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Introduction

Let K be a p-adic field with finite residue class field of g-elements. Let G be a connected
split reductive group over K with connected center. Let 7 be an Iwahori subgroup of G
and let 7 be the ‘diagonal’ subgroup of Z (in a suitable sense). The group Ng(7)/7T (here
Ng(T) is the normalizer of T in G) is an extended affine Weyl group W (i.e. W = Qx W'
for certain abelian group € and for certain affine Weyl group W'). It is known that
G = Uyew ITwT and one can define an interesting associated ring structure on the free
abelian group H, with basis TwZ, w € W (see {IM]). The ring Hy is an affine Hecke ring,.
We call Hy = H, @ C an affine Hecke algebra. According to Borel [Bol] and Matsumoto
[M], the category of admissible complex representations of G which have nonzero vectors
fixed by 7 is equivalent to the category of finite dimensional representations (over C) of H,.

Thus an interesting part of the study of representations of p-adic groups can be reduced

to that of affine Hecke algebras.

According to a conjecture of Langlands (see {La]) the irreducible complex repre-
sentations of G should be essentially parametrized by the representations of the Ga-
lois group Gal(K/K) into the complex dual group G*(C) of G (111 the sense of [La]):
Gal(K/K) — g*(C).

Let T be the quotient group of Gal(JX/K) corresponding to the maximal tamely ram-
ified extention of K. The group I has the generators F' (Frobenius) and M (Monodromy);
subject to the relation FMF~! = MY. According to the conjecture, the irreducible com-
plex representations of G which have nonzero vectors fixed by the Iwahori group Z should
be essentially parametrized by the homomorphisms I' = G*(C). More exactly, Langlands’
original conjecture says that the representations should roughly be parametrized by the
conjugacy classes of semisimple elements in G*(C). A later refinement of the conjecture,

due independently to Deligne and Langlands, added nilpotent elements in the picture.
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Thus the representations considered should be essentially parametrized by the conjugacy
classes of the pair (s,N) such that Ad(s)N = ¢N, where s is a semisimple element of
G*(C), N is a nilpotent element in the Lie algebra g of G*(C), and we say two pairs
(s, N), (s',N') are conjugate if s' = gs¢g™!, N' =Ad(g)N for some ¢ € G. For group
GL,(K) this was proved by Berstein and Zelevinsky [BZ], [Z]. For general case, Lusztig
(see [L4]) added a third ingredient to (s, N), namely an irreducible representation p of the
group A(s,N) = Cg(s) N Ca(N)/(Ca(s) N Cs(N))® (here G = G*(C) and Cg() denotes
the centralizer in G) appearing in representation of the group A(s, N) on the total com-
plex coeflicient homology group of B}, here BY, is the variety of Borel subalgebras of g
containing N and fixed by Ad(s).

Now the category of admissible complex representations of ¢ which have nonzero
vectors fixed by 7 is equivalent to the category of finite dimensional representations (over
C) of the Hecke algebra H, respect to the Iwahori group Z (see [Bol, M]). Therefore the
conjecture can be stated as
(*). The irreducible representations of H, are naturally 1-1 correspondence with the con-

jugacy classes of triples (s, N, p) as above.

The conjecture (*) was proved by Kazhdan and Lusztig in [KL4]. Actually they proved
that (*) is true when ¢ is not a root of 1 (one can define H, for arbitrary ¢ € C*). In [G1]
Ginsburg also announced a proof, but the proof contains some errors since the main result
is not correct as stated, pointed out by Kazhdan and Lusztig in [KL4]. However the work
[G1] contains some very interesting ideas. Combine [KL4] and [G1] we can prove that (x)
is true for most roots of 1 (see chapter 4, actually we get more). In chapter 5 we shall

show that for some roots of 1 (it is expected only for these roots, see [L17]) (*) is not true.

Now we explain some details of the paper.

In chapter 1 we give the definitions of Coxeter groups and of Hecke algebras. We also
recollect some definitions and results in [KL1] and [L6], which we shall need. In chapter
2 we give the definitions of extended affine Weyl groups and of afline Hecke algebras, and
recall some results on cells in affine Weyl groups. Following Berstein, the center of an

affine Hecke algebra is explicitly described. In chapter 3 we recall some work on Deligne-
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Langlands conjecture for Hecke algebras by Ginsburg [G1-G2], Kazhdan and Lusztig [IL4].
We give some discussions to the standard modules (in the sense of [KL4]). For type 4
it is not difficult to determine the dimensions of standard modules. We also state two
conjectures, one is concerned with the based rings of cells in affine Weyl groups, and
another is for simple modules of affine Hecke algebras with two parameters, which is an
analogue of the (*). In chapter 4 we introduce an equivalence relations in T'x C*, where T is
a maximal torus of a connected reductive group over C. Combining some properties of the
equivalence relation, results of Ginzburg and of Kazhdan & Lusztig in chapter 3, we prove
that (*) is true for most roots of 1. In chapter 5 we show that for some roots of 1 (*) is not
true by using some results in [Ka2] and in chapter 4. In chapter 6 we give some discussions
to certain remarkable quotient algebras of H,. The chapters 7 and 8 are based on preprints
“The based rings of cells in affine Weyl groups of type G2, By, “Some simple modules of
affine Hecke algebras”, respectively. In chapter 7 we verify the conjecture in [L14] for cells
in affine Weyl groups of type G, By. In chapetr 8 we show that the conjecture in [L14] is
true for the second highest two-sided cell in an affine group. Once we know the structures
of the based rings we can know the structures of the corresponding standard Hy-modules.
The explicit knowledge of based rings provides a way to compute the dimensions of simple
H,-modules and their multiplicities in standard modules, also can be used to classify the
simple H,-modules even though ¢ is a root of 1. In chapter 7 we work out the dimensions
of simple H;-modules for type A;. An immediate consequence is that H, # H, = C[W]

whenever ¢ # 1 for type Ay. This leads to several questions.
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1991-92, and during my visit at Max-Planck-Institut fiir Mathematik, Bonn, 1992-93. 1
acknowledge with thanks the NSF support (Grant DMS-9100383) at the TAS, T am grateful
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1. Hecke Algebras

In this chapter we give the definitions of extended Coxeter groups and of their Hecke
algebras and some examples. Some definitions (such as these of Kazhdan-Lusztig polyno-
mials and cells) and results from [KL1] and [L6] are recalled. We also show how to apply
the definitions in [L6], which is a generalization of [KL1]. Several questions are proposed.

We refer to [B, Hu] for more details about Coxeter groups and their Hecke algebras.

1.1. Basic definitions. A Coxeter group is a group W' which possesses a set S = {s; }ier

of generators subject to the relations

st=1, (sisj)™ =1 (i #7),

where m;; € {2,3,4,...,00}. We also write mg; for m;;, where s = s;, t = s;.

We call (W', S) a Coxeter system and S the set of distinguished generators or the set
of simple reflections. Let ! be the length function of W’ and < denote the usual partial
order in W'.

In Lie theory we often need to consider extended Coxeter groups. If a group {2
acts on the Coxeter system (W',S), we then define a new group W =  x W' by
(w1, w1 )(w2,w2) = (wywe,wy ' (w) )wy). The group W is called an extended Coxeter group.
The length function ! can be extended to W by defining {(ww) = I(w), and the partial
order < can be extended to W by defining ww < w'u if and only if w = &', w < u, where

whw € R, w,u e W'. We denote the extensions again by ! and <, respectively.

Let qé, s € S be indeterminates. We assume that qé = q:f if and only if s, are
conjugate in W. Let A = Z[qé,q;%]ses be the ring of Laurant polynomials in qé, s€S
with integer coefficients. The (generic) Hecke algebra H (over A) of W is an associative
A-algebra. As an A module, H is free with a basis Ty, w € W, and multiplication laws

are

(1.1.1) (Ty—q)(Ts+1)=0, ifseS; TwTy = Ty, if l(wu) = l{w) + I{u).



The generic Hecke algebra of W actually can be defined over Z[q,l,es, but it is
convenient to define it over A for introducing Kazhdan-Lusztig polynomials and for defining
cells in W.

Let H' be the subalgebra of H generated by T,, s € S. Then the algebra H is
isomorphic to the “twisted” tensor product Z[Q] @z H' by assigning T\, = w @ Ty, where
Z[?] is the group algebra over Z, and the multiplication in Z[Q2] @z H' is given by

(W Ty)(w @T,) =ww' @ Tp-1(wyTu

Note that s,t € S may be conjugate in W but not conjugate in W', thus H' may not be
the generic Hecke algebra of W' in previous sense.
For an arbitrary A-algebra A', The A'-algebra H ® 4 A’ is called an Hecke algebra.
Convention: We shall denote the images in H ® 4 A" of Ty, w € W by the same

notations.

1.2. Two special choices of A’ are particularly interesting.

(a). Let q* be an indeterminate and let A = Z[q*,q" %] be the ring Laurant polyno-
mials in q% with integer coefficients. Choose integers ¢y, s € S such that ¢, = ¢; whenever
s,t are conjugate in W. There is a unique homomorphism of rings from A to A such that
q:’L, (s € §) maps to q¥. Thus A is an A-algebra. The multiplication laws in the Hecke
algebra H ® 4 A are (note the convention at the end of 1.1)

(1.21) (T, —q®)To +1)=0, ifs€S;  ToTu=Tuu, ifl(wu)=/1w)+I(u).

(b). When all integers ¢, are 1, we denote the Hecke algebra H ® 4 A by H. The

multiplication laws in H are
(1.2.2) (Ts—q)(Ts+1)=0, ifseS, TwTy = Tyu, if lwu) =Uw) + I(u).

Sometimes H is also called the generic Hecke algebra of W (with one parameter). By
now the Hecke algebra H and its various specializations H @ 4 A’ are the most extensively

studied Hecke algebras.



There is also a slight generalizations of the Hecke algebra H. Let R be a commutative
ring with 1. For any s € S, choose u,, v, € R such that u, = u;, vy = v, whenever s, ¢
are conjugate in W. Then there exists a unique associative R-algebra H, which is a free

R-module with a basis T}, w € W and multiplication is defined by
(1.2.3) T? =u,T +v,, ifs€S; T.T =T, ifl(wu)=1w)+(u).

(see, e.g. [Hu]). Sometimes the R-algebra H is actually an Hecke algebra. Suppose that v,
1 i
has a square root v¢ and v§ is invertible in R. Furthermore we assume that there exists

, . L
an invertible element u)? € R such that

1 ;—4 -
! 7= usvs

(1.2.5) u

1 -1 . I
We set T, = u'é v, T, then T!'? = (u!, — 1)T” + «!,. In this case the algebra H is an

Hecke algebra in the sense of 1.1.

In Lie theory there are also other interesting algebras of Hecke type, see, e.g., [BM,
Ca, MS].

1.3. Examples of Coxeter groups. It is convenient to represent a Coxeter system
(W', S) by a graph I, the Coxeter graph of (W', S). The vertex set of ¥ is one to one
correspondence with S; a pair of vertices corresponding to s;,s; are jointed with an edge
whenever m;; > 3, and label such an edge with m;; when m;; > 4. Thus the graph ¥
determines (W', S) up to isomorphism.

A Coxeter system (W', S} is called irreducible if for any s,7 € S we can find a sequence
s =tg,t1, - ,t) = tin S such that my, 1, , > 3 (ie. titip1 # tigati), 0 <2 < k—1. We also
call W' an irreducible Coxeter group when (W', S) is irreducible. Obviously, any Coxeter
group is a direct product of some irreducible Coxeter groups.

The most important Coxeter groups in Lie theory are Weyl groups and affine Weyl
groups. They are classified. The Coxeter graphs of irreducible Weyl groups and irreducible
affine Weyl groups are as follows.

Type A, (n > 1). 0

NO
o]
o]
30



Type Bn (n > 2).

Type D, (n > 4).

Type Es.

Type E;.

Type Es.

Type Fy.
Type Ga.

Type Aq.

Type An (n>2).

Type B, = C,.

Type B, (n > 3).

o] O s, O 0
1 2 n—2 n—1 n
n—1
o
e, O O O
1 2 n—2 n
2
Q
O O O o] O o,
1 3 4 5 6 7
2
o}
[s; O O O O o}
1 3 4 5 6 7
2
0
o, O O O 0
1 3 4 5 6
o, O Q 3
1 2 3 4
Q=10
1 2
o—0
1 2
e Q O lo;
1 2 n—2 n—1 n
Q- 0—0
0 1
0
o}
o] O o] O o}
1 2 n—2 n—1 n



Type C,, (n > 3).

Type D, (n > 4).

Type Es.

Type E;.

Type Es.

Type Fy.

Type Gs.

o, O O G O 0
0 1 2 n—2 n—I1 n
0 n—1
(o] [o]
e, G O O
1 2 n-2 n
2
(o]
o, O O O O O O O
1 3 4 5 6 7 8 0
2
o]
o, O O O O O 6]
0 1 3 4 5 6 7
0
(o]
0%

1 3 4 5 6
4
e, O O O 2
0 1 2 3 4
6
o0——O0——=0
0 1 2

1.4. The Weyl group of type A,, is just the symmetric group &,,4; of degree n + 1. One

may choose {(12), (23), ---,(n,n + 1)} as the set of simple reflections of &, 4;.

Except Weyl groups, the other irreducible finite Coxeter groups are dihedral groups

I(m) (m =5 or m > 6, when m = 3,4,6, Io(m) are Weyl groups) and Coxeter group of

type H; or Hy. Their Coxeter graphs are as follows.

Type Hy.

Type Hj.

5

o} O G O

1 2 3 4
5

o—O0———0

1 2 3



Type I(m). ]o——m—g

When (W', S) is crystallographic (i.e., m;; = 2,3,4,6,00 for arbitrary s;,s; € S),
W' can be realized as the Weyl group of certain Kac-Moody algebra (see [K]). Thus we
have a Schubert variety B,, for each element w € W’. This is a key to apply the powerful

intersection cohomology theory to the Kazhdan-Lusztig theory.

1.5. Examples of Hecke algebras. (a). Let G be a Chevalley group over a finite field
of ¢ elements. Let B be a Borel subgroup of G and T the maximal torus in B. Then the
group Wy = Ng(T)/T is a Weyl group. We have G = |, cw, BwB. Let H be the free
Z-module generated by the double cosets BwB, w € Wy. We denote T, the double coset
BwDB regarding as an element in H. Define the multiplication in H by

(151) TTu = me,u,vTva

where the structure constants my, ., are defined as the number of cosets of the form Bz

in the set Bw™!Bv N BuB:
Muy,u,v.= |[Bw™'BvN BuB/B|.

Then H is an associative ring with unit T, where e is the unit element in W,. Moreover

we have
(1.5.2) (T,—q) T, +1)=0, ifse€ Sp; TwTy = Ty, if {wu)=1{w)+ l(u),
where Sy is the set of simple reflections in Wy. (see [I]).

It is well known that H®zC ~ End1§, where 1§ stands for the induced representation
of the unit representation 15 (over C) of B (see [I, C2, Cu]). Thus part of the study of 1§
can be reduced to that of H ®z C.

(b). Let K be a p-adic field such that its residue field k contains ¢ elements. Let
G be a Chevalley group over the field K. Let B be an Iwahori subgroup of G. Let T
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be the ‘diagonal’ subgroup of B (in a suitable sense). Then the group W = Ng(T)/T is
an extended affine Weyl group (i.e., there is a commutative subgroup £ which acts on an
affine Weyl group (W', S) such that W ~ Q x W', see 2.1 for definition). As the above
example we have G = |J,,cy BwB. Let H be the free Z-module generated by the double
cosets BwB, w € W. We denote T}, the double coset BwDB regarding as an element in H.
Define the multiphcation in H by

(1.5.3) ToTu =Y MuwuvT,

where the structure constants my,,.,, are defined as the number of cosets of the form Bz

in the set Bw~!Bv N BuB:
My.us = |Bw™ BvN BuB/B).

Then H is an associative ring with unit T, where e is the unit element in W. Moreover

we have
(1.5.4) (T, —g)(T,+1)=0, ifses; TwTy = T, if l{lwu) = l{w) + I(u),
where § is the set of simple reflections in W. (see {IM]).

It is known that the category of admissible complex representations of G which have

nonzero vectors fixed by B is equivalent to the category of finite dimensional representa-

tions (over C) of H ®z C (see [Bol, M]).

1.6. Kazhdan-Lusztig polynomials. The work [KL1| stimulates a lots of work and
deeply increased our understanding to Coxeter groups and to Hecke algebras. The key role
is the Kazhdan-Lusztig polynomials. In this section we recall some definitions and results
from [KL1].

We keep the notations in 1.1 and in 1.2 (b). Thus (W', S) 1s a Coxter system, W =
} x W' is an extended Coxeter group and H is the generic Hecke algebra of W over

A=1Z[q},q71].
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2

Let a — @ be the involution of the ring A defined by q7 = q~%. This extends to an

involution h — h of the ring H defined by

Z wly = Z&wT;_l. (aw € A).

Note that T, is invertible for any w € W since T,! = q7 175 + (q7! — 1) for s € S and
T;!' = T,-1 for w € Q. Then (see [KL1, (1.1.c)]):
(a) For any w € W, there is a unique element C,, € H such that

Cw = Cwa

Co=a 7 Y P,uT,,

y<w
where Py ,, € A is a polynomial in q of degree < 1(I(w) — l(y) — 1) for y < w and
Py =1
The assertion (a) is equivalent to the following assertion.
(b) For any w € W, there is a unique element C! € H such that C!, = C! and C! =

w

<

w(—l)‘(‘”)“(y)qﬂzﬂ q~'®P, ,T,, where P, ,, € A is a polynomial in q of degree

<
({w) —Il(y) — 1) for y < w and Py, = 1.

= =

[ ]

Note that our notations C,,, C}, exchange these in [KKL1] since we shall mainly use

the elements C,,.

Obviously, Cy, w € W and C!,, w € W are two A-bases of H. They are related by
three involutions.

(c) Let j be the involution of the ring H given by

J(Z awTyw) = Z dw(—q)"" T,

then C!, = (=1)"®);(C,). (see (KL1)).
(d) Let ® be the involution of the ring H defined by

&(q¥) =q~ %, B(T,) = (-q)'7T;!

w12

then C), = ®(Cy). (see [L11]).
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(e) Let k be the involution of the A-algebra H given by

kO awTw) =) aw(-)' ™12,

then C!, = (=1)!{(")k(Cy,).

The assertion (e) follows from that jk =7, Cy, = Cy, and C!, = C.,. Note that k is
an involution of A-algebra, in some cases this fact is useful in transforming the properties
concerned with C;, to Cy.

The polynomials Py, are called Kazhdan-Lusztig polynomials. We have P, , =
u(y,w)q%(’(‘”)‘l(y)‘l)—l-lower degree terms. we say that y < w if p(y, w) # 0, we then set
p(w,y) = p(y, w).

1.7. Motivated by his definition of canonical bases of quantum groups (see [L19]), Lusztig

gave another construction of the elements Cy,, C. Consider the Z[q™~ 7]-submodule £ of

H spanned by Ty = q~ Ty, w € W and the Z[q}]-submodule £’ of H spanned by

Ty, w € W, then (see [L20])

(a) Therestrictionofr: £ — L/ q~* £ defines an isomorphism of Z-modules 7y : LNL ~
L£/q~ %L and 77 (n(Ty)) = Cu.

(b) The restriction of ' : £’ — L'/qiL' defines an isomorphism of Z-modules 7, :

L'NL ~L']q L and w7 (x'(Tw)) = CL,.

1.8. The elements C,, have the following properties (see [KL1]):
(a) For s € § we have

r (q% + q‘*)Cw, if sw <w
CeCy = ] Cow+ Y, tly,w)Cy, if sw>w.
\ S5y
((a* +q7%)Cu, ifws <w
CuCs =1 Cus+ Y My, w)Cy, ifws>w.
y=<w
\ ys<y

They are equivalent to the following recursion formulas of the Kazhdan-Lusztig poly-

nornials.
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(b) Assume that for s,t € S we have sw > w,wt > w, then

_ I(w)=i(a)+1
Pyow=q" ""Poyuw +q" Pyuw = Z u(z,w)q Py: (v < sw)

z
ySz<w
<z

wherea=1if sy <y, a =01if sy > y; and Py, = Psy sw-

- a Nw)= i) 41
Py,wt = ql aPsy.w +q P w Z ,u(z,w)q ? P!/:’-? (y g Sw)
ySz<w
stz

wherea =11yt <y, a=0if yt > y; and Py e = Pye,we.

1.9. When (W', S) is a finite Coxeter group or a crystallographic group, it is known
that the coefficients of P, , are non-negative. This is proved in [KL2] when (W’ S) is
crystallographic. For H3, H, it was done by Goresky [Go] and Alvis [A]. For dihedral
groups I, it is trivial since Py, = 1 for any y < w. It was conjectured in [KL1] that for

arbitrary Coxeter group the Kazhdan-Lusztig polynomials have non-negative coefficients.

1.10. Question. (i). It is known that the Kazhdan-Lusztig polynomials in crystallo-
graphic Coxeter groups are related to middle intersection cohomology of Schubert varieties.
Now what polynomials are related to other intersection coboniology of Schubert varieties?

(ii). If we loose the restriction on the degree of Py, to degPy ., < ({(w) —I(y)), what
happen for the Kazhdan-Lusztig polynomials and the elements C,.

1.11. Cell Foranyw € W weset L(w) = {s € S | sw < w}, R(w) = {s € S| ws < w}.

Let w,u € W', we say that w < u (resp. w € u; w < u) if there exists a sequence
L . R LR

w = wg, Wy, ,wk = u in W such that for each ¢, 1 <7 < k, we have p(w;—1,w;) # 0
and L{w;—; € L(w;) (resp. R(wi—1 € R(w;); L{wi—y € L(w;) or R(wi—y € R(w;)). Then

for any w,w’ € £ we say that ww < w'u (resp. ww < ww'; ww < W'u) if w < u (resp.
L R LR L
w<u;w < u).
R LR
For any z,y € W we write that z ~ y (resp. ¢ ~y; ¢ ~ y) if z <y < z (resp.
L R LR T I

z<y<z; z <y < ) Therelations £, <, < are preorders in W. And the relations
R R LR LR L R LR

14



TN [y e equivalence relations in W; the corresponding equivalence classes are called
left cells, right cells, two-sided cells of W, respectively. The preorder < (resp. <; <)
induces a partial order on the set of left (resp. right; two-sided) cells of lifV, we degotgj?t
again by < (resp. <; <).

L R LR

When W = W' is a Weyl group, the definitions of left cell and two-sided cell coincide
with the definitions given by Joseph [J1-J2]. The cells in Weyl groups were extensively
investigated by Barbasch, Lusztig, Joseph, Vogan, etc., and play an important role in the
representation theory of finite groups of Lie type (see [L7]) and in the theory of primitive
1deals of universal enveloping algebras of semisimple Lie algebras.

For affine Weyl groups, the structure of left cells and two-sided cells are determined
for type A, (see [Sh1, L8]), rank 2, 3 (see [L11, Bé1, D)). Recently Shi found an algorithm,
then he and his students determined the structure of cells in affine Weyl groups of type
By, C4, Dy (see [Shd]). For type Dy, see also [Ch]. In [L11-L14] Lusztig obtained a series

of important results concerned with cells in affine Weyl groups.

1.12. a-function For an extended Coxeter group W, the function ¢ : W — N was
introduced in [L11] and is a useful tool in cell theory and related topics.

Given w,u € W, we write

CwCu = Z hw,u,ucva hw,u,u € A.
veEW

For any v € W, we define a(v)=the minimal non-negative integer ¢ such that q%hw,u,v €
Z[q%] for all w,u € W. If such i doesnot exist, we set a(v) = oco.

For a finite Coxeter group, the function a is always bounded. A non-trivial fact is that
a is bounded for an affine Weyl group (see [L11]). In [L12], Lusztig obtained some inter-
esting results under the assumption of ¢ being bounded and of W' being crystallographic.
| Assume that (W', S) is a crystallographic group, then all hy, 4, are Laurant polyno-
mials in q¥ with the same purity and have non-negative coefficients (see [L11]). It seems
naturally to hope such property holds for arbitrary Coxeter groups.

Here are two questions.

15



1.13. Question. (i). Find out all Coxeter groups whose a-function are bounded.

(i1). Find out a Coxeter group W' such that there exists some w € W' with a(w) = co.

Generalized Cells

1.14. Lusztig generalized the definition of cells in [KL1] to the cases of simple reflections
being given different weights (see [L6]). Strangely the interesting generalization is less
developed. In the rest of the chapter we shall give some discussion to the generalization.

We first recall the definition, then show how to apply the definition.

Let (W', S) be a Coxeter system and W = Q2 x W' be an extended Coxeter group. Let
w: W — T be amap from W into an abelian group I' such that ¢(2) = {e} (e the unit
element in I'), ¢(s) = ¢(t) whenever s,t € § are conjugate in W. We shall set ¢(w) = qé,,
(w € W). Let H, be the Hecke algebra of W with respect to ¢; this is an algebra over the
group ring Z([T']. As a Z{I'| module, it is free with a basis Ty, w € W. The multiplication
is defined by

(1.141) (T, —q,)(T,+1)=0, ifseS; TwTy = Twu, if l(wu) = l{w) + ().

When q;} = q,% if and only if s,¢ are conjugate in W and I is a free abelian group
with a basis q,,% , § € 5, the algebra H,, is canonically isomorphic to the algebra H in 1.1
if we identify Z[I'] with A. When qé = qt% for any s,t € S, and T is a free abelian group
generated by q;l‘-, the algebra H,, is canonically isomorphic to the algebra H in 1.2 (b).
Suitably choose the map ¢ : W —< qs% > (the free abelian group generated by qé) we

see that the Hecke algebra in 1.2 (a) is also canonically isomorphic to some H.,.

It will be convenient to introduce a new basis Tw = q;kTu,, (w € W). We then have
S e
(Ts+qs * )Ty ~qa)=0, (s€S).

Let @ — @ be the involution of the ring Z[I'] which take v to y~! for any v € I'. This
extends to an involution h — h of the ring H, defined by

D wTe=3

oY (ay € Z[T)).

=1
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. - —1 1
Note that Ty, is invertible for any w € W since T;! = T, + (qs * — qd) for s € S and
T,' = T,-1 for w € Q. We define the elements R} , € Z[T], (z,y € W), by

T = > R, T..

It is easy to see that R} , = 0 unless z < y in the standard partial order of W. Using the

fact that h — h is an involution, we see that

(1.14.2) Y R;,R;. =6,
<y<s

for all z < z in W. Note also that q;%qy% R , € Z[T?] (convention: I? = {v* | y € T}).

(1.143). R; ;, =1lforallz € W.

(1.14.4). If z < y, I(y) = {(z) + 1, then z is obtained by dropping some s € S in a reduced
expression of y, and we have R} , = qj" -~ q;%.

(1.14.5). If z < y, I(y) = I(z) + 2, then z is obtained by dropping some s,# € S in a
reduced expression of y, and we have R} , = (qs% - q:%)(qt% — qt_%).

We now assume that a total order in T' is given which is compatible with the group
structure on I'. Let T'y be the set of elements which are strictly positive (i.e. bigger than
the unit element) for this total order and let I'_ = (I'y.)™!. We shall assume that qé el
for all s € S. We have (see 2. Proposition in [L6])

(a) Given w € W, there is a unique element C,, € H, such that

Co = Cu,
Cw=>» P;Ty,
y<w

where Py, € Z[I'] is a Z-linear combination of elementsin I'_ fory < wand P; , = 1.
Moreover q;%qj’:,P;’w € Z[T'%].

(When ¢ is constant on S, this is the same as (1.1.c) of [KL1].)

We also can introduce the elements C), as 1.6(b) and show that C,,,C,, are related

by three involutions of H, as (c-e) in 1.6.
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Now let s € §, w € W be such that w < sw. For each y such that sy < y < w, we

define an element

M, € Z[T)

by the inductive condition

1
(1.14.6) Z Py .M; ., —daiPy, isacombination of elementsin T'—
y<z<w
8z<z2
and by the symmetry condition
(1.14.7) M, =M, .

The condition (1.14.6) determines uniquely the coeflicient of v in M

the condition (1.14.7) determines other coefficients. We have q:%q;%qiM;’w € Z[I?).

wforallyeIl' —T_;

Let s € S and let w € W, then (see 4. Proposition in [L6])

(1.14.8) (T +a5)Cw = Cou+ 3 M2,Cp i w < s
o
(1.14.9) (T, — q2)Cw = 0, it w > sw

Let j' be the anti-automorphism of the ring H,, defined by j'(T,,) = T,,-1 and j'(a) = @
for a € Z[T']. It is easy to see that j'(Cy) = Cy-1. From (1.14.8-9) we can deduce

~ 1
(1.14.10) Cow(Ts+9qs?)=Cus+ Z My ,-:C:, if w<ws
S
(1.14.11) Co(T, — q2) =0, if w>ws

The identity (1.14.9) is equivalent to the following

(1.14.12) Py ,=4qs P} if u<su<w, sw<w.

su,w

18



and the identity (1.14.11) is equivalent to the following

_1
1.14.13 P! =qs P} ifu<us<w, ws<w.
u,w ’

ua,w

(b) Let y < w be such that {{(w) = {(y) + 1. Then y is obtained by dropping a simple

reflection s in a reduced expression of w. We have

X -1

(i). Pr,=ds .

(ii). Let ¢ be a simple reflection such that ty < y < w < tw, then

L 1
0, if qf < q,
1
My, =191, if qf = qf,

~1 -1 L
qéqt *+q, ’q?, if qf > q?-

1.15. Generalized cells. Let w € W be such that w < sw for some s € §. We shall

write z < w if 2 = ww (w € Q) or sw or M, # 0 (see (1.14.8)). We again use < for
Ls‘P ’ L,",?
the preorder relation on W generated by the relation z < w. The equivalence relation
Lp
associated to the preorder < is denoted by o and the corresponding equivalence classes
W

L,y
in W are called generalized left cells. Given w,u € W, we say that w < wu if there
LR,y

is a sequence w = wq, W, ..., wr = u of elements in W such that for : = 0,1,...,n — 1,
we have either w; < w;yq or wi_l < w.'_+l1- The equivalence relation associated to the
L, L,y
preorder < is denoted by L and the corresponding equivalence classes in W are called
LR,CP '

generalized two-sided cells. From the definitions and (1.14.8-11) we get
(a) Let h,h' € H,, w € W. We write

hCw= ) ayCuy  au € BT,

ueW

hCwh'= Y b,Cu, by € Z[T].
u€ W

Thenuv < wifa, #0, v < wifd, #£0.
L,y LR,p

For any w € W, we denote IL (resp. I%) the Z[[]-submodule of H, spanned by the

elements Cy, u < w, (resp. by the elements Cy, v < w, u % w). we define similarly
Ll‘P L:'P L,‘P
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ILR (resp. ft%R) the Z[T')-submodule of H,, spanned by the elements Cy, v < w, (resp.

LR,y
by the elements C,, v < w, ©v ¢ w).
LR,p LR,p

It is clear from (a) that IZ, IL are left ideals of H, and ILR, TLR are two-sided ideals
of H,. Hence I/ IL is a left H,-module with a natural basis given by the images of C,,
for u in the generalized left cell containing w; ILR/TLR is a two-sided H,,-module with a
natural basis given by the images of C,, for u in the generalized two-sided cell containing

w.

1 1 1
1.16. Assume that I' is a free abelian group with a basis q2, s € S (note that q¢ = q;
whenever s, € S are conjugate in W). It is known that we can totally order the set

Qs = {qé | s € S}. Assume given such a total order < on Qg. We define

-1 4 1
a.* < [[ @/ <a?,
t<s
a;GZ

3 %

where only finite a; are nonzero, and define q5 < q; if and only if 7 < j. It is easy to see
that we define a total order on the group T which is compatible with the group structure.
Thus the definmition and results in 1.14-15 can be applied to the Hecke algebra H,,.

If we have Card{qs% | s € §} <CardR (R the field of real numbers), where Card
denotes the cardinal of a set, we can find more natural total orders on I' which are com-
patible with the group structure. Actually we can find many injective homomorphisms of
abelian groups 7 : ' — R such that T(qé) > 0 for any s € S. The total order in 7(T)

gives rise to an total order on I' which 1s compatible with the group structure on I'.

1.17. Proposition. Assume that W is a finite Coxeter group and let S be the set of
simple reflections in W. Let wg be the longest element in W. We have
(1). Let h € H, be such that T.h = q}h for any s € S, then h = azwew T, for

some a € Z[I'].
1

(i1). Cuwo = Que > wew Lw-
(i11). The set {wq} is a generalized two-sided cell of W.

(iv). The set {e} is a generalized two-sided cell of W.
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Proof. (i). First we have T, D wew Tw = qa% Y wew Tw. Let

h=a Z Tw+ Z Oy Ty, aaatlu € Z[F]

weW weW
w< wo

If ay, # 0 for some w < wy. Choose one w such that {(w) is maximal. Since w < wy, we

can find some s € S such that w < sw. Thus in the expression

Toh=afay Tu+ Y buTw, by €ZT]
weWw wEW
We have by, = ay # 0, it contradict our assumptions on‘ h and on w. Thus all a,, = 0
whenever w < wy.

(ii). By (1.14.9) and (i) we see that Cuw, = a ), cw Tw for some a € Z[I']. Note that
R} , =0 unless z < y and that R} =1, from Cuwo = Cu, we get a = q;o%. The assertion
is proved. One also can use (1.14.12) to prove (ii).

(iii). For any s € S we have Tscwo = Cwof’, = qéC’wo. By the definitions of
generalized cells we get the assertion.

(iv). It follows from (1.14.8), (1.14.10) and the definition of generalized two-sided cell.

1.18. Example. Let (W, S) be a dihedral group of type I;(2m) (see 1.4). Let s,t € S,
then (st)°™ = 1. Let ¢ : W — T, H, be as in 1.14. We assume that qt% > qs%. We shall
write u, v instead of qé, q? respectively. We have
(a) Let y,w € W be such that sy <y < w < sw, then M, = 0.

Proof. We have w =t -w,, y = sy for some w,,y; € W. {(Convention: z = z; - 29

means that z = zz2 and I(z) = I{z) + {(z2).) Using (1.14.12) we get P}, = v P

y,w ty,w*

Note that v > u, we see that uP;, = uv™' Py,  is a Z-combination of elements in T'-.

ty,w

Using induction on [(w) — I(y) and using the definition of M ,, we obtain (a).

We consider the simplest example (see [L6]): type By. Then (st)* = 1. We have

Pt‘,‘tat = V.—l(u_l —u), P:,tsi = V_Z(“—l —u),
Pt N | -1 P* — 1,1 —1
8,8t T v (ll + l.l), e, 83 — u v (u + ll),
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3

—1
and Py, = qyqu’ for all other pairs y < w. (In Particular, Py, may have negative
coefficients). We have

t Y7 S| -1
M,M,S—Mt,s,—uv +uv,

The generalized left cells are {e}, {s}, {¢,st}, {tst}, {ts,sts}, {stst}. The corresponding
H,-modules IZ/ IL (with scalars extended to an algebraic closure of Q(q%)) are all irre-

ducible. (this is in contrast with the situation in [KL1].) The generalized two-sided cells

are {e}, {s}, {tst}, {t,st, ts,sts}, {stst}.

The second simplest example is type G2. Then (st)¢ = 1. We have
Pt,:tst = Pt'.‘st,tstst = V——](u-l - u),

- - " - "> — 2 ~1
Pc,ta! = Pts,!stat = Ps!,tstat =v7*(u™ - u),

Ptttstst = V—2(ll_2 -1+ 112), P:,tstst = V_a(u_2 -1+ uz)a
P-:,sta = P:la,atsta = V_I(U'—l + u),

P:,s!a = P;l,atats = Pf;,at,ta = u_lv‘l(u—1 + u),

Pt‘:atsts = u—2v—1(u—l + l.l), P:,stats = u‘lv_2(u_1 -+ u):

:aststa = u—2v—2(u—] + u)’

1 _1
and Py, =qy quw* for all other pairs y < w. We have

M =M/ ,=uv! +uly,

tats,stsls

— t _ {
- Jnd.tst,.eitat - M

is,8ts

M:,stat = M;

ts,stats

=1.

The generalized left cells are
{e}, {s}, {tstst}, {ststst}, {t,st, tst,stst},{ts,sts, tsts,ststs}.

The first four corresponding H,-modules Ik/[k (with scalars extended to an algebraic
closure of Q(q?)) are all irreducible; the last two corresponding H,-modules are not
irreducible. (This is in contrast with the situation in [KL1], also in contrast with the case

type B;.) The generalized two-sided cells are

{e}, {s}, {t,st,ts,tst,sts, tsts, tsts,ststs}, {tstst}, {ststst}. /
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For type B,, the generized left cells provide all simple modules of the corresponding
Hecke algebras over an algebraic closed field of characteristic 0 (see [L6]). In general,
the generalized should provide more simple modules for finite dimensional Hecke algebras.
The work [L11-L14] showed that the cells in affine Weyl groups are interesting to the
representations of affine Hecke algebras of one parameters. The generalized cells in affine
Weyl groups should be interesting to the representations of affine Hecke algebras with
unequal parameters. It is likely that any generalized left (resp. two-sided) cell of an
extended Coxeter group contain in a left (resp. two-sided) cell of the sense 1.11.

Finally we state

1.19. Conjecture. Let W be an extended Coxeter group. Let ¢, H, as in 1.14-15. Then
the generized left cells and generalized two-sided cells in W defined in 1.15 only depend

1 i
on the order relations among q2, s € S, not depend on the parameters qi, s € S.
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2. Affine Weyl groups and Affine Hecke Algebras

In this chapter we consider some elementary properties of extended affine Weyl groups
and of their Hecke algebras. We are mainly interested in the structure of the center of

affine Hecke algebras and cells in affine Wey! group.

2.1. Extended affine Weyl groups. Let G be a connected reductive group over C and
T a maximal torus of G. Let Ng(T) be the normalizer of T in G. Then Wy = Ng(T)/T
is a Weyl group, which acts on the character group X = Hom(7,C*) of T. Consider the
semi-direct product W = Wy x X. Let R C X be the root system of Wy, which spans
the root lattice P in X. The group P is Wy-stable and the subgroup W' = Wy x P of W
is an affine Weyl group. Moreover W' is a normal subgroup of W. Let S be the set of
simple reflections in W'. There exists an abelian subgroup  of W such that wSw™! = §
for any w € Q and W = Q x W', (Q is isomorphic to the center of G, also isomorphic
to the quotient group X/P.) Thus W is an extended Coxeter group in the sense of 1.1.
We shall call W an extended affine Weyl group (In some bibliographys W is also called
a modified affine Weyl group, see, e.g. [Cal). The Hecke algebras of W are called affine
Hecke algebras (this slightly different the usual definition, when G is adjoint, our definition

agrees with the usual one).

Let RY, R~ be the sct of positive roots and the set of negative roots, respectively.
Let A be the set of simple roots of R. Let RY C Hom(C*,T) be the dual root system of
R. For any o € R we shall denote a¥ € RY the dual of a. Then the length of an element

wz (w € Wy, z € X) is given by the following formula (see [IM])

(2.1.1) l{wz) = Z | <z,a¥ >+1] + Z l<z,a¥ >
acRt a€eRt
w(a)eER™ w(a)€R+
Let

Xt ={zeX|l(wz)=lw)+(z)foranyw € Wy} ={z € X | <z,a" >> 0}
be the set of dominant weights. By the above formula we have
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(2.1.2) For any z,y € X7, l(zy) = l(z) + {(y).

2.2. The center of generic affine Hecke algebras. Let H be the generic Hecke algebra
of W over A = Z[q%,q_%] with the standard basis T,,, w € W. Following Berstein (see
[L5]) we introduced another basis and describe the structure of the center H.

For any z € X, we can find y,z € X such that 2 = yz~!. Let
{ {(x
8, = q  FT,(q"F1,)".

According to (2.1.2) we know the definition of 6, is independent of the choice of y, 2.

Moreover we have

(2.2.1) 0.0, = 0zp, forany z,z' € X.

Let O, be the conjugacy class of  in W and let 2, = 3, 0. Then (Berstein,
see [L5])

(a) The elements T\,0;, w € Wy, € X form A-basis of H.
(b) The elements 8;Ty,, w € Wy, z € X form A-basis of H.
(c) The center of H is a free A-module and the elements z,, £ € Xt form A4-basis of the

center of H.

For z € X7, denote d(z', ) the dimension of the z'-weight space V(z), of V(z),
where V(z) is the irreducible representation of G with highest weight . We set U, =
Ssex+d(@, )2y, 2 € XT. Then we have

(d) The elements U, z € X* form A-basis of the center of H.

We shall denote Sy the set of simple reflections in Wy. For any r € Sg, we also write
«, for the corresponding simple root. We have
(€) Tobrzy = 6. Tr —(q—1)8(1+ 6, +---0,""), for any r € S, = € X with
<z,af >=n>1
(f) 7,6, = 6.7, for any r € Sp, z € X with < z,aY >=0.
A special case of the formula in (e) is

(8) Trbr(z) = 8:Tr —(q — 1)f, foranyr € Sp, z € X with <z,0) >=1.
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The formula in (g) is equivalent to

(h) 6pz) = qT7'0, T, foranyr € S, z € X with < z,a) >=1.

For any q € C*, we can regard C as an A-algebra by specializing qu“ to a square root
¢%. Then we consider the tensor product H @ 4 C, this is a C-algebra, we denote it by H,,.

We shall denote the images in H, of Ty, Cy, Us,..., by the same notations.

2.3. Assume that G has a simply connected derived group, it is equivalent to that X+
contains all fundamental weights concerned with the root system R. For each simple root

a € R, we denote 24 the corresponding fundmental weight in X*. Given w € Wy, we set

Ty = w( H Ta)

a€A
w(a)ER™

It is known that (see [St2])

(a) A[X]is a free A[X]|"°-module with a basis z,,, w € Wy.
Using 2.2(a-c) we see that
(b) H is a free Z(H)-module with a basis Ty,0,,, w,u € Wy, where Z(H) is the center
of H.
The image in Hy of Z(H) is in the center of Z(H,) of H,. By (b) we see that (cf.
[M])
(c) Any simple Hy-module has dimension < |Wp|.
However, for each ¢ € C*, there are a lots of simple Hy-modules with dimension |Wp|

(see [M, Kal], see also 3.11). So we have

2.4. Proposition. Let G be as in 2.3. Then the elements U;, z € X1 is a C-basis of the

center of Hy . (Note our convention on notations at the end of 2.2.)

2.5. Proposition. Assume that G is simply connected, simple algebraic group over C.

We have
(i). If R is not of type Day (2k = n), then there exists a fundamental weight which
we denote by zo such that H is generated by T, (r € Sp) and 6,
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(ii). If R is of type Doy (2k = n), then there exist two fundamental weights which we
denote by g, x|, such that H is generated by T, (r € Sy) and 91,0,9::0.

Proof. We number the simple reflections ry,79,...,7, in S and the fundamental
weights 21,22, ...,2, In X according to the Coxeter graphs in 1.3. In case (i) we choose g
to be the following;:

z, for type A,,, B,, D,, E,, Fy;
z; for type Cp, Gs.

In case (ii) we choose zg = z,,2) = Tph—1.

We claim such choices satisfy our requirement. We take type A, as an example to
prove the claim. Let H be the subalgebra of H generated by T, (r € Sp) and 6, = 8.
It is enough to prove that the elements 6!, 6! . %! are in H. We shall write T}, T}

for Ty, T7;}, respectively. We have

(251) Tn(mn) = :Bn—lm;]a T](.’E]) = $2$l_l’

(2.5.2) r,-(:z:i:ni'_I_ll) = :c,-_la:i_l, forany 1 <1 < n,
Using 2.2(h) and (2.5.1) we get

(2.5.3) 8, 6! =qT'0, T

In-1"zy

Using 2.2(h) and (2.5.2) repeatedly we obtain
(2.5.4)
Ornabzn_, =T 100067 Tty oy 82,07, = aT36:67)Ts, 6,67 = qT36,67 T

L1V rs
Again using 2.2(h) and (2.5.1) we get

(2.5.5) 67! = qT}6,,6; T}

17 xg

By assumption we have 8,, € H. Combine this and (2.5.3-5) we see that %!, §=!

65,6
are in H. The proposition is proved for type A,. For other types, the arguments are

similar.
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2.6. Cells in W. In [L11-L14] Lusztig proved a number of results concerned with the

cells in affine Weyl groups. Here are some of them except those given other references.

(a) The number of left cells of W is finite. Each left cell of W contains a unique element
inD={weW, | 2deg P = l(w) — a(w)}, where e is the unit element of W.

(b) The set D is a finite set of involutions in W',

(c) a(w) < a{wp) = |R"| = v, where wy is the longest element of Wj.

(d) The set co = {w € W | a(w) = v} is a two-sided cell of W. The two-sided cell ¢
contains |Wy| left (resp. right) cells (see [Bé2, Sh2-Sh3]). ¢o is the lowest two-sided cell
(concerned with the partial order 5} ) in the set Cell(W) of two-sided in W. Assume

that X contains all fundamental weights, then

co = {zwoy € W | l(zwoy) = I(z) + l(wo) + I(y)}-

We would like to state a conjecture concerned with the number of left cells in a two

sided cell ¢. For any subset I of S, let
[Per={left cell T in ¢ | R(T") = I}

(set R(I') = R(w) for any w € I, this is well defined, see [KL1]), we conjecture that
#I'. ;1 < #T',, 1. Lusztig has a conjecture (see [As]|) concerned with the number of left

cells in a two-sided cell which needs the following result.

(e) There exists a natural bijection between the set Cell(W') of two-sided cells in W and
the set of nilpotent G-orbits in g which preserves the partial orders.
(f) For y,w € W, we have a(w) > a(y) whenever y < w. Moreover, if y < w (resp.
LR LR
y < w,y <w)and a(y) = a(w), then y ~ w (resp. ¥y ~ w, y ~ w). In particular, a
L R LR L R
1s constant on a two-sided cell of W.
(g) = < w, (resp. = < w; 2 < w) if and only there exists h (resp. h'; h, k') in H such
L R LR
that a; # 0 (resp. by # 0; ¢; # 0), where az(resp. bz;cy) is defined by

hC,, = Z auCyu, au € A,
uEW

(resp. Cuh' = Z boCu, by €4; RhCLh = Z cuCu, cu € A).

ueW ucW
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Given a two-sided cell ¢ of W, let HS¢ (resp. H<° be the free A-module spanned by
Cw, w € W such that w < u (resp. w < u, w o u) for some u € c. Let H,<¢ be the
LR

L
image in H, of H*°. By (g) we see that

(h) HZ¢ is a two-sided ideal of H and H,5° is a two-sided cell of H,. We also call them
the cell ideals. We shall write H». for the quotient H/H <¢.

I(wg)

Note that Cuwy = q7 72 3, ew, Tw and that TyCuy, = Cuy Ty = qC\, for any s € Sp.

(i) H=% is spanned by 6,Cy,8y, 2,y € X. If X contains all fundamental weights of R,

then the elements 8, C\y,8:, Uz, w,u € Wy, € X1, is an A-basis of H<.

Proof. By 2.2(a-b) we get the first assertion. The second assertion follows from 2.3(b)
and [X1, 2.9].

2.7. The based rings of two-sided cells. For w,u,v € W, we define the integer Yo, u,»
by the condition qg'(i‘il hwuo = Ywu,v € q%Z[q%] (see 1.12 for the definition of hy u,0).
Since (W', S) is crystallographic, by 1.12 we know that <y, 4, is non-negative (see [L11]).
We have

(a) Ywu,: #0=>w ~ u™ u THW L In particular, w o~ 2 if Y,z # 0.
(b) Let d € D, then yy4u #0 & w = v and w ~ d, Ywdw = 1. Moreover, vy 4,0 =

Ydw-tiw-! = Yw,w-td = L.

Let Jz be the free Z-module with a basis ¢,,, w € W. In [L12] Lusztig proved that

twly = D 7Yw,u,vty defines an associative ring structure on Jz. The ring Jz is called the
veW
based ring of W. The unit in Jz is Y t4. For each two-sided cell ¢, the subspace Jz . of
deD

Jz spanned by t,,, w € ¢, is a two-sided ideal of Jz by (a). Jz. is in fact an associative

ring with unit Y t4, which is called the based ring of the two-sided cell c. We have
deDne

Jz = ® Jz,c, i.e. Jz is the direct sum of algebras Jz ., where ¢ runs over the set Cell(1¥)
of two-sided cells of W. The rings Jz, Jz . turn out very interesting. The following result

establishs the connection between the Hecke algebra H and the based ring Jz.
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(c) The A-linear map ¢: H — Jz @z A defined by

¢(Cw) = Z h'w,d,utu, wewWw
ueW

a(dd)e=jc?(u)
1s a homomorphism of A-algebras with 1. Moreover ¢ is injective and ¢ maps the center
of H into the center of Jz @z A and Jz ®z A is finitely generated over ¢(Z(H)). (see
[L13]).

The C-algebra J = Jz @ C is called the asymototic Hecke algebra of W. The homo-
morphism ¢ in (c¢) induces a homomorphism of C-algebras ¢, : H, — J. We have (see

[L13})

(d) For any ¢ € C*, the homomorphism ¢, is injective and ¢, maps the center of H, into

the center of J, and J is finitely generated over ¢,(Z(H,)).
We conjecture that the center of J is spanned by various ¢,(Z(H,)), ¢ € C".

Affine Hecke algebras with two parameters

2.8. We keep the notations in 2.1. We shall consider the affine Hecke algebras with unequal
parameters. We shall assume that G is simple and G is one of the types: B,, Cyn, Fi, Gs.

Thus there exist simple reflections in S which are not conjugate in W.

Let R’ be the set of long roots in R when R is of type B, be the set of short roots in
R when R is of other types. Let R" = R— R'. Let Rt = R'n Rt(resp. R"* = R' N RY)
be the set of positive roots in R' (resp. R"). Define two function I, I : W — N as

follows: for w € Wy, = € X, we set

(2.8.1) '(wz) = Z | < z,0¥ > +1| + Z | < z,a¥ >|.
'aER"*' aER'T
w(a)ER™ w(a)eRt

(2.8.2) Plwz)= Y |<za'>+1+ Y |<z,0" >
agR"t acR"t
w(o)ER™ w(a)ERT
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2

In some sense the functions !, " are length functions of W corresponding to roots of

different lengths. Namely, Let
S' = {s € § | s is the simple reflection respect to some roots in R'},

§" = {s € §| s is the simple reflection respect to some roots in R"},

for any reduced expression titg - - - t; of an element v in W', Let
Sl={t; |t; €S, 1< <k}, S'={t;|t; € 8", 1<i <k},

then I'"(u) = #S., "(u) = #S.. Obviously we have
(2.8.3). Let u € W, then {(w) = I'(u) + I"(u). (see (2.1.1) for the formula of {(u)).
+1

Let u,v be two indeterminates and let B = Z[u®!, v*!] be the Laurant polynomials

in u,v with integer coefficients. We define the Hecke algebra H (over B) of W with

2 2

parameters u® v? as follows: H is a free B-module with a B-basis Ty, w € W and

multiplication laws
(2.8.4) TwTy = Twu, i l{wu) ={w)+(u),

(Ty —u®) T, +1)=0, ifseS" (Ty = v (T, +1)=0, ifseS"

When G is not adjoint, or is not type B, the algebra His essentially the algebra ‘H in
1.1. When G is adjoint of type B, then W = W' is an affine Weyl group of type Cr. We
number the simple reflections in S according to the Coxeter graph in 1.3, then s,, so are
not conjugate in W. So the algebra H for W has three parameters. In this paper we donot
consider such Hecke algebra although the properties for H have their counterparts for the

algebra H (see [L18]). It seems necessary to consider the Hecke algebra H separatedly.

2.9. The center of H. Following [L18] we construct the center of H, which essentially
is similar to the case in [L1§].

As in 2.1, let

Xt ={ze X | lwz)=lw)+(z)foranyw € Wy} ={z € X | <z,a" >>0}
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be the set of dominant weights. By the formulas (2.8.1-2) we have
(2.0.1) For any 7,y € X+, I(ay) = () + I(y), I"(ay) = "(z) + I"(y).
For any z € X, we can find y,z € X such that z = yz~!. Let

9, = u_"(y)v_’”(”)Ty(u"'(z)v"’"(z)T,)"‘].

According to (2.9.1) we know the definition of 8, is independent of the choice of y, 2.
Moreover we have
(2.9.2) 6.0 =8, foranyz,z' € X.
Let O, be the conjugacy class of z in W and let 2, = Zx'eo, 6. Then using the
method in [L18] one can prove the following result without difficulty.
(a) The elements Ty,8;, w € Wy, & € X form B-basis of H.
(b) The elements 8, Ty, w € Wy, = € X form B-basis of H.
(c) The center of H is a free B-module and the elements z,, £ € Xt form A-basis of the
center of H.
For z € X*, we set U, = Doex+d(z', x)zp, x € X, see 2.2 for the definition of

d(z',z). Then we have

(d) The elements U,, z € X T form B-basis of the center of H.

Let So = SNWy, Sj =S NW,, S§ =5"NW,.

(€) Tobrzy = 6T — (u? = 1)8, (1 + 6 +---6.7"), foranyre S}, z € X with
<z, o) >=n.
T80y = 0. T — (V2 —1)6,(1+ 61 +---6L-"), foranyr € Sy, z € X with
<z,a) >=n.

(f) .0, =0, T, for any r € Sp, z € X with < z,ay >=0.
A special case of the formulas in (e) are

(g) Trbr(x) = 6T, — (u* —1)8,, foranyr € S}, =€ X with <z,a) >=1.
T8, (z) = 6.1 — (v?—-1)8,, foranyr € Sy, z € X with <z,ay >=1.
The formulas in (g) are equivalent to

(h) Orz) = w?*T7'6, T, foranyr € S, z€ X with<=z,a) >=1.
Oy = V2716, T, foranyr € Sf, z € X with < z,a) >=1.
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We shall denote H° the B’ = Z[u*? v*?] subalgebra of H generated by Ty, (s €
So), 0z (z € X).

For any a,b € C*, we can regard C as an B-algebra by specializing u,v to a%,b’lf
respectively. Then we consider the tensor product H ® 3 C, this is a C-algebra, we denote
it by I:Ia,b (it is easy to see that I:Ia,b only depends on «, b, not depends the choices of the
square roots of a,b, actually we have f{a,b = H° ®Br_CC). We shall denote the images in

I:Ia,b of Ty, 0z, Uz,... by the same notations.

2.10. For w € W, we define z,, € X as in 2.3. Using 2.9(a-c) and 2.3(a) we see that

(a) H is a free Z(H)-module with a basis T,8;,, w,u € Wy, where Z(H) is the center
of H.
By (a) we see that (see [M])

(b) Any simple H, ;-module has dimension < |W|.
But, for any «,b € C*, there are a lots of simple I:Ia,b-modules with dimension |W]

(see [M, Kal]). So we have

2.11. Proposition. Assume that X contains all fundammental weights of R, then the
elements U, x € X7 is a C-basis of the center of H, . (Note our convention on notations

at the end of 2.9.

Similar to 2.5 we have

2.12. Proposition. Assume that GG is simply connected, simple algebraic group over C,
and is one of the types By, Cr, Fy, G4, the there exists a fundamental weight which we
denote by o such that H is generated by T, (r € Sp) and 8.,.

2.13. Assume that we have a total order on the abelian group {u%vé | 7,7 € Z} which
is compatible with the multiplication. If ut > 1 and v¥ > 1, then we can defined the
generalized cells of W through the algebra H as in 1.15. We conjecture that the set co in

2.6(d) is always a generalized two-sided cell in the sense of 1.15.
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3. Kazhdan-Lusztig Classification on Simple
Modules of Affine Hecke Algebras

In this chapter we We first recall some results of Ginsburg [G1-G2], Kazhdan and
Lusztig [KL4], which we shall need. We then give some discussions to the standard modules
(in the sense of [KL4]). For type A it is not difficult to determine the dimensions of standard
modules. In general one seems can determine the dimensions of standard modules through
Green functions. A conjecture concerned with the based rings of two-sided cells in affine
Weyl groups is stated. We also stated a conjecture concerned with classification of simple
modules of affine Hecke algebras of two parameters, which form analogue of the (%) in the
introduction of the paper.

Throughout this chapter all varieties and algebraic groups are over C except specified
indications. We shall use algebraic (equivalent) K'-theory instead of topological (equiva-
lent) K'-theory. See [T] for comparing between them.

For an algebraic group G and a G-variety M, we shall denote Kg(M) the Grothendieck
group of the category of G-equivalent coherent sheaves on M and Kg(M) = Kg(M)QC its
complexification. The K-group K (M) has a natural R¢ = Kg(point) module structure.
When G = {1} is the unit group, we shall omit the subscript G of these K-groups.

we shall use O, for the structure sheaf of M.

3.1. Convolution in K-theory. Following Ginzburg(see [G2]) we consider the convolu-

tion in K-theory. In section 3.1-3.3 we use the account in [GV].

Let G be an algebraic group over C and M;, M,, M; be smooth quasi-projective G-
varieties. So the varieties My x My x Ma, My x My, M, x M3, M, x My are also G-varieties
and G acts on them diagonally. Then the natural projections p;; : M; x My x Mz —
M; x M; commute with G-actions, i.e., they are G-equivalent morphism. Let Z be a G-
stable closed subvariety of M; x M, and Z be a G-stable closed subvariety of M, x Ms,

Assume that the map

(3.1.1) s pig(Z2)Npi(Z) —» My x My is proper.
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Then its image is a G-stable closed subvariety of M; X M3 and is called the composition

of Z and Z. we denote it by Z o Z. Following Ginzburg we define the convolution map
(see [G2])

(3.1.2) x: Kg(2)® KgZ) — Kg(Z 0 Z)

as follows. Let [F] € K¢(2) and [F] € Kg(Z) be the classes of certain coherent sheaves
Fon Z and F on Z. Set

(3.1.3) FrF=(Rpo)upF | & pnf),

. MixM3zx Mg

In this formula the upper star stands for the pullback morphism, well-defined for smooth
maps (see, e.g. [Fu]), for example, p7, F B Ops,. To define é:, on My x M, x M3 we choose a
finite resolutions F, of p},F and a finite resolutions F3, of p3, F by G-equivariant locally
free sheaves, which exist since M) x M, x M3 is smooth and quasi-projective (see [T]). The
simple complex F;2 ® F23 associated to the tensor product of the resolutions represents
the tensor product é in a derived category. This complex is exact off p(Z) N pys(Z).
Hence, its derived direct image F * F = (Rp1a),(Fj; ® F;) is a complex of sheaves on
M, x M3 whose cohomolgy sheaves are coherent sheaves on M; X M3 since (3.1.1); moreover,
these cohomology sheaves are supported on Z o Z. We let [F] * [F] € Kg(Z o Z) be the
alternating sum of these cohomology sheaves. The definition of * doesnot depend on the

choices involved. Furthermore, the convolution is associated in a natural way.

3.2. From now on we assume G is a reductive group and s a semisimple element in G. Eval-
uating a character of the group G at the element s gives rise to an algebra homomorphism:
Rg — C. Let C, denote the 1-dimensional Rg-module arising from the homomorphism.
It is known that each simple Rg-module is isomorphic to some C,, and C, is isomorphic
to C; if and only if s,t are conjugate in G.

Let M be a smooth G-variety and let M* be the s-fixed points subvariety. By the
slice theorem [Lu], M* is smooth. Let A} denote the conormal sheaf at the subvariety

M?® « M. The s-action on M induces a natural s-action on N;. We set
k
AM?Y = (—1)ktr(s, ANY) € K(M?).
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Here K(Af*) is the ordinary Ki-group; and for a vector bundle E with semisimple s-action
on the fibres, we use the notation tr(s, E) = >_ ax - By, where ay are the eigenvalues of the
action s and Fy stands for the subbundle of E corresponding to the eigenvalue ax. The
element A(M*) is invertible in K(M?) since all the eigenvalues of the action s are nonzero.

The inclusion of varieties 7 : M* — M gives rise to the direct image functor u :
K(M?*) —» K(M) and to the inverse image functor 7' : K(M) — K(M?*). The later is
defined by the formula

i'F =Y (=) Torf,, (F,\(M*)™).
The morphism ¢’ clearly factors through the quotient C, ®r, Kg(M). One has the fol-
lowing localization theorem (see [T])

(a) (i). ' o4y =Idk(nm+). In particular, the morphism below is surjective:
i C, ®re Ke(M) - K(M?)

(11). This morphism form isomorphism provided the group G is abelian.

Keep the notations G and s. Let M;, M,, M; be smooth G-varieties and Let Z be
a closed G-subvariety of M; x M, and let 7 : Z — M; x M; be the inclusion. Define a
morphism r, : Kg(Z) — K(Z*) by the formula

(3.2.1) Frory(F) = Y (=D Torfy,, ... (MM x Opy , 1),

The Tor groups on the right hand side are supported on Z*, since Z* = Z N (M x Ma).

The assignment F —— r,(F) factors through C, ®r; Kg(Z). So we get a morphism

r,: C,®r, Kc(Z) = K(Z*). Let Z be a closed G-subvariety M; x Ms. Similarly we

have a morphism r, : C, ®r, Kc(Z) — K(Z?).

(b) Bivariant fixed-point theorem. Assume that Z,Z satisfy (3.1.1), then the following
diagram

(C. ®ro K6(2)) ® (Co ®rg Ka(Z)) —— C, ®re Ka(Z o0 2Z)

K(Z*) ® K(Z*) —  K(Z*02Z%
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commutes. That is, the convolution commutes with the the morphism r,.

The K-theoretic convolution has its counterpart in homology. For Z C M; x Mj,
the complex coeffcients Borel-Moore homology group H;(Z) may be defined (via Poincaré
duality) as the relative cohomology H™~( My x Mz, My x M\ Z), where m =dimM; x M.
The cup product in cohomology gives rise to a cap product on Borel-Moore homology,
which replaces the functor é in K-theory. One defines a homology counterpart of (3.1.2)
as a map

x: H(Z)® H;(Z) —» Hiyj—a(Z 0 Z), d=dimM,,

given by the formula: ¢* & = (p13),(pTec N P33é).

Associate any element F € K(Z) to its Chern character class ch(F) € H.(Z) (sce
[FM]). Further, let Td(M,)€ H.(M3) denote the Todd class of the manifold M,. Define a
morphism ¢ : K(Z) — H,(Z) by the formula

c(F) = pryTd(M2) - ch(F),

where pra is the second projection M, x My — M.
(c) Bivariant Riemann-Roch theorem. The morphism ¢ commutes with the convolution.

That is, the diagram

commutes.
Combining (c) and (d) (applied to Z*), we obtain the following result.
(d) The composition morphism cor, : C,®r,; Ka(Z) = H.(Z°) commutes with convo-

lution.

3.3. Convolution algebras. Let G be an algebraic group, M a smooth quasi-projective

G-variety. Let m: M — N be a G-equivariant proper morphism. Set

Z=MxnyM={mm)YeMxM|r(m)=r(m')} CMxM.
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We view Z as a G-equivariant correspondence in M x M. Clearly we have Z o Z = Z.
Thus the convolution makes K¢ (Z) an associative Rg-algebra. Observe further that the
diagonal of M x M is contained in Z and the class of the structure sheaf of the diagonal is
the unit of the algebra K(Z). Similarly, the convolution makes the Borel-Moore homology
group H,(Z) into a finite dimensional C-algebra whose unit is the fundamental class of
the diagonal.

3.4. Examples of convolutions algebras. Assume that M is a projective variety and
N = {point}. Let 7 : M — N be the unique morphism from M to N. Then we have
Z =M x M. We assume that G is reductive (possibly disconnected). For any semisimple

element s € G, by 3.2(d) we have an algebra homomorphism

(3.4.1) cor,: C,®r; Ka(M x M) - H,(M* x M*)

Now the algebra H,(M* X M*) and the group A(s) = Cg(s)/Cq(s)° naturally act on
the homology group H.(M?*), and the actions commute. Let p be a simple A(s)-module
which appears in the homology group H.(M?). Let

E,, = (p* @ H (M*))**) = Hom 4(,)(p, H.(M?)),

where p* is the dual of p. The space E, , is in fact a simple H,(M?* x M*)-module and by
varying p one gets each simple H,(M*® x M?*)-module exactly once. Furthermore, we can
regard E, , as a Kg(M x M)-module, via cor,; this is a simple Kg(M x M)-module and
(s,p) — E, , defines a bijection between the set of pairs (s, p) as above (up to G-conjugacy)
and the set of isomorphism classes of simple Kg(M x M)-modules.

Let :: M xM — M x M be the G-equivariant morphism defined by t(m,m’) =
(m',m). For any G-equivariant coherent sheaf F, we shall write F for i'(F*), here F* is the
dual sheaf fo F. We write E, for E, , when p is the unit representation of Cg(s)/Ceq(s)°.

When both G and M are finite, the algebra Kg(Z) is one defined in [L15]. When
G is reductive and M is finite, the algebra Kg(Z) is one defined in [L14]. When G acts
trivially on a finite set M, then the convolution algebra Kg(M x M) is isomorphic to the
algebra My xr(Rg), the k X k matrix ring over Rg, where k = |M|.
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Another examples is that an affine Hecke algebra can be realized as a convolution
algebra, this is a key of Kazhdan & Lusztig’s work on classification of simple modules of

affine Hecke algebra (see [I{L4]). We shall recall their work in next section.

Assume that Y is a finite (G-variety, i.e., a finite G-set. Any coherent sheaf on Y is a
vector bundle (v.b.) on Y. { V form irreducible G-v.b. on Y, then the set {y € YV | Vy #
0} is a single G-orbit O in Y, and for any y € O, the obvious representation of the isotropy
group G, on Vj is irreducible; this gives a bijection between the set of irreducible G-v.b.
on Y (up to isomorphism) and the set of pairs (y,p) where y € Y, p form irreducible
(algebraic) representation of G, modulo the obvious action of . In chapters 7 and 8 we

often write py for the irreducible G-v.b. on Y corresponding to the pair (y, p).

3.5. Geometric realization of affine Hecke algebra. In this section we shall assume
that G is a connected algebraic group with simply connected derived group. Let g be the
Lie algebra of G, NV be the variety of all nilpotent elements of g, and let B be the variety .

of all Borel subalgebras of g. Let N’ = {(N,b) e A x B| N €b} andlet p: A — A be
the Springer resolution by projecting (IV,b) to N. Let

Z =N xy N ~{(N,b,b)| Nebnb'is nilpotent, b,b’ € B}

be the Steinberg variety. The Steinberg variety can obtained in another way. The group
G acts on g through adjoint action, so G acts on the variety B. Let G acts on B x B
diagonally, then the number of G-orbits in B x B is |Wy|. Let T*(B x B) be the cotangent
bundel of B x B, then the union of conormal bundels of all G-orbits in B x B is isomorphic

to Z.
Convention: For any ¢ € G, z € g, b € B, we shall write g.z, ¢.b instead of Adg(z),

Adg(b), respectively.
Let G x C* act on N by

(3.5.1) (9:4): (N,b)+— (9.¢7'N,g.b).
Then G x C* acts on Z by
(3.5.2) (9,9): (N,b,b")+— (g.g7'N,g.b,g.b").
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We keep the notations in 2.1-2.2. Let H = H ®4 C{q%,q"’%]. we shall identify
A = C|[q,q7 '] with R¢- by regarding q as the indentity representation C* — C*. Let
H be the A-subalgebra of H generated Ty, 8., w € W, & € X. We shall indetify the
center of H with the ring Raxee by regarding Uz, = € X as the the irreducible module
of highest weight z. Then (see [KL4], see also [G2])

(a) There exists an Rgxc--algebra isomorphism between the affine Hecke algebra H and

the convolution algebra Kgxg+(Z).

3.6. Standard modules. Let G be asin 3.5. Given a semisimple element (s, ¢) € GXC*,

let
8., = {£ €8 9.€=qt},

Nog={E €N | g.6 =g}

For any N € N, 4, consider the variety
v={b€eB|Neband s.b=>b}.

Obviously the group Cg(s) N Cg(N) acts on the variety B},. So the group A(s,N) =
Ca(s)NCq(N)/(Ca(s)NCG(N))° acts on the homology group H,(B%). Let A(s, N)¥ be
the set of isomorphism classes of the irreducible A(s, N)-modules which appear in H,(BY).

It is shown in [KL4] that

a) There exists an H-module structure on K(B%) = H.(B%) such that
N N
(i). The action commutes with the action of A(s, N)V.
(ii). q acts on it by scalar ¢ and U,,2 € X acts on it by scalar tr(s, V(z)), where

V(z) is the irreducible G-module with highest weight z.

For any p € A(s,N)V, let
M = Ho (p, K(B%)) = (K(B%)® -)A(s.N)
saN1QyP nlA(S,N) p’ N N p 1

where p* is the dual module of p. By (a) we see that M, n 4, form H-module. The module

M, N,q,p s called a standard module. We say that two quadruples (s, N, ¢, p), (s, N',¢', p')
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are G-conjugate if there exists some g € G such that s’ = gsg~!

» N'=gN, g=¢, p' =
g(p) (note that we have a natural bijection ¢ : A(s,N)¥ — A(s',N')¥ when first two

conditions hold). Now we can state the main results of [IKL4].

(b) Let L be a simple module of H such that q acts on it by scalar ¢, then L is a quotient
module of some standard module M, y ¢ ,.

c¢) Two standard module M, n , ,, My N/ o » are isomorphic if and only (s, N, ¢, p),
T tandard module M, v 4.0, Mo N1 g p i hic if and onl N,g,p
(', N', ¢, p') are G-conjugate.

C en ¢ is not a root of 1, then each standard module M, y as a unique quotien

1) When ¢ 1 t t of 1, tt h standard module M, n 4, h ique quotient
module, denoted by L n 4,,. Moreover, Ly N g0, Ls', Nt ,q,p0 are isomorphic if and only

(s,N,q,p), (s',N',q,p') are G-conjugate.
In [L17] Lusztig conjecture (d) remains true provided that > . "W £ 0.

For any ¢ € C*, regard C as an A-algebra (resp. C[q%,q_%]-algebra) by specifying q
to ¢ (resp. q? to a square root of ¢), then consider the Hecke algebra
H,=HgaC=H Berat a4 C
For any semisimple element s in G, let I, 4 be the ideal of H, generated by U, —tr(s, V(z)),
z € X and let H, 4 be the quotient algebra H, /I, ; of H,. Then it is easy to see that H
acts on the standard module M, v 4, factoring through the algebra H, ;. The following -
result is due to Ginzburg, which can be deduced from 3.2(d) and 3.5(a).
(e) The algebra H, ; = C, 4 ® Kgxc+(Z) is isomorphic to the convolution algebra
H.(Z°19).

The above results yield naturally two questions.

3.7. Question. (i). Determine the dimensions of the standard modules M, n 4, and the
simple modules Ly n 4 , when ¢ is not a root of 1.

(i1). Classify the simple modules of Hy, when g is a root of 1.

For the question 3.7 (ii) in next chapter we will show that 3.6(d) is true for most roots
of 1 by Combining 3.6(d-e). It is difficult to get the dimensions of simple Hy-modules.

But we can say a few words for the dimensions of standard modules.

41



3.8. Demensions of certain standard modules. The following results can used to

calculate the dimensions of certain standard modules.

(a) Hoaa(BN) =0 and Heyen(BY) is isomorphic to Chow group of BY. (see [CLP]).
(b) Assume a connected diagonalizable algebraic group D acts on a variety M, then
x(M) = x(MP), where x(-) denotes the Euler number (see [BB], I am grateful to

R.V. Gurjar for providing the reference).

Notations are as in 3.5. For any semisimple element (s,¢q) € G x C*, we always
have s.0 = 0 = ¢0. Since G has simply connected derived group, so Cg(s) is connected.

Thus A(s,0)¥ only contains the unit representation, denoted by 1. Moreover we have

M, 0,91 = K(B*) = H,(B®). By (a) we know that
(381) dim.M,,o,q,] = X(Ba).

Let T, be a maximal torus of G containing s. Then T, acts on B*. Using (b) we see
that x(B*) = x(BT*). It is well known that B+ is a finite set of |Wp| elements. Thus we

get
(382) dimMS'U’q’l = IWUI

One also can obtain (3.8.2) by using 3.9(c) and results in [X1].

Now we assume that G = SL,(C). The results (a-b) are also sufficient to determine
the dimensions of standard modules of Hy in this case. Let (s,q) € G X C* be a semisimple
element, it is harmless to assume that (s,¢) € T x C*, where T is the subgroup of G
consisting of diagonal matrices in G. Let N € N, ,. Note that g = s/,(C), we see that the
sizes of Jordan blocks of N determines a partition of n, denoted by A. It is known that
Cg(s) N Cg(N) 1s connected. Thus A(s, N)¥ only contains the unit representation, also

denoted by 1. Moreover we have M, n 41 = K(B}) = H.(B} ). By (a) we know that
(3.8.3) dimM, n,q1 = X(BY).

A direct calculation shows that the pair (s, V) is conjugate to certain pair (s', N') such
that s’ € T, N' =diag(N{, N}, ..., N;), where each N{ is a Jordan block. We may choose

all N] to be upper triangular matrices. It is no harm to assume that (s, N) = (s, N’').
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It is known (also easy to check) that Ty = T'N Cqe(N) is a maximal torus in the group
Cg(N). Since Tn C Cg(s) N Cq(N), Tn acts on the variety B3,. Using (b) we know that
X(B%) = ,\'((B}‘V)TN).ﬂ Let t € Ty be a regular element in Cg(N), then ¢ = texpN is a

regular element in G. According to {St1] the variety (Bj’\,)T” = B9 is finite and

(3.8.4) The cardinal |(B%)™| of (B}'V)TN is the number of elements w € Wy such that

w.N € b, where b is the Borel subalgebra of g consisting of all upper triangular matrices
ng.

Let o = (p1, pa, ..., ptx ) be the dual partition, by (3.8.4) we get

(3.85)  dimM, N, = #—1'”—;'—7;?
Note that dimM, n 41 is the number of left cells contain in the two-sided cell of W
corresponding to the nilpotent G-orbit containing N.
For other types we can get similar results when Cg(V) is connected.

Finally we state a result concerned with the relations between M, n 4., and Mg 4.1.
(c). The injection B — By induces an Hy-module injection My n g, — Ms0,4,1.

For type A this was proved in [HS]. In general it follows from the results in [CLP].
For type A, we can get a little more. Let s,t € T, N € N, 4, N' € NV ,. Assume that
&' C B%, then the inclusion induces an Hy-module injection: My y+ g1 = M, n¢,1- The
proof is similar to that in [HS]. This fact should be useful in calculating the multiplicities of
simple modules in standard modules. The multiplicities should have a nice combinational

description.

3.9. The asymototic Hecke algebra J. The work [L12-L.14] show that the asymototic
Hecke algebra J = Jz ® C of W is interesting in representation theory of affine Hecke
algebras. Let ¢, : H, — J be the homomorphism induced from the homomorphism ¢ in
2.7(¢). Thus any J-module E gives rise to an Hy-mdoule E, via ¢,. We shall need the

following result.

(a) The involution of H defined by T, — —qT[?, (s € SNW,y), 6; — 6. is just the

involution of H obtained from k in 1.6(e).
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From 2.7(d) we know that (see [L13])
(b) The algebra J is finitely generated over its center. In particular, each simple J-module

is of finite dimension over C.

We recall that there is a bijection between Cell(W) and the set of nilpotent G-orbits
in g which preverse the partial orders. For ¢ €Cell(W), we denote N, the corresponding

nilpotent G-orbit.

For any two-sided cell c of W, let J. = Jz. @ C. Then J = @ J.. For each
ceCell(W)

simple module E of J, there exists a unique two-sided cell ¢ of W such that J.E # 0,
we call ¢ the two-sided cell attached to E and denote it by cg. Similarly, for each simple

module L of Hy, there exists a unique two-sided cell ¢ of W such that
CwL =0 whenw¢cand w < u for some u € ¢,
LR

Cu.L #0 for some u € c,

we call ¢ the two-sided cell attached to L and denote it by cp.

(c) Let E be a simple J-module. Then E; is isomorphic to certain standard module
My N.g,p, N € Ny, Each standard Hy-module can be obtain in this way. (Here we

need (a) and results in [L14]).

(d) Let E be as in (c). For each simple constituent L' of E,, we have cg LgR cLr.

(e) For each simple Hy-module L, there exists some simple J-module E such that
(). cg =cy.
(i1). L is a simple quotient of E,.
(ii1). For any other simple constituent L' of E,, we have ¢/, L"<h CLr, ¢L Fcpre
(f) Assume that ¢ is not a root of 1 or ¢g=1. Then for each simple J-module E, E; has a
unique simple constituent L such that ¢;, = cg, which is the unique quotient of E,

denote it by Lg. The map E — Lg defines a bijection between the set of isomorphism

classes of simple J-modules and the set of isomorphism classes of simple H,-modules.

We shall denote Y . the set of isomorphism classes of simple Hy-modules to which

the attached two-sided cell is ¢. For a semisimple element s in G, we denote Y, , the
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set of isomorphism classes of simple H,-modules on which U, (z € X) acts by scalar

tr(s,V(z)). Set Yy p. =Y, . NY, .

The results (c-€) have several consequences. We need a simple fact. For each semisim-
ple element (s,q) € G x C7, there exists a unique nilpotent G-orbit n,, such that

f, 4 2 N, and for other nilpotent orbit n if i 2 N, 4, then & D n, 4.

3.10. Corollary. For arbitrary N € n, 4, p € A(s,N)V, the module M, n 4 , Is simple.

We conjecture that M, n 4,1 is simple if and only if N € n, . When p # 1, the module
M, N4, may be simple for N ¢ n, 4, see the dimension of E, in the part (G) of 8.3.

3.11. Corollary. Assume that N, , = {0}, then M, 41 issimpleand Y, ;, = {M,,0,41}.

Note that dimM,,g,q,l = |W0|.

3.12. Corollary. Assume that g, , C g, @ g—a\a.nd A(s,N)¥ = {1} for some 0 # N &
N,,4. (Note that N,N' asr conjugate under C(s) for any N,N' € N, 4 in our case). Then
Y, | £2, and

(3.12.1). dimL, n,4,1=|Wy|/2, where 0 # N € N, ,.

(3.12.2). If|Y, 4 | = 2, we have dimL, 4,1 = |Wsl/2.

3.13. Let K(H,) (resp. K(J)) be the Grothendieck group of H;,-mdoules (resp. J-
modules) of finite dimensions over C. Then by 3.9(e) we see that £ — E, defines a
surjection (@,)s: K(J) = K(H,) (see [L13)]).

For a two-sided cell ¢ of W, we denote K(H,). the subgroup of K(H,) spanned by
those simple H,-modules L with ¢, = ¢. Then we have K(H,) = @ K(H,)., where ¢
runs over the set of two-sided cells in W. It is obvious that K(J) = GEK (J.), where the
definition of K(J.) is similar to that of K(J). By the definition of ¢, :ve see that (@) is
compatible with the filtrations

K(J)>c = @ K(Jo), K(Hg)>. = @ K(Hg)e

c<Le cLc
LR LR
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of K'(J), KX(H,), hence (¢,). induces a surjection (¢g)u,c: K(Jc) — K(H;,)c. (Pq)x,c maps
the J.-module E to the sum of simple constituents M of E, with cp = ¢, where E; is the

H,-module obtaining from E and the homomorphism ¢, .. H, - J — J..

For any J.-module E, we also denote (¢q)«o(£) the direct sum of simple constituents
of E; to which the attached two-sided cell is ¢. When E is a simple J.-mdole, I hope
that (¢q)«,c(£) is either 0 or a simple Hy-module. Furthermore, I hope that (¢4)«c(Ei) =
(Pg)x,c(£2) as Hy-modules if and only if Ey ~ E; as J.-modules when E;, E, are simple
J.-modules and (¢g)ac(E1) # 0. If it is true, then the set {(¢g)«,(E) ’ ¢ two-sided cell
of W, E a simple J.-module (up to isomorphism)}-{0} is a complete set of simple H,-
modules, i.e. any simple Hy,-mdoule isomorphic to some (¢, )« o(E) and any two modules
in the above set are not isomorphic. Then we get the classification of simple Hg-modules.
When ¢ is not a root of 1 or ¢ = 1, the above idea is valid (see [L13]).

In chapter 7 we apply the above idea to classify the simple H,-modules under the
assumption that W is of type G or B,.

Lusztig conjectured in [L17] that (¢,). is an isomorphism if and only if ¥ ¢'(®) #
0. When (@) is an isomorphism, so is (¢g)x,c, in [L13] Lusztig show ttﬁg?f the set
{(¢g)x,e(E) | ¢ two-sided cell of W, E a simple J.-module (up to isomorphism)} is a
complete set of simple Hy-modules, Lusztig also show that (¢,). is an isomorphism when

¢ is not a root of 1 or ¢ = 1 ([L13]).

3.14. A conjecture of Lusztig concerned with the structure of J..  In this section
we shall assume that G is simply connected simple algebraic group. In [L14] Lusztig give
a nice conjecture concerned with the structure of the ring J.. Now we state his conjecture.

For each two-sided cell ¢ of W, we have the corresponding nilpotent G-orbit A, in g.
Choose an element N € N, and let F, be a maximal reductive subgroup of Cg(N), Lusztig
conjectured that there exists a finite Fi-set ¥ and a bijection 7:c¢™ set of irreducible F,-
v.b. on Y x Y (up to isomorphism) such that ¢,, — m(w) defines a C-algebra isomorphism
(preserving the unit element) between J, and K¢ (Y x Y) and n(w™!) = m, w E c
When ¢ = ¢ is the lowest two-sided cell, the conjecture was verified in [X1]. In chapter 7

we show that the conjecture is true when W is of type G, Bo. When W is of type Aj,
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Ay, we know the conjecture is valid (see [X2]).
Let ¢, N, F. be as above. Note that By is an F,-variety. Perhaps Lusztig’s original

ideal is the following conjecture.

3.15. Conjecture. There exists a bijection m:c— set of irreducible F.-v.b. on By x By
(up to isomorphism) such that

(1). tw — m(w) defines a C-algebra isomorphisim (preserving the unit element) between
J. and the convolution Kp, (By X Bn).

(ii). 7(w=!) = 7(w), w € c.

(iii). The homomorphism ¢ in 2.7(c) has a natural geometric interpretation.

Affine Hecke algebras with two parameters

3.16. In the rest part of the chapter we shall consider the representations of affine Hecke
algebras of two parameters. We mainly follow the line in [L9]. We shall assume that G is
simple, simply connected algebraic group. We keep the notations in 2.8-2.9.

Let G = G x C* x C*. Then G acts on B as follows: G acts on B through adjoint

action, C* x C* acts trivially. We have

Ks(B) = Ka(B) ® Re-xcr = Ka(B) ® Z[u*?, v¥?],

where u?, v? are the generators of Rg- x¢+ corresponding to the obvious projections: py,ps :

C* x C* = C*, Reexcr = Kev xc (point) is the Grothendieck group of the rational repre-
sentations of C* x C*,
For each s € 5y, we denote P, the variety of all parabolic subalgebras of g correspond-

ing to s and let 7, : B — P, be the natural map. There is a unique endomorphism
(3.16.1) T,: Kg(B) — Kg(B)
with the following property: if £ is a é-equiva.riant algebraic vector bundle on B, then

(3.16.2) E+T,E = (my(me)s(E") — mi(m )« (E* ® Q)"
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where Q! is the line bundle on B of holomorphic differential 1-forms along the fibres of 7,
G acts on Q! in an obvious way, let C* acts on each fibre of Q) by scalar multiplication,
and then C* x C* acts each fibre of 2} through the projection p; if s € S§ and through the
projection py if s € S§. Here (m,).(E*) is the alternating sum of the higher direct images
of E* under 7, in the category of coherent sheaves (we use E'* for the dual of a vector
bundle E'); these higher direct images are again G-equivariant algebraic vector bundle on
P, (see [Fu]), hence their alternating sums defines an element in Kz(Ps).

For any element z € X, we define an endomorphism

(3.16.3) 8:: Ka(B) = Ka(B)
by
(3.16.4) 0,E=E® L.,

where L is the line bundle on B associated to the weight z : T'— C*, it is a G’-equivariant

bundle with the obvious action of G and with trivial action of C* x C*.

3.17. Proposition. The endomorphisms Ty, 0, of Kz(B) defined in 3.16 give rise to a
left H®-module structure on K#(B). (The action of Z[u*?, vEE) C He® is defined to be the
same as the restriction to Rge xc+ of the action of Rz, note that Kz(B) is naturally a R,

module.) This H°-module structure commutes with the Rg-module structure on Ka(B).

Proof. We identify Ks(B) with B'[X] and identify Rz with B'[X]|"e, where B' =
Z[u*?,vE?]. Then the canonical ring hommomorphism Rz — Kz(B) becomes the inclu-
sion B'[X]"e — B'[X]. Under these identifications, the endomorphisms in 3.16 become

B'-linear maps and satisfy

_s(z)as — za, o Ty — 8() , .
(3.17.1) Ty(z) = po— a1 0 ° €5, w€JX,
s(z)ay — zay g xey — 3(z) " .
.1 .2 T_, - ) ) .1\.,
(3.17.2) (z) po— p— s€Sy, €
(3.17.3) 8y(z) = zy.



Let Z be the left ideal of H° generated by C = EwEW Ty, then 6;C, z € X is a
B’ basis of 7. Under the natural map B'[X] — Z, ¢ — 6,C, the actions (3.17.1-2) (resp.
(3.17.3) become left multiplications by Ty (resp. 6,) for the left H°-module structure of

the left ideal Z. The proposition is proved.

3.18. Motivated by a conjecture in [L4] we formulate a conjecture, which is an analogue

of the (*) in the introduction. We need some notations.

We set
(3.18.1) fw, (u?,v?) = Z w2t (w2t (w)
weW
Then
(3.18.2)

fwe(u?,v?) = H(l F+u 42T 4 w2EDV2) i G s of type By or Ch,
i=1

(3.18.3) fwo (W, v?) = (14 u?)(1 +u® +u?)(1 4 v¥)(1+ v + V).
(14 u?vH)(1 4+ utvH(1 4+ u?vH)(1 + u'v))(1 + u®Vv®), if G is of type Fy,
(3.18.4) fw, (0%, v¥) = (1 + u®)(1 4+ vH(1 + u®v? + u'v?), if G is of type Go,
Let T be a maxiaml torus of G and t its Lie algebra. We have

(3.18.5) g=ta( d g.)
a€R

For any s € T, (a,b) € C* x C*, we set

(3.18.6) Buas={01U(( ® £)0( & &),
a€R’' a€R"
a(s)=a a(s)=b

(3.18.7) Noap =NNg, o

For any N € N, 44, Let A(s,N), A(s,N)¥ be as in 3.6.

3.19. Conjecture. If fiy,(a,b) # 0, then there is a natural one-to-one correspondence

between the set of isomorphism classes of simple I:Ia,b-modules and the set of G-conjugacy
classes of the triples (s, N, p), wheres € T, N € Ny a4, p € A(s,N)¥. When fw,(a,b) =0,

no such natural correspondence exists.
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4. An Equivalence Relation in 7 x C*

Let G be a connected reductive group and T a maximal torus of G. Motivated by the
result 3.6(e) (due to Ginzburg) we introduce an equivalence relation in the set T x C*. We
prove some properties of the equivalence relation. Combine these properties, 3.6(d) (due to
Kazhdan and Lusztig) and 3.6(e) we can prove that the conjecture (*) in the introduction
of the paper is true for most roots of 1. The main results are Theorem 4.5 and Theorem

4.6. For type A,, our results also confirm a conjecture of Zelevinsky [Z, 8.7].

4.1. The equivalence relation. For any (s,q) € T x C* we write

(4.1.1) R,,={x€R]|a(s)=q}.

Given two semisimple elements (s,q) and (t,r) in T x C*, we shall write (s,q) ~ (¢,7) if

Rs,q = Ri,r and Rs,l = Rt,l-

The condition R,, = Ry, is equivalent to that g, , = g, , (see chapter 3 for the
definition of notations). It is also equivalent to that N, , = A} ,. When G has simply
connected derived group, then the condition R,; = Ry is equivalent to that Ca(s)

Cq(t). Obviously the relation ~ in T x C”* is an equivalence relation. We have
(a). The number of equivalence classes in T x C™ respect to ~ is finite.

Proof. The set R of roots is a finite set. From the definition it is easy to see that the
number is less than 22/%I,

(b). Assume that we have a surjective homomorphism f : G — G' such that ker f contains

in the center of G, then s ~ t if and only if f(s) ~ f(t).

Proof. Let r € T. It is known that r contains in the center of G if and only if a(r) =1
for any o € R. The assertion then follows from the definition of ~.
4.2. Proposition. Assume that G has simply connected derived group. Let (s,q) and

(t,7) be two semisimple elements in T x C* such that (s,q) ~ (¢,7). Then
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(1). For any N € N, , = Ny, we have B}, = BY,.
(1). Z*9=Z"" and N, g = N, ..
(ii). A(s,N) = A(¢,N) and A(s,N)V = A(t,N)V.

Proof. Since Cg(s) = Cg(t), according to Steinberg (see [St1]) we have B* = B’
Thus (i) follows from By = B* N By, By = B' N By. (ii) follows from (i). The third

assertion is obvious by definition and (ii).

4.3. Proposition. Keep the set up and notations in 3.5-3.6. Assume that (s,q) ~ (¢,7),
then

(1). H, , ~ Hy ;.

(i1). For any p € A(s,N)¥ = A(t,N)V, the standard module M, n,q,, has a unique
quotient if and only if My n ; , has a unique quotient.

(iii). Let N' € N, = N, , be another nilpotent element and p' € A(s,N')V. As-
sume the standard modules My N g0, Mi,Nrpy My Nt g, prs Mynt v, all possess a unique
simple quotient module respectively, denote them by Lg N .0, Lt N,r.ps Ls,Nt.g,0'y Lt,N 0

respectively. then Ly N g p > Ly Nt g if and only if Ly nrp > Ly Nt 7 pr-
Proof. The assertion (i) follows from 3.6(e) and 4.2 (ii). The other assertions follow
from these facts: the definitions of standard modules, 3.6(d), (i) and 4.2.

The proposition is proved.

4.4. For simplicity in the rest of this chapter we shall assume that G is simply connected,

simple except specified indications. Let
(4.4.1) Cly, = {¢g € C* | the order of ¢ > ¢, + 1},
where e, is the maximal exponent of W;. We shall write o(q) for the order of q.

4.5. Theorem. (i). For any (s,q) € T x Cy, and r € Cyy,, there exists t € T such that
(s,q) ~ (t,7). In particular we have

(ii). For any element (s,q) € T x Cyy,, there exists (t,r) € T x Cyy, such that r is not
a root of 1 and (s,¢) ~ (¢,r).

We shall prove the theorem case by case. Combining 4.3, 4.5 and 3.6(d) we get
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4.6, Theorem. Let G is simply connected, simple algebraic group. Assume that o(q) >
en + 1, then ‘
(1). Each standard module M, n 4 , has a unique quotient module, denoted by Ls n q,p-
(i1). L ,N,g,pr La ,N1,q,p are isomorphic if and only if (s,N,q,p), (s',N',q,p') are
G-conjugate.

(ili). Any simple Hy-module is isomorphic to some Ly n g ,.

4.7. We call an element (s,¢) € T x C* is good if there exists an element (t,7) € T x Cy,
such that (s,¢) ~ (t,r), is semi-good if (s,q) ~ (t,r) for some (¢,7) € T x C* with
fwo(r) # 0, is bad if (s, ¢) is not semi-good, where
fw, = Z q'™ € A.
wEW,

Example: Suppose that G is simple and of rank n. Let s € T be such that a(s) = ¢
for all @ € A and assume that o(g) = e,, the biggest exponent of Wy. If G is not of type
A,, then e, — 1 is not an exponent, (s, ¢) is semi-good but not good.

We also prove the following result through case by case analysis. The result will be

needed in next chapter.

4.8. Theorem. Let (s,q) € T x C*, then (s,q) is bad if and only if g, , # Nog.

4.9. Even if (s,q) is bad, the variety A, 4 is possible to be irreducible. For example, let
G = SL;(C), and s =diag(—1,1—1) € G, then (s, —1) is bad but A, _; is irreducible (cf.
[KL4, 5.15] and 5.8 in next chapter).

We shall need a result of Lusztig in [L17], which can be verified directly when G is a
classical group. For each w € Wy, we choose an element w € Ng(T'} such that its image
in Wy is w. Note that t (the Lie algebra of T) is Wy stable. Let f,(q) = det(q — w) be

the eigenpolynomial of w on the space t.

(a) Any element ¢ in wT is semisimple.

Proof. Consider the adjoint representation Ad: G — GL(g). It is easy to check that
the image Ad(g) of ¢ is semisimple. It is known that the kernel of Ad is the center of G.

So ¢ is semisimple.



A result of Lusztig in [L17] can be expressed as

(b) Assume that ¢ # 1, then g, . # N, if and only if s is conjugate to some element in
wT such that f,(¢) = 0.

" We need several more notations: gt stands for G?z 8o Teq denote the set of regular
elements in the maximal torus T. Now we begin ou:i)roof of 4.5 and 4.8 through case by

case analysis.

4.10. Type A,,: We have G = SL,4(C). We choose the maximal torus 7" to be the set
of the diagonal matrices in G.
Let a;j,2x € X = Hom(T,C"), 1<i<j<n+1,1 <k <n be defined as follows.

a;j : diag (ay,az, -+ ,an41) — aiay,

xy : diag (aj,ag, - ,ant1) — arag -« ax.

Then let Rt = {ai; | 1 €7 < j < n+1}. Thus the set of simple roots is A = {@; ;41 | 1 <
¢ <n}, and z,,%2,...,%, are the fundamental weights.

The normalizer Ng(T') of T in G is generated by T, P;(—=1)P;; € G (1 < i # j <n+1),
where P;(—1) is the matrix obtained by multiplying the i-th row of the identity matrix
Inyy with —1, the P;; is the matrix obtained by exchanging the ¢-th row and the j-th row
of the matrix I,4.4. The Weyl group Wy = Ng(T')/T is isomorphic to the symmetric group
Sp41 of degree n+ 1.

Given an element (s,¢) € T x C7,q # 1. Obviously through an element of the Weyl

group Wy, s is conjugate to certain element D € T of the following form:

(4101) D= diag(Dl,Dg, ...,Dk),
where
diqm'-Ir.',.' 0 e 0 0
0 d,'qm"_l.[,-'.'.._l 0 0
D; = : : : : , 1 <1<k
0 0 diqly; | 0
0 0 . 0 dily; ,
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all r; ; are positive integers, all m; are non-negative integers, d; € C*, moreover,

max{my,msg,..,my} < o(gq), and

diglr"'(djq"")_1 #1,¢,¢7", forany1<i#j<k, 0<m<m;, 0<m <my.

Let (s,¢) be as above. We have

(a). .4 # N ¢ if and only if m; + 1 = o(q) for some 1 <i < k.
(b). Ifg,, = N,yg, then for arbitrary r € C* with o(r) — 1 > max{my,ma,...,my},
we can find some t € T such that (s,q) ~ (t,r).

Proof. Tt is harmless to assume that s = D (notations as above).

(a). If o(g) — 1 > m; for each 1 < ¢ < k, then we have g, , C g¥, s0 g, , = Ny g
Suppose that m; + 1 = o(q) for some ¢, then the exist positive roots £y, B2, ..., Bm, 1 <
m < m;, such that 8 +--- 4+ 8; € RT, 1 <j <m and

8oy =8p T8, Tt Bp, TE g € Bag

Note that g , contains semisimple elements, so g, , # Niyg.
(b). Assume that o(¢q) — 1 > max{m;,mq,...,mr}. Choose a; € C*, 1 < : < k,

be such that a,-'.r'm(a._,-rm’)"1 > max{l,|r|,|r|7'} for arbitrary 1 <7 < j <k, 1 <m <

m;i, 1 £m' < m;j, and be such that E = diag(E,, E,, ..., Ex) € G, where

a;r™ I, 0 - 0 0
0 air™ 0 0
Ei= : : : : : ; 1<i<k
0 0 coooaird 0
0 0 0 a,-Ir,._o

Then we have (D, ¢) ~ (E,r).

The assertions (a-b) are proved.
(c). Let s € T. If q is a primitive (n + 1)-th root of 1, we have
(). g, # Nayq if and only if s is conjugate to the element
diag(q¥,¢"% ,...0 7 ,q7F)
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. (i1). If g, y = N g, then for any r € Cjy,, we can find t € T such that (s,q) ~ (t,r).
Proof. 1t follows from (a-b).
(d). Let (s,q) € T xC" with ¢ # 1. Assume that g, . # N, 4, then there exists a sequence

t1,t2, .., bk, ... in Theg such that

Btrg 7 Ny g and lim ¢ =s,

k-—00

(In this paper all limits are respect to the complex topology.)

Proof. By the proof of (a) we see that s is conjugate to certain element D =
diag(dg™,dq™~",...,dg,d,ay,az2,...,an—m) € T, where m 4 1 is the order of g. Note that
¢'™7 # 1for any 0 <4 # j < m. Choose positive numbers by, by, ..., b, ..., in the interval

(1, 400) such that limg_.co bx = 1 and such that
agbz_m_2i+laj-_lbij_]_n+m #1, 1<i#j3<n—m
a; bR gl =L 0 < I < me
Let
tr = diag(dg™, dg™ ", ..., dq, d,ar b2 @b T3 L an_ b € T,
then the sequence t1,1,, ..., %k, ... satisfies our requirement. The assertion is proved.

4.11. Type B,. Since a(s) = 1 for all @ € R whenever s is in the center of G. So we will
consider the special orthogonal group SO;,41(C) instead of the spin group Sping,41(C).
But the results are also valid for Sping,41(C) for the above reason (see also 4.1(b)).

The group
1 0 0 1 0 0
G = SOzﬂ+1(C) = {g S SL2n+1(C) | §‘ 0 0 In g = 0 0 In },
0 I, 0 0 I, O

where § is the transpose of g. We choose the maximal torus T to be the set of the diagonal

matrices in G. Then

. -1 -1 -1 *
T = {diag(l,ay,az,....,an,a; ,a; ,...,a, ) | ai,az,...,an € C*}.
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The normalizer Ng(T') of T in G is generated by T; Pi; Pitn j4n, Piign €EG(2<i# 5 <
n+1), where P;; is the matrix obtained by exchanging the 7-th row and the j-th row of the
matrix Izp41. The Weyl group Wy = Ng(T')/T is isomorphic to the semi-direct product
(Z/2Z)" x G,,.

Let «ij, Bij,vi € X = Hom(T,C*), 1 <i<j <n+1,1 <k < n be defined as follows.

e . -1 -1 -1 =1
ajj  diag (1,a1,az,...,an, a7, 0y ,.yay ) = aiaj
T -1 -1 —1 .
Bi; :diag (1,a1,az,...,an, a7 a5 " ,...,a," ) — a;a;,
T -1 -1 -1
vi s diag (1,a1,ag,...,an, a7 , a5 ", ... a5 ) = ;.

Then let RY = {aij, Bij, k|1 <7< j <n, 1 <k <n}. Thus the set of simple roots is
A ={aiit1, Tnll1<i<n-1}
Give an element (s,¢) € T x C*,¢ # 1. Obviously through an element of the Weyl

group Wy, s is conjugate to certain element D € T of the following form:

(4.11.1) D = diag(1, D1, Da,..., Dy, D7, DY, .., DY),
where
dig™ I, , 0 0 0
0 dig™ 0 0
D; = : : . : : , 1<i<k,
0 0 d,'qfrl.‘1 0
0 0 0 dily;

all r; ; are positive integers, all m; are non-negative integers, d; € C*, moreover

max{mj,ms,...,mx} < o(g), and

d,-q’"(djq"‘l):|:l £1,q,¢7", forany1<i#j<k 0<m<m;, 0<m' < m;.

(a). 8,4 # Ns,q if and only if at least one of the following conditions is satisfied.
(1). There is some ¢ such that m; +1 = o(q).
(i1). olgq) is even and there are some i, m (0 < m < m;) such that d;¢™ = ¢ and

2m; —2m + 2 > o(g).
Proof. We may prove the assertions as the case of type A4,,.
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(b). Ifg, , # N,,q, then there exists a sequence ty,ts, ..., tk, ... in Trey such that

Bty .q % Nf&,q: and lim t; = 5.

k—oco
Proof. Assume that g, . # N, ;. By (a) we see that s is conjugate to certain element
D = diag(1, Dy, Dy, D, D;') € T, such that
D, = diag(dq™,dq™ !, ..., dq,d), for some d € C* if o(¢) =m + 1 <,
or
Dy = diag(¢™,¢™ ", ..., q), if o(q) = 2m < 2n,
D, = diag(ay, az, ..., ar) € GLi(C) for some k € N.

We then can prove (b) as the case of type A,.

(c). Let D be as (4.11.1), then the following two conditions are equivalent.
(). gp,, =Np,g but Np, ¢ gt.
(ii). o(g) = 2n' =1 for some n', 3 < n' < n, and there exists some ¢ and m (0 <m <

m;) such that d;g™ = ¢, 2m; —2m +2 > o{q).
The proof is straight.

(d). (). Ifo(g) > 2n,, then we havegp , = Np, C g".
(ii). Assume that gp, , = Np,, C g%, then for any r € Cjy,, there exists E € T such
that (D,q) ~ (E,r).

Part (i) is trivial. The proof of part (ii) is similar to type A, although a little more

care 1s needed.

e). Let s € T. Assume that ¢ is a primitive 2n-th root of 1, then
K
1). N,.q if and only if (s, ¢) is conjugate to the following element
gs,q g 4 g

D= diag(qun’qn—l’”_ ’q2’q,q-n’q1-—n,_‘_ 1q“2:q_1)‘

(ii). If g, , = N, 4, then for any r € Cjy, , we can find t € T such that (s,q) ~ (t,r).
Proof. 1t follows from (a) and (d).
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4.12. Type C,. We consider

_ 0 In 0 Iﬂ
G:szn(C):{gESLQn(C)lg(_l'n 0)g=(_In 0)}3

where § is the transpose of g. We choose the maximal torus T to be the set of the diagonal

matrices in . Then
- -1 -1 —1 *
T = {diag(a1, az,...,an,ay a5 ,..,a, )| ai,az,...,a, € C*}.

The normalizer Ng(T) of T in G is generated by T; Pi;Pitnjtn Piisn EG(1 <1 # 5 <
n), where P;; is the matrix obtained by exchanging the i-th row and the j-th row of the
matrix Ip,. The Weyl group Wy = Ng(T)/T is isomorphic to the semi-direct product
(Z/2Z2)" x &,

Let a;j, Bij,vi € X = Hom(T,C*), 1 €1 < j <n+1,1 <k < nbe dfeined as follows.

-1 -1 -1

- di -1
aij - diag (a1,@2,...,8n,a] ,G5 4.y Qn ) — GiQ

an e
Bi; ¢ di -1 =l -1 s
ij « diag (ay, ag, ..., an,ay ,ag ,...,a, ) — aa;,
ST -1 -1 -1 2

vi» diag (1,ay,az,...,an a7, a5 4...,a, ) = a;.

Then let Rt = {aij, Bij, x| 1 <i < j <n, 1 <k <n}. Thus the set of simple roots is
A={aiit;, m]1<1<n—-1}.
Give an element (s,q) € T x C*,¢ # 1. Obviously through an element of the Weyl

group Wy, s is conjugate to certain element D € T of the following form:

(4.12.1) D = diag(Dy, Dy, ..., Dy, D71, D7, .., DY),
where
dig™i I, ; 0 0 0
0 dig™ Ty, 0 0
D; = : : , 1<4 <k,
0 0 diql, 0
0 0 0 dil, ,
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all r; ; are positive integers, all m; are non-negative integers, d; € C*, moreover

max{my,ma,...,mi} < o(g), and

d,—qm(djq"")i] #1,¢q,¢7", forany 1<i#j<k0<m<m;, 0<m' <m;.

(a). g, # Ns,q if and only if at least one of the following conditions is satisfied.
(1). There is some @ such that m; + 1 = o{q).
(ii). o(q) is even and there are some i, m (0 < m < m;) such that dig™ = ¢* and

2m; —2m+ 2 > o(q).
Proof. We may prove the lemma as the case of type A,,.

(b). Ifgs,q # N 4, then there exists a sequence t1,1s,...,tk, ... in Tyey such that

Bti g %Nik,qa and lim t; = s.

k—o0

Proof. Assume that g, . # NV, ;. By (a) we see that s is conjugate to certain element

D = diag(1, Dy, Dy, D', D;') € T, such that

D; = diag(dq¢™,dg™ ™", ...,dq,d), for some d € C* if o(g) =m + 1 < n,

2rm—1 2m—3

Dy = diag(q 7 ,q 12 ,...,q%,q%), if o(q) = 2m < 2n,
D, = diag(ay, az,...,ar) € GLi(C) for some k € N.

We then can prove (b) as the case of type A,.

(c). Let D be as (4.12.1), then the following two conditions are equivalent.
() €09 = N,q but N, ¢ g*.

(i1). o(q) = 2n’ — 1 for some n'; 2

2
(0 <m < m;) such that diq™ = q%, 2m; — 2m + 2 > o(q).

< n' € n, and there exists some 1 and m

The proof is straight.
(d). (i). If o(g) > 2n, then we have g, , = Np, C gt.
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(ii). Assume that g, , = Np 4 C g", then for any r € Cjy,, there exists E € T such
that (D,q) ~ (E,r).

Part (1) is trivial. Part (ii) is similar to case of type A4,.

(e). Let s € T. Assume that q is a primitive 2n-th root of 1, then
(1). 8,4 # Nsg if and only if (s,q) Is conjugate to the following element

2n—1 2n—3 1-2n a-2n

. 3 3
D=d1ag(q 2,9 a"'ngaq%aq 2 ,q T, ,q 2, 5)'

1). Ifg, , = N, ,, then for any r € C}y, , we can find t € T such that (s,q) ~ (¢,7).
s,q g Wo

Proof. Tt follows from (a) and (d).

4.13. Type D,. We consider

6 =500 =tgest© 13 (] §)a= (7 T

where § is the transpose of ¢. We choose the maximal torus T to be the set of the diagonal

matrices in &. Then

-1

T = {dia,g(av,l,a.;;,...,a,,,al_l,a2 yeenant) | ar,az,...,a, € C*Y.

The normalizer Ng(T') of T in G is generated by T'; Pi; Piyn j4n, PiitnPjj4n € G (1 <1 #
7 £ n) where P;j is the matrix obtained by exchanging the i-th row and the j-th row of
the matrix Ir,. The Weyl group Wy = Ng(T')/T is isomorphic to the semi-direct product
(Z/22)" ' x G,.

Let aj, Bij,7vi € X = Hom(T,C"), 1 € i< j<n+1,1 <k < n be dfeined as follows.

1 -1

s -1 - -1 ,
aij : diag (a1,02,..,an, a7 a5 4.y, ) = aia;

-1

Bi; - diag (al,ag,...,an,al_l,az semayt) — aia;.

Then let Rt = {a;j, Bi; | 1 €1 <j <n, 1 <k <n}. Thus the set of simple roots is
A= {ai,i+h ﬁn—l,n I 1 S ? S n— 1}-
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Give an element (s,¢9) € T x C*,¢ # 1. Obviously through an element of the Weyl

group Wy, s is conjugate to certain element D € T of the following form:

(4.13.1) D = diag(Dy, D, ..., D, DT, D7, ., DY),
where
dig™ I, 0 e 0 0
0 dig™ L, ... 0 0
D; = : : . : : , 1<i <k,
0 0 d,'q.[r'..1 0
0 0 ce 0 didy,

all r; ; are positive integers, all m; are non-negative integers, d; € C*, moreover

max{m;,maz,...,mi} < o(g) and

(4.13.2) d,-q'"(dqu')il #1,q,g7", forany1<i#j <k 0<m<m;, 0<m' <mj.

or

(4.13.3) d,—qm(dqu’)i] #1,¢q,¢7", fi#j,andig {k—1k}orjé&{k—1k}

0<m<m;, 0<m <mj, and Dy = (du), dk_lq"‘d;] # 1,¢q for all 0 < m < my—y,
di_1¢'dy = ¢ for some 0 <1 < my_;. We also require that my_; is as big as possible.
(2). 8,4 7 Ns,q if and only if at least one of the following conditions is satisfied.

(i).. There is some 1 such that m; + 1 = o(q).

(i1). ofq) is even and there are some 1, m (0 < m < m;) such that di¢™ = 1 and

2m; — 2m+ 2 > o(q).

Proof. We may prove the lemma as the case of type A,,. The results in [C1] and 4.9(b)
are helpful in the proof.

(b). If g, , # Ns.q, then there exists a sequence t1,ty,..., 14, ... in Trey such that

€0 FNug and  lim tp =s.

k—o0
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Proof. Assume that g, . # N, ,. By (d1) we sce that s is conjugate to certain element

D = diag(D, Dy, D7', D;Y) € T, such that
D, = diag(dg™,dg™ ", ...,dq,d), for some d € C" if o{¢g) =m + 1 < n,

Dy = diag(¢™,¢™ 1, ..., q, 1), if o(q) =2m — 2 < 2n,
D, = diag(a), az,...,ax) € GLi(C) for some k € N.
We then can prove (b) as the case of type A,,.

(c). Let D be as (4.14.1), then the following two conditions are equivalent.
(i). 8p, =Npq but Np, ¢ gt

(i1). o(¢g) = 2n' — 1 for some n', & < n' < n—1, and there exists some i and m

(0 < m < m;) such that d;g™ =1, 2m; —2m + 2 > o(q).
The proof is straight.

(d). (i). Ifolg) >2n—2,, then we have gp , = Np, Cgt.
(ii). Assume that gp , = Np,, C g¥, then for any r € Cjy,, there exists E € T such
that (D, q) ~ (E,r).

Part (i) is trivial. Part (ii) is similar to case of type A, but more tedious.
(e). Let s € T. Assume that ¢ is a primitive (2n — 2)-th root of 1, then
(1). 84 # Nayg if and only if s is conjugate to the following element

diag(¢" ', ¢" 7%, g, 1,487 4T g7 D),

Proof. It follows from (d1).
(ii). If g, , = Naq, then for any r € Cjy, , we can find t € T such that (s,q) ~ (t,7).

Proof. One can prove the assertions using (a) and (d).
4.14. Exceptioal types. Let G be a simple algebraic group of adjoint type, then

(414.1) T ~ Hom(P,C"), where T is a maximal torus in G and P = Hom(7T,C") is the
character group of T'. Note that P is also the root lattice.
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There are no simple realizations for algebraic groups of exceptional types, so for us
the property (4.14.1) is important. To use it we need explicit structure of the root systems
of exceptional types. We adopt the approach in [OV]. For type Fy, the approach is the

same as in {B].

Type Eg: Let €;,¢€2, ..., €6 be vectors in R® satisfying > ei =0and

(ei,ei) = 5/6, (€i,e5) = ~1/6 for i # 3.

Let € € R® be such that (¢,¢;) = 0 for all ¢ and (g,¢) = 1/2.

Type E7, FEs,G2: Let €1,€2,...,€nt1 (n = rank) be vectors in Rt satisfying Yei=0

and

(ei,ei) =n/(n+1), (ei,e;) = —1/(n+1) for i4#j.

Type Fy: Let €1,¢€2,¢€3,€4 be an orthonormal basis of R*.

Then we have

(a) Type Eg. Theroots are: ¢;—e;, *2¢, e;+ej+erte. Wechoose g;—€i41, e4tes+e6+€

as the set of simple roots.

(b) Type E7. The roots are &; — €5, €; + €5 + e +&1. We choose ¢; —eiq1 (¢ < 7), €5+

€6 + £7 + €5 as the set of simple roots.

(¢c) Type Eg. Theroots are g;—¢;, *(ei+ej+ex). Wechoose e;—ei4q (1 < 8), €¢+er+tes

as the set of stimple roots.

(d) Type Fy. The roots are te; ¢, e, (de) e deztes)/2. We choose (67 —eq —

€ —3—¢€4)/2, €4, €3 — €4, €2 — £3 as the set of simple roots.

(e) Type G2. The root are: ¢; —¢;, =e;. We choose 3, €3 — ¢ as the set of simple

roots.

It is convenient to present the formulas for fiy,. We have
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Type fw,

(@ - 1)(a* — 1)(a*® — 1)}(q" — 1)(a@"* ~ 1)(q"? — 1)(a® —1)(q® — 1)

Es
(q-1)8

B (@' —1)(q" —1)(q'? - 1)(q"° = 1)(q® — 1)(q° — 1)(g* — 1)

! (q—1)
E (@”? - 1)(q° - 1)(q®* -1)(q° = 1)(¢° = 1)(q® - 1)

° (q—1)°
F, (@' = 1)(q® - 1)(q° —1)(q* — 1)

(q—-1)*
(9° —1)(q” - 1)

&2 (q—1)2

Now using (4.14.1), (a-e) and 4.9(b) we can prove the following results through lengthy
case by case analysis.

Assume that G is a simple algebraic group of exceptional type. We have

(f). If g, # Nsyg, then

(). There exists a sequence t1,ta, ..., g, ... in Trey such that

Bty g 7& Ntb,l}) and lim t; = s.

k—oo
or
(11). There exists a sequence ty,tg,...,tk, ... in Ty., such that for any w € Wy we have

im 1 — qu(a)(ts) _

k—oo neR+ 1 —w(a)(t)

0

and img oot = S.

Proof. We shall freely use the results on the conjugacy classes in Weyl groups in
(C1]. We number the simple roots according to the Coxeter graphs in 1.3. By means of
the adjoint representations and using 4.9(b) and the results in [C1] we see that g, , #

N, ¢ (s € T)if and only if s is conjugate to an element ¢t € T satisfys
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Type Eg:

ag(t) = -1,

ag(t) = ar(t) =g,

ag(t) = ar(t) = as(t) = q,
ai(t) =g, i=5,6,T,8
ai(t)=¢q, 4<7<8
ai(t)y=¢q, 2<i<5

?

w
IN
IA
)

ai(t) = ¢,
le,'(t) = q, 1

ai(t)=¢q, 3<i<8ori=1

IA
IA

1 <5
ai(t)=¢q, 3<1<8ori=1
and ay(t) = ¢°

ait)=¢q, 1<i<86

ai(t)=¢, 2<i<7

Type E7:

g=-1
o(g) =3
o(q) =4
o(q) =
o(q) =6
o(¢g) =6
olg) =17
olg) =8
ofq) =8
o(g) =9
o(g) =
o(g) =10
o(g) =12
o(q) =12
o(g) =14
o(g) =14
o(q) =14
o(g) =18
o(¢) =20
o(g) =24
o(g) = 30
¢=-1



az7(t) = ag(t) = ¢,

ar(t) = as(t) = as(t) = ¢,
ai(t)=4q, 1=4,5,6,7
ai(ty=¢, 3<:1<7
ai(t)=¢q, 2<i<5
ai(t)=¢, 3<i<Tori=1
ai(t)y=¢q, 3<i1<Tori=1

and ag(t) =1

Type Eg:

as(t) = —1,

ag(t) = as(t) =g,

ag(t) = as(t) = au(t) = ¢,
ai(t) =g, i=3,4,506

ai(t)=¢, 3<1<Bori=1

ai(t)y=¢, 2<i<5
ai(t)=¢, 1<1<5
ai(t)=¢, 1<:1<86
ai(t)=¢, 1<1<6
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o(g) =3
olg) =4
o(g) =5
olg) =6
o(g) =6
oflg) =T
o(g) =
o(q) =8
o(g) =9
o(g) =10
o(q) =12
o(q) =14
o(¢) =18
g=-1
o(q) =
o(q) =
o(g) =5
o(g) =
o{q) =6
o(g) =8
o(g) =9
o(q) =12



Type Fy:

ar{t) = —1or ag = -1,

a1{t) = az(t) = g or as(t) = aq(t) =g,
ag(t) = as(t) = ¢,

ar(t) = o2(t) = ¢, as(t)aa(t) = £1,
ai(t)=¢q, 1 =23,4,5,6

ai(t)y=¢, 1<i<3ori=1
ai(t)=¢q, 2<1<4

i) =¢q, 1<i<4

ai(t) =49, 1

IN

4

7

IA

Type Ga:

ai(t) = =1 or az(t) = -1,
a1 (t) = az(q) = ¢,

@ (t) = as(t) = ¢,

¢=-1
o(q) =3
o(g) =4
o(q) =4
o(g) =5
o(q) =6
o(g) =6
o(q) =8
o(q) =12
g=-1
o(g) =8
o(q) =12

It is sufficient to prove (f) for those ¢t € T satisfying the conditions in the tables. We

use type G, as an example to prove it. We identify an element r € T with the pair

(an(r), az(r))-

If ¢ = -1 and «;(¢) = —1, we choose a sequence ai,as,...,ak,... of real positive

numbers such that limg_.oax = 1 and such that all {; = (=1,ara2(t)) € Treg (it is

possible by a simple calculation). Then g, —1 F Nt —1 and limg— oo tx = t. Similarly we

deal with the case az(t) = —1.

If o(q) = 3, then a;(t) = a3(t) = ¢. we choose a sequence a,as,...,a, ... of real

positive numbers in the open interval (0,1) such that limy—eoar = 1. Then all ¢} =

(arg, arq) € Treq and limg_.oo tx = t. For arbitrary w € Wy, one may check that

i 1 — qu(a)(tr)
klll»lgo H 1 — w(a)(tr) -

aERt
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If o(q) = 6, then a;(t) = a2(t) = ¢. The element ¢ is regular and for any w € Wy we

have
1—quw(a)(t)
Il T—omm ="

agERt

We can deal with other types in a similar way. This complete the proof.

(g). (1). fo(q) > en+1,, then we have g,,(,) , = Nu(s),q C &1 for some w € W,
(ii). Assume that g, , = N,, C g", then for any » € Cyy,, there exists t € T such
that (s,q) ~ (t,7).

Proof. (i). It is equivalent to prove that w™!'(R,,) C R" for some w € Wy. Let
Rf, =R,q0N R*, R, =R,,NR™. If R,y = R}, nothing need to argue since we can
choose w = e, the unit in Wy. Now assume that R,, # Ri . Note that o(q) > e, + 1,
we see that the subgroup of the root lattice P generated by R:q doesnot contain any
element of R; . Choose § € Ry

g2

R*, wl(Rj',q) C R*. Thus |w1(R:q)| = |R:||-11(a),q| > [RIq . We now can use induction on

let wy be the reflection respect to 8. Then w;(B) €

|R3:ql Smce Rwl(s)aq = Rasq'

(i1). We can prove the assertion case by case. We omit the tedious proof.

(h). Let s € T. Assume that g is a primitive (e, + 1)-th root of 1, then
(1). 8,4 # Nsyq if and only if s is conjugate to the an element t such that a(t) = ¢ for
any simple root a.

(i1). If g, , = Nag, then for any r € Ciy,, we can find t € T such that (s,q) ~ (¢,7).

Proof. (1). It follows from the proof of part (i) of (f). Using the proof of (f) and the
proof of part (i) of (g) we see that if g, , = N, 4, then we can find w € Wy such that

8u(s).q = Nu(s),q C 8. Then (ii) can be proved case by case.

() Let s€T. If g, , = N4, then we can find (t,r) € T x C* such that fu,(r) # 0 and
(8,9) ~(t,7).

Proof. Use the table and case by case analysis. We omit the details.
4.15. Now we can see that 4.6 and 4.8 follow from the results in 4.10-4.14.
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It would be interesting to find a necessary and sufficient condition for the natural

isomorphism between H, , and H, .

4.15. Conjecture. Assume that G has a simply connected derived group, then H, , ~

Htﬂ‘ jfga,q =8B¢r:
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5. The Lowest Two-Sided Cell

Notations are as in chapter 3. It is known that Kgxc=(B x B) may be regarded as an
ideal of the algebra Kgxc+(Z). In this chapter we will give an explicit description for the
ideal. Another purpose is to show that 3.6(d) is not true when fw,(¢) = 0. For simplicity
we assume that G is simply connected, simple algebraic group. All these are done by using

the knowledge concerned with the lowest cell
co = {w € Wla(w) = l{wg)}

The two-sided cell ¢y corresponds to the nilpotent G-orbit {0} under Lusztig’s bijection
between the set Cell(W) of two-sided cell of W and the set of nilpotent G-orbits in g.

5.1. The ideal Kgxc+ (B x B) of Kgxe+(Z). For arbitrary nilpotent G-orbit C, let
Ze = {(N,b,b')e Z | N €},

where C is the closure of C. The variety Zg is G x C*-stable. It is known that the inclusion

Zg — Z induces an injection
Kaxer(Ze) = Kaxer (Z)

and the image is an ideal (we denote it again by Kgxc+(Zz)) of the convolution algebra
Koxcr(Z) (see [KL4]). It is conjecturéd the ideal is closely related to the two-sided cell
corresponding to the nilpotent G-orbit C (see [Du, p.32; G4]). We shall give an explicit
description to the ideal when C is the class {0} (see Theorem 5.4).

We shall identify Kgxc+(B) wiht A[X]. Let A[X]"° be the Wy-invariant set of A[X].
It is known that A[X]"° = Rgxcr = A ®c Rg. We have (see [KL4))

(a) The external tensor product in K-theory defines an isomorphism

K: Kexcr(BxB)~A[X] @ A[X]
A[X]Wo

as A[X]"e-modules.
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We shall identify Kgxe« (B x B) with A[X] ® A[X], and regard them as an ideal
A[X]|Wo

of the algebra Kgxc+(Z2).

(b) There exist a unique left H-module structure (denoted h o €) on A[X] such that

_ — e =1
T,0p= @) 720 | 2as=s@ay e e,
a,—1 a; — 1
6, 0z =17, (z1,z € X).

The action o is a g-analogue of the usual ‘dot’ action of W on A[X].

(c) In Kgxe(Z) = H we have

h(zRy)=hoz Ry, (z®yh=2Rhoy, h e Kgxe-(Z), =,y € X.

5.2. Lemma. There is a unique left H-module structure (denoted h+¢) on A[X] extend-

ing the obvious A action and such that

T4 = @s3(T) — zavs Ty — s(m)’ (s € So, © € X),
a.'s - 1 0'3 - 1
0;, T = 12, (21,2 € X).

Proof. We use Kato’s trick to prove it. Let I be the left ideal of H generated by
> wew, Lw- Then the A-linear map A[X] — I defined by z — 6,3

wew, Lw 18 an isom-

porphism by 2.2(b). One checks easily that under this isomprphism the action * becomes
the left multiplication on I. The lemma is proved.
It is easy to see that the action * is a q-analogue of usual action of W on A[X].

Let & be the half of the sum of all positive roots in R. We have
5.3. Lemma. For h € H, z € X, we have
hox = (65 hés) * z.

The proof is straight.

5.4. Theorem. Let Hco be the two-sided ideal of H generated by 3 <, Tw. It has

natural H-bimodule structure through left and right multiplications. The map
KGxC' (B X B) o~ A.[JY] ®A[1\’]IV0 A.[JY] - I:ICU
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defined by z Wy — 656, ) wew, Lwbyfs 1s an H-bimodule 1somprphism.

Proof. Tt follows from 5.1(c) and (5.2-3). The map is obviously surjective. Using 2.6(i)

we see the map is injective.

5.5. Now we shall classify the simple H,-modules attached to ¢g. Recall the concept of
attached two-sided cell in 3.9. For any semisimple element s in G. It is known (see [X2])
that at most one simple H,-module (up to isomorphism) attached to ¢o such that U, acts
on it by scalar tr(s, V(z)). That is |Y; 4, | £ 1. We shall give a necessary and sufficient
condition-for |Y5,4,co | = 0. We need some preparations.

Let C = Zwewo Ty. For any ¢ € X, we write
W, ={w e Wy | w(z) =z},

and

fw, = Z q'™.

weW,
We shall need a result of Kato [{a2] (see also [Gu]).

(a) fz € X, then

C8:C = fw, > w(b.

weWy acht
We shall write M, , instead of the standard module M, g 4. It is known that (see

[KL4])

(5.5.1) M, >~ C, 4 Qrg, oo Kaoxce(B),

where H acts on Kgxc(B) = A[X] by o (see 5.1(b)).

5.6. Lemma. Let I be the left ideal of Hy generated by C = Zwewo T, and let I, be

the left ideal of H, generated by (U, — tr(s,V(z))C, then the quotient I/I, is just the

standard module M, ,.

Proof. Using (5.3) and (5.5.1) we see that M, , ~ C, s QRrgyee Kaxct(B), where H
acts on Kgxee(B) = A[X] by * (see (5.2)). By the definition of * we see that

I/1, ~ C, y ®rgyer Kaxe: (B).
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The lemma is proved.

5.7. It is proved in [X2] that

(a) Y540 =0if and only if CM,, =0.
According to (5.6) we know that CM, , = 0 is equivalent to

(b) C6,C €1, for any 2 € X.

Note that any element in X is conjugate to an element in X+ by an element in Wj.

Using 2.2(h) we see that (b) is equivalent to

(c) C8,C €1, forany z € XT.
This implies that

(e) If fw,(¢) #0, then |[Y,qc | =1.

5.8. Theorem. (i). Ys 4., =0 if and only if g, , # N4 (i.e, g, , contains semisimple
elements).

(i1). Ifg, , # Naq, then for any simple constituent L of M, 41 we can find a nonzero
nilpotent element N € J\G,q and p € A(s, N)V such that L is a quotient module of My n g p.
In particular, 3.6(d) is not true when fw,(¢) = 0.

Proof. (i). Suppose that g, , # N, ¢
According to 5.7(a-c) it is sufficient to prove that C6,C € I, for any = € XT. By
5.5(a) this is equivalent to prove that

(58.1) fwa) 3 2w o) [T 22w ) =o0.

we Wy aERt

Note that

Z w(z H 11_ qj) € A[X]W°

wEW, «ER*
is a holomorphic function on T. It is easy to check that when g, , # N, 4, for any w € Wy

we have

[T (@ - qa(w(s)) =o.

oERT
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When G is of classical type, we can find a sequence ty,t2,...,tk,... in Trey such that
limg—oo ti = 8, thus for any w € Wy we have
. 1 — ga{w(ty
- gaw(t)

k—oo o4 1 — a(w(ty))

=0.

This implies that (5.8.1), in particular, C8.C € I,. Similarly using results in 4.14 we see
that C8,C € I, when G is of exceptional type. One direction is proved.

Now assume that g, . = N, ;. Choose (t,7) € T x C* be such that (s,¢) ~ (t,r) and
fwo(r) # 0 (see 4.8). By (f), 4.3 we see that |Y, 4., | = 1.

(i1). By (i) we know that cj, # ¢g. Note that the nilpotent G-orbit corresponds to ¢g
is {0}. Using 3.9(c-d) and 2.6(e) we get (ii).

The theorem is proved.

5.9. There are several interesting special cases. We always have fu,(—1) = 0.

A. Assume that s € T, ¢ = —1, then the following conditions are equivalent.

(a) oo |=1.

(b)  The standard module M, , is simple.
(©)  Bug =Ny

(d) gy, =Nog = {0}.

(e)  There is no a € R such that a(s) = —1.
(f) tr(s,V(6)) £0.

By the theorem 5.8 we see that (a)e(c). Obviously we have (d)<(e). Since the
character of V(8) is [[,cp+ 671 (1 + @) (see [Ko]), (e)&(f). If there is some « such that
a(s) = -1, then g, +g_, C g, 4, but the space g, + g_, contains semisimple elements,
thus (c)=-(e). We also have (e)=(d)=(c). By 3.11 we know that {d)=-(b). Note that
dimH, , = |Wy|®* and dimM, , = |W;|, again using 3.11 we see that (b)=-(d). We have
proved these conditions are equivalent.

According to [X2] we know that () is equivalent to the following
(g) InH_, we have Cy,Cs = Cuys.

B. Let ¢ € C*. We assume that fw,(g) = 0 but for any fundamental weight z € X

we have fw_(¢) # 0. It is proved in [X2] there is a unique (up to conjugacy) semisimple
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element s € G such that Y, o ., = 0. Let w € Wy be such that f,(g) = 0, then by 4.9(b)
and 5.8, for any element ¢ € wT we have Y, 4., = 0. This implies that the elements in
wT are conjugate. When ¢ is an (e, + 1)-th primitive root of 1, then f,(¢) = 0 if and
only if w is a Coxeter element. The assertion that the elements in wT are conjugate if
w is a Coxeter element was proved in [St1]. When G is of classical type, fu(g) = 0 but
fw.(q) # 0 (for any fundamental weight z € Xt) imply that ¢ is an (e, + 1)-th primitive
root of 1. Thus f,(¢g) = 0 if and only if w is a Coxeter element. When G is of exceptional
type, fw(q) = 0 but fw,(g) # 0 (for any fundamental weight = € X *) doesnot imply that ¢
is an (e, + 1)-th primitive root of 1. Thus f,(¢) = 0 is possible for a non-Coxeter-element.
For exceptional types we list the conjugacy classes of these elements w such that f,(¢) =0
but fw,(q) # 0 for any fundamental weight = € X*. The associated type to the conjugacy
class of the element are the same as in [C1].

Type Es. Es, Eg(a1), Es(az), Eg(as).

Type E;. E7, E7(ay).

Type Es. Eg, Eg(a1).

Type Fy. Fy, By.

Type G;. G2, A,.

C. Let s € T be such that a(s) = ¢ for any simpleroot in @ € R. We have Y, 4., =0

whenever fi,(¢) = 0. This also can be proved by using 2.5.

D. If ¢ =1, the simple module in Y, , ., has a simple realization we explain now. We
may assume that s € T. let L, be the vector space over C-vector with a basis {w(s) | w €
Wo}. This is a unique Hy = C[W] module structure - on L, such that u - w(s) = uw(s)
if uw € Wy and 8; - w(s) = z(w(s)) for x € X. L, is obviously a simple Hy-module
and Cy,Ls # 0. So Ly € Y, 4,c, . Note that dimL, = |Wy| if and only if w(s) # s if

e # w € Wy, 1.e. 8 is a regular semisimple element.
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6. Quotient Algebras

Given ¢ € C*. The problem of classifying simple H,-modules is equivalent to the
problem of classifying simple H, -modules for all semisimple clements s in . Note that
the standard module M, n 4 , is actually an H, -module. Thus it is also interesting to
study the algebras H, ,. Ginsburg gave a nice geometric realization for the algebras H ,.
In chapter 4 we have showed that the isomorphism classes of these algebras H, 4 are finite.
It would be interesting to classify the algebras H, 4, (s,¢) € G x C" semisimple. In this
chapter we give some discussions to the algebras. In the same way we discuss the algebra

I:Ia,b and its quotient algebras I:IS,a,b.

6.1. Completions. For arbitrary z;,z, € X, in H, we have

le Uy, = U‘-l31+1'2 + Z ayUy, ay € C.
y<z1+I3

This implies that

oQ
(6.1.1) 15,=0.
k=1
where s € G is a semisimple element and I, is the two-sided ideal of H, generated by

U, —tr(s,V(z)), z€ XT.

We have the following natural inverse limit system
T Hq/I,f,q s Hq/Ig,q - Hq/IS.tr

By (6.1.1) we see that the completion I:I\q,qr of Hy with respect to the ideal I, 4 is just the
inverse limit li{ilHq/If’q. Let Mod(H,) be the category of finite dimensional Hg-modules
(over C). Let Mod(I:I,,q) be category of finite dimensional I:I‘.,‘q—modules (over C).

We have the following

6.2. Theorem. The category Mod(H,) of finite dimensional (over C) H,-modules is
the direct sum of the categories Mod(I:Isyq), where the direct sum is over the set S of

representatives of semisimple conjugacy classes of G.

Proof. First, each finite dimensional I:Is,q-module has a natural H,-module structure.
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Let M be a finite dimensional Hy-module. For s € § semisimple, we write
My={meM| Uy —tr(s,V(z))!m =0 for all z € Xt and for some integer k& > 0}.

The space M, is an Hy-module. We have

M = @Ms.

s€S

Moreover, if s,t € S are different, we have
Hompn, (M,, M,) = 0.

Since M is finite dimensional, M, is actually an fIs,q—module. The theorem is proved.

Note that H, 4 is also a quotient algebra of I:Iajq.

6.3. Let E be a simple Hg-module, then E € Y, , for some semisimple element s € S.
We regard E as an H, g-module in a natural way. Then obviously the set of isomorphismn
classes of simple H, ,-modules is Y, , . By a theorem of Betti (see [St2]) we know that

dimH, , = {Wp|®. Thus Y (dimE)? < |W;|% The equality holds if and only if H, , is
EEY, ,

semisimple. In particular, we see that any simple Hg-module has dimension < |W| and the
equality holds if and only if H, 4 is simple. According to Ginzburg [G3] we know that the
algebra H, 4 is either simple or non-semisimple. Thus the equality Y, (dimE)? = |W|*
EEY,,,

holds if and only if H, 4 is simple.

When H, , is simple, we have #Y, , = 1. Morcover the natural map H, 5% — H, ,
is a surjective map. Let E € Y, , , then we have dimE = |Wy} and cg = ¢p. Let Hy w,
be the subalgebra of H, , generated by the images of T,,, w € Wy. The algebra Hy w, is
1somorphic to the Hecke algebra of Wy over C with parameter g. It is easy to see that as an
H, w,-module, E is isomorphic to the left regular module of Hg w,. In general #Y, , =1

does not imply that H, ,; is simple. We summarize the discussions as follows.

6.4. Proposition. Let E be simple Hy-module, then the following conditions are equiv-
alent.
(). dimE = |Wy|.

77



(11). H,, 4 is a simple algebra.

(iii). As an Hy w,-module, E is isomorphic to the (left) regular module of Hy w,.
(iv). Noq = {0}.
(v

). Hy Seo . H, ¢ 1s a surjective map.

6.5. Conjecture. (i). Let (s,q),(t,7) € T x C* be semisimple, then H, , ~ H, . if
Nog =N s

(i1). Consider the homomorphism ¢q., : Hy — J,. It induces a homomorphism
Gs,q.c0 © Hag = Joo/bg.co(Is,q). The ideal kerg, 4., of H, , should be nilpotent. Note
that J.,/dq.co(Ls,4) is a simple C-algebra of dimension |Wy|* (see [X1]).

6.6. One may consider the algebra H, 3, (a,b) € C* x C* in a similar way. Given s € G
semisimple, let Is e,b be the two-sided ideal of H, » generated by U, — tr(s,V(z)), z €
X*. For the same reason of (6.1.1) we know that the complet1on Hs,a,b of Ha,b with

respect to the ideal Is b 18 just the inverse limit hmH,1 b/I Let Mod(ItIu‘b) be the

sab

category of finite dimensional Ha,b—modulcs (over C). Let Mod( s.a,b) be category of finite

dimensional H, , y-modules (over C). Similar to 6.2 we have the following

(a). The category Mod( a,b) of finite dimensional (over C) H, s-modules is the direct sum
of the categories Mod(Hs,a,g,), where the direct sum is over the set S of representatives of

semisimple conjugacy classes of G.

Note that I:L,a’b = I:Ia,b/i,,,a,b is a quotient algebra of I:IS,a,b.

Let E Dbe a simple I:Ia,b-module, then E € Y, 43 for some semisimple element s € S
( Y,,a,p 1s the set of isomorphism classes of simple I:I,,,b—modules on which L,a,b act by
scalar 0). We may regard E as an ItL,,a,b—nlodule in a natural way. Then obviously the set
of isomorphism classes of simple I:Ié,,a,b—modules is Y5 4,5. According to theorem of Betti

(see [St2]) we know that dimH, , 5 = |Wy|2. Thus Y. (dimE)? < |Wy|?. The equality
EEYJ,a,b

holds if and only if H, 4 is semisimple. In particular, we see that any simple H;-module

has dimension < |Wy| and the equality holds if and only if Izlm,b is simple.
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Let s € T, then (see [Kal])

(b) . H, 44 is simple if and only if N, 5 = {0} (see (3.18.7) for the notation). '

6.7. Conjecture. We keep the notations in 6.6. Let (s,a,b),(t,c,d) be two elements in
T x C* x C*. Assume that Ny 44 = N4, then
(1) I:Isabzﬂtcd‘
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7. The Based Rings of Cells in Affine Weyl Groups
of Type a’; ) §2 Z_.—‘Z

The work [L12-14] and [X2] show that the base rings of two-sided cells in affine Weyl
groups are interesting to understand the classification of simple modules of the correspond-
ing Hecke algebras Hy (¢ € C*) even if ¢ is a root of 1.

In this chapter we determine the based rings of cells in affine Weyl groups of type G,
B, ( see 7.2), which confirm the conjecture in [L14] (see also 3.14). Then we apply the
results to classify the simple modules of the corresponding Hecke algebra H, (¢ € C*).

The explicit descriptions about the based rings enable us to understand the structure
of standard modules in a concrete way, so that provide a way to compute the dimensions
of simple modules of H,. As an example we work out the case of type Ay (see 7.7). An
immediate consequence is that H, % H; = C[W] whenever ¢ # 1, here H, is an affine
Hecke algebra of type A,. This result leads to several questions (see 7.7). This chapter is
based on the preprint [X3], only section 7.7 is added.

The based ring 7J,

7.1. We refer to 3.14 for Lusztig’s conjecture concerned with based rings of cells in affine
Weyl groups, the conjecture is a guideline to determine the structure of the based rings.
Except special indications, until section 7.5, G is always a simple, simply connected alge-
braic group over C of type G2 or B;, then W is of type G, or 32 and S = {rg,r;,72}. The
cells in W have been described in [L11] explicitly.

In the case ég, W = W' =Wy x P. We assume that (ror1)® = (r172)% = (r9m2)% = e.
W has five two-sided cells: c. = {w € W | a(w) =0} = {e}, c1 = {w € W | a(w) = 1},
ca={weW|aw)=2},a={weW| aw)=3},c={weW| a(w) = 6}. (see
1.12 for the definition of the function a: W — N.)

In the case Bg, W=ax W, Q= {ew}. Weassume that wry = row, wr; = nuw,
wry = wry. We have four two-sided cells: ¢ = {w € W | a(w) = 0} = {e,w} = Q,

={weW | a(wy=1},co={wew | a(w)=2},co={wew | a(w) = 4}.
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One of the main result of this chapter is the following.

Theorem 7.2. We keep the set up in 7.1. For each two-sided cell ¢ of W, there exists a
finite F.-set Y (see 3.4 for the term) and a bijection

7: ¢ set of irreducible Fe-v.b. on'Y x Y (up to isomorphism)
with the following properties:

(i) TheC-linear map J. — Kp (Y xY), t,, = w(w) is an algebra isomorphism (preserving
the unit element).
(ii) m(w™) = 7;-(;;3 (w € ¢).
When T i1s a left cell in ¢), Jpnp-1 has been described in [L15], here Jpqp-1 is the
C-subspace of J., spanned by elements t,,, w € TNT~7,
Proof. We prove the theorem case by case. Before our proof, we make the following
convention: we often write ¢;75 . ..17, instead of w when r; r;, ... 7; is a reduced expression

n

of w.

(A). When ¢ = ¢, F; is the center of G, we take ¥ to be a one point set and F, acts on
Y trivially, and the theorem then is trivial. When ¢ = ¢g, the lowest two-sided cell of W,
then F; = G and the theorem is proved in [X1]. Thus we only need to verify the theorem
for the two-sided cell ¢ of W with ¢ # ¢, or ¢g. In (B-D), G is assumed to be of type G,
and then W is of type Go.

(B). Case ¢ = ¢, then ¢ = {2,212,21212,21,2121,210,21210,1,121,12121, 12,1212, 10,
1210,121210,0,01210,0121210,01,0121,012121,012,01212} (note the convention in the
beginning of the proof), and F, = &3, the symmetric group of three letters. Let ¥ =
{i | 1 < i < 5} be the F-set such that as F-sets we have {1} ~ {2} ~ &3/6s,
{3,4,5} ~ G3/6,. We assume that &, leaves stable on 3.

For G3 we have three simple representations: the unit representation 1, the sign
representation €, and the unique simple representation o of degree 2. We use the notations
1, ¢ for their restriction on &, again. One may verify that the following bijection (note

the convention in 3.4)
7 c—> set of irreducible F,-v.b. on Y x Y (up to isomdrphism),
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0 — 1(111), 01210 — 0'(1,1), 0121210 — 6(1,1),

1= 1,9, 121 — o(2,2), 12121 — g(3,9),
01 — 1(;2), 0121 — o(y,2), 012121 — g1 2),
10 — 12,1y, 1210 — o(3,1, 121210 — €(2,1),

2 — 1(3,3), 212 = 13,4y, 21212 — g(a3,3),

012 — 1(1,3), 01212 — €(1,3),
12 — 1(2,3), 1212 — €(2,3)»
210 — 1(3,1), 21210 — 5(3’1),

21 — 1(3,2), 2121 — 5(3’2),

is just what we need.

Let V' = {2 ' 1 <1 <7} be the F,-set such that as Fi-sets we have {21} ~ G3/6;,
{z0,23,24} ~ {25,26,27} =~ ©3/62. One may check that there exists a bijection between
¢ and the set of isomorphism classes of irreducible F-v.b. on ¥’ x ¥ with the properties

(i) and (ii) in Theorem 7.2.

(C). Case ¢ = ¢z, then F, = SLy(C) and
c={w(i,jk) | 1<1,5<6, k>0}

where (w(z,7,k) = wg‘?‘g?'g(?'l1‘21'17‘2?‘0)kw;1, Wy = €, Wp = Ty, W3 = Tar), Wy = r1T27,
Ws = T2T1T2T1, We = roT17271 ). We write w(k) for w(1,1,%k). We have
(a) DNe={w(2,1,0) | 1 <i <6} = {wirgraw;" | 1 <1 <6}. (see 2.6 for the definition

of D.)
(b) w(z,j,k) ¥ w(m,n, k') if and only if j = n,

w(z, 7, k) ~ w(m,n, k") if and only if 2 = m.

Let Y = {1,2,3,4,5,6} and let F, acts on Y trivially. Then the map m: w(z,7,k) —
V(k)¢,;) defines a bijection between the two-sided cell ¢ and the set of isomorphism classes

of irreducible Fe-v.b. on Y x Y, where V(k) is the irreducible representation of F,; with

highest weight &. We claim the bijection is what we need. In fact, 7.2(ii) is obvious. =
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gives rise to a Clinear map mJ. — Kg (Y x Y) which preserves the unit element. To

complete the proof we need to check the following equality.

(c) tuwti gt twim,n k) = m(w(t, J, k))r(wlm,n, k')

When j # m, using (b), 2.7(a) and the definition of =, we see that (c¢) is true since

both sides in (c) are 0. Now we assume that j = m, then (¢} is equivalent to the following.

(d) tui,j k) btk = Y tung

k”EN
|k—k" | <k" <k+k'

We say that (d) deduces from the following two assertions.
(&) Yuwli,j ), w0l k)i, k) = Yao(k) w(ke),w(ke) -
() twytwr) = twkr+1) + tw(k —1) (we assume that t,,(_qy = 0).

In fact, according to (a) and 2.7(b), we have t,,0)tw(r) = tw(k’) = tw(r')tw(o). Using

induction on & and using (f), we get

(8) tw(k)bwr) = Z (k")
k”EN
k= k' | <k <k k'

Combine (e), (g) and 2.7(a) and we see that (d) holds.
Now we return to (e) and (f). First we prove (e). Consider the algebra Hy, = H/H<¢
(see 2.6(h)). We write (', for its image in Hy. again. Then in Hy. there exists hy, A

such that

(h) Cuijky = hiCuiyh.
By (h) and the definition of ¥ we obtain

(i) Yol g k) wGom k)i, k) = Vaod1,5,k), (3,1 47, (k)
Using (X2, 2.6], we see that there exists h € Hy. such that

(i) Cuwxy = hCo2 (note the convention in the beginning of the proof ).
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By (h) and (j) we know that

(k) Cuiyhy = Cu,jk) = hCu(1,j,0)-

From (b), 2.6(f-g), we have in H>,

(6) Cu(1,3,0Cuin i = D amCu(m), am € A.
meN

According to (a), (b) and 2.7(a), we have the following

(m) When m # k', we have qa,, € q2C[q?} and q7ap € 1+ q7Clq2].
By (k) and (€) we get

(n) Cw(l,j,k)cw(j,l,k’) = ZN amhcw(m)
me
It is easy to see (1.8(a))

(0) CO?Cw(m) = Cw(m)CrUQ = (q% + q—%)zcw(m)-

From (o), (n), (j), (b), 2.6(f-g), we obtain

1 —1\_
(p) Cuw(1,;;0)Cuwi1p) = (@7 +q77)7? Z am Cu(r)Cw(m)
meN

= (q,‘; + q—%)—-Q Z amhw(k),w(m),w(k“)cw(k")
m,k"eN

Using (o) and (j) again, we see that hy(k),w(im),wk’) = (q% -+ q"%)2 Lk, m k. Since
Pow(k),w(m),w(k) 18 polynomial in qé + q_§ and its degree < 2 by definition of ¢, we know
that ax m v € Z (in fact, ag,mrv € N by the positivity of hy(k),wim),wny (cf. [L11]).)

Thus we have

(a) Cu i Cuiaky = D, Gmaim i Cugn
m, k" EN '

Combine (m) and (q) and we get
(r) Veo(1,4,8), (5 ) w7 = Yio(k) w(k), w(k”)

Then (e) follows from (i) and (r).
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Now we prove (f). In H». we have
(s) Cuqy = (CoC2C1C2Cy — 2(q? + q~#))Co2 = Coziz120

Using (o) and (s), we get

1

(®) CumCury = (a +a™HHC1C:G10:Ch - 2Aat +a™5))Cugy
From (t) and 1.8(a), it is not difficult to see that

(u) Cow)Cuwiry = (q% + q_%)200C2121w(k’) = (q% + q&%)zcﬂcw(s,l,k')-

Using 1.8(a) again, we have in Hx.

(v) CoCus1,u) = Cu(rrgr) + 2 p(w(m), w(5,1,k"))Cuim)-

w(m)<w(5,1,k')
By [L11, 10.4.3! we see that p(w(m),w(5,1,k')) = p(w(5,1,m),w(k")). According
to 1.8(f), we see that u(w(5,1,m),w(k'})) # 0 if and only if row(5,1,m) = w(k'), i.e.
m = k' — 1; moreover, p(w(5,1,k" — 1),w(k'} = 1. Hence Cy)Cuwry = (q% + q“%)2
(Cwrr41) + Cuirr—1)) and (f) follows.

(D). Case ¢ = c3, then F, = SLy(C) and
c={u(i,j,k) | 1<4,5 <6, k>0},

where u(z, 7, k) = uiroriro(rarire)fu;?

i Uy = €, Uy = Tg, U3 = Tz, Uy = T 172, Uy =

T1TeT1Tg, Ug = ToT1T27{ 2. We have
(a) DNe={u(i,1,0) | 1 <i<6}
(b) u(z,7,k) ¥ u(m,n, k') if and only if 7 = n.

u(z, 7, k) 3 u(m,n, k') if and nly if 1 = m.

Let Y = {1,2,3,4,5,6}, and let F, acts on Y trivially, then the bijection 7:¢5 the
set of isomorphism classes of irreducible Fe-v.b. on Y x Y defined by u(7,7, k) = V(k)(i j

satisfies 7.2(1) and 7.2(ii). The proof is similar to the case ¢; in (C).
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From now on we assume that G is of type By. Then W is of type B,.

(E). Case ¢ = cq, then F, = Z/2 x SL;(C), and
c={wPv(i,j, k) | 1 <4,j <4, k>0, p=0,1}

where v(z,7,k) = v,-rorg(rlrgro)kvj—l, v] = e, U3 =Ty, U3 = ToTy, U4 = ror;. We have
(a) DNec={v(2,0) | 1< <4}

w)w%&dﬁ):wfﬂmﬂuy)ﬁMMOMyﬁj=n

wPu(z, 1, k) ~ wP v(m,n, k') if and only if i = m.

Let Y = {1,2,3,4} and let F, acts on Y trivially. As the same way in (C), we
know that the bijection 7:c= the set of isomorphism classes of irreducible F.-v.b. on
Y x Y defined by w?v(z,j, k) — (e?,V(k))(;, ;) satisfies 7.2(i) and 7.2(ii), where ¢ is the

sign representation of Z/2.

(F). Case ¢ = ¢, then F, = Z/2 x C*, where Z/2 acts on C* by z — z7!;

c= {w"(rorlw)kw”',wp(rorlw)k’row”',w"(rl row)kw”',

WP (rirow)¥ riw? wProrirow? | k>0, K 20, p,p' = 0,1}

We shall regard q' (¢ € Z) as the simple representation of C* defined by z — z*. Let
o(k) (k > 0) be the simple representation of F, such that the restriction to C* of oy is

the direct sum of q* and q~*.

The sign representation ¢ of Z/2 gives rise to a simple
representation of F, via the natural homomorphism F, — Z/2, we denote it again by e.
Let ¢(0) = 1 be the unit representation of F.

Let Y = {1,2,3,4} be the F.-set such that as Fi.-sets we have {1} ~ {2} ~ F./F, and
{3,4} ~ F./F?. Asin (C), we can check that the following bijection = has the properties
7.2(1) and 7.2(i).

m: ¢ the set of irreducible F.-v.b. on Y x Y (up to isomorphism),

roriTo — £(1,1)y WTroT1To — €(2,1), ToMToWw — £(1,2), T2T1T2 = £(2,2),
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(T‘o’l"lw)krg — O'(k)(1|1), (To?’lw)k?”ow — a(k)(l,2)1

w(roriw)¥ro — a(k)(2,1), w(roriw)*row —= (k)2 ,2),
(rirow)*ry — qu), w(ryrow)friw — q(_;:g)a
(rirow)*riw — q?a_.i)’ w(rirow)*ry — q(-sl,‘i—)k’
(rorlw)k’ — qf‘;m, (?"0?"1&-’)"'“-’ — qzl-’;c)"
w(rlrow)k'w — qaﬁ), (TlTow)k,w - q:;;_l;a
w(reriw)* w — q?{;)’, w(rgriw)t — Cl(k;;,a),
(rirow)* — q§f{)‘, w(ryrow)® — q(_al,:;)v

where k > 0, k&' > 0 are integers.
Application to Representation

7.3 We shall apply the idea in 3.13 to classify the simple Hy-modules under the assumption
that W is of type G or B,. When W is of type A;, A, see [X2]. The results in [X2]
and in this chapter show that the map (¢4)., (see 3.13 for its definition) is a good way
to understand the classification of simple H,-modules even if ¢ is a root of 1. Our second
main result in the chapter is the following. We refer to chapter 3, especially 3.13, for

notations.

Theorem 7.4. Let W be an extended affine Weyl! group type G, or Bg asin 7.1.

(i) Assume that E is a simple J-module, then E, has at most one simple constituent L

such that ¢ = cg.

(i1) Given two simple J-modules E, E' such that E, has a simple constituent L with
¢ = cg and E,’; has a simple constituent L' with ¢y = cgr. Then L ~ L' if and only
ifE~E.

(iii) The set A = {(¢g)x,c(E) | ¢ a two-sided cell of W, E a simple J.-module (up to
isomorphism)}—{0} is a basis of K(H,).

(iv) (¢4)w is an isomorphism if and only if Y ¢'®) £ 0.
wGWo

Proof. Since (¢4)s is surjective (see 3.13), we know that (iii) follows from (i) and (ii).
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Each J.-module E gives rise to an Hg-module E; via the homomorphism ¢4 .: Hy —

J — J.. Then the assertion (i) and (ii) are equivalent to the following assertion:

(¥) Given a simple J.-module E, E, has at most one simple constituent L such that
cL = c. Suppose that the simple J.-module E (resp. E'), E, (resp. E,) has a simple
constituent L (resp. L') such that ¢ = ¢ (resp. ¢r = ¢), then L ~ L' if and only if
E~F.

We prove (V) case by case.

(A). When ¢ = ¢, then (¢g)«,c is an isomorphism, what we need is trivial. When ¢ = co,
in [X2] we have shown that A, is a complete set of irreducible Hy-modules L with ¢;, = ¢

and that (¢, )« is an isomorphism if and only if Y. ¢'(*) 0. In (B-D) we assume that
prVD

W is of type Gs.

(B). Case ¢ = ¢;. J. has four simple modules E;, Ey, E;, E4. dimE, = dimE; = 3.
dim E3 = 2, dim E4y = 1. When ¢ + 1 # 0, one verifies that E; , (1 <7 £ 4) has a unique
simple constituent L; such that ¢, =¢; and Ly 2 L if i #35. L; (1 <7< 4)infactisa
quotient of E; ;. When ¢ +1 =0, one can check that EF; , (1 <4 < 3) has a unique simple
constituent L; such that cg; = ¢; and L; 22 L; if i # 7. We also have (¢g),c(E4) = 0.

(C). Case ¢ = ¢3. We have J. ~ Mgys(RF,) (the 6 x 6 matrix ring over Ry , where
Rpr, = C tensor with the representations ring of F, see 7.2 and 3.4). For each semisimple

conjugacy class s of Fi, = SLy(C), we have a simple representation i, of J.:

'l,b,: Jc Eﬁ{fﬁxs(Rpc) — AJSXS(C),

(mij) = (tr(s,mij)).

Any simple representation of J. is isomorphic to some 3,. Let E, be a simple J.-module
which provides the representation 1.

E, 4 in fact is an quc-module, where quc is the quotient algebra of H, modulo the
two-sided ideal generated by C,, w LSR rorg but w ¢ c¢. We denote the image in quc

of Cy, again by C\. By (h) and (j) in the part (C) of the proof of 7.2, we see that the
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two-sided ideal of HE,>-° spanned by C,, w Iy rora, is generated by Cpy. Hence for any

simple constituent L of E, 4, ¢i, = ¢ if and only if CooL # 0. We have

27 2] 0 V(1) [2V(1) [2]v(1)
(a) b0, (Co2) = 0

(V(l) V(L) V) +[2 27 [2] [2])

(b) $g0..(Coz121) = 0

1
2

where [2] = q% + ¢ %.

By (a) we know that E, , has at most one simple constituent to which the attached
two-sided cell is c. In fact, when D = Cyp B, 4 = 0, E, ; obviously has no such simple
constituent. When D = 0, from (a) we see that dim D = 1. Let N be the H,-submodule
of E, 4 generated by D, then N has a maximal submodule Ny which does not contain D,
so CpaNy = 0. Note that Co2(E;s ;/N) = 0, we know that E, ;, has at most one simple

constituent L such that ¢, = ¢.

If D # 0, then either [2] # 0 or p(s) = tr(s, V(1)) # 0, using (a) and (b) we
see that either CooD = D or Cyg121D = D. Thus we have either Co(N/Np) # 0 or
Co2121(N/Ny) # 0. That is to say, E, , has a simple constituent L, = N/Ny with ¢z, = c¢.

From (b) we see that the eigenpolynomial of Coz121 on L, is (A — o(s))A) | where
b(s) = dimL, — 1. Since s — ¢(s) defines a bijection between the set of semisimple
conjugacy classes and C, we know that when CoE, ; #£ 0, Co2E; ¢ # 0, then L, >~ L, if
and only if s = ¢, ie. E, = E,.

The (V) is proved for the two-sided cell ¢; in W.

We also showed that (¢q)«, is an isomorphism when ¢ + 1 # 0 and (¢ )x,c(Esq) =0
if and only if ¢ +1 =0, ¢(s) = 0. It is known that only one semisimple conjugacy class s

in SL2(C) such that ¢(s) = 0.
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(D). Case ¢ = c3. We have J. ~ Msxs(Rp.) (see 7.2) and

¢q,C(COIU) =

([2]3 =212V + 217 2PV (1) + [2] V(1)2 + [21V(1) [2]V(2) [2]2V(2))
0

(d)  Co102C010 = [2]V(1) + [2]?
(e) Co10212C101 = Co10210210 + {2]Co10210 + Co10

(f) Co10210212C010 = Co10210210210 + [2]Co10210210 + 2C010210 + [2]Co10

Note that F, = SLy(C). For a semisimple conjugacy class s of F, let ¥,, E, be as in
(C). Via ¢,,c, E, gives rise to an Hy-module E; .. As the same way as in (C), we know
that E; , has at most one simple constituent such that to which the attached two-sided
cell s ¢ = ¢3. When CowEf,,q = 0, E;,q has no such simple constituent. Moreover, if
_CowE, , #0, then E; , has a unique simple constituent L such that cz; = c. let ¥'(s) =
dim L), — 1, from (c-f) we know that the eigenpolynomials of Co102, Co10212, Co10210212 On
L, are (A = [2le(s) — [2DA), (A = ()2 — [2Jp(sHAF(), (A = 0(s)* — [2]p(s))AY),
respectively. Thus if CoioE, , # 0, Co10E;, # 0, then L ~ L if and only if s = ¢, i.e.
E, = E,. We have proved (V) for ¢ = c3.

It is obvious that CyjoEy , = 0 if and only if g+ 1 =0, ¢(s) =0 or > +q+1=0,
@(s) + [2) = 0. Thus (¢g)«,c is an isomorphism if [2]([2]2 — 1) # 0. If [2] = 0 or [2]* = 1,
there exists a unique semisimple conjugacy class s in G such that (¢4)«,(E,) = 0.

In (E-F) we assume that W is of type B,.
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(E). Case ¢ = cg, then J. ~ Myx4(Rp. ), Fe. =Z/2 x SL2(C) (see 7.2). We have

2 V(D) +[2] V(1) [2]V(1))

(g) ¢g,c(Coz) = ( 0

VD) +2) 2IVQ) + 2 V(1) +[2) V(1) + [21)

h q.,c 0021 =
(h) ¢q,c(Coz1) ( 0

0 €

where € is the sign representation of Z/2 and we also write ¢ instead of (e, V(0)).

For each semisimple conjugacy class s of Fy, let 1), be the simple representation of J.

defined by

Py(mij) = (tr(s,mi;) € Myxa(C).

Let E, be a simple J.-module which provides ,. Each simple J.-module is isomoprhic to
some E,. Via ¢, ., E, gives rise to an Hg-module E, ,.

As the same way as in (C), we know that F, ; has no simple constituent such that to
which the attached two-sided cell is ¢ when CyoE, ; = 0, and E, , has exactly one simple
constituent L, such that ¢y, = ¢ when Cp2 E, 4 # 0. Moreover, the eigenpolynomials of C,,
Coz1 on L, are (A — /()P (X — o(s) — [2)) A, respectively, where ¢'(s) = tr(s, ),
p(s) =1tr(s,V(1)), b(s) = dimL, — 1, so if CopE, g # 0, Co2E 4 # 0, then L, >~ L, if and
only if s =¢. We have proved the (¥) for the two-sided cell ¢ = ¢3.

It is obvious that CoE, ; = 0if and only if ¢ + 1 = 0, ¢(s) = 0. Hence (¢g)s is an
isomorphism when ¢ + 1 # 0, and there exist two semisimple conjugacy classes s;, s such

that (@g)w,c(Es;) =0 (i =1,2) when g+ 1=0.

(F). Case ¢ =¢;. We have F, = Z/2x C*, Z/2 acts on C* by z — z™'. Any element in F,
is semisimple. Let ¢ # o € Z/2, then az = 2 '«, and the set s(a) = {az l z € C*} is the

conjugacy class containing . For any z € C*, let s(z) be the conjugacy class containing
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z. Then s(1) = {1}, s(=1) = {-1}, s(2) = {2,271} if 22 # 1. By 7.2 and 3.4 we know
that {E,(q), Es(z) (2 € C*), Ey1),e, Es(=1),¢} is & complete set of simple J.-modules, where
¢ is the sign representation of Z/2.

It is not difficult to see that E,(4),, is a simple Hy-module and CyEq(4),q # 0 when
¢+ 1#0, (dg)x,c(Fsta)) =0 when ¢ +1 = 0. We always have C1 E (4, = 0.

One verifies that each E,;), (¢ € C*) has exactly one simple constituent to which
the attached two-sided cell is ¢, we denote it by L,(,), Ly(;) in fact is a quotient module
of E(;),q the eigenpolynomial of Cy rw on Ly is (A — 2 — z'l)/\b(z), where b(z) =
dim Ly(,y — 1. So Ly =~ Ly, if and only if s(z) = s(z') when z,z' € C*. One checks
that for any z € C*, C1L,;) #01f ¢+ 1 #0, thus L,(,) % Eya),q when ¢+ 1 # 0 for any
z € C*.

We have dim E,;) . o = 1,1 = 1, Cy, Cy, Cy, C,, acts on Ey;y . , by scalars 0, 0, 2],
i, respectively. So (¢g)s,c(Ey(i),e) = 0if ¢+ 1 =0 and (ég)s,c(Es(i),e) = Es(iy,e,q = Lie if
g+ 1 7# 0. Now assume that ¢ +1 s 0. Obviously we have Ly . # L_y ., Li: # Eqya),
(i = £1). It is easy to see that C1CoLy(,) # 0 (2 € C*), so Ly, % Li. (2 € C*, 1 = £1).
The (V) is proved for ¢ = ¢;.

In the above discussion we see that (¢,)4,c is an isomorphism when ¢+ 1 # 0 and rank

ker(¢g4)s,c = 3 when ¢+ 1 = 0.

(G). Since (¢gq)+ is an isomorphism if and only if {@g)« is an isomorphism for any two-
sided cell ¢ of W, we see that 7.4(iv) is true according to (A-F).

Theorem 7.4 is proved.

7.5. In the proof of 7.4 we have determined the ker(¢,), . explicitly for two-sided cell ¢ in
W — cop. Now we determine ker(@, ). ,, in a different way from that in chapter 5, which is

0 when Y. ¢'®) =0,
weWy

We denote wy the longest element of Wy. Let z; (2 = 1,2) be the i-th basic dominant

weight in X, then rjz; = z;r; € co (¢ # 7 € {1,2}), 122 € ¢o. In H; we have

(a) Case EZZ Cwocflf‘z = [2](0100111 + ([2]2 - 1)0100)5
Cwocxgr; = [2]Cw0z2a ng CJ:,::; - Cwozlzg + [2]2Cw01:2

(b) Case ég: Cwocxu‘: = [2](Cw0£1 + [S]Cwn)ﬂ
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Cwocz:n = [2](Cwoz: + ([2]2 - l)Cwoan + Cwo)v
CwoCIlIz = Cw05$1532 + ([2]2 - 1)0100‘9%1 + [5]Cw0532 + [2]20w05'—31 + [5]Cwo

where [5] = ¢> +q+ 1+ ¢~ + ¢ 2%, S;,, Sz, are defined as in [X, II, 2.8].

Let V(z;) (+ = 1,2), V(z122) be the simple G-modules of highest weight z;, z1z,,
respectively. Then s — ¢(s) = (A1, A;) defines a bijection between the set of semisimple
conjugacy classes of G and C?, where A; = tr(s,V(z:)) (: = 1,2). Let E, be the simple
J.,-module corresponding to a semisimple conjugacy class s of G (see [X]). According to

[X2, 3.9] and (a), (b) we have the following results.

(c) Case By: When ¢ +1 = 0, (¢,)s.co(Es) = 0 if and only if ¢(s) = (=1,0). When
g+ 1 =0, (¢g)ec(Es) = 0if and only if AyAy = Ay, Le. tr(s,V(z122)) = 0. when
(g +1)(g® +1) # 0, we know that (¢, ). is an isomorphism.

(d) Case G2: When ¢* +¢% +1 =0, (¢g)a,co(Es) = 0 if and only if p(s) = (¢°,¢*), when
q+1=10,(dg)xco(Es) =0ifand only if AyAa — A2+ A +1 =0, 1e. tr(s,V(zz2)) = 0.
When (g + 1)(¢* + ¢* + 1) # 0, we know that (¢,). is an isomorphism.

7.6. Now we assume that W 1s an arbitrary irreducible affine Weyl group. Let e, be
the largest exponent of Wy. When ¢ is a primitive (e, + 1)-th root of 1, then rank
ker(¢g)s.co = 1 (see [X2]). It is likely that rank ker(@,)s = 1 in this case, i.e. (@q)«,c is an

isomorphism when ¢ # ¢y.

7.7. Relations between various H,. Let G be a simple algebraic group over C. Let
Wo be its Weyl group and W be its extended affine Weyl group. Let H, w;, be the Hecke
algebra over C of Wy with parameter ¢ € C*. When . ¢"® £ 0, Tt is known that

there are natural isomorphisms of C-algebras
Hgw, ~ (C[W], Hgwy 2 Jw, (see [L3, GU)),

where Jw, C J stands in an obvious sense.
Reall that H, is the Hecke algebra over C of W with parameter ¢ € C* and J is the
asymototic algebra of Hy, ¢ € C* defined in 2.7. The homomorphism ¢, : H, — J is

injective but never surjective. Actually it 1s impossible to find an isomorphism between
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H, and J for any ¢ € C*. Now we would like to look the relations between H, and
H, = C[W].

When G is of type Ay, W is of type A;. Let s, be the simple reflections in W. When
g + 1 # 0, there is a unique isomorphism of C-algebra between H, and C[W] such that

— 1 -1
_}q+1s+q 1 Tt_)q+ Hq _

T, ;
2 2 2 2

H_, has two (resp. one) simple modules of dimension 1 when G is simply connected (resp.
adjoint), H; has four simple modules of dimension 1, so H_; # C[W] = H;.
Now we assume that G = SL3(C), the simply connected, simple algebraic group over

C of type A;. We shall show that
(a) Hy # Clw] whenever ¢ # 1.

The extended affine Weyl group W = Q x W' has three two-sided cells: ¢, =, ¢; =
{fweW | a(w) =1}, co = {w e W | alw)=3}. We have (see [X1-X2])
(b). Jeo = Moxe(Re), Je =~ Mzx3(A), J. ~C[Q]. Note that A = C[q,q7].
Each J.-module E gives rise to an Hg-module E; via the homomorphism ¢4.: Hy —
J — J., where c is a two-sided cell of W. Each J-module E gives rise to an H;-module
via the homomorphism ¢, : Hy — J. Note that J =J., @ J., & J,.
We recall (see 3.9(e) and [X2])
(c) Any simple Hy-module L is a quotient module of E; for some simple J-module E
with cg = c¢y..
(d) Assume that E is a simple J-module, then E, has at most one simple constituent L

such that ¢, = cg.

(e) Given two simple J-modules E, E' such that E, has a simple constituent L with
¢, = cg and E; has a simple constituent L’ with ¢;» = ¢g. Then L ~ L' if and only
if E~FE'

For each semisimple element s of G, we have a simple J,-module £, obtained through

the simple representation ¥, of J.,:
et Iy 2Mexs(Ra) = Msxe(C),
(mi;) — (tr(s,mq;)).
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It 1s known that E, ~ E, if and only if s,t are conjugate in G.

For each element « € C, we have a simple J., -module E, obtained through the simple

representation ¥, of J,:

Pa:Je, 2Mzx3(A) = M3x3(C),

specialize q to a.

It is obvious that E, ~ E} if and only if a = b.

We have

(f) Eqq (s € G semisimple) has a simple constituent L, , such that cr, , = co if and only
if g, ,= N, q or ¢ = 1. Moreover

6, if N, = {0},

3, if N, 4 # {0} and N, , doesnot contains

dimL, , =
> any regular nilpotent element of g,

1, if N, 4 contains some regular nilpotent element of g.

(g) Eaq (a € C) has a unique simple constituent L, 4 such that ¢, . = ¢ for any a € C.
Moreover (see 8.3(A)) |
3, if (a+q¥e)(a+q77¢) #0,
dimLa,q = 2, if (a+¢¥€)(a+q ) =0and ¢* +q+1 #0,
1, if(a+q¥€)a+q i) =0and ¢ =& £1,

where € is a primitive 3rd root of 1.

(h) For any simple J.,-module E, E, is a simple H,-module. We always dimE, = 1.

By (f-h) we see that C[WW] has three simple modules of dimensions 2, H, has six simple
modules of dimensions 2 when ¢* — 1 # 0, and H, has no simple modules of dimensions 2
when q2 + ¢+ 1 = 0. Now the assertion (a) follows. I donot know whether qu ~ H, when
(¢ —1)(¢* —1) # 0 and (p* = 1)(p* — 1) # 0.

Now assume W is arbitrary, it is likely that Hy 2 H; whenever ¢ # 1 and W is not
of type A; x --- A;. It seems interesting to find relations among various H, (¢ € C*). Of

course we have Hy ~ H -1 by 1.6(e).
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8. Simple Modules Attached to ¢,

Let G be a simply connected, simple complex algebraic group of rank n. Let W be its
extended affine Weyl group (see 2.1), then W = Q x W' for certain abelian group Q and
certain Affine Weyl group W’. The second highest two-sided cell ¢; of W is described in
[L4]. We have

e ={weW|alw)=1}.

In this chapter we prove the conjecture in [L14] for ¢y, then classify the simple Hg-modules
to which the attached two-sided cell is ¢; and determine the dimensions of these simple H,-
modules. From the results one can easily get the multiplicities of a simple H,-module in
the standard modules M, x4 , when N is a subregular nilpotent element in the Lie algebra
g of G. The multiplicities can be interpratated as the dimensions of certain cohomology

groups (see [G3]). This chapter is based on preprint [X4].

8.1. For the two-sided cell ¢; of W, let F} = F,, be the reductive complex algebraic
group attached to ¢ as in 3.14, then

( C*, type A (n > 2)

Z/2xZ/2, type B, (n>3)
Z/2x C*, typeC, (n>2)

F = . -
1= Q, type D, (n 2 4), E, (n =6,7,8)
Z/2, type Fy
. Gs, type Gs.

We refer to chapter 3, especially 3.13 for notations. The main results of the chapter

are the following,.

Theorem 8.2. We keep the set up in 8.1.

(a) There exists a finite Fy-set Y and a bijection

7: ¢y —set of irreducible Fy-v.b. on'Y X Y (up to isomorphism)
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such that

(i) The C-inear map 7 : J; — Kp, (Y x V), ty, — w(w) is an algebra isomorphism

(preserving the unit element).
(i) m(w™?) = m (w € 1), where Jy = J,.

(b) Given a simple Jy-module E, E, (see 3.13 for the definition) has at most one simple
constituent L such that ¢ = ¢;. Suppose that the simple J,-module E (resp. E'),
E, (resp. E;) has a simple constituent L (resp. L') such that cp = ¢; (resp. cpr =
c1), then L ~ L' if and only if E ~ E'. Thus The set Ay = {(#¢)s,c,(E) | E a
simple Jy-module (up to isomorphism)} — {0} is the set of simple H,-modules (up to
isomorphism) with attached two-sided cell ¢; (cf. 3.9(e)).

The theorem supports the conjecture in [L14] and the idea in 3.13.

8.3. The rest of the chapter will be concerned with the proof of 8.2. We do it case by

case, also we determine the dimensions of ¢;-modules. We make some conventions:

If si, 8i,-..5i, 1s a reduced express of an element w € W,, we often write 2125 .. .17,
Citig...ixs tiyig..i, instead of w, C,, t, respectively. For any simple J;-module E, we
also use (¢g),c, (E) for the direct sum of simple consituents of E,; to which the attached

two-sided cell ¢;.

(A). Type A, (n > 2). In this part we assume that W is of type A, (n > 2) (we omit the

case A, see [X2] for the case).

Let w € Q be such that ws, = spw, ws; = siy1w (0 <7 < n —1). Then we have ¢c; =
{w(i,j, k), u(i,7,k)|0 < 4,5 <n, k> 0}, where w(i, 7, k) = w's;(ws1)*w™, u(i,5,k) =
w'sy (w_lsl)kw_j.

Let Y = {1,2,...,n,n+ 1} and let F; = C* acts on Y trivially. We shall regard

q* (k € Z) as the simple representation C* — C, z — z*. Then it is easy to check that
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the following bijection

m: ¢1—set of irreducible Fi-v.b. on Y X Y (up to isomorphism)

w(t, j, k) — in+1,j+1)) u(z, 7, k) — qail,ﬁl)

has the properties (i) and (ii) in 8.2(a).

The convolution algebra K g, (Y x V') is naturally isomorphic to Mp41(A), the (n +
1) x (n + 1) matrix ring over A = C[q,q™!]. For each a € C*, specialize q to a, then we

get a simple representation of J;:
L/)a : J] — KFl(Y X Y) — "+1(A) — Mn+1(C).

Any simple representation of J; is isomorphic to some ,. Let E, be a simple J;-module
providing the representation i,, then dimFE, = n+ 1. E, gives rise to an H,-module E, ,

via @g.c,. Let v; (1 <t < n+ 1) be the natural base of E, 4, then we have

(al) Cuvpg1 =v1, Cuvi =041 (0<i<n —‘1.)

(a2) Civy = [2]v1, Civ2 = avy, Crvyyr = a vy, Chv; =0 (2 <7 < n).
where [2] = q% + q—%_

Since Cy = h1Cyhy for some hy, hy € Hy when w € ¢4, by (a2) we see that dimC, E, ,
=1, so E,; 4 has a unique simple constituent to which the attached two-sided cell is ¢;, we
denote it by L,. The eigenpolynomial of Cy,, on L, is (A—a)A%(@) | where b{a) =dimL, — 1.
Therefore L, ~ Ly if and only if a = b. Thus 8.2(b) is proved for type A, (n > 2).

Now we determine the dimension of L,. L, in fact is the unique simple quotient

module of E, 4. Let N, be the maximal submodule of E, 4, then we have

0, if (a+ g2 €0)(a -+ g~ HE) #0,
D if (a+ q¥€)(a+ ¢ HE) =0, and 7o ¢™ #0,
< Kiy Kigk >, ifa+qiéi =0and ¢=kF #1,

< Kiy Kick >, fa+q¢ 38 =0and ¢=r*#1,

N, =
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where k; = v; + € v + -+ + §_”ivn+1, € is a primitive (n + 1)-th root of 1. By this we
get the following fact.
n+1, if (a+q3&)(a+q73¢) #0,
dimLe =4 n,  if (a+q#)(a+¢ ) =0and ¥)_, ¢™ #0,
n—1, if(a+q2€)a+¢ 1€)=0and g=¢€" #1.

(B). Type B, (n > 3). In this part we assume that W is of type B, (n>3).
Let w € Q be such that wsy = sjw, ws; = spw, ws; = s;w (2 <2 < n). Then we have

¢; = {0w?, 021w?, 120w?, 023...7(n —1)...20w", n(n — 1)nw?

023...n(n=1)...w?P (1<i<n=-1), 023...w?f (2 <7< n),
e+1)..gw? (1<1<5<n), (i—-1)... P (1£j<i<n),
i(i+1)...n(n=1)...20w* (1 <i < n), i(t—1)...20w? (2 <1< n),

(i+1)...n(n—=1)...juw” (1 <i<n, 1<3<n-1) | p=0,1}.

For each element w € ¢y, there exist unique ¢, 7 such that I(s;w) < {(w), I(ws;) < l{w).
Assume that ww? € Wy, then w is completely determined by i, 5, {(w),p, we then write

w(i, 7, k,p) instead of w, where k = [(w).

Let ¥ = {0,1,...,n,n'}. We define an action of Fy = Z/2 X Z/2 on Y by setting
ai=i(0<i1<n-1), a € Fy and ayn = agn = n’, where ¢; = (1,0), a2 = (0,1) € F;.
Let V; (1 <1 < 4) be the simple Fj-module such that a;,a; acts on Vi by scalar —1,1,
on V, by scalar 1,—1, on V3 by scalar —1,—1, on Vj by scalar 1,1. Let V{, Vi be simple
F! = {e,ajaz}-module such that ajaz acts on V! by scalar (—1)* (< = 1,2), where e =

(0,0) € F.

We define a bijection 7: c; —*set of irreducible Fi-v.b. on ¥ x ¥ (up to isomorphism)

as follows.

If i # n o j, we set
Viti,j), if p=1 with k¥ maximal,
. Vaiirjy, if p=1 with k minimal,
m(w(ig k) =9 7 i
3(i,j)» if p =0 with k maximal,

Vi), if p=0 with k£ minimal.
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If:#jand2=norj=n, weset
Vitgy ifp=1,

Vz‘(i,j)’ ifp=0,

m(w(i, j, k,p)) = {
and we set

77(11) = %'(n,n)! w(nw) = Vlf(n,n)’ 7['(?’1(1’1 - ]‘)n‘) = V2’(n,n')’ 1r(n(n - 1)nw) = I'/1"(10.,11')‘

One may check that 7 induces an isomorphism 7 of C-algebra between J; and K g, (¥ x

Y) and m(w™') = T’rau’) if w € ¢;. 8.2(a) is proved in this case.

Now we consider simple J;-modules. There are four semisimple conjugacy classes in
Fy: e,ay,a3,a;a;. For any a € F}, we have A(a) = F}. According to 3.4, we see that J,
has six simple modules (up to isomorphism): By = E,,, E; = E,,, E3s = Eq,4,, B4 = E.,
Es = Eqg a,,Vs, Es = Ee,vy. Via ¢g.c,, Ep (1 < p <6) gives rise to an Hy-module E, ,.

By definition, E, , (p = 1,2) has a base v; (0 £ 7 £ n — 1) defined by v; : ¥ —
C,j—6i;, (0£7<n—-1),p=1,2. We have

(bl) C{)’UQ = [2]’1)0, C(]’Ug = Vg, Col)i e 0 (?, -‘,é 0,2, 1 S 7 S n — 1)
(b2) Cuvo = (=1)""1uy, Cuvy = (=1)P"1ug, Covi=(—1P"v; (2<i<n—1).

(b3) Cavg = Covy = Cavz = vg, Cove = [2Jvg, Civi=0(4<i<n—-1, n>4)and Chvy =

Cavy = vq, Cavy = [2]ug, when n = 3.

(b4) Civiq = C,“Ui.g_l = vy, C,'”U,' = [2]’(),‘, C.-vj =0 (0 Sj‘ <n-1, j# i,i - l,i-i-l, 3 <
1<n-2,n24).

(b5) Cn_1Vn—3 = Vn_1, CaciVn_y = 2lvp_y, Crov;j=0(0< 7 <n—2, n>4).
We always have
(b6) CrE,qa=0(p=1,2).

By (b1-b5) we see that E, , (p = 1,2) has a unique simple constituent to which the at-
tached two-sided cell is ¢;, we denote it by L,. We have L; % L, since the eigenpolynomial

of Canw on Ly (p=1,2) is (A= (=1?)A%mEs=1 (p = 1,2).
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Similarly we know that E, , (p = 3,4) has a unique simple constituent to which the
attached two-sided cell is ¢;, we denote it by L,. We claim that Ly % Ls. In fact, let
e, € B, (0 <i<n)bedefinedbye;: Y - Cy -6, (ye?, 1 <i<n-—1)and
en(n) =en(n') =1, €,(j) =0 (0 <j <n—1). Then we have

(b7) Coeo = [2]en, Coez = €, Coei =0 (2# 0,2, 1 <7< n).
(b8) Cueg = (—=1)Pey, Cuer = (=1)Peq, Cov; = (—1)Pv; (2<i < n).
(b9) Caeg = Crey = Caes = e, Crez = [2]ez, Covi =0 (4 <7< n, n>4) and Cyep =
Caey = eq, Creg = 2e2, Caey = [2]e; when n = 3.
(b10) Ciei = [2]ei, Cieiy = Cieiy1 =€, Cie; =0(3<i<n-2, 1<j<n, n>4)
(b11) Ch_yen—z = €en_1, Cn_1en = 2ep_y, Cryen_1 = [2)ep_y, Chv; =0, (0 <2 <
n—3, n>4).
(b12) Cren—y = en, Cren = 2]én, Chvi =0, (0<i<n-—2).
So the eigenpolynomial of Czg, on L, (p = 3,4) is (A + (=1)P)A dimbe=1 and Ly 2 Ly.

We have dimEs ¢ =dimEs, = 1 and C; (0 < ¢ < n—1) acts on E, 4 (p = 5,6) by
scalar zero and C,, acts on E, ; (p = 5,6) by scalar [2], C,, acts on E, ; (p = 5,6) by scalar
(—1)”. So (@q)s,c,(Ep) =0 (p = 5,6) if and only if ¢ + 1 = 0 and (¢g)«,c,(Ep) = Ep,y =
L, (p =5,6)is a ¢c;-module if ¢+ 1 % 0. Obviously we have Ls % L.

By (b7), (b11-bl2) we see that L, % Ly (p = 1,2; p' = 3,4,5,6), we also have
L,# Ly (p=3,4; p' =5,6) since CoL, #0, CoL, = 0. 8.2(b) is proved in this case.

One may check that L, is the unique simple quotient module of E, ; (1 < p < 6). Let

N, be the maximal submodule of E, 4, then

(b13) When p = 1,2, we have

0, if (¢ +1)(¢" ' +1) #0,
< vy —wy >, if g+1=0and n odd,
n/f2 )
Np=4¢ <wvp—wvy, 2(=1)vgi—1 >, ifg+1=0andn even,
i=1
n—1
< DT aivi >, ifg+1#0and ¢" 1 +1=0,
. =0
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1—4i
2

where ag =y =1, a; = (—q)i_Tl +(—¢) 7, 2<:<n—1 Thus

n, if (¢ +1)(¢"™! +1) #0,
dimL,=¢ n—1, ifg4+1=0,noddor if g+ 1 #0but ¢" 1 4+1=0,
n—2, if¢g+1=0andn even.

(b14) When p = 3,4, we have

0 it (g + 1)(¢"" — 1) £0,
< ey —e >, if ¢+ 1= 0 and n even,
ntl
Np=1 <ep—e, Yo (=1)(2 = 6n2i1)e2i—1 > if g+ 1 =0 and n odd,
i=1
n
<Y e >, fg+1#40,¢" ' —1=0,
\ =0

where ag =y =1, o; = (—q)‘"il + (—q)l';—i, 2<i<n—-1, a, = (—q)lz_l'. Thus

n+1, if (¢+1)(¢" "' +1)#0,
dimL, = § n, ifg+1=0,nevenorifg+1+#0but¢" ' —-1=0,
n—1, ifg+1=0andn odd.

Finally we have dimL, =1 (p = 5,6) when ¢ + 1 # 0.

(C). Type Ch (n > 2): In this part we assume that W is of type Ch (n > 2). Then
Fy =7Z/2x C*, where Z/2 acts on C* by z — z71.

Let w € © be such that ws; = sp,—jw (0 <1 < n). For k >0, let

w(0,0,k) = (012...(n — 1)w)*0, w(n,n, k) = ww(0,0, k)w,
w(0,n, k) = (0,0, k)w, w(n, 0, k) = ww(0,0, k).
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ForO<i,7<mn, k>1, k' >0, let

w(0,4,k) = 0(0,0,k — 1)12...(n —)w,  u(4,0,k) = w(0,4, k)",
u(0,1, k") = w(0,0,k)12...4,  w(,0,k") = (0,4, k)7
w(n,i, k) =wln,n,k—1n-1)...¢, uli,nk)=wn,ik)™"
u(n,i, k') = wln,n,ENn-1...(n —w,  w(i,n k") =uln,ik)!
w(t, 3, k) =1...1w(0,0,k = 1)1...(n — j)w, w(t,7,0) =1...7,
Wi ds k) = (= Dy k=)= 1) (0= iy w(inis]) = o (= o,
w(i, ik +2) = 1. (n = Dw(n,n, k) =1)...5,

w(i, 7, k) =1...1w(0,0,k)1...7.
We set w(z,7,0) = u(7,7,0), w(z,7,0) =u(7,4,0), (0<7,7 <n). Then

e1 = {w(i,3,k),u(i, j, k), w(, 5, kY, u(i, §, k)', 010, 010w, w010,010w |0 < i, <, k > 0},

Let Y = {0,n,1,7' |0 €7 < n} be a Fy-set such that as F} sets we have {0} ~ {n} ~
Fi/Fy, {i,i'} =~ F|/F} (0 < i <n). Then the bijection

7: cp—set of irreducible Fi-v.b. on Y x Y (up to isomorphism)

defined by

w(z, j, k) = o(k)i 5, i, =0,n,

010 — €90y, 010w — £(g,n)s w010 — E(n,0)s w0l0w — €(p 0y,
w(e, 7, k) — qf!-,j), u(z, 7, k) — qai’.), 0<14,5 <n, i#0,n, or j #£0,n,
w(i, g, k) = ali ey, u(i k) = ag, 0<i,j<n,

satisfying (1) and (ii) in 8.2(a), where (k) (£ > 0) is the simple representation of Fy such

that its restriction to C* is the direct sum of q* and q™*, ¢(0) = 1 is the unit representation
of F}, € is the one dimensional representation of Fy which is not isomorphic to the unit
representation of Fy. The part (ii) is obvious. To see that part (i) is true we need to check

that
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(c1) tyty, = m(w)r(u) for w,u € ;.
The proof is similar to part (C) in the proof of 7.2. First we have

(c2) tity = twl; = tw, if [(s;w) = l(ws;) < (w) and tyt, = tut, =0, if [{us) > {(u) but
[(sw) < l(w) for some s € S, see [L12].

(c3) It is easy to check that (x) for w = wP010w? (p,p' =0,1).

Now suppose that w = w(s, j, k) or u(z,j,k) or w(z,j,k) or u(z, 7, k), when k = 1 it

is not difficult to verify (*). Using this fact and (c2-c3) we see that (cl) is true. 8.2(a) is

proved for type C,, (n > 2).

Now we prove 8.2(b) . Let a € Z/2 be such that az = z7'a for any 2 € C*. Then
the conjugacy class containing a is s(a) = {az |z € C*}. For any z € C*, let s(z) be the
conjugacy class containing z, then s(z) = {z,27'}, s(1) = {1} s(=1) = {-1}. According
to 3.4 and (i) we see that {E,(a), Esy;) (2 € C*), Ey1),e, Es(-1),e} 18 a complete set of
simple J;-modules, where ¢ is the restriction to Z/2 of the one dimensional representation

EOfF].

It is easy to see that E,,) , is a simple H;-module of dimension 2 and CoE,(4),q # 0
when ¢ + 1 # 0, and (dg)u.c,(Es(a)) = 0 when ¢ + 1 = 0. We always have C;Eyq),q =
0(1<i<n=-1). '

One verifies that E,(,) , (z € C*) has exactly one simple constituent to which the
attached two-sided cell is ¢,, we denote it by L,(,). The eigenpolynomial of C'lgw on Ly,
is (A—2z—2"1)A®)  where b(z) =dimLy(;) —1. So Ly(;) = Ly if and only if s(z) = s(2')
when z,z' € C*. One checks that for any z € C*, CiL,;) #0 (1 <i<n—-1)if ¢+ 1#0,
thus L2y % Ey(a),q when ¢ +1 % 0 for any z € C*.

We have (¢g)u,c; (Es(pye) = 0 (p = £1)if and only if n = 2 and ¢+ 1 = 0. I
(@g)x,cr (Espy,e) # 0, it is easy to verify that (¢g)uc,(Es(p),e) = Lp,e is attached to c;.
Co acts on L, . by scalar 0. The eigenpolynomial of Cy;. (n—2)u (n = 3) or Cy, (n = 2)
on Ly, is (A — p)AdimLec—1 S0 we have Ly, % Loy, Ly # Esa),g (p = %1), and
Lpe# Lys) (=1, z€C).
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"The 8.2(b) is proved in this case.

For a simple J;-module E, One verifies that (¢g¢)x,c, (E) is the unique simple quotient
module of E; when (¢g)sc,(E) # 0. Wh shall determine the maximal submodule of E,

when (¢g).c, (E) # 0.

When ¢+ 1 # 0, we have dimL,4) = 2. When ¢+ 1 # 0, n =2, we have dimL,, =
1 (p = £1). Now assume that n > 3, By definition, L, . (p = £1) has a base v; (1 < <
n—1)definedbyv;: ¥ =2 C, 151, ¢ - -1, y = 0ify #£¢,¢, y €Y. Let N, be the

maximal submodule of E then we have

s(p)!5¢Q’

{

g .
< Y (=1)vgi—1 >, ifg+1=0andn even,
i=1

N = < n—1
P < T e >, ifg+1%0andq" =1,

=1

. 0, otherwise,

where a; = (=) T +(=¢) T + -+ (=9)*F +(-¢9)’F, 1<i<n-1.

So if n > 3, we have

n—2, ifg+1=0andneven;orqg+1+#0andqg” =1,

n—1, otherwise.

dimL,, = {

Now we consider L,(,) (z = £1), By definition, Ey),q(z=*%1)hasabasev; (0 <2<
n)definedbyv;: Y =5C,i—-1,¢{/ =1, y—=0ify#1¢, yeY (weset 0 =0,n" =n).

Let N,(;) be the maximal submodule of E then we have

s(2),

/

3 .
< 3 (-1Yvi-y >, if ¢+ 1 =0 and n even,
=0

Nyzy = ¢ n :
*(2) < 3 aivy >, ifg+1#0andq"t! +1=0,

=0

L 0, otherwise,
where a; = (—¢)7 + (=¢)7 (0<i<n—1), an = 2(—¢)? +2(—¢) 7.
Thus we have (z = +1)

n, ifg+1=0andneven;org+1#0and¢"t!+1=0,

dimZL,,y = .
(2) { n+1, otherwise.
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Forz € C*, 22 # 1, L,(,),, hasabase v, (a € Y) defined byv, : ¥ - C,a— 1,y — 0
ify#a, y €Y. Let N,(;) be the maximal submodule of E,,) 4, then we have

[(v',v”), ifg+1=0,nodd and 2% +1 =0,

<e >, ifg+1#0andg”z2 —1=0but ¢"z72 —1#£0,
Ny =< <e' >, ifg+1#0andg"z? —1#0 but ¢"z72 -1=0,
<e,e'> ifqg+l1#0andg®2?-1=0,4¢"2"2-1=0,

\ 0, otherwise,
where
n_;_l ] ntl
vl = Z(‘l)'(“ﬁ—l = vi—y) = (=1)77 zvp,
=0
n=t
v = Vg + Z('—l)i(’vgi - U(2i)’)a
=0

€ _Z( Q)I‘U;‘I‘Z( q) Evi + z(— )%Una

e —Z 7v,+z Iv, + 2( q)-'g'v,,.

Thus for z € C* (z # £1) we have

2n—2, ifqg=-1,nodd, 22 = —-1; orqr,é—-landq =z? = -1,
dimL,,y = ¢ 2n—1, ifqg+1#0,2*# -1, and ¢"z =1lorq*z7%=1,
2n, otherwise.

(D-E). Type D, (n > 4), E, (n = 6,7,8) In this part we assume that W is of type
D, (n> 4), E, (n =6,7,8). Then F} = ). We write s 1 instead of sq.

For each w € ¢, there exist unique 7,5 € [1,n+1], w € Q such that {(s;w) = l(ws;) =
l(w)—1, ww™! € W,, we then write w(i, j,w) instead of w. Let 7(w(i,j,w)) € Ln41(C[R])
(the(n+1)x{(n+1) matrix ring over the group ring C[2]) be such that its (z,j)- entry is
w and other entries are 0. Then the map w(7, j,w) — m(w(%,j,w)) € Lay1(C[]) defines an
isomorphism of C-algebra between J; and L, (C[f?]). Since  is a finite abelian group,
according to 3.4 we see that 8.2(a) is true.
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Each C-algebra homomorphism f : C[2] — C gives rise to a simple representation ¢y
of Jq:
Y5 J1 = Moy (C[Q]) = Moy (C).

Let E; be a simple J;-module providing %s. As the same way as in part A we know
that Ef, has exactly one simple constituent to which the attached two-sided cell is ¢,
we denote it by Ly. For different C-algebra homomorphism f, f' : C[Q?]) — C, we have
Ly Ly 8.2(b) is proved.

It is easy to see that Ly is the unique simple quotient module of Ey 4. Let v; (1 < <
n 4+ 1) be the natural base of Ey 4 and let Ny be the maximal submodule of Ey ;. then we

have
Type Es:
<wvy—vuz,v3—vst+vr—vg > ifg+1=0,
Ny=<{ < ia'.-v,- >, if (¢ —1)(¢° -1)=0,
0, - otherwise,

Where a; = q%+q_§,a'2 =—¢’—¢7 =103 = —¢*—q—¢ 1 —¢73, a; = (—1)%-_'@_5_10—'—1 +

10—i—-3 i43-10 it1-10

gz +--+q¢ 7 +qg 7 )(4<£1<9). So

7. ifg41=0,
dimLs; =< 8, if(¢® —1)(¢° -1) =0,

9, otherwise.

Type E7:
<vy—uvs+v7,v3 —vs+uvr—vg >, ifg+1=0,
Ny=<( < i:laiv,- >, if (¢* —1)(¢* +1) =0,
0, " otherwise,
Where a; = g2 +¢™ 7, a0 = —g—¢~ ), a3 = —¢* ~1—g¢~2, ag = —¢° + 1 — g3,
Boi-1 8-i-3

ai= (D) F (@ 4 S B L ) e <i < 7). So

6, ifg+1=0,
dimLy=<¢ 7, if (¢®-1)(¢*+1)=0,

8, otherwise.
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< vy —vg +ve + 7 >, ifg+1=0,
<wvy+vy Fuy —vr,v1 FogLvs —ve >, if(q}f-i—q‘% = +1,
< v F 209 F Qv+ 3v0s Fus +us +ur >, if (g7 +¢7%) =42,
0, otherwise.
So
5 if(q34q77)==+1,
dimLy =4 6, if (q% +¢%)=0or +2,

7, otherwise.

Type D, (n > 4):

{

3 .
< Ul — Undl,Une1 — Uny 9 (—1)'v2;—1 >, if g+ 1=0, n even,
=1
N, = < V1 — Ungl1yVUn—1 — Un, >, if g+ 1=0, n odd,
5= n+1
< Y @ >, ifg"?2—-1=0,but ¢+1#0,
=1
L 0, otherwise,

(= 4T

T _1 ’a-:=q%+ql+l(252512—2).
g2-qg 2

where o) = ap41 =1, q@poy = @p =
So

n—2, if¢g+1=0, neven,

n—1, ifqg+1=0, nodd,

n, ifg" 2 —-1=0,but ¢+1#0,

n+ 1, otherwise,

dimLjy =

(F). Type Fy. In this part we assume that W is of type Fy. Then Fy = Z/2. We have

¢1 = {0,01,012,0123,01234, 01232, 012321, 0123210,1, 10, 12,123, 1234,
1232, 12321, 123210, 2, 21, 210, 23, 234, 232, 2321, 23210, 3, 32, 321, 3210, 34, 323, 3234, 4, 43,
432,4321,43210,4323, 43234}.

Let ¥ = {0,1,2,3,3,4,4'} be a Fy-set such that as Fj-sets we have {0} ~ {1}
{2}~ F1/F, {3,3'} ~ {4,4'} ~ F,. We define a bijection

12

m: ¢y —set of irreducible Fi-v.b. on Y X Y (up to isomorphism)
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as follows:

0— 1o, 0123210 — € 0, 01— 1y, 012321 = g1,
012 — 1(g.2), 01232 — £(g.2), 0123 — 1(0 3), 01234 — 104y,
1 11y, 12321 — ¢4 1), 10 = L0y, 123210 — gy 0,
12 = 1(3 9, 1232 — €3 9), 123 — 1(; 3), 1234 — 1) 4y,
2 - 1y, 232 — £(2.9), 21 — 1(z1), 2321 — 1(5.1),
210 — 13,9, 23210 — 120y, 23 — (3.9, 1234 — 13 4),
3 1(3.3), 323 — 1(3,31), 34 — 1(3.4), 3234 — 1(3 41y,
4 — 144y, 43234 — 1(4 41, 43 — 1(4.3), 4323 — 1(4.31),
32 — 1339, 321 = 131y, 3210 — 1(3.0),
432 — 14 9y, 4321 > 144y, 43210 = 1(4 0.

Where € is the sign representation of Fj. A direct computation shows that the bijection 7

satisfies (1) and (ii). 8.2(a) is proved.

Let « = 1,e = 0 € Z/2. By 3.4 we see that J; has three simple modules (up to
isomorphism): By = E,, E; =FE,, E; = E,., where ¢ is the sign representation of Z/2.
Via ¢, ., Hy — Jy, they give rise to three Hy-modules: Fy o, Eq 4, E34,. E, 4 (p=1,2,3)
has a unique simple quotient, which is just (¢4 ). ¢, (Ep). For simplicity, we denote it by Ly,
then C;L, # 0, C;iLz =0, (: =0,1,2) C;L; =0, C;L3 # 0, (7 =3,4) Ck L2 # 0, (k =
0,1,2,3,4). Thus we have L; 9% Ly% Ly % L;. 8.2(b) is proved.

Let N, (p =1,2,3) be the maximal submodule of E, 4, then we have

< vg — Vg >, ifg+1=0,
N|= <v0—(q%+q_%)v1+vg >, 1fq2+1=0,
0, otherwise,

where v; : {0,1,2} — C defined by v;(7) = é;; (¢,5 = 0,1,2). Therefore

2, if(g+1)(*+1)=0,

3, otherwise.
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<vg—va4vs> ifg+1=0,
Ny = <Z4:aivi>, if¢> —1=0,
0, 0 otherwise,
where v; : ¥ — C defined by v;(j) = vi(5") = &; (4,7 = 0,1,2,3,4) (we set 0 = 0,1 =
',2=2"), 0 =1, 4 = —gt—g Yt ay=qg4+1+¢7 a3 = —%(q% +qt g iy q_%),
oy = %(q + 1+ ¢~1). Therefore

4, if (¢+1)(¢* -1) =0,
5, otherwise.

djl'an = {

N—{<W-@+rﬂw>,ﬁf+ﬁd=&
: 0, otherwise,

where v; : Y — C defined by vi(7) = —vi(j’) = i (i = 3,4; j = 0,1,2,3,4) (we set
0=0,1=1,2=2"). Therefore

1, if¢g?+q¢g+1=0,
2, otherwise.

dims = {

Type Gy: For type G, 8.2 has be proved in chapter 7. We only determine the dimensions
of the simple Hy-modules to which the attached two-sided cell is ¢;.

By 3.4, 8.2(a) we see that J, has four simple modules £y = Ez, E; = Eg, By = Eygy,
E4 = Ez,, where € = {e}, (e the unit of &3), 55 = {s0, $1,308150}, 5081 = {S051,5150}.
dimF, =dimE; = 3, dimE; = 2, dimEy = 1. When ¢ + 1 # 0, one verifies that E; ,
(1 < i < 4) has a unique simple quotient module L; and L; = (¢q)u.c, (Ei). Moreover
Li# L;ifi#j. When ¢+ 1 =0, one can check that E; 4 (1 < ¢ < 3) has a unique simple
quotient L; and L; = {@q)s,c, (Ei). We also have (@g)«,(Es) = 0.

Let N; (: = 1,2,3) be the maximal submodule of E; 4, then we have

< 3vy — vz >, ifg+1=0,
Ny = <vi F2va+uvy >, ifg=1,
0, otherwise,
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where v; : Y — C is defined by vi(j) = é;; (: = 1,2,1 < j £ 5) and v3(p) = 1, v3(i) =
0(p=3,4,5, : =1,2). So

2, ifg?2-1=0,
dile = { 1 .
3, otherwise.
< vy —v3 >, ifg+1=0,
No={ <vyFuvp+uvz> if¢?+1=0,
0, otherwise,

where v; : {1,2,3} — C defined by v;(j) = &; (4,7 = 1,2,3). So

2, if(¢®+1)(g+1)=0,

3, otherwise.

Ne = { < —(q* +q°§)v2 >, ifg?+q+1=0,
: 0, otherwise,

where v; : {1,2} — C defined by v;(j) = §;; (¢, = 1,2). So

1, if(¢*+¢g+1)=0,

2, otherwise.

Note that dimE,=1 and Ey4 4 is always a simple Hg-module (cf. 3.10).
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