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Dedicated to Professor Marc A. Rieffel on the occasion of his 75th birthday.

Abstract. We study the algebraic K-theory of certain O∞-stable C∗-algebras. The key
ingredient is the canonical comparison map from algebraic to topological K-theory of C∗-
algebras, which is shown to be an isomorphism for O∞-stable C∗-algebras. As a consequence
we obtain an explicit description of the algebraic K-theory of ax+ b-semigroup C∗-algebras
coming from number theory and that of O∞-stabilized noncommutative tori. Along the way
we obtain a new functorial model for the topological K-theory spectrum of a C∗-algebra as
well as K-regularity for O∞-stable C∗-algebras. The article finishes by extending some
earlier results of the author on topological T-duality and noncommutative motives.

Introduction

It is well-known that the algebraic K-theory groups of number fields (and rings) contain
a lot of number theoretic information [31]. Now there is also a functorial construction of a
purely infinite separable ax+b-semigroup C∗-algebra starting from any number ring [12, 23].
While complete computation of the algebraic K-theory of number rings is a formidable task
(see, for instance, [43] for a survey), we are able to carry out an explicit computation of
the algebraic K-theory of ax + b-semigroup C∗-algebras associated to number rings (cf.
Theorem 2.1). Noncommutative tori constitute arguably the most widely studied class of
noncommutative spaces. Geometric invariants of them were studied extensively by Connes
and Rieffel (see, for instance, [6, 7, 34]). They are also relevant from the viewpoint of
number theory via the real multiplication program [27, 28]. We show in the sequel that the
algebraic K-theory of noncommutative tori are explicitly computable after O∞-stabilization
(cf. Theorem 2.2). Using some powerful results of Rieffel [34], one also obtains a clear
understanding of the elements in the algebraic K-theory groups (in low degrees).

Many of our results rely on the canonical comparison map from algebraic to topological K-
theory, which was conjectured to be an isomorphism for stable C∗-algebras by Karoubi [19].
The conjectures were eventually proved by Suslin–Wodzicki [39, 40], building upon some
earlier work [11, 17]. In an unpublished manuscript Cortiñas–Phillips [8] recently showed
that the comparison map is also an isomorphism for purely infinite C∗-algebras. In the sequel
a similar result is proven using rather elementary methods. More precisely, it is shown that
the comparison map is an isomorphism for O∞-stable C∗-algebras (cf. Theorem 1.2), which
can easily be generalized to a much wider class of C∗-algebras (see the Remark below).
The class of O∞-stable C∗-algebras turns out to be enough to carry out the computations
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mentioned above. We obtain a new functorial model for the topological K-theory spectrum
of a C∗-algebra (cf. Theorem 3.3). Using the same circle of ideas we show that A⊗̂O∞ is
K-regular for any C∗-algebra A (cf. Theorem 4.1), supporting a conjecture of Rosenberg
[37]. Finally, in Section 5 some results (Theorem 5.4 and Theorem 5.6) are proven extending
the authors earlier work on topological T-duality [26]. The generic nature of the results
are as follows: if certain stable or O∞-stable C∗-algebras are KK-equivalent, then their
noncommutative motives (constructed earlier by the author) are isomorphic. It so happens
that T-duality is a rich source of KK-equivalence between C∗-algebas.

Remark. Most of the arguments below are based on one simple trick (see Lemma 1.1).
The range of applicability of this trick is much wider than the case explored here (see, for
instance, Proposition 1.1.2. of [35]). In fact, Theorem 1.2 effortlessly generalizes to all
properly infinite C∗-algebras using similar arguments. The author is grateful to D. Enders
for pointing it out.

Notations and Conventions: In the sequel we denote the category of all C∗-algebras by
C∗ and ⊗̂ stands for the minimal C∗-tensor product. We denote by K(−) [resp. Kn(−)]
the nonconnective algebraic K-theory spectrum [resp. algebraic K-theory group] functor on
C∗. Finally, we are going to denote by hSp the triangulated stable homotopy category. All
spaces are assumed to be Hausdorff.

Acknowledgements: The author wishes to thank J. Cuntz, D. Enders, and A. Thom for
helpful discussions. The author is also grateful to N. C. Phillips for bringing [8] to our
attention and to J. Rosenberg for constructive feedback. Part of this researh was carried out
during the author’s visit to Max Planck Institute for Mathematics, Bonn, whose hospitality
is gratefully acknowledged.

1. The comparison map

Thanks to the Karoubi conjecture we know that the nonconnective algebraic K-theory of
a stable C∗-algebra is isomorphic to its topological K-theory. In fact, there is a canonical
comparison map cn(A) : Kn(A) → Ktop

n (A) that induces the isomorphism when A is stable
[19] (see also [37]). The comparison map c0(A) : K0(A) → Ktop

0 (A) is always an isomor-
phism. Recall that the Cuntz algebra O∞ is the universal unital C∗-algebra generated by
a set of isometries {si | i ∈ N} with mutually orthogonal range projections sis

∗
i [10]. Ob-

serve that O∞ is a unital C∗-algebra, so that O∞-stabilization preserves unitality (unlike
K-stabilization). The following lemma is crucial and it demonstrates that O∞ possesses
enough built-in stability.

Lemma 1.1. There is a commutative diagram in C∗

O∞
ι //

θ $$IIIIIIIII
O∞

O∞⊗̂K,

κ

::uuuuuuuuu

(1)

where the top horizontal arrow ι : O∞ → O∞ is an inner endomorphism.
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Proof. Observe that the subset {sis∗j | i, j ∈ N} ⊂ O∞ generates a copy of the compact

operators K inside O∞. Consider the ∗-homomorphism κ : O∞⊗̂K→ O∞, which is defined
as a ⊗ eij 7→ sias

∗
j . Due to the simplicity of all the C∗-algebras in sight, κ is injective. Let

θ : O∞ → O∞⊗̂K be simply the corner embedding, sending a 7→ a ⊗ e11. The composite
ι = κθ is given by ι(a) = s1as

∗
1. This ∗-homomorphism is manifestly inner. �

Theorem 1.2. For any C∗-algebra A the comparison map

cn(A⊗̂O∞) : Kn(A⊗̂O∞)→ Ktop
n (A⊗̂O∞)

is an isomorphism for all n ∈ Z.

Proof. Using the above Lemma 1.1, we start with the commutative diagram in C∗

O∞
ι //

θ $$IIIIIIIII
O∞

O∞⊗̂K,

κ

::uuuuuuuuu

(2)

where the top horizontal arrow ι : O∞ → O∞ is simply the inner endomorphism a 7→ s1as
∗
1.

Let us first assume that A is a unital C∗-algebra. After taking the minimal C∗-tensor product
of the above diagram with any unital A we obtain

A⊗̂O∞
id⊗̂ι //

R:=id⊗̂θ &&NNNNNNNNNN
A⊗̂O∞

A⊗̂O∞⊗̂K.

S:=id⊗̂κ

88pppppppppp

(3)

It is known that if F is a matrix stable functor on C∗ and f is an inner endomorphism in C∗,
then F (f) is the identity map (see, for instance, Proposition 3.16. of [14]). Now applying
the functors Kn(−), Ktop

n (−) and using the naturality of cn, we get a commutative diagram

Kn(A⊗̂O∞)
Kn(R)

//

cn(A⊗̂O∞)
��

Kn(A⊗̂O∞⊗̂K)
Kn(S) //

cn(A⊗̂O∞⊗̂K)
��

Kn(A⊗̂O∞)

cn(A⊗̂O∞)
��

Ktop
n (A⊗̂O∞)

Ktop
n (R)

// Ktop
n (A⊗̂O∞⊗̂K)

Ktop
n (S)

// Ktop
n (A⊗̂O∞).

(4)

Since S ◦ R is the inner endomorphism id⊗̂ι : A⊗̂O∞ → A⊗̂O∞, we conclude that Kn(S) ◦
Kn(R) is the identity map due to the matrix stability of algebraic K-theory on the cate-
gory of unital C∗-algebras. Moreover, Ktop

n (S) ◦Ktop
n (R) is also the identity map due to the

matrix stability of Ktop
n (−). The assertion for unital A now follows by a simple diagram

chase. Indeed, it is easily seen that Kn(R) must be injective and Ktop
n (S) must be surjec-

tive. Since A⊗̂O∞⊗̂K is stable, we conclude that cn(A⊗̂O∞⊗̂K) is an isomorphism. Thus
cn(A⊗̂O∞⊗̂K) ◦Kn(R) is injective whence so is cn(A⊗̂O∞) (the left vertical one). Similarly,
Ktop

n (S) ◦ cn(A⊗̂O∞⊗̂K) is surjective whence so is cn(A⊗̂O∞) (the right vertical one).
The proof for nonunital A follows by a simple excision argument (see, for example, Propo-
sition 3.1 below). �
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Remark 1.3. The above result is actually not new. Indeed, in an unpublished manuscript
[8] Cortiñas–Phillips have shown that the comparison map cn(A) : Kn(A) → Ktop

n (A) is an
isomorphism for any purely infinite C∗-algebra A. Notice that the C∗-algebra A⊗̂O∞ is
purely infinite for any A ∈ C∗ [21]. Although the above result is weaker, the arguments are
much simpler.

2. Algebraic K-theory of certain O∞-stable C∗-algebras

As an application we now explicitly compute the algebraic K-theory groups of certain O∞-
stable C∗-algebras. It must be noted that complete calculation of the algebraic K-theory
groups of an arbitrary ring is an extremely difficult task in general.

2.1. Certain semigroup C∗-algebras. A recent result of Li asserts that for a countable
integral domain R with vanishing Jacobson radical (which is, in addition, not a field) the left
regular ax+ b-semigroup C∗-algebra C∗

λ(RoR×) is O∞-absorbing, i.e., C∗
λ(RoR×)⊗̂O∞ ∼=

C∗
λ(RoR×) (see Theorem 1.3 of [24]).
Now we focus on the main object of our interest, namely, the left regular ax+ b-semigroup

C∗-algebra of the ring of integers R of a number field K. It is shown in [13] that

Ktop
∗ (C∗

λ(RoR×)) ∼= ⊕
[X]∈G\I

Ktop
∗ (C∗(GX)),

where I is the set of fractional ideal of R, G = KoK×, and GX is the stabilizer of X under
the G-action on I. The orbit space G \ I can be identified with the ideal class group of K.
As a consequence of Theorem 1.2 we obtain

Theorem 2.1. The algebraic K-theory of the ax + b-semigroup C∗-algebra of the ring of
integers R of a number field K is 2-periodic and explicitly given by

K∗(C
∗
λ(RoR×)) ∼= ⊕

[X]∈G\I
Ktop

∗ (C∗(GX)).

2.2. O∞-stabilized noncommutative tori. We recall some basic material before stating
our result. A good reference for generalities on noncommutative tori is Rieffel’s survey [34].
For any real-valued skew bilinear form θ on Zn (n > 2) the C∗-algebra of the noncommutative
n-torus An

θ can be defined as the universal C∗-algebra generated by unitaries Ux ∈ Zn subject
to the relation

UxUy = exp(πiθ(x, y))Ux+y ∀x, y ∈ Zn.

Using the Pimnser–Voiculescu exact sequence one can compute the Ktop-theory of An
θ as an

abelian group, namely,

Ktop
0 (An

θ ) ' Z2n−1

and Ktop
1 (An

θ ) ' Z2n−1

.(5)

Theorem 2.2. The algebraic K-theory of the O∞-stabilized noncommutative n-torus An
θ is

2-periodic and explicitly given by

K0(A
n
θ ⊗̂O∞) ' Z2n−1

and K1(A
n
θ ⊗̂O∞) ' Z2n−1

.

Proof. By Theorem 1.2 one has an isomorphism K∗(A
n
θ ⊗̂O∞) ∼= Ktop

∗ (An
θ ⊗̂O∞). Using

the Künneth Theorem one now computes that Ktop
∗ (An

θ ⊗̂O∞) ∼= Ktop
∗ (An

θ ). Observe that
Ktop

0 (O∞) ' Z and Ktop
1 (O∞) ' 0 and all C∗-algebras in sight belong to the UCT-class.

Now use Equation (5). �
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Remark 2.3. It follows from [33] that for irrational θ the projections in An
θ generate all of

K0(A
n
θ ⊗̂O∞) and

K1(A
n
θ ⊗̂O∞) ∼= Ktop

1 (An
θ ⊗̂O∞) ∼= Ktop

1 (An
θ )

∼← UAn
θ/U

0An
θ .

Here UAn
θ denotes the group of unitary elements in An

θ and U0An
θ denotes the connected

component of the identity element of UAn
θ . Thus one obtains a good description of the

elements of the algebraic K-theory groups in low degrees in terms of projections and unitaries.

3. The generalized homology theory K(−⊗̂O∞)

A functor F : C∗ −→ hSp is called homotopy invariant if it sends the evaluation at t
map evt : A[0, 1] → A to an isomorphism in hSp for all A ∈ C∗. Such a functor is called
excisive if for any short exact sequence 0 → A → B → C → 0 in C∗ the induced diagram
F (A)→ F (B)→ F (C)→ ΣF (A) is an exact triangle in hSp. A homotopy invariant excisive
functor F : C∗ −→ hSp is called an hSp-valued generalized homology theory on C∗.

It is known that the algebraic K-theory functor acquires special properties after compact
stabilization. We are going to show that the same is true after O∞-stabilization.

Proposition 3.1. The functor K(−⊗̂O∞) : C∗ −→ hSp is an excisive functor.

Proof. It follows from the Suslin–Wodzicki Theorem [39, 40] that the functor K is excisive on
C∗. Since O∞ is a nuclear C∗-algebra, the functor −⊗̂O∞ preserves exactness in C∗ whence
K(−⊗̂O∞) is excisive. �
Recall that a functor F : C∗ −→ hSp is called split exact if it sends a split exact sequence in C∗

to a direct sum diagram in the additive category hSp. It follows from the above proposition
that the functors K(−) as well as K(−⊗̂O∞) are split exact.

Proposition 3.2. The functor K(−⊗̂O∞) : C∗ −→ hSp is a homotopy invariant functor.

Proof. In the following commutative diagram

Kn(A⊗̂O∞[0, 1])
ev∗ //

��

Kn(A⊗̂O∞)

��

Ktop
n (A⊗̂O∞[0, 1])

ev∗ // Ktop
n (A⊗̂O∞)

both vertical arrows (Theorem 1.2) and the bottom horizontal arrow (homotopy invariance
of Ktop-theory) are known to be isomorphisms. This proves that the map K(A⊗̂O∞[0, 1])→
K(A⊗̂O∞) of Ω-spectra induces an isomorphism on homotopy groups. Thus it is an isomor-
phism in hSp. �
Theorem 3.3. The functor K(−⊗̂O∞) : C∗ −→ hSp is a generalized homology theory.
Moreover, the functor K(−⊗̂O∞) is a model for topological K-theory.

Proof. The first assertion is a consequence of Propositions 3.1 and 3.2. It follows from
Theorem 1.2 that the natural comparison map induces an isomorphism πn(K(A⊗̂O∞)) ∼=
Ktop

n (A⊗̂O∞); since A and A⊗̂O∞ are KK-equivalent, there are natural identifications

πn(K(A⊗̂O∞)) ∼= Ktop
n (A⊗̂O∞) ∼= Ktop

n (A)

for all n ∈ Z. The second assertion is now clear. �
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Remark 3.4. For any unital C∗-algebra A by applying the Waldhausen K-theory machine
[42] on A⊗̂O∞ one actually obtains a (highly structured) symmetric spectrum model for the
topological K-theory of A [18]. The functor K(−⊗̂O∞) is also C∗-stable.

4. K-regularity of O∞-stable C∗-algebras

Let F be any functor on C∗. A C∗-algebra A is called F -regular if the canonical inclusion
A→ A[t1, · · · , tn] induces an isomorphism F (A)

∼→ F (A[t1, · · · , tn]) for all n ∈ N. This map
has a one-sided inverse induced by the evaluation map ev0. Rosenberg conjectured that any
C∗-algebra A is K0-regular. Using the techniques developed to prove the Karoubi conjectures
[17], it is shown in Theorem 3.4 of [37] that the conjecture is true if A is stable. In fact, the
Theorem in ibid. asserts that a stable C∗-algebra is Km-regular for all m ∈ Z. A C∗-algebra
is called K-regular if it is Km-regular for all m ∈ Z.

Theorem 4.1. The C∗-algebras A⊗̂O∞ are K-regular for all A ∈ C∗.

Proof. For the sake of better readability let us set A∞ := A⊗̂O∞ and Bn := B[t1, · · · , tn]
for any A,B ∈ C∗. Using excision we may assume that A is unital. Arguing as in the proof
of Theorem 1.2 we obtain a commutative diagram

Km(A∞) //

��

Km(A∞⊗̂K) //

��

Km(A∞)

��
Km((A∞)n) // Km((A∞⊗̂K)n) // Km((A∞)n).

(6)

Due to the stability of A∞⊗̂K the middle vertical arrow is an isomorphism. Moreover, the
compositions of the top and the bottom horizontal arrows are again isomorphisms due to
the matrix stability of the functor Km(−) for unital algebras. Observe that the composite
∗-homomorphisms A∞ → A∞⊗̂K → A∞ and (A∞)n → (A∞⊗̂K)n → (A∞)n are still inner.
Now a similar diagram chase as before enables one to conclude that the left vertical arrow
must be an isomorphism. �
Remark 4.2. Purely infinite simple C∗-algebras like O∞ can be regarded as maximally
noncommutative. Rather surprisingly, one needs fairly sophisticated techniques to establish
the K-regularity of commutative C∗-algebras (see [37, 9]).

5. Topological T-duality and noncommutative motives

Let us recall very briefly axiomatic topological T-duality from [4]. Let B be a topological
base space. Consider the category of pairs (E, h), where π : E → B is a principal S1-bundle
over B and h ∈ H3(E,Z). Two such pairs (E1, h1) and (E2, h2) are isomorphic if there
is an isomorphism F : E1 → E2 of principal bundles such that F ∗h2 = h1. Two pairs
(E1, h1) and (E2, h2) are said to be T-dual if there is a Thom class Th for S(V ) such that
h1 = i∗1Th and h2 = i∗2Th. Here S(V ) is the sphere bundle of V := E1 ×S1 C ⊕ E2 ×S1 C
and ik : Ek → S(V ) are the canonical maps for k = 1, 2. In ibid. Bunke–Schick showed
that B 7→ {isom. classes of pairs over B} as a functor on topological spaces is representable.
The representing space E supports a universal pair and any pair on B can be obtained via a
pullback along some map B → E (defined up to homotopy). Using the explicit construction
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of the universal object and the T-dual of the universal pair the authors were able to prove
the existence and uniqueness of T-duality for S1-bundles. If (E1, h1) and (E2, h2) are T-dual,
then there is an isomorphism of twisted K-theories:

Kod(E1, h1) ' Kev(E2, h2) and Kev(E1, h1) ' Kod(E2, h2).(7)

The theory of topological T-duality is not limited to S1-bundles. However, for higher
torus bundles the theory becomes more subtle [3, 5] and sometimes necessitates the use of
noncommutative geometry [30]; moreover, C∗-algebras appear quite naturally in the context
of twisted K-theory [36]. The readers may refer to [38] for a recent survey on the interaction
between C∗-algebras, noncommutative geometry, and T-duality.

We denote the category of separable C∗-algebras by SC∗ and the bivariant K-theory cat-
egory by KK. There is a canonical functor ι : SC∗ −→ KK, which is identity on objects
and admits a univeral characterization [16, 11]. Recall from [20] that there is a category
of noncommutative motives Hmo0, whose objects are k-linear DG categories (k = C for our
purposes). The theory of noncommutative motives is an active area of research with inter-
esting applications to K-theory [41] as well as a wide variety of other mathematics [22, 29].
Building upon an earlier work of Quillen [32] the author constructed a functorial passage
HPfdg from separable C∗-algebras to noncommutative motives and proved the following two
results (amongst others) in [26]:

Theorem 5.1. There is a dotted functor below making the following diagram of categories
commute (up to a natural isomorphism):

SC∗
A7→A⊗̂K //

ι

��

SC∗

HPfdg

��
KK //______ Hmo0.

Theorem 5.2. For any A ∈ SC∗ the homotopy groups of the nonconnective K-theory spec-
trum of HPfdg(A⊗̂K) are naturally isomorphic to the topological K-theory groups of A.

Remark 5.3. In [26] the author phrased the results in terms of NCCdg, which was called
the category of noncommutative DG correspondences. The category NCCdg is equivalent to
Hmo0. Moreover, in Theorem 3.7 of ibid. actually the connective version of Theorem 5.2 was
proven. However, the extension to the nonconnective version is straightforward.

The crucial insight of Rosenberg in [36] was that certain K-bundles on locally compact spaces
can be used to model twisted K-theory. More precisely, given any pair (E, h) with E locally
compact one can construct a noncommutative stable C∗-algebra CT(E, h), whose topological
K-theory is the twisted K-theory of the pair (E, h). This formalism extends to certain infinite
dimensional spaces through the use of σ-C∗-algebras [25]. In [1, 2] the authors extended
the formalism of T-duality to C∗-algebras and showed that under favourable circumstances
if B and B′ are T-dual C∗-algebras, then there is an invertible element in KK0(B,ΣB′)
that implements the twisted K-theory isomorphism (as in (7)). Thanks to Theorem 5.1 we
conclude that if two stable C∗-algebras B and B′ are T-dual, such that there is an invertible
element α ∈ KK0(B,ΣB′), then their noncommutative motives HPfdg(B) and HPfdg(B

′) are
7



isomorphic in Hmo0. Moreover, Theorem 5.2 says that the invertible element implements the
twisted K-theory isomorphism.

Theorem 5.4. If A and A′ are isomorphic in KK, then the noncommutative motives of
A⊗̂O∞ and A′⊗̂O∞ are isomorphic in Hmo0.

Proof. Let α ∈ KK0(A,A
′) be an invertible element. Consider once again the commutative

diagram

A⊗̂O∞
idA⊗̂ι //

R:=idA⊗̂θ &&NNNNNNNNNN
A⊗̂O∞

A⊗̂O∞⊗̂K.

S:=idA⊗̂κ

88pppppppppp

(8)

Then from Theorem 5.1 one obtains a commutative diagram in Hmo0

HPfdg(A⊗̂O∞)
HPfdg(R)

// HPfdg(A⊗̂O∞⊗̂K)
HPfdg(S) //

β=HPfdg(α⊗̂idO∞ ⊗̂idK)
��

HPfdg(A⊗̂O∞)

HPfdg(A
′⊗̂O∞)

HPfdg(R′)
// HPfdg(A

′⊗̂O∞⊗̂K)
HPfdg(S′)

// HPfdg(A
′⊗̂O∞).

(9)

where R′ and S ′ are defined in the obvious manner (replace A by A′ in diagram 8). Since α
is invertible, so are α⊗̂idO∞ and α⊗̂idO∞⊗̂idK. Therefore, the middle vertical arrow β is an
isomorphism. Observe that S ◦ R is a morphism in SC∗. It was shown in Lemma 2.3 of [26]
that the functor HPfdg(−) is matrix stable on SC∗, whence by Lemma 1.1

HPfdg(S) ◦ HPfdg(R) = idHPfdg(A⊗̂O∞) and HPfdg(S
′) ◦ HPfdg(R′) = idHPfdg(A′⊗̂O∞).

Thus the maps HPfdg(R) and HPfdg(R
′) possess left inverses. An inspection of diagram

9 reveals that it suffices to show that they also possess right inverses. The composite ∗-
homomorphismK i

↪→ O∞
θ→ O∞⊗̂K defines an invertible element θ◦i = γ ∈ KK0(K,O∞⊗̂K).

Consequently, idA⊗̂γ ∈ KK0(A⊗̂K, A⊗̂O∞⊗̂K) is an invertible element. By Theorem 5.1
idA⊗̂γ⊗̂idK = (idA⊗̂θ⊗̂idK) ◦ (idA⊗̂i⊗̂idK) induces an isomorphism

HPfdg(A⊗̂K⊗̂K)
∼→ HPfdg(A⊗̂O∞⊗̂K⊗̂K).

Let us set I = idA⊗̂i, so that HPfdg(R⊗̂idK) ◦ HPfdg(I⊗̂idK) is the above isomorphism. Now
consider the following commutative diagram

A⊗̂K //

I
��

A⊗̂K⊗̂K
I⊗̂idK

��

A⊗̂O∞
//

R
��

A⊗̂O∞⊗̂K
R⊗̂idK

��

A⊗̂O∞⊗̂K // A⊗̂O∞⊗̂K⊗̂K.
8



Here all the horizontal arrows are corner embeddings. Now the top and the bottom horizontal
arrows are homotopic to isomorphisms. Since HPfdg(−) is homotopy invariant on stable C∗-
algebras, it sends the top and the bottom horizontal arrows to isomorphisms. We already
know that it sends (R⊗̂idK) ◦ (I⊗̂idK) to an isomorphism. It follows that HPfdg(R) has a
right inverse. Similarly, one can prove that HPfdg(R

′) has a right inverse. �
Corollary 5.5. The functor HPfdg(−⊗̂O∞) is C∗-stable.

Proof. For any separable C∗-algebra A the corner embedding A→ A⊗̂K is KK-invertible. �
Now we prove the O∞-analogue of Theorem 5.2.

Theorem 5.6. For any A ∈ SC∗ the homotopy groups of the nonconnective K-theory spec-
trum of HPfdg(A⊗̂O∞) are naturally isomorphic to the topological K-theory groups of A.

Proof. By the above Corollary the nonconnective K-theory spectra of HPfdg(A⊗̂O∞) and
HPfdg(A⊗̂O∞⊗̂K) are weakly equivalent. By Theorem 5.1 the homotopy groups of the
nonconnective K-theory spectrum of HPfdg(A⊗̂O∞⊗̂K) are isomorphic to the topological
K-theory groups of A⊗̂O∞, which are in turn isomorphic to those of A. �
Remark 5.7. Since noncommutative motives are univeral additive invariants, an isomor-
phism of noncommutative motives is more fundamental than that of twisted K-theories.

Remark 5.8. The above results provide a connection between the Dixmier–Douady theory
via O∞⊗̂K-bundles due to Dadarlat–Pennig [15] and noncommutative motives.
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