UNIFORM LINEAR BOUND IN CHEVALLEY’S LEMMA

J. ADAMUS, E. BIERSTONE AND P.D. MILMAN

ABSTRACT. We obtain a uniform linear bound for the Chevalley function at
a point in the source of an analytic mapping that is regular in the sense of
Gabrielov. There is a version of Chevalley’s lemma also along a fibre, or at a
point of the image of a proper analytic mapping. We get a uniform linear bound
for the Chevalley function for a closed Nash (or formally Nash) subanalytic
set.
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1. INTRODUCTION

Chevalley’s lemma (1943) plays an important role in the solution of equations
f(x) = g(p(x)), where y = p(x) is an analytic mapping in several variables. Given
f(z) analytic (or, for example, C* in the real case), the problem is to find conditions
under which we can solve for g(y) in the same class. Chevalley’s lemma asserts that,
given = a and k € N, there is a corresponding [ = [(k) < oo such that the I-jet of
a composite g o p at a determines the k-jet of g at ¢(a), modulo a formal relation
among the components of ¢ at a. The “Chevalley function” of ¢ at a is the smallest
I(k).

In this article, we answer questions raised by works of Gabrielov, Izumi and
Bierstone-Milman on finding bounds for the Chevalley function that are linear
with respect to k£ or uniform with respect to a. Such bounds characterize impor-
tant regularity or “tameness” properties of analytic mappings and their images [2],
[3], [10], and measure loss of differentiability in classical problems on composite
differentiable functions [3].

By way of comparison, the analogue of the Chevalley function for a linear analytic
equation f(x) = A(z) - g(x) (where A(z) is a matrix-valued analytic function and
f(x), g(x) are vector-valued) always has a linear bound, given by the exponent in
the Artin-Rees lemma. Uniformity of the Artin-Rees exponent has been studied in

2], [5], [8]-
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Let us now be more precise. Let ¢ : M — N denote an analytic mapping of
analytic manifolds (over K = R or C). Let a € M. Let ¢} : Oy — O4 or
Ph 6«o(a) — O, denote the induced homorphisms of analytic local rings or their
completions, respectively. (We write O, = Ops,q, and m, (or m,) = maximal ideal
of O, (or @a)) According to Chevalley’s lemma, there is an increasing function
[ :N — N (where N denotes the nonnegative integers) such that

952(O<p(a)) m‘/ﬁfz(k)Jrl C @Z(‘/ﬁ];zral)) ;
ie, if F € 6@(@ and @} (F) vanishes to order [(k), then F' vanishes to order k,
modulo an element of Ker ¢} ([4]; cf. Lemma 3.2 below). Let l,-(a, k) denote the
least [(k) satisfying Chevalley’s lemma. We call [,+(a, k) the Chevalley function of

Pa-

Let x = (x1,...,2m) and y = (y1,...,yn) denote local coordinate systems for
M and N at a and ¢(a), respectively. The local rings O, or O, can be identi-
fied with the rings of convergent or formal power series K{z} = K{z1,...,2n}
or K[z] = K[z1,...,2m], respectively. In the local coordinates, write o(x) =

(p1(x),...,on(x)). Then Ker@* is the ideal of formal relations {F(y) € K[y] :
F(p1(x),...,pn(z)) =0} (and Ker ¢ is the analogous ideal of analytic relations).
Chevalley’s lemma is an analogue for such nonlinear relations of the Artin-Rees
lemma. (See Remark 1.4.)

Let 71 () denote the generic rank of ¢ near a, and set

2 Ow(a) 3 Ow(a)

r2(p) = dim Ker 37’ ro(p) = dim Ror o

(where dim denotes the Krull dimension). Then rl(¢) < 72(¢) < r3(p). Gabrielov
proved that if 71 () = 72 (), then r2(¢) = r3(y) [6]; i.e., if there are enough formal
relations, then the ideal of formal relations is generated by convergent relations. The
mapping ¢ is called regular at a if rl(p) = r3(p). We say that ¢ is regular if it is
regular at every point of M. Izumi [10] proved that ¢ is regular at a if and only if
the Chevalley function of ¢* has a linear (upper) bound; i.e., there exist a, 8 € N
such that
lox(a, k) < ak+ 0,

for all £ € N. On the other hand, Bierstone and Milman [2] proved that, if ¢ is
regular, then - (a, k) has a uniform bound; i.e., for every compact L C M, there
exists {7, : N — N such that

lp-(a,k) < Ip(k),

for all « € L and £ € N. In this article, we prove that the Chevalley function
associated to a regular mapping has a uniform linear bound:

Theorem 1.1. Suppose that ¢ is reqular. Then, for every compact L C M, there
erist ar, B, € N such that

lo«(a, k) < ark+0r ,
forallae L and k € N.

Chevalley’s lemma can be used also to compare two notions of order of vanishing
of a real-analytic function at a point of a subanalytic set. Let X denote a closed
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subanalytic subset of R". Let b € X and let F,(X) C Ry — b] denote the formal
local ideal of X at b. (See Lemma 3.6.) For all F' € O, = R[y — b], we define

pxp(F) :=max{l € N: |T}F(y)| < const|y —b|', y€ X},

(1.1) N
vxp(F):=max{l e N: F emy,+ F(X)},

where TéF (y) denotes the Taylor polynomial of order [ of F' at b. Then there exists
I: N — Nsuch that, for all k € N, if F € Oy and px 5(F) > I(k), then vx (F) > k.
(See Section 3.) For each k, let [x(b, k) denote the least such [(k). We call Ix(b, k)
the Chevalley function of X at b.

Theorem 1.2. Suppose that X is a Nash (or formally Nash) subanalytic subset of
R™. Then the Chevalley function of X has a uniform linear bound; i.e., for every
compact K C X, there exists ak, Bk € N such that

Ix(b,k) < axk+ Bk,
forallbe K and k € N.

Theorems 1.1 and 1.2 are the main new results in this article. They answer
questions raised in [3, 1.28].

The closed Nash subanalytic subsets X of R™ are the images of regular proper
real-analytic mappings ¢ : M — R™. In particular, a closed semianalytic set is
Nash. A closed subanalytic subset X of R™ is formally Nash if, for every b € X,
there is a closed Nash subanalytic subset Y of X such that F,(X) = Fp(Y) [3].
Unlike the situation of Theorem 1.1, the converse of Theorem 1.2 is false [3, Example
12.8].

The main theorem of [3] (Theorem 1.13) asserts that, if X is a closed subanalytic
subset of R™, then the existence of a uniform bound for Ix (b, k) is equivalent to
several other natural analytic and algebro-geometric conditions; for example, semi-
coherence [3, Definition 1.2], stratification by the diagram of initial exponents of
the ideal F4(X), b € X [3, Theorem 8.1], and a C*° composite function property [3,
§1.5]. A uniform bound for the Chevalley function measures loss of differentiability
in a C" version of the composite function theorem. We use the techniques of [3] to
prove Theorems 1.1 and 1.2 here.

Wang [12, Theorem 1.1] used [9, Theorem 1.2] to prove that the Chevalley func-
tion associated to a regular proper real-analytic mapping ¢: M — R™ has a uniform
linear bound if and only if X = ¢(M) has a uniform linear product estimate; i.e.,
for every compact K C X, there exist ax, Sk € N such that, for all b € K and
F,Ge (/9\1;,

vx,s(F - G) < ak(vx,s(F) +vx, 5(G)) + Bk ,
where X;, = |J; X; is a decomposition of the germ X}, into finitely many irreducible
subanalytic components. We therefore obtain the following from Theorem 1.1:

Theorem 1.3. A closed Nash subanalytic subset of R™ admits a uniform linear
product estimate.

Remark 1.4. The Artin-Rees lemma can be viewed as a version of Chevalley’s
lemma for linear relations over a Noetherian ring R: Suppose that ¥ : F — G is
a homomorphism of finitely-generated modules over R, and let F' C G denote the
image of ¥. Let m be a maximal ideal of R. Then F Nm!G C m*F if and only if
U~1(m!G) € Ker¥ + mFE. The Artin-Rees lemma says that there exists 3 € N
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such that ' N m**t8G = m*(F N mfQG), for all k. In particular, there is always
a linear Artin-Rees exponent I(k) = k + (. Uniform versions of the Artin-Rees
lemma were proved in [2, Theorem 7.4], [5], [8]. A uniform Artin-Rees exponent for
a homomorphism of Ops-modules, where M is a real-analytic manifold, measures
loss of differentiability in Malgrange division, in the same way that a uniform bound
for the Chevalley function relates to composite differentiable functions. (See [2].)

2. TECHNIQUES

2.1. Linear algebra lemma. Let R denote a commutative ring with identity, and
let £ and F be R-modules. If B € Homg(E, F) and r € N, r > 1, we define

ad"B € Homp <F Homp </\E /\THF))

by the formula
(ad"B)(w)(m A---An.) = wABm A---ABn,,

where w € F and n1,...,1m, € E. (ad’B := idp, the identity mapping of F.)
Clearly, if r > rk B then ad"B = 0, and if r = rk B then ad"B - B = 0. (tkB
means the smallest 7 such that A°B = 0 for all s > r.) If R is a field, then
rk B = dimIm B, so we get:

Lemma 2.1 ([1, §6]). Let E and F be finite-dimensional vector spaces over a field
K. If B: E — F is a linear transformation and r = rk B, then

ImB = Kerad"B .

In particular, if A is another linear transformation with target F', then A&+ Bn =0
(for some ) if and only if £ € Kerad"B - A.

2.2. The diagram of initial exponents. Let A be a commutative ring with
identity. Consider the total ordering of N™ given by the lexicographic ordering of

(n-+1)-tuples (|5], B, .., Ba), where 8= (B, .., Bn) € N* and || = By +- -+ Ba.
For any formal power series F(Y) = 3 5\ FgYP € A[Y] = A[Ya,...,Y,], we
define the support supp F' := {3 € N": F3 # 0} and the initial exponent exp F :=
min supp F. (exp F := o0 if F =0.)

Let I be an ideal in A[Y]. The diagram of initial exponents of I is defined as

N(I) = {expF: FeI\{0}}.

Clearly, (1) + N™ = 9(I).
Suppose that A is a field K. Then, by the formal division theorem of Hironaka
[7] (see [2, Theorem 6.2]),

(2.1) K[Y] = TeK[Y]"?,

where K[Y]™ is defined as {F € K[Y]: supp F C N\ 0N}, for any N € N such
that M+ N™ = 91.
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2.3. Fibred product. Let M denote an analytic manifold over K, and let s € N,
s > 1. Let ¢: M — N be an analytic mapping. We denote by Mg the s-fold fibred
product of M with itself over N i.e.,

Mg = {a=(a',...,a°) € M*: p(a') = =p(a’)}
Mg is a closed analytic subset of M?®. There is a natural mapping ¢ = ¢*:
M — N given by p(a) = ¢(a'); ie., for each i = 1,...,s, ¢ = @ o p’, where
pht M > (2!, 2%) — a2t e M.

Suppose that K = R. Let E be a closed subanalytic subset of M, and let
¢: E — R" be a continuous subanalytic mapping. Then the fibred product Ej is
a closed subanalytic subset of M*, and the canonical mapping ¢ = ¢°: E; — R"
is subanalytic.

Let E; denote the subset of £, consisting of points z = (z1,...,2%) € E;, such
that each z” lies in a distinct connected component of the fibre ¢~ (p(z)). If ¢ is
proper, then Ej, is a subanalytic subset of M? [3, §7].

2.4. Jets. Let N denote an analytic manifold (over K = R or C), and let b € N.
Let [ € N and let J'(b) denote O, /@\L. If F € Oy, then J'F(b) denotes the image
of F in J'(b). Let M be an analytic manifold, and let p: M — N be an analytic
mapping. If a € ¢~ 1(b), then the homomorphism @ : Op — O, induces a linear
transformation J'p(a): J'(b) — J'(a).

Suppose that N = K". Let y = (y1,...,yn) denote the affine coordinates of
K". Taylor series expansion induces an identification of @b with the ring of formal
power series K[y —b] = K[y1 —b1, ..., yn—b,] (we write F'(y) = > 5cnn Fs(y—b)?),
and hence an identification of J!(b) with K9, ¢ = ('), with respect to which
J'F(b) = (DPF(b))51<i, where DP denotes 1/3! times the formal derivative of
order 3 € N.

Using a system of coordinates z = (x1,...,Zy) for M in a neighbourhood of «,
we can identify J!(a) with K?, p = (™). Then

T'ela): (Fp)g<r = (@5(F)adjaics = | D FoLh(a) :
1811 o<1

where LZ(a) = (91*1p?/02%)(a)/a! and ¢f = gofl @B (o= (P1,- -5 0n))-
Set J} := J'(b) @k Op = D5« Kly —b]. We put JLF(y) == (D°F(y))5<1 € J;-

(Evaluating at b transforms JLF to J'F(b).) The ring homomorphism @ : 0, — O,
induces a homomorphism of K[z — a]-modules,

Jo:  J(b) @k O, —  JYa) @k O,
| |
@K[[x—a]] @K[[x—a]]

IBI<t lev| <t
such that, if F' € @b, then
Jop (2a(D°F))igi<t) = (D*(@5(F)))jal<t-

By evaluation at a, J! ¢ induces J'¢(a): J'(b) — J'(a). J.p identifies with the ma-
trix (with rows indexed by a € N, || < [, and columns indexed by 5 € N™, |5] <)
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whose entries are the Taylor expansions at a of the D*¢p? = (91*lpP/9x%)/al,

laf <1 [B] <L

Let a = (a',...,a%) € M and let b = p(a). For eachi=1,...,s, the homomor-
phism J} = J'(b) ®k Oy — J'(a') @ Oy = J!, over %, as defined above (using a
coordinate system x* = (z¢,...,2¢ ) for M in a neighbourhood of a?), followed by

the canonical homomorphism J!(a') @k O, — J'(a') ®x @Mi . over (p?)

:Oai—>

(/’)\M;,Q, induces an @M; .a-homomorphism J!(b) ®x (/’)\M;,Q — Jl(a") @k (/’)\M;@. We

thus obtain an O Mjg,g—homomorphism
Jicp: JHb) @k @M;,g — é}Jl(ai) QK @Mj,,g
i=1
[ [
@ (5M;,g @ @ 61‘/1@3’9

[8]<l =1 |a|<I
For any (germ at @ of an) analytic subspace L of M, we also write
(2.2) Jhor J0)9x Ora — P J'(0") @k Ora
i=1

for the induced @L,E—homomorphism. Evaluation at a transforms J.¢ to
(2.3) Jio(a) = (Jhp(al), ..., Jle(a®)): JHb) — @ J(a?).
i=1

3. IDEALS OF RELATIONS AND CHEVALLEY FUNCTIONS

Let M denote an analytic manifold (over K = R or C), and let ¢ = (i1, . ..

,(pn):M%

K™ be an analytic mapping. If a € M, let R, denote the ideal of formal relations

Ker @7

Remark 3.1. R, is constant on connected components of the fibres of ¢ [3, Lemma 5.1].

Let s be a positive integer, and let @ = (a',...,a%) € M. Put

~

(3.1) RQ = ﬁRai = ﬁKergﬁ:i C Of(g)'

If k € N, we also write

~ k41
k o Rﬂ+m£(ﬂ) k
R¥(a) == —7— C J(e(@) .

»(a)

If b € K", let 78(b): O, — J*(b) denote the canonical projection. For I > k, let

7tk (b): J'(b) — J*(b) be the projection. Set
El(g) = KerJlgo(g)7 and Elk(g) = wlk(g(g)).El(g).
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3.1. Chevalley’s lemma.

Lemma 3.2 ([2, Lemma 8.2.2]; cf. [4, § II, Lemma 7]). Let ¢ € M3, a =
(a',...,a®). For all k € N, there exists | € N such that R¥(a) = E'(a); i.e.,
such that if ' € Oy and ¢} (F) € ﬁli;[l, i=1,...,s, then F € Ry + ﬁI;J(ral).

We write l(a, k) = - (a, k) for the least | satisfying the conclusion of the lemma.

Proof of Lemma 3.2. If k <1y <5, then
R¥(a) c E"»*a) c E"¥(a),

and the projection m'2! (o(a)) maps MNi>1, E'2(a) onto N>, E'"(a). Tt follows
that R*(a) = ;54 E™¥(a). Since dim J*(p(a)) < oo, there exists | € N such that
R*(a) = E™(a). O

3.2. Generic Chevalley function. Let a € M3 and k € N. Set

T (p(a) " o TMele)
Hg(k) = dlmKW s d (Q) = dlmKW s if [ > k
(Hg is the Hilbert-Samuel function of @f(g)/Rg).
Remark 3.3. d'*(a) < H,(k) since R¥(a) C E*(a). RF(a) = E'(a) (and d"*(a) =
H,(k)) if and only if [ > i(a, k).

Lemma 3.4 ([2, Lemma 8.3.3]). Let L be a subanalytic leaf in M (i.e., a con-
nected subanalytic subset of Mg which is an analytic submanifold of M?*; see Re-
mark 4.4). Then there is a residual subset D of L such that, if a,a’ € D, then
H,(k) = Hy (k) and l(a, k) = 1(d, k), for all k € N.

Definition 3.5. We define the generic Chevalley function of L as I(L, k) == l(a, k)
(k € N), where a € D.

Proof of Lemma 3.4. For a € M7 and | > k, write J'p(a) (2.3) (using local coor-
dinates for M* as in §2.4, in a neighbourhood of a point of L) as a block matrix

Jola) = (5%(a), T(a))

< J’“s:(@) 2 )

corresponding to the decomposition of vectors & = ({3)genn,|5<i in the source as
&= (fk,Clk), where ¢F = (£5)|3/<k and ¢tk = (£8)k<|s|<i- Then

E™(a) = {n=(mp)si<x: S™(a)-neImT™a)} .
Thus, by Lemma 2.1

E'%(a) = Ker©®%(a), and d*(a) = rk©%(a) ,
where

0% (a) == ad™ @WT™(g). S%(a), 1*(a) = tkT™(q) .
Set

r* (L) = meazirlk(g), and d¥(a) := 1k©®%(a), acL,
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where .
0f(a) = ad” P1T"(a) - $"(a)
(so that ©%(a) = 0 if r*(a) < r'*(L)). Let Y* := {a € L: r'*(a) < r'*(L)}. Set

Lk - Lk
d7(L) = maxd(a) .

Clearly, d*(a) = 0if a € Y*, and d¥¥(a) = d"*(a) if a € L\ Y'*. Also set
Z% = ylky {aeL: d¥(a) < dlk(L)} )

Then Y'* and Z'"* are proper closed analytic subsets of L. For all @ € L\ Z'¥,
r*(a) = r'*(L) and d"*(a) = d'*(a) = d'*(L). Put

(3.2) Dt = r\|JZz%, D= (\D".

>k k>1
By the Baire Category Theorem, the D* (and hence also D) are residual subsets
of L.

Fix k € N. If a € D¥, then d'*(a) = d'*(L), for all I > k. If, in addition,
| > I(a,k), then H,(k) = d*(L), by Remark 3.3. If a,a’ € D*, then, choosing
1> l(a, k) and > l(d, k), we get Hy(k) = Hy (k). For the second assertion of the
lemma, suppose that [ > I(a, k). Then Hy/ (k) = Hy(k) = d'*(a) = d'* (L) = d"*(d’),
so that I > I(a/, k), by Remark 3.3. In the same way, | > [(a’, k) implies that
1> U(a, k). O

3.3. Chevalley function of a subanalytic set. Let N denote a real-analytic
manifold, and let X be a closed subanalytic subset of N. If b € X, then F3(X) or
Ry C @b denotes the formal local ideal of X at b, in the sense of the following
simple lemma:
Lemma 3.6. Let b € X. The following three definitions of F(X) are equivalent:
(1) Let M be a real-analytic manifold and let p: M — N be a proper real-
analytic mapping such that X = @(M). Then Fyp(X) = (N ep-1 () Ker &5
(2) Fp(X) ={F € Op: (F o7)(t) = 0 for every real-analytic arc ~(t) in X
such that v(0) = b}.
(3) Fp(X) ={F € Oy : TFF(y) = o(ly — b|*), where y € X, for all k € N}.
Here TbkF(y) denotes the Taylor polynomial of order k of F at b, in any
local coordinate system.

Assume that N = R”, with coordinates y = (y1,...,yn). Let b € X. Recall
(1.1).
Remark 3.7. vxp(F) < pxp(F): Suppose that F' € m} + F,(X); say F = G+ H,
where G € m} and H € F,(X). Then |[T}G(y)| < cly—b|' and T H (y) = o(|y — b]"),
y € X, by Lemma 3.6. Hence |T{F(y)| < const|y — b|' on X.

Definition 3.8 (Chevalley functions). Let b € X and let k € N. Set
Ix(bk) := min{l € N: If F € O, and px.p(F) > 1, then vx y(F) > k} .
Let ¢o: M — N be a proper real-analytic mapping such that X = ¢o(M). Set
lo-(b,k) = min{l e N: If F € Oy and vps.a(35(F)) > 1
for all a € ¢~ (b), then vx,(F) >k} .
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Remark 3.9. Suppose that b = ¢(a), where g = (al,...,as) € Mg, s > 1. By

Lemma 3.2, l,-(a, k) < co. If a includes a point ¢ in every connected component
of p=1(b), then N;_; Ker¢*, = Fp(X) (by Remark 3.1 and Lemma 3.6), so that
l@* (b7 k) < lsa* (Q, k)

Lemma 3.10 (see [3, Lemma 6.5]). Let ¢: M — N be a proper real-analytic
mapping such that X = o(M). Then Ix(b,-) <ly+(b,-) for allbe X.

4. PROOFS OF THE MAIN THEOREMS

Let ¢: M — K" be an analytic mapping from a manifold M (over K = R or C).
Let s be a positive integer. Let a = (a',...,a®) € M, and let b = ¢(a).

Remark 4.1. By (2.1), the Chevalley functions l,-(a, k) and l,- (b, k) (Definitions 3.8)
can be defined using power series that are supported outside the diagram of initial
exponents: Set N, := N(R,) and Ny, := N(Ry) (cf. 3.1 and Lemma 3.6). Then

lp+(a,k) = min{l € N: If F € O, and ¢%(F) e mitt, i=1,....s,
then F € R, +mytt}
lo«(b,k) = min{le N: If F € Ogt” and @%(F) € mlT! for all a € o~ 1(b),
then F € Ry, +mp '} .
(In the latter, we assume that ¢ is a proper real-analytic mapping.)

If I €N, set J'(b)Me := {& = (&) 1511 € J'(b): € = 0if B € N, }. Consider the
linear mapping

dl(a): J a—>€9ﬂ

obtained by restriction of Jip(a): J'(b) — @ Jl( ) (2.3). Given k < [, write ®!(a)
as a block matrix

®'(a) = (A™(a), B"(a)) ,
where A'*(a) is given by the restriction of ®!(a) to J* ()M«

Remark 4.2. If £ € J'(b)™=, write £ = (n, () corresponding to this block decompo-
sition. Then [ > I« (a, k) if and only if A*(a)n + B'*(a)¢ = 0 implies n = 0 [3,
Lemma 8.13].

Lemma 4.3 ((cf. [3, Prop. 8.15]). Let s > 1 and consider ¢ = ¢°*: M7 — R".
Let L be a relatively compact subanalytic leaf in Mg (cf. Lemma 3.4) such that
My = N(R,) is constant on L. Let l(k) = (L, k) denote the generic Chevalley
function of L. Then there exists p € N such that l,-(a, k) < (k) +p, for alla € L
and k € N.

Proof. Set M =Ny, a € L. We can assume that L lies in a coordinate chart for M$
as in §2.4. Let k € N and let I = (k). Let a = (a',...,a®) € L, and set b = ¢(a).
Consider the linear mapping ®'(a) = (A% (a), B*(a)): J'(b)" — @;_, J'(a’) as
above. The Of, ,-homomorphism Jhp: JHb) @K OLa— @®_, J'(a") @k Op 4 (2.2)
induces an (/9\L,E—h0momorphism

o, = (A% B} J0)" 9k Ora — P J'(0") @x O s

i=1
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evaluating at a transforms ® to ®!(a) = (A%*(a), B'*(a)).

Let 7 = rk B = generic rank of B*(z), z € L. Let ©, = ad"BY¥ - A%*. Then
Ker©, = 0 (i.e., Ker O(z) = 0 generically on L, where ©(z) = ad "B (z) - A (z),
by Remark 4.2). Let d = rk©,. Then there is a nonzero minor é, € Or, 4 of ©4 of
order d; d, is induced by a minor §(z) of order d of O(z), z € L, such that §(z) # 0
on a residual subset of L. Since § is a restriction to L of an analytic function defined
in a neighbourhood of L, the order of 6, z € L, is bounded on L; say, §, < p.

We claim that l,«(a, k) < Il(k)+pforalla € L: Let a = (a',...,a%) € L, and let
b= g(a). Let I = (k) and ' = | + p. Suppose that F € O} and @*,(F) € @',
i=1,...,5 Let & = (fa, QA‘E) denote the element of J'(b)™ @k @L,g induced by

JIF € JY(b) ®x O, via the pull-back. Then each component of Agﬂ la + Bfikfg

belongs to ﬁﬁj‘}—l (as we see by taking formal derivatives of order < [ of the

o (F)). Tt follows that each component of ©,7, and therefore (by Cramer’s rule)
each component of d, - 7, belongs to tﬁij;*l. Thus, each component of 7, lies in
ﬁgj;lfl*p =1y q; i.e., fa(a) = 0, so that F vanishes to order k at b = ¢(a). O
Proof of Theorem 1.1. By [2, Theorems A,C], there is a locally finite partition
of M into relatively compact subanalytic leaves L such that the diagram of initial
exponents N, = MN(R,) is constant on each L. Given L, let I(L,k) denote the
generic Chevalley function. (In particular, I(L, k) =l (a, k), for all a in a residual
subset of L.) Since ¢ is regular, there exist «y,,~r such that (L, k) < apk + v,
for all k € N (by [10]). By Lemma 4.3 (in the case s = 1), there exists py, € N such
that - (a, k) < ark + v, + pr, for all @ € L and all k. The result follows. O

Remark 4.4. In the case K = C, we define “subanalytic leaf” using the under-
lying real structure. If ¢ is regular, then the diagram 91, is, in fact, an upper-
semicontinuous function of a, with respect to the K-analytic Zariski topology of M
(and a natural total ordering of {91 € N™: 9% + N = 0N}) [2, Theorem C], but we
do not need the more precise result here.

Lemma 4.5. Let s > 1 and let a = (a',...,a") € M. Suppose that ¢ is reqular
ata',...,a". Then there exist o, 3 € R such that l,-(a, k) < ak+ 3, for all k € N.

Proof. Let b = p(a). For eachi =1,...,s, since ¢ is regular at a’, there exist o', 3’
such that
(4.1) ly«(a', k) < o'k+ ', forallk.

Of course, (;_; Ker ¢¥; is the kernel of the homomorphism Oy — ®;_, Oy / ker Pri.
By the Artin-Rees lemma (cf. Remark 1.4), there exists A € N such that, if F €
my A ker¢*,,i=1,...,s, then
(4.2) F € m}+ ﬂ Ker ¢¥; .
i=1

Now let F € @b and suppose that ¢*;(F) € I?ljf(A’Lk)JrﬂiH, t=1,...,5. Then
Femp™ £ Ker¢*,,i=1,...,s, by (4.1), so that F € mi™! +N7_, Ker ¢, by
(4.2). In other words, ly-(a, k) < ak + 3, where @ = maxa® and f = Amaxa® +
max °. O
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Proof of Theorem 1.2. Suppose that ¢: M — R™ is a real-analytic mapping,
where M is compact. Let X = o(M). Let s > 1, a € M3, b = ¢(a). If a =
(a',...,a®) includes a point a’ in every connected component of ¢ ~1(b), then

(4.3) Ix(b, k) < ly+(a, k),

by Remark 3.9 and Lemma 3.10.

Let L be a relatively compact subanalytic leaf in Mg, such that M, = N(Ra)
is constant on L. Suppose that ¢ is regular at af, for all a = (a',...,a®) € L and
t=1,...,s. Let I(L, k) denote the generic Chevalley function of L. By Lemma 4.5,
there exist «, 8 such that I(L, k) < ak + 8. Therefore, by Lemma 4.3, there exist

ar, Br, such that
(4.4) lov(a, k) < ark+(r, forall ae L.

To prove the theorem, we can assume that X is compact. Let ¢ be a mapping
as above, such that X = o(M). We consider first the case that X is Nash. Then
we can assume that ¢ is regular. Let s denote a bound on the number of connected
components of a fibre p~1(b), for all b € X. Then there is a finite partition
of Mg into relatively compact subanalytic leaves L, such that M, = M(R,) is
constant on every L. By (4.3) and (4.4), for each L, there exist o, 8 such that
Ix(b,k) < apk+ Pr, for all b € (L) and all k. Therefore, Ix (b, k) has a uniform
linear bound. B

Finally, we consider X formally Nash. Let NR(¢) C M denote the set of points
at which ¢ is not regular. Then NR(y) is a nowhere-dense closed analytic subset
of M ([11, Theorem 1]). For each positive integer s, set

NR(p*) := Mf, N U{Q =(d',...,a*) e M*: a' € NR(¢)} ;
i=1

then NR(¢®) is a closed analytic subset of M.
If b € X and a,a’ belong to the same connected component of ¢~1(b), then
¢ is regular at a if and only if ¢ is regular at a’ (cf. Remark 3.1). Let ¢ be a
bound on the number of connected components of a fibre ¢ ~1(b), for all b € X. For
each s < t, define X := {b € X: p~1(b) has precisely s regular components} and
Ys := {b € X: ¢ 1(b) has at least s regular components}. Then X, = Y, \ Yi;1,
and )
Ys = ¢* (M7 \ NR(¢?)) ;
in particular, all the X and Y; are subanalytic (cf. §3.2).
The hypothesis of the theorem implies:
(1) X =Uios X
(2) If b€ X, and a € (p°)~1(b) (M3 \ NR(¢*)), then Ry = Ry
((2) follows from the fact that Fy(X) = Fp(Ys), where Y; is some closed Nash
subanalytic subset of X, and (1) from the fact that the latter condition holds for
allbe X))
By [11, Theorem 2], for each s, there is a finite stratification L of M compatible
with NR(¢*) such that 9, = M(R,) is constant on every stratum L C MZ\NR(¢*),
L € L. Clearly,

X = U e(rnmg)nx;

LeLly
LCM:\NR(ES)



12

J. ADAMUS, E. BIERSTONE AND P.D. MILMAN

hence

t
x=-U U g (Lna)

LeLly
LCM:\NR(¢*)

Again by (4.3) and (4.4), for each L, there exist ap, 31 such that Ix (b, k) < apk +
Br, for all b € (L) and all k. The result follows. O
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