manifold with boundary
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was introduced and e1ass1fieation theorem for normal forms of

regular geometrie interactions between ho1onomie components was

proved. We propose also the geometriea1 framework for the re­

cognition problem in the theory of eonstra1ned 1agrang1an var1e­

ties same advantages of,which can be d1rect1y app11ed.

1. Introduction.

Let (M •....,.) be a symp1ectic manffo1d. Let K c;M be a subma­

n1f 0 1dand 1e t H: K --+ IR be a d1f fe ren t f ab 1e fun c t fon . The set

N Il tw€: TM; 'tM( w) E K. <. w 1\ u • <..J) :11 - <. u. dH) f 0 r each u E TK

such that lM(u) = 'M(w) } •

wh1ch 1s cal1ed a generalfzed Hamiltonfan system in the symplect1c

man1fold (M.~) and was introduced by Dirac [9]. 1s an example of

a constra1ned lagrangian subman1fold in the symp1ect1c space

(TM.':;') - the tangent bundle with the canonical symplectic stru-

cture Wo =

6: TM -..

tic form

ll'

ß ~M' where B 1s the morphism of f1bre bundles;

T"M, given by ß(u) = iu<.J and (.JM is the standard symplec­

of the cotangent bundle T·M. The constrained lagrang1an

submanifo1ds (c.1.s. for short) in same cotangent bundle. say
Jlrr(T Q.wQ). w1th a constraint K which 1s a submanifold of Q. were

studied comprehensively in [251. Many mechanica1 systems hav1ng

c.1.s. as a const1tutive set were given in [261.
Let us 'give now an introductory examp1e. name1y: wave

front evolution as a partial motivation for 1nvest1gat1ons of

c.1.s. with more general constraints, ·poss1b1y exhibit1ng s1n­

gu1arities.

Let Q be a configuration space (n-dimensiona1 smaoth mani­

fold) for same optical system (cf. [14J). Let Va be a l-codim.
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normal1y oriented submanifold of Q. We sha11 consider a c.1.s.

*LV S. T Q (see. (2.t)) as an initial wave front (usual1y the
o

submanifold Vo together w1th a choice of a positive1y oriented
.'"co-normal element 1(x)~ ~TxQ at every point of Vo 1s taken as an

initial wave front [14]-). The evolution of the wave front is

determined by a one-parameter family of symp1ectic relations

(a symplectic relation is a certain 1agrangian submanifo1d cf

the product of two sympTectic manifolds, see also ~4J)

)Ir JfIiI

Rt c; T M x T M,

such that the wave front at time t is given as an image of the

initial wave front

LV z: Rt(L v ).
t 0

Let us recall that the image of the subset Fe PI with respect

h 1 i 1 i R ( P P -" ')(Jto l.J ) h xtot e sy mp ec t c re aton S 1 1-. 2 ' Jl.2W"2 - 1 1 • were i :

Pt)f.. P2 ---f". Pi a~e the respective canonical projections, i~ the

set R(F) z: t P2 E P2; there exists ptEF such that (Pt ,P2) f R} ·

Infinitesema1ly Rt can be given by a homogeneous Hamilton fun-
~ ~

ction H on T Q - 0 (since the positive reals operate on T Q - 0

by mu1tip1ication in the fibres we can wrfte H(A1) =AH(1) for

a11 A} 0 • \' c T1t Q - O} , so Rt i s def i ned by t he f 10 w

iR+)( (T""Q .. 0) --+ (T*Q - 0)

obtained by integrating the corresponding Hami1tonian ffe1d XH.

We see that, for such flows, the mapping ~QcRt:LV --. Q does
* 0not depend on v E- LV (\ TxQ, so we get a map Vo 3 x --;-.'JtQoRt\v. (x),

o 0
the so-ca11ed ray map at time t (see[14]), which maps Vo onto Vt .

We know that usual1y at some times t 1 the ray map will have

rank< dimQ - 1 and in these points Vt has singularfties (see
1 .

Fig. below) and Rt (Lv) is a lagrangian submanifold defined over
1 0
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Fig. 1.

a singular constraint Vt (see §2). If we consider, by extensin
1 ~

the germ of LV at the singular point in the zero section of T Q
t

then this germ itse1f 1s singular. The purpose of this paper is

to make precise the notion of c.1.s. over singular constraints

and to study their geometrica1 properties in same app1ications.

One of the motivations for our investigations comes from

the thermodynamics of phase transitions where the space of coexis­

tence states (coex1stenc~ of phases) turns out to be a c.1.s.

over a singular constraint whfch represents a possib1y very

comp1icated phase diagram (cf.[16J.[17]).

The 'next important theory providing examp1es of singular

1agrangian var1eties (and c.1.s.) is the theory of linear diffe­

rential systems (see (22) , [lBl, (191). A linear differential

system 1s a 1eft coherent Dx-modu1e, say M, where 0x i5 the sheaf

of differential operators of finite order with holamorphie coe­

fficients on a smooth comp1ex ana1ytic manifo1d (X,CJ X) .
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Remember that the characteristic variety of a differential
~ ~rx C(

operator P ~ ~ a~(x)o IdX (a section of 0x in loeal coor-
I~I~ m

dinates) of order m is the hypersurface V(P) of the .. cotangent

bundle T~X defined by the principal symbol '()(P) = E ~(xrroc..,
10l0.1 =m

which 1s a homogeneous function in coordinates ,,\=, ('I' ... '1n).

For the module of type·Ox/I (where I is a left ideal of finite

type in 0x) th~ characteristic variety V of the system 0X/I 1s

defined by the prfncipal symbols b(P 1), ... , G(P p) of the gene­

rators P1, ..• ,P p of I. The definition of the characteristic

variety of a general differential system M can be found in (22)

It appears that the characteristfc variety of a system M is an

invol utive subspace of Tjl;X (cf. (21)). For maximally overdeter­

mfned systems (called holonomic systems) dimV • dimX and V 1s

a homogeneous lagrangian subset of T~X. Singular1t1es of charac­

teristfc varieties for holonomic systems have a special meaning

as corresponding to the correct generalization of fntegrable

c0 nnec t ion s (c f. [2 1) , [2 2] ). 0ne kind 0 f sf n9u1ars y s tem, f 0 r

whfch the characteristfc var1ety V 1s a so-called regular analy­

tic interaction, was cons1dered in (20), [191 . As a main example

of such systems one can take the followfng system

t
(xoDx -oc:.)U·'a 0

DU: O. i = 1•...• n .
xi

In this paper we give the classification of normal forms of

characterfstic (lagrangfan) varieties for such systems.

In Seetion 2 we introduce the notion of constrained lagran­

gian submanifold over singular constraint and describe the geo­

metrieal properties of such objects.
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In Section 3 we show how to character1ze the germs of

homogeneous lagrangian varieties by the special blowing-up

mappings and so-called prehomogeneous 1agrangian submanifo1ds.

The 10eal structure of sueh varities is 1nvestigated. The spe­

cial case of such varieties in generalized Hamiltonian systems

is considered and the corresponding normal forms are indicated.

The work in Section 4 is the direct generalization of the

notion of homogeneous lagrangian variety by means of the methods

of composite systems. introduced in geometrieal foundations of

class1cal physics. While the facts obtained in th1s section

may be of some interest in their own right it seems to us that

the geometrieal methods used to formulate them have independent

physical 1nterest. Here, in terms cf constrained lagrangian

varieties, we give the new formulation of the Gfbbs phase ru1e

and 1ndieate the geometriea1 structure of the spaees of coexis­

tence states. As an additional example cf c.1.s. we give this

one which appears in open swallowtail construction by symplectie

triads.

In Section 5 we prove the classification theorem for gene­

r1c pairs of the so-called regular geometrie 1nteract1ons and

by the generalization of the standard notion of Morse family

we write their polynomial normal forms. In Section 6 the recogni­

tion problem for germs of constrained lagrangian varieties is

formulated and some basic results are established.

2. Lagrangian varieties over singular constraints.

~

Let Q be a smooth manifold and L ~ T Q be a lagrangian

subman1fold of its cotangent bundle (for the basic definitions
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see [1)). If 1tQ(L) C K ~Q, where K is a submanifo1d of Q and

~Q is the cotangent bund1e projeetion, then L is ea11ed a eon-
~

strained 1agrangian submanifo1d ( e.1.s. for short) of T Q

( ef. [1 7J , (2 5J ). I n t his pa per weg ener a1i ze t he not ion 0 f c., 1 •s .

by allowing K to have singu1arities. At first we generalize

the notion of lagrangian submanifo1d itse1f by passing to the

pure1y 10cal objects.

--Definition 2.1. Let N be (the germ of) a s~bset of T Q endowed

with a stratifieation into smooth submanifolds, say N = lJ Ni.
"* iE I

N is called a lagrangian subset of T Q if every stratum Ni is an

""isotropie submanifold of (T Q'~Q) and dimNiB dimQ for the non-

empty maximal strata of N.

Let N be a semialgebraie subset of T--Q (see (11\). Then
~

lagrangian subset of (T Q'~Q) if and on1y if the maximal

~f same Whitney stratification of N are lagrangian (for

the necessary basics of real algebraic geometry see e.g. [11)',

(6), [27)).

As we know ((25], Proposition 3.1), any c.l.s. Lover a

nonsingular constraint K~Q can be described, using a smooth

function F on K, in the following way

(2.1) LK,F ZI {pE T1:'Q; 1t'Q(p) €. K and <u,P> = <. u,dF) for

each ueTK c.. TQ sueh t hat 1"0 (u) = /(Q ( p) } •

Now we generalize this notion by taking more general constraints K.

Proposition 2.2. Let K be a semialgebraic subset of Q and F:

Q ~,IR a smooth function. Let tK~}iEI be maximal strata of

same Whitney stratification of K. The set

LK,F= t pE r*Q. (i) uQ(p) E K~ and (u,P) = (u,dF > for each

UcTK~ C TQ sueh t hat 'l"Q ( u) =Jt'Q ( p) 0 r (i i) Jt'Q( P) =y E YC

K- UK~, Pe tdF(y)} + Vy } ,
iE; I



• VY • 1 .. t pETYQ; < U • P ; =0 f 0 r each U E ---::­

where yE: K;i ! 1s a lagrang1an subset of

- 8 -

wh e re Vy =1: v i
i y,

11m TqK~CTyQ,
K~:)q ...y

-11'
.(T Q'CU"Q).

Proof. The canon1cal strata of LK•F • LK~.F • defined as in

(2.1) are lagrangian (cf. [25}, Proposition 3.1). It 1s easy

to check that the stratum t~,F = t pE r)toQ. y = ''JrQ( p) E: Y, P E

ldF(y)} + VyJ C.LK,F is contained in LY,F' which 1s lagrangian.

Here the submanifold Y 1s a stratum of K· - U K~. So the stra-
_I i<=. 1 t'l

turn LY,F' as a submanifold of LY,F ' 1s isotropie in (T Q'~Q).

Remark 2.3. (1) The funct10n F appearing in (2.2) can be taken,

in the more general situation, to be smooth only on the indivi­

dual strata of K. Th1s 1s the case for the singular homogeneous

lagrangian sets introduced in the next sections.

(11) We eas11y see that, in a ne1ghbourhood of any point of K,

-LK,F can be described in the fol1owing form
k

Pi" ~ ~ i ( q ) + La'''"j e i j ( q), 1 = 1,... ~ d i mQ, 'A j C IR,
jal

( 2.3)
q E: K,

for same smooth functions eij •

Moreover, 1f q E K - singK we can take,
olij(q) =Oqigj(q)

in a neighbourhood of q, where t9j} are defining functions for

the germ (K,q) •

Ex am p1e 2. 4 • Let Q =IR 2 an d 1e t K be def i ned by 0 neo f t he equa ­

ti on··

a) g(x,y) = x2 - y3 = 0, or

b) 9(X,y) D x2 - y 2
0 o.

In both cases 0 1s an isolated singular point of K, but the di-
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I ~ 2
me ns ion s 0 f t heres pe ct 1ve s 1n9u1ar f 1bres L{Oi ,F C. TdR f 0 r

these two cases, are different (no matter what Fis), namely

a) Ki= {x 2
_y3= 0, x( 0 J ' K~ = t x2

_y3= 0, x> 0 J and Vtal ,1 =
f>tI

c V{O},2 ' thus LK,F 1s descr1bed by the equat10ns

Px ::I ~ ~(x,y) +.2AX,

Py =~~(x.y) - 3?1i. ')..E\R.

1 11f (x,y) E K1 U K2, or

tdF ~Px:J"fi(x,y) + ,

oF
PY= oY ( x ,y), '>.. E: IR

if (x,y) = 0 (cf. Fig. 1.).

b) In this case we have V{al: l(I.I), (-I,I)} , so we can

write

: {
'OF + '}.,-i

IR 2
_, Px::l öx(x,y)

~ LtO! ,F öF
py= oy(x,y) +A+r-' 'A ~ E: IR, (x, y ) = 0

and for (x,y) E K, (x.y)~O we have the standard representation

formula (2.3) (see e.g. Fig. 2.)

I,
I

\ 1~Q
I

><== Fig. 2.
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It is also very easy to. see that the initial data for

the wave front evolution (as in the Introduction) in a neigh­

bourhood of a singular point of a wave front form a singular

constrained lagrangian subset as introduced in Proposition 2.2.

3. Germs of homogeneous lagrangian varieties.

Let X, X be open subsets of ~p+l containing zero. We

consider the following map

A : X~ x. 'X-o(x)=xo ' ~i(x) = xoi i , i a 1 •...• p

(the xi can be interpreted as densities. or one can look at X
as achart in a blowing-up constructfon).

- - jDefinition 3.1. A germ of a lagrangian submanifold (L.(Xo'O)) S

r*x genera ted by a smooth function-germ F(x) = xof(xl •••.• xp)

1s called a regular, prehomogeneous lagrangian submanffold.

Proposition 3.2. Let x~~ o. Then (T*~(L).(O.i~.O)) 1s the

germ of the smooth homogeneous lagrangian submanifold given by

the following equations
.", ~ p """

{

Yo= f(xl'·· •• xp)- ~ x 1Yi'
(3.1) 1

xi = xoii' 10 1 •..•• p.

If i~= 0 then (T~t(L).O) 1s the germ of the singular lagrangian

subset described by tbe following equations

{

Yo=f(Xl' •••• i p )- f;. ;(1Y1' xO(Yj- ~; (il"" .xp»=O. jal ••••• p
(3.2) 1 j

xo= xo' xic xox i • i C 1 •...• p.

Proof. We see that T~~ can be written in the following form

Jo= Yo+ f;XjYj
1

T~A: Yj= XoYj' j C 1•.•.• p.

xo=Xo ' x i = xox;. i = 1 •...• p.
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.... ( ,,- - - - - -af --Now tak1ng L:2 l(y,x)E T x. YO=f(x 1,···,X p)' Yi=xOOXi(X1' ..• 'xp)'

i=1, .•• ,P} and substituting inta the equations for TIf'X." we

obtain immediately the equations (3."1) and (3.2).

Remark 3.3. A germ of a homogeneous lagrangian submanifold is

generated with respect to the canonical special symplectic

structure of T~X, by the germ at (~~,O) ~ 0 of a generating fun­

ction of the form
Xl xp

G(x o 'x 1,···,x p ) a xof(i , ... , i ).
o 0

ilt -The singular germ (T ~(L), 0) has no generating function with
Ill:respect to T X. However w1th respect to the special symplectic

~ *structure OC-.: T X --. T Y ; ot.:{y,x) ---- (x,y) 1ts generating family

can be written in the following form
p

( 3 • 3 ) 1 (y o' · · · •y p ;;"0 ')\1 • · · • • j\p ) =-?-0 ( f (A 1 • · · • ." p ) - y 0 - 2(\ y 1 ) •

Everywere, except "zero, the germ of :r is the germ of a Morse

fam1.ly (see [28J ).

Corollary 3.4. Let (L,p) be the germ of a homogeneous lagran­

gian submanifold (h.l.s. for short) in T~X. There ex1sts a spe­

cial syinplectic structure 0(' on r)t-x, which is equivalent to of..

(see Remark 3.3) and such that the generating family for th~

h.l.s. germ p.'(L),oc.'(p)) has the form (3.3) (equivalence of spe­

cial symplectic structures means composition with symplectomor-
tt

phisms preserving the fibre structure T Y --. V). Thus with

respect to ~ome special symplectic structure~: TIll: X -+ T~X, which

respects the canonical action of the positive reals on the fibres

of T~X, the h.l.s. (L,p) can be written in the form:

(<X ( L ) ,cX ( p )) :2 (T""-(I ),cx (p ) ) ,
,-- )to-

f 0 r s om e pr e- h . 1 •s. L <; (T x,W"X) •
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)ll

We see that to (the germ of) any h.l.s. in T X we can

associate the following map germ (cf. (22)

F: (IR p x IR P,0) ---.. Y
P

F(x,y) = (f(il' ••. ,Xp )- f xfYi' Yl' ..• ,Y p ).

Let us denote by CF the set of critical points of Fand by

~CIRP+l the set of critical va1ues of F (the discriminant of F)

Then we have immediately

Proposition 3.5. Any germ of a h.1.s. in T~X, has the structu­

re of a germ of a co-normal bundle (def. see e.g. [22])

* I(TL\Y' p)

with respect to an appropriate special symp1ectic structure

c(: T*X -... T*Y on T)tX.

Remark 3.6. In the classica1 thermodynamics of phase transi­

tions the singular germ «('X..(L),O) has an important meaning

( t he po i nt wh en t he new coexis tin 9 pha se app ears (16J ) • I t i 5

easily seen that th1s germ has two components p

A a (T~ Y. 0) a ( [ (x, y ). xi:l X 0 Xi' Y0 a f ( Xl' • • • , xp ) - L'X i Y1 '
F 'df (- _ ) f _ .... ) 1 P } )

Yi =.'0xi xl····' x p 0 r (x 1 • • • • ,x P E. IR ,0
p

8 = ( {(x,y); xo=O, x1=O, 1=1, ••. ,p, yo=f(x 1, ••• ,X p)- ..6 xiYi
1

f 0 r (x l' . . . ,xp)c IR p} ,0) =( {( x ,Y ) ; Y E I mag eF, x=o} ,0),

wh1ch are lagrangian and intersect a10ng ~F.

It turns out that the homogeneous generalized Hamiltonian

systems (introduced in §1) provide the examp1es of simple

Darboux normal forms. In what follows we will engage in the

10ca1 analysis of such systems.

*'Let (5 •LJ) be a sy mp1ect 1c man i f 0 1d • Let 0 C (T 5,c..J5) be

a h.l.s. (also singular in the previous sense). The correspon-
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,
ding generalized Hami1tonian system 0 C(TS,~) is defined (cf.

[91, [25J ) by the morphism of fibre spaces ß: TS ----. T"'S, i.e.

w= ß"'<..Js and 0' = 8- 1(0). We also 0 will cal1 the genera1ized

Hamiltonian system.

Proposition 3.7. Normal forms for the generic germs of genera­

1ized Hami1ton1an systems defined over a smooth hypersurface,

the cusp variety and the swa110wtail variety are generated by

the fo11owing generating families

Hypersurface

(''A 1 ) G(A ,q,p) ='A PI'o 0

~

(A 2)

swa11 ow ta i 1

0:3 ) G("0 • 'A •q • p) "'A 0 ( 'A
4
+ 'A

2
p1+'Aq 2+P~ ) •

where (S ,UJ) i s endowed w1th the Da rboux form LJ dpi 1\ dq i ;: W
;=1

Proof. Let D be a germ of homogeneous genera1ized Hami1tonian

system. For the generic 0 by diffe6morphic change of variables

in S we can reduce the corresponding mapgerm (3.4) to one of

the standard normal forms (see (11), (29)). For the first three

stab1e Whitney map~, by the standard method of reduction of

parameters (so-ca11ed stable equiva1ence [291), we obtain the

three normal forms for the corresponding generating fami1ies as

in Proposition 3.7. However by such procedure the symplectic

form w 1s not longer in Darboux form. So we have to ask for

the normal form of W with respect to the group of diffeomor­

phisms of S preserving the respective constraining varieties

(hypersurface, generalized cusp and generalized swal10wtail [3]).

Here we can apply the fol1owing known result of Arnold ([3], The-
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orem 1 and Theorem 2, in the smooth case proved by Melrose):

i f 6 i , ß1:l { (q, p) ES; PI a O} t D2= t(q , p) E. S; pi - qi.. 0 } ,

1::.3= (q,P) E S; x4+Plx2+q2x+P2 has a root- of order~ 21 ' is one

of the constraining hypersurfaces mentioned in the proposition \

then generical1y the symplectic form ~ can be reduced to the

Darboux normal for'rn by a diffeomorphism preserving the respective

constrain1ng variety ~i. So we obtain mutually the symplectic

structure ~and generalized Hamiltonian system 0 in the desired

normal form.
n

Remark 3.8. 0' C (TS, L.(P1 dq i- c1idpf» is a Hamiltonian dyna-
i=1

mica1 system. Let us assume that na 2 then the one-parameter fami-

lies of integral curves of 0 1 form the lagrangian varieties appea­

~ing in the variationa1 problem of bypassing of obstacle. In

the (A 3 ) - case these varieties are called open swallowtails

[3} t [21 (s ee F f g. 3.)

Fig. 3.

4. Composite homogeneous systems.

A simple generalization of the preceding nations, useful in

describing the space of caexfstence states in classical phase
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transitions (cf. [16] t [17]}t can be carried out by considering

the following control mapt
k k k k- n- ;Y .... 1 "'k' ~ ~i v -1-i "·.... ; ...1(4.1) X: Xi ---.,. X t f\o(x t··. t X )=( LJ xot L....J x1xo •· •. tL... xpx o)·

;=1 1 1 1

Now the prehomogeneous composite lagrangian submanifold Lk C
k
n T~Xi 1s generated by the function
;=1 k

G(x 1 t ••• tXk) = E xif(x: i ).
i=1 0

"'"for some smooth function f: X -+ IR. The corresponding homo-
}t - ,...,

geneous lagrangian subset 1s obtained as an image T 'X-(L k).

A closed t composite homogeneous system is defined to be

a pair (ltD)t where Lk is a prehomogeneous composite lagrang1an
k .

submanifold and 0 is a coisotropic submanifold of n T·X ik i=l
defined by an equation L x~ 0 const. = c -;. 0 •. The motivation

i=1
for this terminology comes from the geometrical formalism of

classical thermodynamics (cf. (161.[251), namely we have t

Coroll ary 4.1. The space of equ11 ibrium states 2: for a thermo­

dynamical closed system ha~ the form

( 4 • 2) 1( (I') C T"" X( 0 ) / f'V ;; T'" y't
..., Ilr- ...., )lr-

where 1 1: T 'X..(L k,,' D)t T X(D)/",-, is a canonical symplectic
JIr- ~

manifold associated to the coisotropic submanifold T X(D)C T X

(cf. [4]) and Jt is its characteristic projection.

Suppose given a germ of a homogeneous lagrangian subset

in T~X (§3) such that the corresponding map-germ F is stable

(cf. [11] ). We can parametrize the set of critical points of F

by (xl' ••• t Xp)

(4.3) g(x) =

We define:

(4.4)

-
1: x. Thus we have a mapping

p

I (-) ( -) ~ .... af .... 'af rw ~f (-F C X:s f(x - ~xi--= (x). ~ (x)t •.. t '"\ .... x)).
F i=1 cXi aXI oXp
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(4.5)

Proposition 4.2.

set in T"'"X, there

(4'.6) T)'roy

Proof. Let us fix

equatfons

(oq
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in the source of g),

M D U M (g).
r~2 r

For any stable homogeneous lagrangian sub-

ex f s t 5 "J E IN 5 uch t hat f 0 r every k )/ "J weh ave
*- ,...,

::> LLl
F

, 0 .. T 'X(Lk)

'It'- ,..,

kEIN. Then for T X(L k) we can write the

(ß)

k
x = L -j

xo '0 j:zl

k
-j-jx1= l: x1xojlll

x = t X'ji j •
p j=l P 0

In the case xo~ 0, the equations (~), (8) can be rewritten in

the form

For stable Fand a sufficiently smal1 neighbourhood of zero U

max { "# 9 -1 (y )} = d i ~R e,. PI J ( f) .. 5 <. oe , ( cf. [61, [11]) ,
yEU
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where ~p is the ring cf germs at zero of smooth functions

IR P --+ IR, an d J (f) i s i t s Ja c0 bi 1dea1 (g ene rated bY t he germ 5

of the first-order partial derivatives cf f). Thus obvious1y

. we can take ~ =s ~ p+1.

Let us define

[' = g(M), 1;= g(Mi(Q), (i)/ 2).

Then it is obvious, on the basis of equations (1) that if YEr;
then T;V0T~X(tk) 1s an i-dimensional vector subspace of T;V.

It is easily seen that for the smooth stratum f i we have

U T; YAr'" X(C k) = Lf
i

,0 ' ( k>,. l? )
yEf·

1

and this comp1etes the proof.

The co-normal bund1e over a semia1gebraic set considered

in §3 (see [21], [22J) is not a constrained 1agrangian subset in

our sense. These two notions coincide on1y on the nonsingular

strata of the constraint. The aim of this paper is to provide

a direct motivation for the use of the symp1ectic geometrica1

nations even though they exhibit singu1arities.

Let us consider a c10sed system (e.g. in physics, a system

with a fixed number of partic1es or moles [16J). The correspon­

ding equi1ibrium state space is defined in Coro11ary 4.1. On

the basis of this coro11ary and ProP9sition 4.2 we have

Coro11ary 4.3. (i) ~(i) = L1u L2 , where LI' L2 are 1agrang1an

submanifo1ds in T~Y' def1ned as follows

{ ( *' I 'Of (-) - - lLI = x,y)E:T V; Yi= ii. x , xi::! CX i ' i ::I 1, ..• ,p, XiE. \R J,
1

Here Jt is the projection 4t:(Yo 'Y1'· .• 'Yp) ~ (YI' ... 'yp) and

the function G does not necessary extend to a smooth function
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on y/.

(11) If f' 15 a smooth subman1fold of Y then LI and LZ inter-

5ect regul arly (cf. [20]) (al ong the so-cal1 ed binodal curve

in the two dimensional case [17), see Fig. 4, in the simpler case).

L-'"
2

M-
Ty'Y 1f:-

T'X.
~

1L( 1 )

Y1

*'Ty Y

Y1

Fig •. 4.

( 1i f ) B = 1Cy ( C1t IL U C1t IL ) i 5 a f u11 bi f ur c a t ion dia 9ram
Y 1 Y 2

for F (see e.g.[5]).

(iv) Gibbs phase rule [24] :
~

The numb er 0 f co exis tin9 pha se5 'Y ~ d1m(TyY('\ LD.
F

t 0 ).

Th1s 1s a symp1ect1c version of the catastrophe-theoretic formu­

1atfon of the Gibb5 phase rule

'-{) ~ c od f m fL-l T0 + 1
IR

(fntroduced in [24J p.663). In our terms the analog of th1s

1nequal1ty 15 the fol1ow1ng

...y ~ cod i m C')( '\ L + 1 •
Y 2

Ta be more precise we can formu1ate the fol1owing
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Proposition 4.4. L2 is a cdnstrafned 1agrangian subset over

K =~(r) (the phase diagram (171) with a generating function

F(y) " fex) - t xiYi'
i=1

where K 3y --.. x(y) is given by an isomorphism 9 on the smooth

connected components of M.

Proof. Immediate. on the basis of the e1ementary properties of

dis cr i mi na nt va r i eti es (5 ee e. g. [5], [24)) an d Leg end re t r ans f 0 r­

ma t ion 0f gen erat i n9 fun c t 10 n5 (c f. [2 5J ) .

Remark 4.5.

can write

At every point of the phase diagram K for L2 we

of -
Yi= OXi(X), i· = 1, .•• ,p

- ~k ~ -k-l k ~ -kxi = (x i - xi)A1+···+ (xi - xi)~k+ cX i '

where g(x) = g(x1 ) = ... = g(i k), xi ~ i j when i ~ j, and

1\. cre Morse parameters (cf. [28]). Hence taking the basis vec­,
tors

-k -1-kv = x - x, vi = x - x, i= 1, ••. ,k-1,

we obtain the C1apeyron-Claus;u5 formula in comp1etely general

form:

if W E,TyK then wl.{.v,v 1 , •.. ,v k_1}

which can be written a150 in the form appearing in handbooks
p

L(x.- X~)ßy. 11 0
j=l J J J

by. E:. IR.
J

We give now the examp1e of c.1.s. appearing in the varia­

tional problem of bypassing of obstacle in Euclidean space.

In [2) (p. 45) the following notion was introduced
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Definition 4.6. A symp1ectic triad in the symp1ectic manifo1d

(P,~) is the triplet (H,L,l) wh1ch consists of a smooth hyper­

surface H in P and of a 1agrangian manffo1d L~P tangent to H

with first order tangency along a 1agrangian manifo1d hypersurface

1 •

Let U be a domain on the hypersurface (obstac1e) in ~n.

Let us consider a geodesie f10w 0 on U with the g1ven initial

front. We cons1der the distance a10ng the geodesics of U, to the

initial front as a function s:U --.IR, such that (~s)2~ 1 on U.

Let us consider a smo'oth extension of s, say s: IR n --. 'R. Thus

we can define:

LU,s = {(X,P)fT)toIR"; XEU, <v,p) = <v,ds> for each

v E: TxU c.. TxlR n }

and hypersurface R:
H = ((X'P)ET~IRn; \pt- 1 }

Proposition 4.7. The trfp1et (H,LU,s,HALU,s) 1s the symp1ectfc

trfad. It generates the variety of rays tangent to the geodes1cs

of our geodesic flow r on U.

Proof. We see that LU,s (cf. (2.1)) forms the set of all exten­

sions of the I-forms ds from U to the who1e ambfent space. Thus

-the hypersurface 1 • HnLU,s C LU,! consists all extensions of ds

which are vanishing on the fibres of normal bund1e to U (because

of .(Vs)2= 1) (see also [2], p.45). The first order tangency of

-LU,s to H 1s easi1y seen.

The new class of singular lagrangian sets, so-called epen

swa110wtails (cf. [3J) is previded by this kind of symplectic

triads, namely the 1agrangian variety generated by the triad 1s

the image of 1, say n(l), in the canenical symplectic manffold
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of characteristics of H.
Hierarchy of the generic singularities provided by the

symplectic triads is determined by the mutual positions of the

flow 0- and ,the.'line of asymptotic points on the obstacle sur­

face U. Let us fix n=3. If the source point, say xo~ U, of

the germ of geodesic flow (l'xo) is outside of the 11ne of asym­

pt 0 ti c po 1nt S 0 nUthe n 1C ( 1) ha s nos 1n9u1ar 1t 1es. I f (I' x0 )

is transversal to the line of asymptotic points at Xo then the

corresponding germ of ~(l) has the cusp structure (described

conveniently in the appropriate space of polynomials (2)) i.e.

1s the product of the usual cusp singularity and Euclidean space.

If 1 is not transversal in Xo to the mentioned line of asympto­

tic points (wh1ch happens generically in isolated points of this

line) then 1r(1). has a structure of open swallowtail (introdu­

ced in [3]), as in F1g~3.

5. On regular geometrie interactions between holonomic corn­

ponents.

In this section ,we consider all of the previously introdu­

ced objects in the complex analytic category. We will study ano­

ther example of a singular lagrangian subset which appeared in

the microlocal analysis of differential systems (cf. [18), (22)).

On the basis of §3 we see that every homogeneous lagran­

gian subset of T~Y can be described locally by the following ge­

nerating family (s.ee Remark 3.3)

( 5 • 1 ) 1 (y 0 ' • • • , y p , 'A0 ' '1\1 ' • .'. ,'Am) ='A 0 G('A ,y ), '). =(?\ 1 ' • • • ,).m) •

Thus we can use the formalism of generating families (see ~~ ,

[2~.) to classify normal forms for the regularly interse~ting

homogeneous lagrangian (holonomic [21), [22] ,[19J) components.
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We say the the pair (L 1t L2 ) of h.1.s. is a regular geomet­

rie interaction (intersection (201) if L1nL 2 is a submanifo1d

of L2 of codimension land for every point xE Ll " L2 we have

Tx{L{'L Z) = TxLI f'\T xL2 •

Let G: (~~VtO) -+ [ be an any1ytic function-germ. Let

Aocl\ be a hypersurface of A, 0 E t\o. We can ehoose an appro­

priate eoordinate system on A such that

1\0= t{"I t··· ,Am}€: 1\. "1*0 1·
As we know from the standard theory of generating fam111es for

lagrangian submanifo1ds (see e.g. [28]), the minimal number m of

parameters for which all singu1arities of the deseribed 1agran­

91an subman1fo1d can be generated in this way 1s greater than or.

equa1 to p (see[28]). However if we also al10w an arb1trary

hypers ur fa ce A. 0c j\ asan eventualpara met er s pa ce t weh ave "t 0

increase the minimal dimension of )\ to p+l.

oef i ni t ion 5. 1 • A fun c·t ion - 9er m G: (A y.. V, 0) --IJlo [ i s ca11 ed a

Morse family on the manifold A with boundary Ao if in appro­

priate coordinates on t\ and Y we have

'OG 'CG öG
l~j ~p, 1 ~ i ~ p+ 1 ,r-ay {O)FO. ~1(O)IIO, 'rY (0)=0.

0 j

and
1 2G o2 G

ra nk ( ~'),. ö ~ 'o}\ '0 - ) (O) :a p+l,
y

Proposition 5.2. Let G: (L\)C. Y,0) -... ( be a Mo r se fa m11 y 0 n

a man1fold with boundary. Then the pair (L 1,L 2) generated by

~(y,l\o.A) oAoG(A,y) and ~(y.Ao'~) a AoG(O,5,y) respectively

1s a regular geometrie 1nteract1on.

Proof. Tak1ng inte account the condit1on ~ (0) ~ 0, we can
oYo
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directly build up the corresponding analytic, nondegenerate

(see [21) ) map-germ on mani fol d ~p+1~ a: P wi th the boundary t\ =0 J.
F: (t p+ 1)(, a: p,0) ---+ (~P+1 ,0)

F("1'~'Y) :I (f(')..~,).y),y).

The corresponding character1stic variety (see [20J, [211 ) of this

mapping forms a regular geometrie interaction. The eorresponding

eomponents of this variety are generated in the standard way

by the families ~1' ~ mentioned in the proposition.

8y [20J , [21J weh ave a dir ect e0 r res po nde nce bet weeng ene­

rating families on manifolds with boundary and the corresponding

mappings associated to the holonomie eomponents of an interaetion.

Hence after straightforward calculations we obtain immediately

Proposition 5.3. For a germ of a regular geometrie interaetion

(L 1,L 2) in T~Y there exists a Morse family l' on a manifold with

boundary generating the pair (L 1,L 2).

All properties of regularly interacting pairs can be for­

mulated in the language of Morse families on manifolds with

boundary, which" is especially convenient in the classification

cf their local normal forms. Follcwing [20], (29] we introduce

the notion cf equivalence cf Morse families,

Definition 5.4.

be Morse fam11ies for the two geometrie interactions. We say

that 11 and 0/2 are equivalent iff there exists an isomorphism
-. p+ 1 p p+ 1

(A,y) -.....ep(I\,Y):I('f("I\,y)"'t'(y))Et }(.(t, preserving l\o~(f. and

such that

G1('A,y) :I G2(cP(A,Y)) +<x(y),

wh ere ci.. t <y~ ,y 1 ' ... ,Yp) (J. • (Ö"p+ 1 1s the r1 ng of ho 1omor-
p+l p+l < 2

phic function-germs on ~ and Yo'Y1' ... 'Y >/~ 1s the
P v p+l
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2ideal generated by yo'Y1' ••. 'Y p).

Proposition 5.5. Let n ~ 5. For a generic set of regularly

1nteracting pairs (V 1'V 2) of lagrangian submanifolds of T~~n

we can reduce the corresponding generating family 0/ in a neigh­

bourhood of any point of V1AV 2, using the equivalence and a de­

f1ned above standard reduction of parameters, to one of the

follow1ng normal farms:

n0 3, additionally

~(YO'Yl'Y2'~O'~I)=Ao(~i+~iYl+AIY2+YO)

1(yo 'Y1 'Y2' 'Ao ').1 ''>.2) =)..0 (?\t'l+~+"2Y1+~Y2+YO)

n=4, additionally
~ 432
-7 (Yo'Yl'Y2'Y3'Ao,~)mAo(~1+YIAI+Y2Al+Y3~I+Yo)

~(YO'Yl'Y2'Y3'~O'~l'~2)=AO(~2A1+~~+Y1A~+Y2A~+Y3~2+YO)

~(Yo'Y1'Y2'Y3'Ao,~,Az)=~o(A~+~i+YI~2+Y2~1+Y3~1~2+YO)

n=5, additionally

r;;(y0 ' ; • • "; y 4 '~o ,'A 1) ="0 (Ai+y l:A1 +y 2Ai +y 3Ai+y 4Al +Y0 )

1t(Yo'···'Y4'~O'~1'~2)=~O(~2~1+~~+Yl~~+Y2~~+Y3~~+Y4A2+Y0)

l'(y0' • • • ,y4 ,Ao'?xI '''2) =~o (A~+ EA2"i+ Cf! (y )?\i +Y 1/\2+"1 Y2+Y3~i+

+Y4AZftl+YO), E
3=E, 4e+Z7~i(O)~O,

'11 (y0' • • • ,y4 ,Ao ,'Al ,'A Z) =Ao (A~+ CfZ (y) A~?\l+"i+~lYI +~2Y 2+~y 3+

+Al)\2Y4+Y0 ), lf ~ ( 0) ; 4 . ,

1 (y 0' · · • ,y4' l\o ,'Al '~2 ,A3 ) ="0 ('A~+<f3 (y )A2'A~+E.~+'1-~1+y 1').2+Y2)\3+

,,2 1'\ '\. 3 2 3
+Y3"3+Y4/'2/'3+Yo)' E. =E, 27E +4epJ(O)~O.
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Proof. (an outline). Following [151, (23)we can carry out the

classification of analytic function-germs on manifolds with

boundary and can immediately obtain their universal unfoldings.

Hence we obtain the class1fication of the corresponding normal

form s f 0 r bund 1e co di me ns ion ~ 4 (i f cis a cod1me n5 ion 0 f t he

germ and m its modality then bundle codimension b=c-m [23]).

namely

germ c b unfolding parameters conditions

?\2 1 I ?\11

~ 2 2 'Al ,'Ai
'1\4 3 3 'Al ' 'Ai t ?\iI

';\5 4 4 \ ·'Ai 'j\i ,~i1

';\11)\2 + 'A ~ 2 2 ~2'~~

'AI~2+ ~ ~. 3 3 ~2 ,!,~ ,~~

tJ\1 'A2+ 'A~ 4 4 'A 2 ' 'A~ ,~~ ,A~.
j\3+~2 3 3 ?\2 ' 'Al •'AltA22 I

~~+ c\~~+al'Ai 5 4 /)\2 ' 'Al •~~ , \ 'A2
3

4E+ 27a iFOE cE,

A~+a2~~AI+'A~ 5 4 9\2' 'Al ,A~, j\1~2 a 2 F 42

~~+a3~2~~+c~+~3~1 5 4 ?\2 ''\3 ,'A~ ,'A2A3 E
3=E, 27E.

2
+4a ~F0

..

Applying analogous arguments as for the classifieatian of

ordinary lagrangian mappings (see [29] Theorems 5, 6, 7.),

after straightforward calculations we obtain the classification

list of Proposition 5.5.

Remark 5.6. The next important nation in the investigatian of

Gauss-Manin systems corresponding to regular geometrie inter-



- 26 -

actions (cf. [20), [211) is the notion of an universal unfolding

of such a system or equivalently the nation of unfoldings of

regular geometrie interactions. First we have to fntroduce up­

foldings of lagrangian submanifolds. Let L c (P,CJ) be a lagran­

g1an subman1fold; an unfolding of L is a triplet «P,w),pZ,I),
where (P,W) is a symplectfc manifold, Pz is a fibre bundle with

base space Z whose fibres are coisotropic submanifolds of (P,w)

and L C (P,W) 15 a lagrangian submanifold such that
.....

Uz : Pz --. pZo/~' ~ P, ~z (IAPz ) = L
o 0 0 0

for an initial point Zo€Z of the unfolding. Extending this
)t

notion to regularly intersecting pairs (L 1 ,L 2), LiC T Y, and

using our approach by Morse famflies on manifolds with boundary

we can give the classffication of more degenerate fntersecting

pairs. 8y specializing the abave nation we obtain exactly the

natfon of unfoldings of interacting holonomic components intra­

duced in [2~. The classification of normal forms for the corres-
.

ponding universal unfoldings can be carried out by adapting

Wassermann's results [27J • We shall leave this for a forth­

coming paper.

6. The local classification of constrafned lagrangian varieties,

the recognftion problem.

'Ilr
In this section we consider only the c.l.s. in (T X"W"X)

wh ich are det er mi ned bY Pair s· (G, f), wher e G: ( X, 0) --+ (lRm, 0) f s

a map-germ representing the constraint K = G- 1(0) and f:(X~O)

--+0 IR is a functfon-germ generating the corresponding c.l.s.

Let H be the group of germs of diffeomorphisms h:(X,O)

+ (X,O), 5 the group of invertible (m+l)~(m+l) matrfces M = (Mfj)
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over ~(X) (i.e. with entries which are smooth function germs

on X) such that Mitm+1= 0 (i:clt •.. tm)t Mm+ltrn+1= 1.

We define the group

( 6 . 1 )

and the action

5 l: H )C. 5

~: 5 ~ B ---+ B t (htM)· F = M·(Foh) t
m 2 ~where B =,mrn~n)C.llTtn (IYTtn is the maximal ideal of the local· ring Y'n)

and we think here of FE B as a column vector (~) •

Definition 6.1. let ~;(G1tf1)t F2= (G 2t f 2) represent the two c.1.s.

say LF t LF . We say that LF t LF are equivalent iff F1 and F21 2 1 2
are in the same 5-orbit of the actionr' i.e. for some (h.H)E. 5.
(htM)· F1 = F2 •

We know that the above equivalence implies the symplectic

equivalence of L
F1

morphism h:X -+ X.

and L F by symplectic lifting cf the diffeo­
2

In analogy to the complex case ~) and using

the standard constructions in [1D we can introduce the tangent

space at the map F = (Gtf) to its orbit

TF = fl"YtnJ(F) +(G)m+l t

where J(F) is the 4.n-submodule cf trTl:n%+l generated by ~F/'Oxi

(i=lt ••• tn). 50 we can define

codimF = codL F = di~R B/ TF

if this is finite.

Let F have finite codimension t and let F: XX IR k
----9' IRm+1

be a k- paramet erun fo 1d i ngof F (f 0 r t he def i n i t ion s 5 ee [11] t (2 7] ) t

then for the universal and stable unfoldings in this case we have

the standard result.

- -Proposition 6.2. Let F be a k-parameter unfolding cf F. F 1s a

universal unfolding cf F if and only if TG t ~ lot ...• )!., 0
'QU 1 U= ·~Uk U=
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m+1together span ~n • A universal unfolding 1s locally stable

and the minimal number of its parameters is the cod1mension of F.

Proof. The un1versa11ty of such unfoldings is immediate on the

basis of standard results in (11]., [12]. The local stability of.

F follows from ~OJ(P~oposit10n 2.2). We must ooly consider

the G(n,k) - stabi1ity problem w1th G the group of matr1ces defi­

ned f n (6. 1 ). _,

Example 6.3. Let us take F = (G(x,y),f(x,y»u(xy,x 2+ y2).

The tangent space to the orbit of F i5 fo1low1ng

TF a <(Xy,2x 2),(y2,2xy),(x 2,2xy),(Xy, 2y 2),(XY,O),(O,XY» ~Xy •

2 2We can easily see that TF 1s exactely equal to ~xyxnnxyD B,

in fact 1t is enough to show th~t the corresponding map defined

by the following equality

(ax2+bXY+Cy2.dx2+eXY+fy2)=(~XY+fy2+rx2+bXY+~XY.~2X2+P2XY+02yx+

+b2y2+GXY) ,

namely

(~,ß'a,b,~,G) -+ (a,b,C,d,e,f)a(r,~+b+~,ß,2~,2ß+20+~,28)

has a maximal rank. But it 1s easy to check" that it is so.

Hence for th1s germ' of c.l.s. we have

codL F = o.
We can also show that the consfdered germ is simple according

to our equivalence relation (cf. [8J).

A more complete approach to the recognftion problem for

c.l.s. can be done by us1ng the nation of generatfng families

defined over constraints. Thus, in the general case, a germ of

c.1.s. 1s def1ned by a pair E • (G,f), where G:(IR",O) -.. (\Rm,O)

1s as abo ve and f: X,.. 1\ ...... IR f s t he co r res PO" di n9 gen eratin 9 fa m; 1y

aver a constrafnt K a G- 1(O)C x. This generat1ng-family approach
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is not so direct and close to the standard one (cf. [28j) as it

was before for generating functions only.

In analogy to Definition 6.1, we define the corresponding

equivalence notion for generating families. We def1ne the group

S= H x S
and the action

r:;·(Eoh),
,.. ,..,

(h.M)·E =f:5~B-'B
- m 2 -wh er e B =~n 'j.. 1Ttn+k' His t he 9r 0 up 0 f germS 0 f di f fe 0 mo r phi sm s

h: (IR n+k •0) _ (IR n+k, 0) , l'lIR n° h = <f o1r
iRn

(1t
iRn

:IRn+k - IRn ), for

so me di f fe 0 mo r phi sm 'f: (IR n•0) -.. (IR n•0) and 5 isthe 9r 0 up 0 f

invertible (m+l)~(m+l) matrices

(

A(x). 0\

W(X.A). 1) . A(x) a smooth m m matrix,

·with smooth entries. We think here of E E: B as an element of

')~(rm.n~) y.. tri.~+ k •

Definition 6.4. Let LE ,L E be c.l~s. determined by EI and E2I 2
respectivel y : We say that LEI' ~E2 are equivalent iff EI' E2 are

in the same S -orbit of the ,F-action, i .e. for some (h,M) € § ,
(h,M).E 1 = E2

Remark 6.5. On a smooth stratum of K, LE is defined by the

following standard generating family
m

1 (x,A'f) = f (x,~) + 2: fi Gi (x) •
i=1

This provides some justification for the notion introduced above

of a generating family over a constraint.

In analogy to the standard tangent space of a map-germ

(cf. [lI}) we define the following tangent space for a map-germ

E • (G,f) E: B.
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ei- (0 •.• 1 ••• 0).
'i

This space has a standard interpretation in terms of orbits for

the equivalence relation defined above.

We say that E (as wel1 as LE) have finite codimension 1f

- -di~ S/TE is finite. If this is so we define codE= di~R S/TE.

One can check (cf.[7J) that E has finite cod1mens1on ff and on1y

1f

and

diIllRz:,~1( <GI'··· ,Gm )men+~ {~~I"'" ~~J )< 00 •

Us1ng standard procedures one can wr1te down the class1­

f1cat1on of normal forms for generating families over constraints

(cf. [1 3] ). The c0 mp1etee 1ass f f 1ca t ion i n t he ca s e 0 f sma11 C0 ­

dimensions will be 1eft to a forthcoming paper.

Our group of equivalences 1s a subgroup of the group of

contact equiva1ences (cf. [11] ,[7)). It fs easy to check the

following
....

Proposition 6.6. The graup S is a geometrie subgroup (according

to Damon (71) of the contact group.

Hence we can apply the methods of [71 and construct the

corresponding unfolding theory. Let Ue~r and set B =r

'lj(n+r~~+r)(''YTt~+k+r. We say that 'EE.B r 1s an unfolding of,Et:'B

if EluaO=E. We write Eu(A,x)=E(~,x,U)=(G(x,u)~f(A,x,u)).

Proposition 6.7. Let E€. Sr be an r-parameter unfolding of E f:. S
.....

and let E have finite codimens1on. Then E 1s versal if and only if
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The proof of this basic unfolding theorem follows in the tradi­

tfonal way from the standard theory of unfoldings (see e.g.(7],

[12) t [11] ).
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