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Abstract.

Let X be anormal complex projective variety with Gorenstein-tenninal singularitiesj let
L be an ample line bundle over X allel let 1(x denote the canonical sheaf of X. Assuming
that K x is not nef we study the contractions of extrenlal faces which are supportecl by
divisors of the form ](x +TL with T 2: (n - 1). In other words we classify the pair (X l L)
which has "nef value" = T( ..Y, L) 2: (n - 2) as weIl as the structure of their associate
"nef value morphisms". In the case T = (n - 2) we assume also that X is factorial. "VVe
study moreover the general case in which (1('( + 1'L) is nef and big but not aInple anel the
ditnension of the fibers of the nef value morphisln is less or equal then r.
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Introduction and statement of the theorems.

Let X be anormal projective variety defined over the field of complex numbers anel let L
be an ample Hne bunelle over X. We assume that X has at worst terminal singularities,
i.e. the smallest dass in which Mori's program can workj by](x let us denote the canonical
sheaf of X.

Assume t.hat I(x is not ncf; the nef value of the pair (X, L) is areal nurnber defined
as follow

T(X, L) = min{t E R, (I(x + tL) is nef}

(see [B-S1]j (0.8) 01' [I<-M-M]; (4.1)).
By the I<awarnata rationaHty theoreln T is a rational number and by the I<awamata

base point free theorem I(x + TL is semiample; in particlliar there exists a projective
surjective morphism 4> : X -+ W into a nOlmal variety W which is given by sections of a
high multiple of K x + TL; 1> is caIled the nef value Inorphism.

Applying Mori theory anel aeljunction theory one ean classify thc pairs (X, L) with
T > (n-l); more precisely they are the projective space, the hyperqlladl;c, p(n-l)-bunclles
over a srnooth curve, generalizeel cones over either a Veronese curve 01' a Veronese surface.
See for this the papers of M. Beltrametti-A.J. SOlnnlese ([B-Sl], section 2) and of T. F\ljita
([F3], section 1).

If T = (n - 1) and if the 1110rphisnl 4> i8 of fiber type, t.hat is di7nW < dimX 01',

equivalently, ](X + (Tl. - l)L is not big, then X is either a singular Del Pezzo variety, 01' a
quadric fibration over a smooth curve, 01' a p(n-2Lbundle over anormal surface (see again
[B-Sl] 01' [F3]; for the definitions see section 0).

In this paper we want to prove the following

Theorem 1. Let X be a projective variety witll tenninal singularities and let L be an
mnple line bundle on ."Y.. Ass1.une also tbat ."Y. has Gorenstein singularities. H tbe nef value
of tbe pair (..Y, L) is T = (n - 1) ancl tbe nef lJlorpllisnl <p is birational tben <p : X -----+ X I is
the simultaneous contraction to distinct s11100tb points of clisjoint divisors Ei f'V pn-l such
that Ei C reg(X), <9 Ei (Ei) s::; Opn-l (-1) Rlld LEi s::; O( -1) for i = 1, ... ,t. FurtlJermore
L' := (1)L)** and ](XI + (n - l)L' are mnple and I(x + (n - l)L ~ </J*(I(y, + (n - l)L' )

The pair (X I , L') is calleel the firs t red1.1 ction of the pair (..Y, L), using the defini t ion
given by A.J .Somnlese.

The above theorem is weIl known in the smooth case, (see [Fl] anel [So]). In the
singular case there are results when X is nonnal anel factorial (see [B-Sl], Theorem (3.1.4))
and when X is Gorenstein anel L has a Sll100th surface sect.ion (see [An] anel [So]). The
proof containeel in this paper follows strongly the line of [An] using recent results of [A-W] .

VVe prove also this general theorem:

Theorem 2. Let X bc a projective variety alld assume it has tenninal, Q-factorial, Goren
stein singularities; let L be an mnple line hundle on X. Assunle that t}le nef value 01 tbe
pair (X, L) is T = r = .;, with u, v coprüne posi tive in tegers,o assume also that u ~ dimF
for every fiber F of 4> and tlJat tlle nef 1110rpbism 1> is birational. Tllen <p : X -----+ X'
is the simultaneous contraction of disjoint prime divisors Ei to algebraic subset Bi C X'
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wit1l dimB j = n - u - 1, X' l];'l.s tenninal, Q-faetorial singulnrities find a11 Ebers F are
isomorphie to pr. Moreover tbe general Ebers F' are eontained in tbe SIllooth set of X
and N E / x IF' /"V (9 ( -1 ).

This last theorem is proved in the smooth case in [B-S2] and in a stronger form, hut
always in thc smooth case, in [A-W].

From now on we assurne that X is a projective variety with terminal and factorial
singularities and that L is a line bundle on it. The case in which r(X, L) > (n - 2) was
studied in the sections 2 and 3 of [B-S]; in the section 2 of the present paper we consider
the case T (X, L) = (n - 2). In the smooth case this was studied in (B-S], section 4, while
in dimension 3 it was proved in [Mo], in the sluooth case, and in [Cu] in the Gorenstein
case (we apply some proofs contained in these last papers). More precisely we prove:

Theorem 3. Let X be a projeetive variety and asslune it bas terminal and faetorial
singulMities; let L be a line bUlldle on ){. Assume that the nef value T(X, L) of tbe pair
(X,L) 1S (n - 2) and let 4> : X --. y~ be the nef value morpllism. Then either (for the
definitions see the section 0)

(3.1) l(y i=::: -(n - 2)L, i.e. (X, L) i8 a (s1Jlgular) Mukai variety,
(3.2) (X, L) is aDel Pezzo libration over a smooth eurve under 4>,
(3.3) (X, L) is a quadrie libration over a nonnal surl'aee under 4>; if moreover if; is an

e1emen tary eon trae tion Ci, e. tlle con tracti011 of a.n extrelnal ray), t1len (X, L) is quadrie
bundle over a smooth surfaee IInder tjJ,

(3.4) (X, L) is ascroll over a nonnal tllree diIllen8ional variety with terminal singu1arities
under if; (i! X is SIllooth then tlle 1Jnage is also smootll),

(3.5) if; is a divisorial contraetion allel it is an isomorpbisnl outside ~-1 (Z) where Z C Y 1S
an algebraie subset of y~ sudl that dimeZ) ::; 1. Let R. be all extremal rayon X such
that (Kx + (n - 2)L )R. = 0 and let E bc the exeeptionallocus oE R. Then 4> factors
through P = PR : X ----40 W, the contraction morphisln of R. and we have thc Eollowig
possibilities for p:
(i) p(E) = C is 1-dimensional, Y i8 slnooth near C, C i8 a loeally complete intersec-

tion and p 1S the blown-up of tlle ideal sheaf I e .
(ii) p(E) = {x} i8 a O-diInensional and either
(a) (E,LE) ~ (p(n-l),O(1)), witll NEx ~ Op(n-:l)(-2), or
(b) (E, L E ) /"V (Q, OQ(1) witll NEx :: OQ(-1), Q (possihly singular) hyperquadric

in pn.
Also in these two last cases p i8 thc blown-up of the ideal sheaf I p •

li n > 3 and 4> i8 biratiollal then all the exceptionalloeus of tlle extrenlal rays eOll
tracted by 4> are disjoint, tllerefore ~ is tlle sinlultaneous eOlltraction of all tlle above
described exeeptional sets (3.5).

I would like to thank J. vVisniewski for some rCluarks on a first version of the paper
and Andrew J. Sommese for usefnl convcl'sations. I also like to thank the Max-Planck
Institute für 11athematik in Bonn, where the last part of this work was done, for support
and hospitality. I was also partially supporteel by MURST anel GNSAGA.
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o. Notation and preliminaries.

(0.1). vVe use the standard notations from algebraic geometry. Olu'language is compatible
with this of [K-M-M] to whieh we rcfer for definitions of thc following: Q-divisor, Q
Gorenstein, numerieally effeetive, tenninal or log tenninal singularities, .....

We just explain same special definition used in the statements. Let X be a nonnal, r
Gorenstein variety of dimension n and L be an an ample line bundle on X. The pair (X, L)
is ealled ascroll (respeetively a quadrie fibration, respectively aDel Pezzo fibration) over
anormal variety Y of dimension m if there exists a surjective morphism with connected
fibers 4> : X -+ Y such that

r(!(x + (n - m + I)L ~ p*L-

(respectively r(!(x + (n - m)L ~ P*L-; respectively r(Kx + (n - m - I)L ~ p*L-) for
some ample line bundle L- on Y. A projective n-dinlensional normal variety X is called
a quadric bnndle over a projective variety Y of dilnension r if there exists a surjective
morphism 4> : X -+ Y such that every fiber is isomorphie to a quadric in p(n-r+l) and
if there exists a vector buncUe E of rank (n - r + 2) on Y anel an embedcling of X as a
subvariety of P(E).

(0.2). Let X be a projective normal variety of dimension n defineel over the field of cOlnplex
numbers and let L be an alnple line bundle on X.

Assurne in this section that )( has at most log-tenninal singularities.

(0.3) Let R be an extremal rayon X and let P = PR : X --+ W be the contraction
morphism of R..

(0.3.1) Observe that if T is the nef valne of the pair (X, L) anel R, is an cxtremal ray such
that (I(1( + TL)R = 0, then the nef value morphism of (X,L) factors through PR.

The following is one of the main result in the paper [A-Vv].

Theorem (0.4). (see [A- Wj, theorenl (5.1) alld lemma (5.3)) Let 4> : X -t W be a nef
val tle morphisln for the pair (.X, L) wi tll nef value T = r; assume also that X h as log
terminal singuletrities. Let F be a fiber of 4>. ASSUllle moreover tllat

(5.1.1)
eitller
01'

dirnF< r + 1
di1nF :::; r + 1

if dimZ < dinl,X
if ,p is birational.

Then there exists a divisor G fronl ILI which does not contain any cOlnponent of the fiber F
and which has at worst log terminal singularities on F. Moreover tlle evaluation morphisln
4>* f/J*L -+ L is surjective at every point of F.

Corollary (0.5). In tlle hypotlJesis oE the theorem (0.4) and in order to study the struc
ture of the nef value Inorphisnl it is possible to assume that L is base point free.

Proof. Observe first that we can change L with L+m(I<x +rL), where m is any positive
rational number such t.hat 1n(I(x + rL) is Cm'tier. If m » 0 then L + m(I(x + rL) is
base point free; by abuse of notation t.his bundle will be callcel again L.
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Lemma (0.6). (see [F3], lelnllla 1.5) Let P : X ----+ W be thc eontraetion morplJism of
an extremal ray R. as above. Suppose that pis birational and tllat dhnp-I(x) = k > 0 for
a point x in W. Then

(I(x + (k + l)A)R > 0

for any p-ample line bundle A. Moreover if (I(x + kA)R ::; 0 tbe normalization of an}'

k-dimensional eomponent of p-I (x) is iSOlllOlpbic to pk and the pull back of A on it is
0(1).

Lemma (0.7). (see [B-51], Corollary 0.6.1 alld [F3],Theorem 2.4 ) Let (X, L) be as abovc
and let R I , R 2 be two distinet extrenla1 rays of divisorial type on X. Let EI, E 2 be the lad
of RI ,R2 respeetively and Cl.-~SUIJle that Ei are Q-Cartier. Assume also tbat (I(x + tL )Ri =
o for same rational nunlber t, i = 1,2. Let rtl = r be the smallest integer 2: t. Jf
ftl ~ (n + 1)/2 then EIl E 2 are disjoint. Moreover, tbe saIne is tnIe in tlle eRse t = (n - 2)
and n > 3 (i.e. for n = 4).

Proof. The above result is proved in [B-Sl] and [F3] with slightly different hypothesis.
We will follow here the proof of [F3]. Let S = EI n E 2 ; we have that dim.(S) = (n - 2)
(since the Ei are Q- Cartier). Let then y~ be a fiber of t he map P21 s : S -4 P2 (E2). Since
(I(x + tL)Ri = 0 by thc lemIna (0.6) we have that dim.(Fd ~ r for all fiber F i of Pi; in
particular this implies that di1npi( Ei) ::; (11 - r - 1) and that dimY ;:: (r - 1). By our
hypothesis dimY > dimpl (EI); then there exists a curve in Y contracted by PI (and of
course by P2): this will give a contradiction. The case in which n = 4 and t = (n - 2) can
be proved exactly as in the last part of [F3].

Proposition (0.8). (Bertini-Seidenberg) Assullle that X bas at warst terminal (res]).
cfLllonical, resp. log terminal) singula.rities allel that L is base point free. Tbell the general
element oE L is ll0rIllal alld lläs at worst tenllinal (resp. eanonical, resp. log tenrullal)
singulari ties.

Proof. Let f : Y -4 ..){ be aresolution of the singularities of X. Since f* L is base point free
we know by the uEunl Bertini theorem that a dense set of elements of f* L are smooth. Let
G be one of the dense set U of elClnents of L sucl~ that G= /-1 (G) is smooth. It is easy to
prove that G is nonnal (Seidenberg theorem), that $1:ng(G) C $ing(X) and, by standard
adjunction considerations , that G has at warst log terminal singlliarities (resp.can., tenn.).
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1. Proof of the theorems 1 and 2.

(1.0) Assume from now on that X has at most terminal singularities; in particular X
has rational singularities (see (0.2.7) in [I(-M-M]) and codim(Sing(X)) ~ 3 (see (0.2.3) in
[B-S1]).

Let u, v coprime positive integers as in the theorem 2. Then, if a, bare positive integers
such that av - bu = 1, we have that the line bundle L = bKx + aL is ample and that u is
the nef value of the pair (X,i); this is noticed and proved in (B-S2], lelnma (1.2). We wiH
from now on consider the Ene bundle L instead of Land, by abuse , we will call it again
L; we then consider the pair (X, L) with nef value r = u.

(1.1) Let 4> : X ~ X' be the nef value morphisln, wmch we assume to be birational, R
be an extremal rayon X such that (Kx + rL)R = 0 and p : X ---. Y the contraction of
R. Then 4> factors through p.

We want first to understand the structure of the map Pi let F be a fiber and E be
the exceptional locus of p. Not.e that, by (0.6), we have that dimF ~ Ti on the other
hand, since 4> is birational, we have that dimF = (n - 1) in the first t.heorem. For the
second we have the hypothesis that di1nF ::; r anel therefore dimF = T. Applying again
the lemma (0.6) we get that the nornlalization of F is pr and that the pun back of L
on this normalization is 0(1). But , by the theoreln (0.4), L is base point free on F and
therefore hO(L[F) ~ n. Now it is obvious, computing for instance the delta genus of thc
pair (.X:,L) (see [FOD, that (F,L) = (pr

, O(l)).

Take now n - 1 - r general very ample divisors on Z , call them Hi, and consider
the int.ersection of their puH-back to X. The resulting variety, X", has again terminal
singularities by the Bertini theorem; can agaiu , by abuse of notation, L = L1XII and let
n" = dimX" = r + 1. The restriction of p to X" is given by a high multiple of [(X" + r L
and contracts a general fiber F , being now a divisor in X", to a point. (Note that this
step is empty for thc theorelll 1)

By t he theorem (0.4) there exist (an open subset of) sections of L not containing the
fiber F and with at worst tenninal singularities.

We then take (r +1-2) general sections of L not containing Fand intersecting scheme
theoretically with )(" in a surface with telminal singularities. Since terminal singularities
in dimension two are smooth, this surface is smooth. Being L an alnple Cartier divisor
this implies in particular that di1n( SingJ-r" n F) < n" - 2.

Assume that X" has hyperstuface sillgularitiesj we ean now apply the lnain theorem
of [L-5], namely the theorem (2.1), to our ll1ap Pp; 11: this says that ei ther F n Sin9(X")
is empty 01' of pure dimension n" - 2. Therefore, for what above, F is contained in the
smooth locus of X" and PIX" is the blow-down of F ::: pr to a smooth point on Y and
N F/XII ::! O( -1). Since X" is the intersection of Cartier divisors, then ..Y. itself is smooth
in a neighborhood of F. ",,·.,Te can therefore apply thc theorem (4.1.iii) of [A-W] and conclude
in particulaI' that di1nE = (n - 1). Therefore p is a contraction of divisorial type, E is a
prime divisor on X and X' has terminal, Q-factorial singularities (see [I(-M-M], proposition
(5.1.6)).
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We will prove now that if X is Gorenstein then every singular point x is loeally a
hypersurfaee (that is if R is the loeal ring 0 x ,x of x on X, then R is isomorphie to jSS'

where S is a regular local ring of din1cnsion (n+1)). Note first t.hat if X is Gorenstein the
same is for X".

Claim (1.2). IE X" is Gorenstein then every slllgular point x is loca11y a hypersuIface.

Remark (1.2.1). JE tbe dimension oEX" is tbree tbe claim is proved III [L-S]; tbe Eollowing
is the prooE oE [L-S] adapted in higber dimension. Jt is on the otber hand well known that
a rational Gorenstein 3-Eold singularity is tenllinal iff it is cDV (compound Du Val; see
Corollary 3.12 in [Re]) and thereEore, in particular, it is loca11y a bypersurface.

Proof. Sinee L is base point free and aInple for every point x E X" we have that the
linear system IL - xl has finite base point. In particlliar there exists a general divisor, D,
of L passing throllgh x and with singlliarities in eodiInension two. Since X" is Gorenstein
the same is for D whieh, by Serre criterion, is therefore also normal. By induction we
have (n - 2)-divisors in the linear systen1 IL - xl which intersect scheme theoretically in a
Gorenstein stuface, S, containing x. It is easy to see, using the adjunction fonnula, that
F n S is a rational curve P, that Ps contracts P to a point. and that ](S P = -1.

We use uow the theareln (0.1) in {L-S}: we have that x is an An-type rational singularity
for some n ~ 1 on Sand thercfol'e it is a hypersurfacc singnlarity on S. Since the divisors
in L are locally principal and S is a sUlface section of L, we have that ){" is a hypersurface
at x (and therefore also X).

(1.3) Let us go back to the birational nef value Inorphisll1 1> : X ~ X' and let B.i for i in
a finite set of indexes be extremal rays on X such that (1("( + (n - l)L)Ri = O. Let Ei be
the loci of the Ri. By the theorem (0.7) aI1cl W hat we have provecl above we have that the
Ei are pairwise disjoint. The strueture of each PRj : X --+ Y, the contraction of Ri1 is
given above. Therefore 4> is thc simultaneous eontraction of all the Ei, and the theorems
are proved (see for instanee the last part of the proof of the theorem (3.1) in [B- S11).
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2. Proof of the theoreln 3.

(2.1) Let T = (n - 2) be the llef vall1c of the pair (){, L) and let 1> : X -t Y be the nef
value morphism.

(2.2) If dimY < dimX then for every fiber F we have dim(F) 2: (n-3) (see for instanee the
remark (3.1.2) iri [A-VvJ); then it follows easily, by definition, that we are in one of the eases
(3.1)-(3.4). It remains to prove the seeond part of the point (3.3): assurne therefore that
1> is an elementary contraetion and that dim(Y) = 2; in partieular rjJ is equidimensional.
Take now an arbitrary point p E Y and we will show that Y is smooth at p. By the
corollary (0.5) we can take (n - 2) general sections of L intersecting transversally in a
smooth surface S and interseeting rjJ-l (p) in a finite nlunbers of points. Replaeing Y with
an affine neighborhood of p, we can assume that S and Y are affine and that S -t Y is a
finite, generically 2-1 map. The proof of the smoothness of p is now exactly as in [Cu], p.
524, lines 9-17. The rest of the statcluent follows siInilarly to [Cu], p. 524, using Grauert
eriterion (see also [A-B-vVJ).

(2.3) Assurne then that di1nY = di7n)(, i.e. 1> is birational. Let R be an extremal rayon
X such that (1('( + (n - 2)L)R, = 0 and p : X -----7 Y the eontraetion of R. We want to
unclerstand the strueture of the map p; let F be a fiber and E be the exceptionallocus of
p. Note that, by (0.6), we have dimF 2: (n - 2).

Lelnma (2.3.1). Tlle diInension oE tlle exceptiona11octls, E, is bigger or equal tllen (n-1),
that is p is not a slnall contraction (see [I(-M-MJ).

Proof. Assurne for absurd that di1n(E) = dim(F) = (n - 2). Then we ean take (n-3)
general seetions of L whose intersection is a 3-climensional, normal, Gorenstein varicty with
terminal singularities, X', such that Plxl is a slnall eontraetion. This is in contradiction
with the theorem 0 of [Be].

(2.3.2) Assume that di7n( F) = (n - 2); then we are in thc situation of the theorelu 2,
p(E) is an irreclueible curve C anel all the fiber of p have the same dimension. Since
we are assuming that X is factolial then Y is k-factorial with k = E'C, C an extremal
rational curve sueb that [Cl = R (see [B-S], (0.4.4.2)). In our case is ilnmediate to see
that k = 1, therefore Y is fact olia1. Take now a point q E C anel (n - 2) general sec tions
of L, VI, . .. ,Vn - 2 , interseeting. transversally in a smooth sluface S anel intersecting the
fiber p-l in a finite number of points. Replacing Y with an affine neighborhood of q, we
ean assume to be in the "affine set-up" desc1ibed in the section 2 of [A-W]. In partieular
by the Lemma (2.6.3) in [A-W] we have that the map PjS has connected fibers, therefore
it is an isomorphim with its iInage S' = p( S). Thercfore S' c Y is smooth; since S' is
an irreducible component of p(V1 ) n ... n p(Vn - 2 ) anel Y is factorial, Y is snl00th in a
neighborhood of C. Moreover C is a loeal complete interseetion since it is a eurve lying
on a smooth sU1faee. X is clearly thc blown up of Ie = p""O( -E), since O( -nE) is p very
ample for n » 0 anel p""O( -nE) = Ie,sinee C is a complete intersection.

(2.3.3). Finally we assume that dinl-(F) = dim(E) = (n - 1); we want in this case to
eompute t.he Hilbert polynomial of t.he polarized pair (E, L 1E (we refer to [FO] for more
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details). We can take (n - 3) general sections of Land rechlce to thc case in which ..Y. has
din1ension 3 in order to compute the invariants: Xn(E , L1E ) = d(E , L1E ) and g(E, L1E ) =
l-Xn-l(E, LIE)j in this case is easy to prove that d(E , L IE ) = 1 or 2 and that g(E, L IE ) = 0
(see for instance the first part of the proof of the theorem 5. in [Cu]). Then, since
Hi(E, tLIE) = 0 for t ~ -(n - 3), we easily compute the remaining coefficients of the
Hilbert polynomial. Using [FO] we concluele then that (E, L 1E ) is as described in (3.5.ii).

To prove that p is the blown -up of thc ideal sheaf Ip in Y oue proceed as in [Mo] in
the case in which E is a smooth quadric 01' the projective space (since in this case, being
X factorial, E C reg(X». If E is a singular quach-ic then one conclude exactly as done in
[Cu] for the 3-dimensional case (last part of the proof of Theorem 5 in [Cu]).

(2.4) To conclude we apply the lemma (0.7) as in (1.3).

References.

[AnJ Andreatta,M., The stable adjunetion mup on Gorenstein varieties, Math. Ann. 275 (1986), 305-315.
[ABW] Andreattu,M.- Ballieo,E.-vVisniewski, J., Two theorems on elementary eontraetions, to appear on Math.

Ann ..
[A- W] Andreatta,M.- Wisniewski, J., A note on non vanishing and its applieations, preprint (1993).
[B-51] Beltramctt.i, M., Sommese, A.J., On the adjllnetion theoretie elassifieation of polarized varieties, J.

reine und angew. Math. 427 (1992), 157-192.
[B-S2] Beltrametti, M., Sommese, A.J., Aremark on the Kawamata rationality t.heorem, to appear in J. Math.

Soe. Japan.
[Be] Benveniste, X., Sur le eone des l-eycles effeetives en dimension 3, Math. Ann. 272 (1985),257-265.
[CuJ Cutkosky, 5., Elementary Contraetions of Gorenstein Threcfolds, Math. Ann. 280 (1988), 521-525.
[FOJ Fujita, T., On the strueture of polarized varicties with ~-genera zero, J .Fae. Sei. Univ. Tokyo 22

(1975), 103-115.
[F1J Fujita, T., On polarized manifolds whosc adjoint bundle is not semipositive, in Aigebraie Geometry,

Sendai, Adv. Studies in Pure Math. 10, Kinokllniya-North-Holland 1987, 167-178.
[F2] --, Classifieation theories of polarized varieties, London Leet. Notes 115, Cambridge Press 1990.
[F3] --, On Kodaira energy and adjoint redudion of polarized manifolds, Manuseripta Mathematiea, 76,

fase. 1, 19991,59-84.
'[KMMJ Kawamata, Y., Matsllda, K., Matsuki, K., Introduetion to the Minimal Model Program in Aigebraie

Geometry, Sendai, Adv. Studies in Pure tvtath. 10, Kinokllniya-North-Holland 1987,283-360.
[L-S] Lipman, J.- Sommesc,A.J., On blowing down projedive spaees in singular varicties, J. reine und angew.

Math. 362 (1985), 51-62.
[Mo] Mori,S., Threefolds whose eanonieal bundles are not.numerieal effect.ive, Ann. Math. 116 (1982),

133-176.
[Re] Reid, M., Young person's guide to eanonieal singularities, Proe. of Symp. in Pure Math., Aigebraie

Geometry-Bowdoin 1985, 46 (1987), p. 345-414.
[SoJ Sommese, A.J., On the adjunction theoretie struetur~ of projeetive varieties, Complex Analysis and

Algebraie Geometry, Proeeedings Göttingen, 1985(ed. H. Grauert), Lecture Notes in Math., 1194
(1986), 175-213.

9




