Contraction of Gorenstein polarized varieties with high nef value

M. Andreatta

Dipartimento di Matematica	Max-Planck-Institut fur Mathematik
Universitá di Trento	Gottfried-Claren-Straße 26
38050 Povo (TN)	D-5300 Bonn
Italy	Germany

Contraction of Gorenstein polarized varieties with high nef value

M. Andreatta
Dipartimento di Matematica,Universitá di Trento,38050Povo (TN), Italia e-mail : Andreatta@itncisca.bitnet

MSC numbers: 14E30, 14J40, 14J45

Abstract

. Let X be a normal complex projective variety with Gorenstein-terminal singularities; let L be an ample line bundle over X and let K_{X} denote the canonical sheaf of X. Assuming that K_{X} is not nef we study the contractions of extremal faces which are supported by divisors of the form $K_{X}+\tau L$ with $\tau \geq(n-1)$. In other words we classify the pair (X, L) which has "ncf value" $=\tau(X, L) \geq(n-2)$ as well as the structure of their associate "nef value morphisms". In the case $\tau=(n-2)$ we assume also that X is factorial. We study moreover the general case in which $\left(K_{X}+r L\right)$ is nef and big but not ample and the dimension of the fibers of the nef value morphism is less or equal then r.

Introduction and statement of the theorems.

Let X be a normal projective variety defined over the field of complex numbers and let L be an ample line bundle over X. We assume that X has at worst terminal singularities, i.e. the smallest class in which Mori's program can work; by K_{X} let us denote the canonical sheaf of X.

Assume that K_{X} is not nef; the nef value of the pair (X, L) is a real number defined as follow

$$
\tau(X, L)=\min \left\{t \in \mathbf{R},\left(K_{X}+t L\right) \text { is nef }\right\}
$$

(see [B-S1]; (0.8) or [K-M-M]; (4.1)).
By the Kawamata rationality theorem τ is a rational number and by the Kawamata base point free theorem $K_{X}+\tau L$ is semiample; in particular there exists a projective surjective morphism $\phi: X \rightarrow W$ into a normal variety W which is given by sections of a high multiple of $K_{X}+\tau L ; \phi$ is called the nef value morphism.

Applying Mori theory and adjunction theory one can classify the pairs (X, L) with $\tau>(n-1)$; more precisely they are the projective space, the hyperquadric, $\mathbf{P}^{(n-1)}$-bundles over a smooth curve, generalized cones over either a Veronese curve or a Veronese surface. See for this the papers of M. Beltrametti-A.J. Sommese ([B-S1], section 2) and of T. Fujita ([F3], section 1).

If $\tau=(n-1)$ and if the morphism ϕ is of fiber type, that is $\operatorname{dim} W<\operatorname{dim} X$ or, equivalently, $K_{X}+(n-1) L$ is not big, then X is either a singular Del Pezzo variety, or a quadric fibration over a smooth curve, or a $\mathbf{P}^{(n-2)}$-bundle over a normal surface (see again [B-S1] or [F3]; for the definitions see section 0).

In this paper we want to prove the following
Theorem 1. Let X be a projective variety with terminal singularities and let L be an ample line bundle on X. Assume also that X has Gorenstein singularities. If the nef value of the pair (X, L) is $\tau=(n-1)$ and the nef morphism ϕ is birational then $\phi: X \longrightarrow X^{\prime}$ is the simultaneous contraction to distinct smooth points of disjoint divisors $E_{i} \cong \mathbf{P}^{n-1}$ such that $E_{i} \subset \operatorname{reg}(X), \mathcal{O}_{E_{i}}\left(E_{i}\right) \cong \mathcal{O}_{\mathrm{P}^{n-1}}(-1)$ and $L_{E_{\mathrm{i}}} \cong \mathcal{O}(-1)$ for $i=1, \ldots, t$. Furthermore $L^{\prime}:=(\phi L)^{* *}$ and $K_{X^{\prime}}+(n-1) L^{\prime}$ are ample and $K_{X}+(n-1) L \cong \phi^{*}\left(K_{X^{\prime}}+(n-1) L^{\prime}\right)$

The pair (X^{\prime}, L^{\prime}) is called the first reduction of the pair (X, L), using the definition given by A.J.Sommese.

The above theorem is well known in the smooth case, (see [F1] and [So]). In the singular case there are results when X is normal and factorial (see [B-S1], Theorem (3.1.4)) and when X is Gorenstein and L has a smooth surface section (see [An] and [So]). The proof contained in this paper follows strongly the line of [An] using recent results of [A-W].

We prove also this general theorem:
Theorem 2. Let X be a projective variety and assume it has terminal, Q-factorial, Gorenstein singularities; let L be an ample line bundle on X. Assume that the nef value of the pair (X, L) is $\tau=r=\frac{u}{v}$, with u, v coprime positive integers; assume also that $u \geq \operatorname{dim} F$ for every fiber F of ϕ and that the nef morphism ϕ is birational. Then $\phi: X \longrightarrow X^{\prime}$ is the simultaneous contraction of disjoint prime divisors E_{i} to algebraic subset $B_{i} \subset X^{\prime}$
with $\operatorname{dim} B_{i}=n-u-1, X^{\prime}$ has terminal, \mathbf{Q}-factorial singularities and all fibers F are isomorphic to \mathbf{P}^{r}. Moreover the general fibers F^{\prime} are contained in the smooth set of X and $N_{E / X \mid F^{\prime}} \cong \mathcal{O}(-1)$.

This last theorem is proved in the smooth case in [B-S2] and in a stronger form, but always in the smooth case, in [A-W].

From now on we assume that X is a projective variety with terminal and factorial singularities and that L is a line bundle on it. The case in which $\tau(X, L)>(n-2)$ was studied in the sections 2 and 3 of $[B-S]$; in the section 2 of the present paper we consider the case $\tau(X, L)=(n-2)$. In the smooth case this was studied in [B-S], section 4, while in dimension 3 it was proved in [Mo], in the smooth case, and in [Cu] in the Gorenstein case (we apply some proofs contained in these last papers). More precisely we prove:
Theorem 3. Let X be a projective variety and assume it has terminal and factorial singularities; let L be a line bundle on X. Assume that the nef value $\tau(X, L)$ of the pair (X, L) is $(n-2)$ and let $\phi: X \longrightarrow Y$ be the nef value morphism. Then either (for the definitions see the section 0)
(3.1) $K_{X} \approx-(n-2) L$, i.e. (X, L) is a (singular) Mukai variety,
(3.2) (X, L) is a Del Pezzo fibration over a smooth curve under ϕ,
(3.3) (X, L) is a quadric fibration over a normal surface under ϕ; if moreover ϕ is an elementary contraction (i.e. the contraction of an extremal ray), then (X, L) is quadric bundle over a smooth surface under ϕ,
(3.4) (X, L) is a scroll over a normal three dimensional variety with terminal singularities under ϕ (if X is smooth then the image is also smooth),
(3.5) ϕ is a divisorial contraction and it is an isomorphism outside $\phi^{-1}(Z)$ where $Z \subset Y$ is an algebraic subset of Y such that $\operatorname{dim}(Z) \leq 1$. Let R be an extremal ray on X such that $\left(K_{X}+(n-2) L\right) R=0$ and let E be the exceptional locus of R. Then ϕ factors through $\rho=\rho_{R}: X \longrightarrow W$, the contraction morphism of R and we have the followig possibilities for ρ :
(i) $\rho(E)=C$ is 1 -dimensional, Y is smooth near C, C is a locally complete intersection and ρ is the blown-up of the ideal sheaf I_{C}.
(ii) $\rho(E)=\{x\}$ is a 0 -dimensional and either
(a) $\left(E, L_{E}\right) \cong\left(\mathbf{P}^{(n-1)}, \mathcal{O}(1)\right)$, with $N_{E_{x}} \cong \mathcal{O}_{\mathbf{P}^{(n-2)}}(-2)$, or
(b) $\left(E, L_{E}\right) \cong\left(\mathbf{Q}, \mathcal{O}_{\mathbf{Q}}(1)\right.$ with $N_{E_{\boldsymbol{X}}} \cong \mathcal{O}_{\mathbf{Q}}(-1), \mathbf{Q}$ (possibly singular) hyperquadric in \mathbf{P}^{n}.
Also in these two last cases ρ is the blown-up of the ideal sheaf I_{p}.
If $n>3$ and ϕ is birational then all the exceptional locus of the extremal rays contracted by ϕ are disjoint, therefore ϕ is the simultaneous contraction of all the above described exceptional sets (3.5).

I would like to thank J . Wiśniewski for some remarks on a first version of the paper and Andrew J. Sommese for useful conversations. I also like to thank the Max-PlanckInstitute für Mathematik in Bonn, where the last part of this work was done, for support and hospitality. I was also partially supported by MURST and GNSAGA.

0 . Notation and preliminaries.

(0.1). We use the standard notations from algebraic geometry. Our language is compatible with this of $[\mathrm{K}-\mathrm{M}-\mathrm{M}]$ to which we refer for definitions of the following: \mathbf{Q}-divisor, \mathbf{Q} Gorenstein, numerically effective, terminal or \log terminal singularities,

We just explain some special definition used in the statements. Let X be a normal, r Gorenstein variety of dimension n and L be an an ample line bundle on X. The pair (X, L) is called a scroll (respectively a quadric fibration, respectively a Del Pezzo fibration) over a normal variety Y of dimension m if there exists a surjective morphism with connected fibers $\phi: X \rightarrow Y$ such that

$$
r\left(K_{X}+(n-m+1) L \approx p^{*} \mathcal{L}\right.
$$

(respectively $r\left(K_{X}+(n-m) L \approx p^{*} \mathcal{L}\right.$; respectively $r\left(K_{X}+(n-m-1) L \approx p^{*} \mathcal{L}\right.$) for some ample line bundle \mathcal{L} on Y. A projective n-dimensional normal variety X is called a quadric bundle over a projective variety Y of dimension r if there exists a surjective morphism $\phi: X \rightarrow Y$ such that every fiber is isomorphic to a quadric in $\mathbf{P}^{(n-r+1)}$ and if there exists a vector bundle E of rank $(n-r+2)$ on Y and an embedding of X as a subvariety of $\mathbf{P}(E)$.
(0.2). Let X be a projective normal variety of dimension n defined over the field of complex numbers and let L be an ample line bundle on X.

Assume in this section that X has at most log-terminal singularities.
(0.3) Let R be an extremal ray on X and let $\rho=\rho_{R}: X \longrightarrow W$ be the contraction morphism of R.
(0.3.1) Observe that if τ is the nef value of the pair (X, L) and R is an extremal ray such that $\left(K_{X}+\tau L\right) R=0$, then the nef value morphism of (X, L) factors through ρ_{R}.

The following is one of the main result in the paper [A-W].
Theorem (0.4). (see [A-W], theorem (5.1) and lemma (5.3)) Let $\phi: X \rightarrow W$ be a nef value morphism for the pair (X, L) with nef value $\tau=r$; assume also that X has \log terminal singularities. Let F be a fiber of ϕ. Assume moreover that

$$
\begin{array}{ll}
\text { either } & \operatorname{dim} F<r+1 \\
\text { or } & \operatorname{dim} \operatorname{dim} Z<r+1 \tag{5.1.1}
\end{array} \text { if } \phi \text { is birational. } .
$$

Then there exists a divisor G from $|L|$ which does not contain any component of the fiber F and which has at worst log terminal singularities on F. Moreover the evaluation morphism $\phi^{*} \phi_{*} L \rightarrow L$ is surjective at every point of F.

Corollary (0.5). In the hypothesis of the theorem (0.4) and in order to study the structure of the nef value morphism it is possible to assume that L is base point free.

Proof. Observe first that we can change L with $L+m\left(K_{X}+r L\right)$, where m is any positive rational number such that $m\left(K_{X}+r L\right)$ is Cartier. If $m \gg 0$ then $L+m\left(K_{X}+r L\right)$ is base point free; by abuse of notation this bundle will be called again L.

Lemma (0.6). (see [F3], lemma 1.5) Let $\rho: X \longrightarrow W$ be the contraction morphism of an extremal ray R as above. Suppose that ρ is birational and that $\operatorname{dim} \rho^{-1}(x)=k>0$ for a point x in W. Then

$$
\left(K_{X}+(k+1) A\right) R>0
$$

for any ρ-ample line bundle A. Moreover if $\left(K_{X}+k A\right) R \leq 0$ the normalization of any k-dimensional component of $\rho^{-1}(x)$ is isomorphic to \mathbf{P}^{k} and the pull back of A on it is $\mathcal{O}(1)$.

Lemma (0.7). (see [B-S1], Corollary 0.6.1 and [F3], Theorem 2.4) Let (X, L) be as above and let R_{1}, R_{2} be two distinct extremal rays of divisorial type on X. Let E_{1}, E_{2} be the loci of R_{1}, R_{2} respectively and assume that E_{i} are \mathbf{Q}-Cartier. Assume also that $\left(K_{X}+t L\right) R_{i}=$ 0 for some rational number t, $i=1,2$. Let $\lceil t\rceil=r$ be the smallest integer $\geq t$. If $\lceil t\rceil \geq(n+1) / 2$ then E_{1}, E_{2} are disjoint. Moreover, the same is true in the case $t=(n-2)$ and $n>3$ (i.e. for $n=4$).

Proof. The above result is proved in [B-S1] and [F3] with slightly different hypothesis. We will follow here the proof of [F3]. Let $S=E_{1} \cap E_{2}$; we have that $\operatorname{dim}(S)=(n-2)$ (since the E_{i} are \mathbf{Q}-Cartier). Let then Y be a fiber of the map $\rho_{2_{\mid S}}: S \rightarrow \rho_{2}\left(E_{2}\right)$. Since $\left(K_{X}+t L\right) R_{i}=0$ by the lemma (0.6) we have that $\operatorname{dim}\left(F_{i}\right) \geq r$ for all fiber F_{i} of ρ_{i}; in particular this implies that $\operatorname{dim} \rho_{i}\left(E_{i}\right) \leq(n-r-1)$ and that $\operatorname{dim} Y \geq(r-1)$. By our hypothesis $\operatorname{dim} Y>\operatorname{dim} \rho_{1}\left(E_{1}\right)$; then there exists a curve in Y contracted by ρ_{1} (and of course by ρ_{2}): this will give a contradiction. The case in which $n=4$ and $t=(n-2)$ can be proved exactly as in the last part of [F3].

Proposition (0.8). (Bertini-Seidenberg) Assume that X has at worst terminal (resp. canonical, resp. \log terminal) singularities and that L is base point free. Then the general element of L is normal and has at worst terminal (resp. canonical, resp. log terminal) singularities.

Proof. Let $f: Y \rightarrow X$ be a resolution of the singularities of X. Since $f^{*} L$ is base point free we know by the usual Bertini theorem that a dense set of elements of $f^{*} L$ are smooth. Let G be one of the dense set U of elements of L such that $\tilde{G}=f^{-1}(G)$ is smooth. It is easy to prove that G is normal (Seidenberg theorem), that $\operatorname{sing}(G) \subset \operatorname{sing}(X)$ and, by standard adjunction considerations, that G has at worst \log terminal singularities (resp.can., term.).

1. Proof of the theorems 1 and 2.

(1.0) Assume from now on that X has at most terminal singularities; in particular X has rational singularities (see (0.2 .7) in $[\mathrm{K}-\mathrm{M}-\mathrm{M}])$ and $\operatorname{codim}(\operatorname{Sing}(X)) \geq 3$ (see (0.2.3) in [B-S1]).

Let u, v coprime positive integers as in the theorem 2 . Then, if a, b are positive integers such that $a v-b u=1$, we have that the line bundle $\tilde{L}=b K_{X}+a L$ is ample and that u is the nef value of the pair (X, \tilde{L}); this is noticed and proved in [B-S2], lemma (1.2). We will from now on consider the line bundle \tilde{L} instead of L and, by abuse, we will call it again L; we then consider the pair (X, L) with nef value $r=u$.
(1.1) Let $\phi: X \longrightarrow X^{\prime}$ be the nef value morphism, which we assume to be birational, R. be an extremal ray on X such that $\left(K_{X}+r L\right) R=0$ and $\rho: X \longrightarrow Y$ the contraction of R. Then ϕ factors through ρ.

We want first to understand the structure of the map ρ; let F be a fiber and E be the exceptional locus of ρ. Note that, by (0.6), we have that $\operatorname{dimF} \geq r$; on the other hand, since ϕ is birational, we have that $\operatorname{dim} F=(n-1)$ in the first theorem. For the second we have the hypothesis that $\operatorname{dim} F \leq r$ and therefore $\operatorname{dim} F=r$. Applying again the lemma (0.6) we get that the normalization of F is \mathbf{P}^{r} and that the pull back of L on this normalization is $\mathcal{O}(1)$. But, by the theorem (0.4), L is base point free on F and therefore $h^{0}\left(L_{\mid F}\right) \geq n$. Now it is obvious, computing for instance the delta genus of the pair (X, L) (see $[\mathrm{F} 0])$, that $(F, L)=\left(\mathbf{P}^{r}, \mathcal{O}(1)\right)$.

Take now $n-1-r$ general very ample divisors on Z, call them H_{i}, and consider the intersection of their pull-back to X. The resulting variety, $X^{\prime \prime}$, has again terminal singularities by the Bertini theorem; call again, by abuse of notation, $L=L_{X^{\prime \prime}}$ and let $n^{\prime \prime}=\operatorname{dim} X^{\prime \prime}=r+1$. The restriction of ρ to $X^{\prime \prime}$ is given by a high multiple of $K_{X^{\prime \prime}}+r L$ and contracts a general fiber F, being now a divisor in $X^{\prime \prime}$, to a point. (Note that this step is empty for the theorem 1)

By the theorem (0.4) there exist (an open subset of) sections of L not containing the fiber F and with at worst terminal singularities.

We then take $(r+1-2)$ general sections of L not containing F and intersecting scheme theoretically with $X^{\prime \prime}$ in a surface with terminal singularities. Since terminal singularities in dimension two are smooth, this surface is smooth. Being L an ample Cartier divisor this implies in particular that $\operatorname{dim}\left(\operatorname{Sing} X^{\prime \prime} \cap F\right)<n^{\prime \prime}-2$.

Assume that $X^{\prime \prime}$ has hypersurface singularities; we can now apply the main theorem of [L-S], namely the theorem (2.1), to our map $\rho_{\mid X^{\prime \prime}}$: this says that either $F \cap \operatorname{Sing}\left(X^{\prime \prime}\right)$ is empty or of pure dimension $n^{\prime \prime}-2$. Therefore, for what above, F is contained in the smooth locus of $X^{\prime \prime}$ and $\rho_{\mid X^{\prime \prime}}$ is the blow-down of $F \cong \mathbf{P}^{r}$ to a smooth point on Y and $N_{F / X^{\prime \prime}} \cong \mathcal{O}(-1)$. Since $X^{\prime \prime}$ is the intersection of Cartier divisors, then X itself is smooth in a neighborhood of F. We can therefore apply the theorem (4.1.iii) of $[A-W]$ and conclude in particular that $\operatorname{dim} E=(n-1)$. Therefore ρ is a contraction of divisorial type, E is a prime divisor on X and X^{\prime} has terminal, \mathbf{Q}-factorial singularities (see $[\mathrm{K}-\mathrm{M}-\mathrm{M}]$, proposition (5.1.6)).

We will prove now that if X is Gorenstein then every singular point x is locally a hypersurface (that is if R is the local ring $\mathcal{O}_{X, x}$ of x on X, then R is isomorphic to $\frac{S}{f S}$, where S is a regular local ring of dimension ($\mathrm{n}+1$)). Note first that if X is Gorenstein the same is for $X^{\prime \prime}$.

Claim (1.2). If $X^{\prime \prime}$ is Gorenstein then every singular point x is locally a hypersurface.
Remark (1.2.1). If the dimension of $X^{\prime \prime}$ is three the claim is proved in [L-S]; the following is the proof of [L-S] adapted in higher dimension. It is on the other hand well known that a rational Gorenstein 3 -fold singularity is terminal iff it is cDV (compound Du Val; see Corollary 3.12 in [Re]) and therefore, in particular, it is locally a hypersurface.

Proof. Since L is base point free and ample for every point $x \in X^{\prime \prime}$ we have that the linear system $|L-x|$ has finite base point. In particular there exists a general divisor, D, of L passing through x and with singularities in codimension two. Since $X^{\prime \prime}$ is Gorenstein the same is for D which, by Serre criterion, is therefore also normal. By induction we have ($n-2$)-divisors in the linear system $|L-x|$ which intersect scheme theoretically in a Gorenstein surface, S , containing x. It is easy to see, using the adjunction formula, that $F \cap S$ is a rational curve P, that ρ_{S} contracts P to a point and that $K_{S} P=-1$.

We use now the theorem (0.1) in [L-S]: we have that x is an A_{n}-type rational singularity for some $n \geq 1$ on S and therefore it is a hypersurface singularity on S. Since the divisors in L are locally principal and S is a surface section of L, we have that $X^{\prime \prime}$ is a hypersurface at x (and therefore also X).
(1.3) Let us go back to the birational nef value morphism $\phi: X \longrightarrow X^{\prime}$ and let R_{i} for i in a finite set of indexes be extremal rays on X such that $\left(K_{X}+(n-1) L\right) R_{i}=0$. Let E_{i} be the loci of the R_{i}. By the theorem (0.7) and what we have proved above we have that the E_{i} are pairwise disjoint. The structure of each $\rho_{R_{i}}: X \longrightarrow Y$, the contraction of R_{i}, is given above. Therefore ϕ is the simultaneous contraction of all the E_{i}, and the theorems are proved (see for instance the last part of the proof of the theorem (3.1) in [B-S1]).

2. Proof of the theorem 3.

(2.1) Let $\tau=(n-2)$ be the nef value of the pair (X, L) and let $\phi: X \rightarrow Y$ be the nef value morphism.
(2.2) If $\operatorname{dim} Y<\operatorname{dim} X$ then for every fiber F we have $\operatorname{dim}(F) \geq(n-3)$ (see for instance the remark (3.1.2) ini [A-W]); then it follows easily, by definition, that we are in one of the cases (3.1)-(3.4). It remains to prove the second part of the point (3.3): assume therefore that ϕ is an elementary contraction and that $\operatorname{dim}(Y)=2$; in particular ϕ is equidimensional. Take now an arbitrary point $p \in Y$ and we will show that Y is smooth at p. By the corollary (0.5) we can take ($n-2$) general sections of L intersecting transversally in a smooth surface S and intersecting $\phi^{-1}(p)$ in a finite numbers of points. Replacing Y with an affine neighborhood of p, we can assume that S and Y are affine and that $S \rightarrow Y$ is a finite, generically 2-1 map. The proof of the smoothness of p is now exactly as in $[\mathrm{Cu}], \mathrm{p}$. 524 , lines 9-17. The rest of the statement follows similarly to [Cu], p. 524, using Grauert criterion (see also [A-B-W]).
(2.3) Assume then that $\operatorname{dim} Y=\operatorname{dim} X$, i.e. ϕ is birational. Let R be an extremal ray on X such that $\left(K_{X}+(n-2) L\right) R=0$ and $\rho: X \longrightarrow Y$ the contraction of R. We want to understand the structure of the map ρ; let F be a fiber and E be the exceptional locus of ρ. Note that, by (0.6), we have $\operatorname{dim} F \geq(n-2)$.

Lemma (2.3.1). The dimension of the exceptional locus, E, is bigger or equal then ($n-1$), that is ρ is not a small contraction (see [$K-M-M]$).

Proof. Assume for absurd that $\operatorname{dim}(E)=\operatorname{dim}(F)=(n-2)$. Then we can take (n-3) general sections of L whose intersection is a 3 -dimensional, normal, Gorenstein variety with terminal singularities, X^{\prime}, such that $\rho_{\mid X^{\prime}}$ is a small contraction. This is in contradiction with the theorem 0 of $[\mathrm{Be}]$.
(2.3.2) Assume that $\operatorname{dim}(F)=(n-2)$; then we are in the situation of the theorem 2, $\rho(E)$ is an irreducible curve C and all the fiber of ρ have the same dimension. Since we are assuming that X is factorial then Y is k-factorial with $k=E \cdot C, C$ an extremal rational curve such that $[C]=R$ (see $[B-S],(0.4 .4 .2)$). In our case is immediate to see that $k=1$, therefore Y is factorial. Take now a point $q \in C$ and $(n-2)$ general sections of $L, \mathcal{D}_{1}, \ldots, \mathcal{D}_{n-2}$, intersecting transversally in a smooth surface S and intersecting the fiber ρ^{-1} in a finite number of points. Replacing Y with an affine neighborhood of q, we can assume to be in the "affine set-up" described in the section 2 of (A-W]. In particular by the Lemma (2.6.3) in [A-W] we have that the map $\rho_{\mid S}$ has connected fibers, therefore it is an isomorphim with its image $S^{\prime}=\rho(S)$. Therefore $S^{\prime} \subset Y$ is smooth; since S^{\prime} is an irreducible component of $\rho\left(\mathcal{D}_{1}\right) \cap \ldots \cap \rho\left(\mathcal{D}_{n-2}\right)$ and Y is factorial, Y is smooth in a neighborhood of C. Moreover C is a local complete intersection since it is a curve lying on a smooth surface. X is clearly the blown up of $I_{C}=\rho_{*} \mathcal{O}(-E)$, since $\mathcal{O}(-n E)$ is ρ very ample for $n \gg 0$ and $\rho_{*} \mathcal{O}(-n E)=I_{C}^{n}$, since C is a complete intersection.
(2.3.3). Finally we assume that $\operatorname{dim}(F)=\operatorname{dim}(E)=(n-1)$; we want in this case to compute the Hilbert polynomial of the polarized pair ($E, L_{\mid E}$ (we refer to [F0] for more
details). We can take $(n-3)$ general sections of L and reduce to the case in which X has dimension 3 in order to compute the invariants: $\chi_{n}\left(E, L_{\mid E}\right)=d\left(E, L_{\mid E}\right)$ and $g\left(E, L_{\mid E}\right)=$ $1-\chi_{n-1}\left(E, L_{\mid E}\right)$; in this case is easy to prove that $d\left(E, L_{\mid E}\right)=1$ or 2 and that $g\left(E, L_{\mid E}\right)=0$ (see for instance the first part of the proof of the theorem 5. in $[\mathrm{Cu}]$). Then, since $H^{i}\left(E, t L_{\mid E}\right)=0$ for $t \geq-(n-3)$, we easily compute the remaining coefficients of the Hilbert polynomial. Using [F0] we conclude then that ($E, L_{\mid E}$) is as described in (3.5.ii).

To prove that ρ is the blown -up of the ideal sheaf I_{p} in Y one proceed as in $[\mathrm{Mo}]$ in the case in which E is a smooth quadric or the projective space (since in this case, being X factorial, $E \subset \operatorname{reg}(X)$). If E is a singular quadric then one conclude exactly as done in [Cu] for the 3 -dimensional case (last part of the proof of Theorem 5 in $[\mathrm{Cu}]$).
(2.4) To conclude we apply the lemma (0.7) as in (1.3).

References.

[An] Andreatta,M., The stable adjunction map on Gorenstein varieties, Math. Ann. 275 (1986), 305-315.
[ABW] Andreatta,M.- Ballico,E.-Wiśniewski, J., Two theorems on elementary contractions, to appear on Math. Ann..
[A-W] Andreatta,M.- Wisiniewski, J., A note on non vanishing and its applications, preprint (1993).
[B-S1] Beltrametti, M., Sommese, A.J., On the adjunction theoretic classification of polarized varieties, J. reine und angew. Math. 427 (1992), 157-192.
[B-S2] Beltrametti, M., Sommese, A.J., A remark on the Kawamata rationality theorem, to appear in J. Math. Soc. Japan
[Be] Benveniste, X., Sur le cone des 1-cycles effectives en dimension 3, Math. Ann. 272 (1985), 257-265.
[Cu] Cutkosky, S., Elementary Contractions of Gorenstein Threefolds, Math. Ann. 280 (1988), 521-525.
[F0] Fujita, T., On the structure of polarized varieties with Δ-genera zero, J.Fac. Sci. Univ. Tokyo 22 (1975), 103-115.
[F1] Fujita, T., On polarized manifolds whose adjoint bundle is not semipositive, in Algebraic Geometry, Sendai, Adv. Studies in Pure Math. 10, Kinokuniya-North-Holland 1987, 167-178.
[F2] --, Classification theories of polarized varieties, London Lect. Notes 115, Cambridge Press 1990.
[F3] - On Kodaira energy and adjoint reduction of polarized manifolds, Manuscripta Mathematica, 76, fasc.1, 19991, 59-84.
[$K M M$] Kawamata, Y., Matsuda, K., Matsuki, K., Introduction to the Minimal Model Program in Algebraic Geometry, Sendai, Adv. Studies in Pure Math. 10, Kinokıniya-North-Holland 1987, 283-360.
[L-S] Lipman, J.- Sommese, A.J., On blowing down projective spaces in singular varieties, J. reine und angew. Math. 362 (1985), 51-62.
[Mo] Mori,S., Threefolds whose canonical bundles are notnumerical effective, Ann. Math. 116 (1982), 133-176.
[Re] Reid, M., Young person's guide to canonical singularities, Proc. of Symp. in Pure Math., Algebraic Geometry-Bowdoin 1985, 46 (1987), p. 345-414.
[So] Sommese, A.J., On the adjunction theoretic structure of projective varieties, Complex Analysis and Algebraic Geometry, Proceedings Göttingen, 1985(ed. H. Grauert), Lecture Notes in Math., 1194 (1986), 175-213.

