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Abstract. We generalize well-known Catalan-type integrals for Euler's constant to
values of the generalized-Euler-constant function and its derivatives. Using gener-
ating functions appeared in these integral representations we give new Vacca and
Ramanujan-type series for values of the generalized-Euler-constant function and Ad-
dison-type series for values of the generalized-Euler-constant function and its deriva-
tive. As a consequence, we get base B rational series for log 4

�
; G
�
(where G is Catalan's

constant), �
0(2)
�2

and also for logarithms of Somos's and Glaisher-Kinkelin's constants.

1. Introduction

In [11], J. Sondow proved the following two formulas:

(1)  =
1X
n=1

N1;2(n) +N0;2(n)

2n(2n+ 1)
;

(2) log
4

�
=

1X
n=1

N1;2(n)�N0;2(n)

2n(2n+ 1)
;

where  is Euler's constant and Ni;2(n) is the number of i's in the binary expansion of
n: The series (1) is equivalent to the well-known Vacca series [13]

(3)  =
1X
n=1

(�1)n blog2 nc
n

=
1X
n=1

(�1)nN1;2

�bn
2
c�+N0;2

�bn
2
c�

n

and both series (1) and (3) may be derived from Catalan's integral [6]

(4)  =

Z 1

0

1

1 + x

1X
n=1

x2
n�1 dx:

To see this it su�ces to note that

G(x) =
1

1� x

1X
n=0

x2
n

=
1X
n=1

(N1;2(n) +N0;2(n))x
n
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is a generating function of the sequence N1;2(n)+N0;2(n); (see [10, sequence A070939]),
which is the binary length of n; rewrite (4) as

 =

Z 1

0

(1� x)
G(x2)

x
dx

and integrate the power series termwise. In view of the equality

1 =

Z 1

0

1X
n=1

x2
n�1 dx;

which is easily veri�ed by termwise integration, (4) is equivalent to the formula

(5)  = 1�
Z 1

0

1

1 + x

1X
n=1

x2
n

dx

obtained independently by Ramanujan (see [4, Cor. 2.3]). Catalan's integral (5) gives
the following rational series for  :

(6)  = 1�
Z 1

0

(1� x)G(x2) dx = 1�
1X
n=1

N1;2(n) +N0;2(n)

(2n+ 1)(2n+ 2)
:

Averaging (1), (6) and (4), (5), respectively, we get Addison's series for  [1]

 =
1

2
+

1X
n=1

N1;2(n) +N0;2(n)

2n(2n+ 1)(2n+ 2)

and its corresponding integral

(7)  =
1

2
+
1

2

Z 1

0

1� x

1 + x

1X
n=1

x2
n�1;

respectively. Integrals (5), (4) were generalized to an arbitrary integer base B > 1 by
S. Ramanujan and B. C. Berndt and D. C. Bowman (see [4])

(8)  = 1�
Z 1

0

�
1

1� x
� BxB�1

1� xB

� 1X
n=1

xB
n

dx (Ramanujan);

(9)  =

Z 1

0

�
B

1� xB
� 1

1� x

� 1X
n=1

xB
n�1 (Berndt-Bowman):

Formula (9) implies the generalized Vacca series for  (see [4, Th. 2.6]) proposed by
L. Carlitz [5]

(10)  =
1X
n=1

"(n)

n
blogB nc;

where

(11) "(n) =

(
B � 1 if B divides n

�1 otherwise;
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and the averaging integral of (8) and (9) produces the generalized Addison series for 
found by Sondow in [11]

(12)  =
1

2
+

1X
n=1

blogB BncPB(n)

Bn(Bn+ 1) � � � (Bn+B)
;

where PB(x) is a polynomial of degree B � 2 denoted by

(13) PB(x) = (Bx+ 1)(Bx+ 2) : : : (Bx+B � 1)
B�1X
m=1

m(B �m)

Bx+m
:

In this short note, we generalize Catalan-type integrals (8), (9) to values of the genera-
lized-Euler-constant function

(14) a;b(z) =
1X
n=0

�
1

an+ b
� log

�
an+ b+ 1

an+ b

��
zn; a; b 2 N;

and its derivatives, which is related to constants (1), (2) as 1;1(1) = ; 1;1(�1) = log 4
�
:

Using generating functions appeared in these integral representations we give new Vacca
and Ramanujan-type series for values of a;b(z) and Addison-type series for values of
a;b(z) and its derivative. As a consequence, we get base B rational series for log 4

�
; G

�
;

(where G is Catalan's constant), �0(2)
�2

and also for logarithms of Somos's and Glaisher-
Kinkelin's constants. We also mention on connection of our approach to summation of
series of the form

1X
n=1

N!;B(n)Q(n;B) and
1X
n=1

N!;B(n)PB(n)

Bn(Bn+ 1) � � � (Bn+B)
;

where Q(n;B) is a rational function of B and n

(15) Q(n;B) =
1

Bn(Bn+ 1)
+

2

Bn(Bn+ 2)
+ � � �+ B � 1

Bn(Bn+B � 1)
;

and N!;B(n) is the number of occurrences of a word ! over the alphabet f0; 1; : : : ; B�1g
in the B-ary expansion of n; considered in [2]. In this notation, the generalized Vacca
series (10) can be written as follows:

(16)  =
1X
k=1

LB(k)Q(k;B);

where LB(k) := blogB Bkc =
PB�1

�=0 N�;B(k) is the B-ary length of k: Indeed, represent-
ing n = Bk + r; 0 � r � B � 1 and summing in (10) over k � 1 and 0 � r � B � 1 we
get

 =
1X
k=1

blogB Bkc
�
B � 1

Bk
� 1

Bk + 1
� � � � � 1

Bk +B � 1

�
=

1X
k=1

blogB BkcQ(k;B):
3



By the same notation, the generalized Addison series (12) gives another base B expan-
sion of Euler's constant
(17)

 =
1

2
+

1X
n=1

LB(n)PB(n)

Bn(Bn+ 1) � � � (Bn+B)
=

1

2
+

1X
n=1

LB(n)

�
Q(n;B)� B � 1

2Bn(n+ 1)

�
which converges faster than (16) to : Here we used the fact that

1X
n=1

B�1X
�=0

N�;B(n)

n(n+ 1)
=

B

B � 1
;

which can be easily checked by [3, Section 3]. On the other hand,

Q(n;B)� B � 1

2Bn(n+ 1)
=

1

2

B�1X
m=1

�
1

Bn
� 2

Bn+m
+

1

Bn+B

�

=
1

Bn(Bn+B)

B�1X
m=1

�
2m�B +

2m(B �m)

Bn+m

�
=

PB(n)

Bn(Bn+ 1) � � � (Bn+B)
:

Acknowledgements: Both authors thank the Max Planck Institute for Mathematics
at Bonn where this research was carried out. Special gratitude is due to professor
B. C. Berndt for providing paper [4].

2. Analytic continuation

We consider the generalized-Euler-constant function a;b(z) de�ned in (14), where
a; b are positive real numbers, z 2 C; and the series converges when jzj � 1: We show
that a;b(z) admits an analytic continuation to the domain C n [1;+1): The following
theorem is a slight modi�cation of [12, Th.3].

Theorem 1. Let a; b be positive real numbers, z 2 C; jzj � 1: Then
(18)

a;b(z) =

Z 1

0

Z 1

0

(xy)b�1(1� x)

(1� zxaya)(� log xy)
dxdy =

Z 1

0

xb�1(1� x)

1� zxa

�
1

1� x
+

1

log x

�
dx:

The integrals converge for all z 2 C n (1;+1) and give the analytic continuation of the
generalized-Euler-constant function a;b(z) for z 2 C n [1;+1):

Proof. Denoting the double integral in (18) by I(z) and for jzj � 1; expanding
(1� zxaya)�1 in a geometric series we have

I(z) =
1X
k=0

zk
Z 1

0

Z 1

0

(xy)ak+b�1(1� x)

(� log xy)
dxdy

=
1X
k=0

zk
Z 1

0

Z 1

0

Z +1

0

(xy)t+ak+b�1(1� x) dxdydt

=
1X
k=0

zk
Z +1

0

�
1

(t+ ak + b)2
�
� 1

t+ ak + b
� 1

t+ ak + b+ 1

��
dt = a;b(z):
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On the other hand, making the change of variables u = xa; v = ya in the double integral
we get

I(z) =
1

a

Z 1

0

Z 1

0

(uv)
b

a
�1(1� u

1

a )

(1� zuv)(� log uv)
dudv:

Now by [8, Corollary 3.3], for z 2 C n [1;+1) we have

I(z) =
1

a
�
�
z; 1;

b

a

�
� @�

@s

�
z; 0;

b

a

�
+
@�

@s

�
z; 0;

b+ 1

a

�
;

where �(z; s; u) is the Lerch transcendent, a holomorphic function in z and s; for
z 2 Cn[1;+1) and all complex s (see [8, Lemma 2.2]), which is the analytic continuation
of the series

�(z; s; u) =
1X
n=0

zn

(n+ u)s
; u > 0:

To prove the second equality in (18), make the change of variables X = xy; Y = y and
integrate with respect to Y: �

Corollary 1. Let a; b be positive real numbers, l 2 N; z 2 C n [1;+1): Then for the
l-th derivative we have


(l)
a;b(z) =

Z 1

0

Z 1

0

(xy)al+b�1(x� 1)

(1� zxaya)l+1 log xy
dxdy =

Z 1

0

xla+b�1(1� x)

(1� zxa)l+1

�
1

1� x
+

1

log x

�
dx:

From Corollary 1, [8, Cor.3.3, 3.8, 3.9] and [2, Lemma 4] we get

Corollary 2. Let a; b be positive real numbers, z 2 C n [1;+1): Then the following
equalities are valid:

a;b(1) = log �
�b+ 1

a

�
� log �

� b
a

�
� 1

a
 
� b
a

�
;

a;b(z) =
1

a
�
�
z; 1;

b

a

�
� @�

@s

�
z; 0;

b

a

�
+
@�

@s

�
z; 0;

b+ 1

a

�
;

0a;b(z) =� b

a2
�
�
z; 1;

b

a
+ 1
�
+

1

a(1� z)
+
b

a

@�

@s

�
z; 0;

b

a
+ 1
�
� @�

@s

�
z;�1; b

a
+ 1
�
�

b+ 1

a

@�

@s

�
z; 0;

b+ 1

a
+ 1
�
+
@�

@s

�
z;�1; b+ 1

a
+ 1
�
;

where �(z; s; u) is the Lerch transcendent and  (x) = d
dx
log �(x) is the logarithmic

derivative of the gamma function.
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3. Catalan-type integrals for 
(l)
a;b(z):

In [4] it was demonstrated that for x > 0 and any integer B > 1; one has

(19)
1

1� x
+

1

log x
=

1X
k=1

(B � 1) + (B � 2)x
1

Bk + (B � 3)x
2

Bk + � � �+ x
B�2

Bk

Bk(1 + x
1

Bk + x
2

Bk + � � �+ x
B�1

Bk )
:

The special cases B = 2; 3 of this equality can be found in Ramanujan's third note book
[9, p.364]. Using this key formula we prove the following generalization of integral (9).

Theorem 2. Let a; b; B > 1 be positive integers, l a non-negative integer. If either
z 2 C n [1;+1) and l � 1; or z 2 C n (1;+1) and l = 0; then

(20) 
(l)
a;b(z) =

Z 1

0

�
B

1� xB
� 1

1� x

�
Fl(z; x) dx

where

(21) Fl(z; x) =
1X
k=1

x(b+al)B
k�1(1� xB

k

)

(1� zxaBk)l+1
:

Proof. First we note that the series of variable x on the right-hand side of (19)
uniformly converges on [0; 1]; since the absolute value of its general term does not exceed
B�1
2Bk�1 : Then for l � 0; multiplying both sides of (19) by xla+b�1(1�x)

(1�zxa)l+1
and integrating over

0 � x � 1 we get


(l)
a;b(z) =

1X
k=1

Z 1

0

xla+b�1(1� x)

(1� zxa)l+1
� (B � 1) + (B � 2)x

1

Bk + � � �+ x
B�2

Bk

Bk(1 + x
1

Bk + x
2

Bk + � � �+ x
B�1

Bk )
dx:

Replacing x by xB
k

in each integral we �nd


(l)
a;b(z) =

1X
k=1

Z 1

0

x(la+b)B
k�1(1� xB

k

)

(1� zxaBk)l+1
� (B � 1) + (B � 2)x+ � � �+ xB�2

1 + x+ x2 + � � �+ xB�1
dx

=

Z 1

0

�
B

1� xB
� 1

1� x

�
Fl(z; x) dx;

as required. �

From Theorem 2 we readily get a generalization of Ramanujan's integral.

Corollary 3. Let a; b; B > 1 be positive integers, l a non-negative integer. If either
z 2 C n [1;+1) and l � 1; or z 2 C n (1;+1) and l = 0; then

(22) 
(l)
a;b(z) =

Z 1

0

xb+al�1(1� x)

(1� zxa)l+1
dx+

Z 1

0

�
BxB

1� xB
� x

1� x

�
Fl(z; x) dx:

Proof. First we note that the series (21) considered as a sum of functions of variable
x uniformly converges on [0; 1� "] for any " > 0: Then integrating termwise we haveZ 1�"

0

Fl(z; x) dx =
1X
k=1

Z 1�"

0

x(b+al)B
k�1(1� xB

k

)

(1� zxaBk)l+1
dx:

6



Making the change of variable y = xB
k

in each integral we getZ 1�"

0

Fl(z; x) dx =
1X
k=1

1

Bk

Z (1�")B
k

0

yb+al�1(1� y)

(1� zya)l+1
dy:

Since the last series of variable " uniformly converges on [0; 1]; letting " tend to zero we
get

(23)

Z 1

0

Fl(z; x) dx =
1

B � 1

Z 1

0

yb+al�1(1� y)

(1� zya)l+1
dy:

Now from (20) and (23) it follows that


(l)
a;b(z)�

Z 1

0

yb+al�1(1� y)

(1� zya)l+1
dy =

Z 1

0

�
BxB

1� xB
� x

1� x

�
Fl(z; x) dx;

and the proof is complete. �

Averaging both formulas (20), (22) we get the following generalization of integral (7).

Corollary 4. Let a; b; B > 1 be positive integers, l a non-negative integer. If either
z 2 C n [1;+1) and l � 1; or z 2 C n (1;+1) and l = 0; then


(l)
a;b(z) =

1

2

Z 1

0

xb+al�1(1� x)

(1� zxa)l+1
dx+

1

2

Z 1

0

�
B(1 + xB)

1� xB
� 1 + x

1� x

�
Fl(z; x) dx:

4. Vacca-type series for a;b(z) and 0a;b(z):

Theorem 3. Let a; b; B > 1 be positive integers, z 2 C; jzj � 1: Then for the
generalized-Euler-constant function a;b(z), the following expansion is valid:

a;b(z) =
1X
k=1

akQ(k;B) =
1X
k=1

ab k
B
c

"(k)

k
;

where Q(k;B) is a rational function given by (15), fakg1k=0 is a sequence de�ned by the
generating function

(24) G(z; x) =
1

1� x

1X
k=0

xbB
k

(1� xB
k

)

1� zxaBk
=

1X
k=0

akx
k

and "(k) is denoted in (11).

Proof. For l = 0; rewrite (20) in the form

a;b(z) =

Z 1

0

1� xB

x

�
B

1� xB
� 1

1� x

�
G(z; xB) dx

where G(z; x) is de�ned in (24). Then, since a0 = 0; we have

(25) a;b(z) =

Z 1

0

(B � 1� x� x2 � � � � � xB�1)
1X
k=1

akx
Bk�1 dx:

7



Expanding G(z; x) in a power series of x

G(z; x) =
1X
k=0

1X
m=0

zmx(am+b)Bk

(1 + x+ � � �+ xB
k�1)

we see that ak = O(lnB k): Therefore, by termwise integration in (25), which can be
easily justi�ed by the same way as in the proof of Corollary 3, we get

a;b(z) =
1X
k=1

ak

Z 1

0

[(xBk�1 � xBk) + (xBk�1 � xBk+1) + � � �+ (xBk�1 � xBk+B�2)] dx

=
1X
k=1

akQ(k;B): �

Theorem 4. Let a; b; B > 1 be positive integers, z 2 C; jzj � 1: Then for the
generalized-Euler-constant function, the following expansion is valid:

a;b(z) =

Z 1

0

xb�1(1� x)

1� zxa
dx�

1X
k=1

ak eQ(k;B);
whereeQ(k;B) = B � 1

Bk(k + 1)
�Q(k;B)

=
B � 1

(Bk +B)(Bk + 1)
+

B � 2

(Bk +B)(Bk + 2)
+ � � �+ 1

(Bk +B)(Bk +B � 1)

and the sequence fakg1k=1 is de�ned in Theorem 3.

Proof. From Corollary 3 with l = 0; by the same way as in the proof of Theorem 3,
we getZ 1

0

�
BxB

1� xB
� x

1� x

�
F0(z; x) =

Z 1

0

1� xB

x

�
BxB

1� xB
� x

1� x

�
G(z; xB) dx

=

Z 1

0

(BxB�1 � (1 + x+ � � �+ xB�1))
1X
k=1

akx
Bk dx

=
1X
k=1

ak

Z 1

0

[(xBk+B�1 � xBk+B�2) + � � �+ (xBk+B�1 � xBk+1) + (xBk+B�1 � xBk)] dx

= �
1X
k=1

ak eQ(k;B): �

Theorem 5. Let a; b; B > 1 be positive integers, z 2 C; jzj � 1: Then for the
generalized-Euler-constant function a;b(z) and its derivative, the following expansion
is valid:


(l)
a;b(z) =

1

2

Z 1

0

xb+al�1(1� x)

(1� zxa)l+1
dx+

1X
k=1

ak;l
PB(k)

Bk(Bk + 1) � � � (Bk +B)
; l = 0; 1;

8



where PB(k) is a polynomial of degree B � 2 given by (13), (z � 1)2 + (l � 1)2 6= 0 and
the sequence fak;lg1k=0 is de�ned by the generating function

(26) Gl(z; x) =
1

1� x

1X
k=0

x(b+al)B
k

(1� xB
k

)

(1� zxaBk)l+1
=

1X
k=0

ak;lx
k; l = 0; 1:

Proof. Expanding Gl(z; x) in a power series of x

Gl(z; x) =
1X
k=0

1X
m=0

�
m+ l

l

�
zmx(b+al+am)Bk

(1 + x+ x2 + � � �+ xB
k�1)

we see that ak;l = O(kl lnB k): Therefore, for l = 0; 1; by termwise integration we getZ 1

0

�
B(1 + xB)

1� xB
� 1 + x

1� x

�
Fl(z; x)dx =

Z 1

0

1� xB

x

�
B(1 + xB)

1� xB
� 1 + x

1� x

�
Gl(z; x

B)dx

=

Z 1

0

[(B � 1)� 2x� 2x2 � � � � � 2xB�1 + (B � 1)xB]
1X
k=1

ak;lx
Bk�1 dx

=
1X
k=1

ak;l

�
B � 1

Bk
� 2

Bk + 1
� 2

Bk + 2
� � � � � 2

Bk +B � 1
+

B � 1

Bk +B

�

= 2
1X
k=1

ak;l
PB(k)

Bk(Bk + 1) � � � (Bk +B)
;

where PB(k) is de�ned in (13) and the last series converges since PB(k)
Bk(Bk+1)���(Bk+B)

=

O(k�3): Now our theorem easily follows from Corollary 4. �

5. Summation of series in terms of the Lerch transcendent

It is easily seen that the generating function (26) satis�es the following functional
equation:

(27) Gl(z; x)� 1� xB

1� x
Gl(z; x

B) =
xb+al

(1� zxa)l+1
;

which is equivalent to the identity for series:
1X
k=0

ak;lx
k � (1 + x+ � � �+ xB�1)

1X
k=0

ak;lx
Bk =

1X
k=l

�
k

l

�
zk�lxak+b:

Comparing coe�cients of powers of x we get an alternative de�nition of the sequence
fak;lg1k=0 by means of the recursion

a0;l = a1;l = : : : = aal+b�1;l = 0

and for k � al + b;

(28) ak;l =

(
ab k

B
c;l if k 6� b (mod a);

ab k
B
c;l +

�
(k�b)=a

l

�
z
k�b

a
�l if k � b (mod a):
9



On the other hand, in view of Corollary 2, a;b(z) and 
0
a;b(z) can be explicitly expressed

in terms of the Lerch transcendent,  -function and logarithm of the gamma function.
This allows us to sum the series �gured in Theorems 3-5 in terms of these functions.

6. Examples of rational series

Example 1. Suppose that ! is a non-empty word over the alphabet f0; 1; : : : ; B�1g:
Then obviously ! is uniquely de�ned by its length j!j and its size vB(!) which is the
value of ! when interpreted as an integer in base B: Let N!;B(k) be the number of
(possibly overlapping) occurrences of the block ! in the B-ary expansion of k: Note
that for every B and !; N!;B(0) = 0; since the B-ary expansion of zero is the empty
word. If the word ! begins with 0; but vB(!) 6= 0; then in computing N!;B(k) we
assume that the B-ary expansion of k starts with an arbitrary long pre�x of 0's. If
vB(!) = 0 we take for k the usual shortest B-ary expansion of k:
Now we consider equation (27) with l = 0; z = 1

(29) G(1; x)� 1� xB

1� x
G(1; xB) =

xb

1� xa

and for a given non-empty word !; set in (29) a = Bj!j and

b =

(
Bj!j if vB(!) = 0

vB(!) if vB(!) 6= 0:

Then by (28), it is easily seen that ak := ak;0 = N!;B(k); k = 1; 2; : : : ; and by Theorem
3, we get one more proof of the following statement (see [2, Sections 3, 4.2]).

Corollary 5. Let ! be a non-empty word over the alphabet f0; 1; : : : ; B � 1g: Then

1X
k=1

N!;B(k)Q(k;B) =

(
Bj!j;vB(!)

(1) if vB(!) 6= 0

Bj!j;Bj! j(1) if vB(!) = 0:

By Corollary 2, the right-hand side of the last equality can be calculated explicitly
and we have
(30)
1X
k=1

N!;B(k)Q(k;B) =

(
log �

�
vB(!)+1

Bj!j

�
� log �

�
vB(!)

Bj!j

�
� 1

Bj!j 
�
vB(!)

Bj!j

�
if vB(!) 6= 0

log �
�

1
Bj!j

�
+ 

Bj!j � j!j logB if vB(!) = 0:

Corollary 6. Let ! be a non-empty word over the alphabet f0; 1; : : : ; B � 1g: Then

1X
k=1

N!;B(k)PB(k)

Bk(Bk + 1) � � � (Bk +B)

=

8<:Bj!j;vB(!)
(1)� 1

2Bj!j

�
 
�
vB(!)+1

Bj!j

�
�  

�
vB(!)

Bj!j

��
if vB(!) 6= 0

Bj!j;Bj! j(1)� 1
2Bj!j 

�
1

Bj!j

�
� 

2Bj!j � 1
2

if vB(!) = 0:

10



Proof. The required statement easily follows from Theorem 5, Corollary 5 and the
equalityZ 1

0

xb�1(1� x)

1� xa
dx =

1X
k=0

�
1

ak + b
� 1

ak + b+ 1

�
=

1

a

�
 
�b+ 1

a

�
�  

� b
a

��
: �

From Theorem 3, (27) and (28) with a = 1; l = 0 we have

Corollary 7. Let b; B > 1 be positive integers, z 2 C; jzj � 1: Then

1;b(z) =
1X
k=1

akQ(k;B) =
1X
k=1

ab k
B
c

"(k)

k
;

where a0 = a1 = : : : = ab�1 = 0; ak = ab k
B
c + zk�b; k � b:

Similarly, from Theorem 5 we have

Corollary 8. Let b; B > 1 be positive integers, z 2 C; jzj � 1: Then

1;b(z) =
1

2

1X
k=0

zk

(k + b)(k + b+ 1)
+

1X
k=1

ak
PB(k)

Bk(Bk + 1) � � � (Bk +B)
;

where a0 = a1 = : : : = ab�1 = 0; ak = ab k
B
c + zk�b; k � b:

Example 2. If in Corollary 7 we take z = 1; then we get that ak is equal to the
B-ary length of bk

b
c; i. e.,

ak =
B�1X
�=0

N�;B

�jk
b

k�
= LB

�jk
b

k�
:

On the other hand,

1;b(1) = log b�  (b) = log b�
b�1X
k=1

1

k
+ 

and hence we get

(31) log b�  (b) =
1X
k=1

LB

�jk
b

k�
Q(k;B):

If b = 1; formula (31) gives (16). If b > 1; then from (31) and (16) we get

(32) log b =
b�1X
k=1

1

k
+

1X
k=1

�
LB

�jk
b

k�
� LB(k)

�
Q(k;B);

which is equivalent to [4, Theorem 2.8]. Similarly, from Corollary 8 we obtain (17) and

(33) log b =
b�1X
k=1

1

k
� b� 1

2b
+

1X
k=1

�
LB(bkb c)� LB(k)

�
PB(k)

Bk(Bk + 1) � � � (Bk +B)
:

11



Example 3. Using the fact that for any integer B > 1

LB

�j k
B

k�
� LB(k) = �1;

from (30), (16) and (32) we get the following rational series for log �(1=B) :

log �

�
1

B

�
=

B�1X
k=1

1

k
+

1X
k=1

�
N0;B(k)� 1

B
LB(k)� 1

�
Q(k;B):

Example 4. Substituting b = 1; z = �1 in Corollary 7 we get the generalized Vacca
series for log 4

�
:

Corollary 9. Let B 2 N; B > 1: Then

log
4

�
=

1X
k=1

akQ(k;B) =
1X
k=1

ab k
B
c

"(k)

k
;

where

(34) a0 = 0; ak = ab k
B
c + (�1)k�1; k � 1:

In particular, if B is even, then
(35)

log
4

�
=

1X
k=1

(Nodd;B(k)�Neven;B(k))Q(k;B) =
1X
k=1

�
Nodd;B(b k

B
c)�Neven;B(b k

B
c)�

k
"(k);

where Nodd;B(k) (respectively Neven;B(k)) is the number of occurrences of the odd (re-
spectively even) digits in the B-ary expansion of k:

Proof. To prove (35), we notice that if B is even, then the sequence eak := Nodd;B(k)�
Neven;B(k) satis�es recurrence (34). �

Substituting b = 1; z = �1 in Corollary 8 with the help of (33) we get the generalized
Addison series for log 4

�
:

Corollary 10. Let B > 1 be a positive integer. Then

log
4

�
=

1

4
+

1X
k=1

�
LB(bk2c)� LB(k) + ak

�
PB(k)

Bk(Bk + 1) � � � (Bk +B)
;

where the sequence ak is de�ned in Corollary 9. In particular, if B is even, then

log
4

�
=

1

4
+

1X
k=1

�
LB(bk2c)� 2Neven;B(k)

�
PB(k)

Bk(Bk + 1) � � � (Bk +B)
:

Example 5. For t > 1; the generalized Somos constant �t is de�ned by

�t =
t

r
1

t

q
2

t
p
3 : : : = 11=t21=t

2

31=t
3 � � � =

1Y
n=1

n1=t
n

:

In view of the relation [12, Th.8]

(36) 1;1

�
1

t

�
= t log

t

(t� 1)�t�1t

;

12



by Corollary 7 and formula (32) we get

Corollary 11. Let B 2 N; B > 1; t 2 R; t > 1: Then

log �t =
1

(t� 1)2
+

1

t� 1

1X
k=1

�
LB

�jk
t

k�
� LB

�j k

t� 1

k�
� ak

t

�
Q(k;B);

where a0 = 0; ak = ab k
B
c + t1�k; k � 1:

In particular, setting B = t = 2 we get the following rational series for Somos's
quadratic recurrence constant:

log �2 = 1� 1

2

1X
k=1

ak
2k(2k + 1)

;

where a1 = 3; ak = ab k
2
c +

1
2k�1

; k � 2:

From (36), (33) and Theorem 5 we �nd

Corollary 12. Let B 2 N; B > 1; t 2 R; t > 1: Then

log �t =
3t� 1

4t(t� 1)2

+
t+ 1

2(t� 1)

1X
k=1

�
LB

�jk
t

k�
� LB

�j k

t� 1

k�
� 2ak
t(t+ 1)

�
PB(k)

Bk(Bk + 1) � � � (Bk +B)
;

where the sequence ak is de�ned in Corollary 11.

In particular, if B = t = 2 we get

log �2 =
5

8
� 1

2

1X
k=1

ak
2k(2k + 1)(2k + 2)

;

where a1 = 4; ak = ab k
2
c +

1
2k�1

; k � 2:

Example 6. The Glaisher-Kinkelin constant is de�ned by the limit [7, p.135]

A := lim
n!1

1222 � � �nn
n

n2+n

2
+ 1

12 e�
n2

4

= 1:28242712 : : : :

Its connection to the generalized-Euler-constant function a;b(z) is given by the formula
[12, Cor.4]

(37) 01;1(�1) = log
211=6A6

�3=2e
:

By Theorem 5, since Z 1

0

x(1� x)

(1 + x)2
dx = 3 log 2� 2;

we have

logA =
4

9
log 2� 1

4
log

4

�
+
1

6

1X
k=1

ak;1
PB(k)

Bk(Bk + 1) � � � (Bk +B)
;
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where the sequence ak;1 is de�ned by the generating function (26) with a = b = l = 1;
z = �1; or using (28) by the recursion

a0;1 = a1;1 = 0; ak;1 = ab k
B
c;1 + (�1)k(k � 1); k � 2:

Now by Corollary 10 and (33) we get

Corollary 13. Let B > 1 be a positive integer. Then

logA =
13

48
� 1

36

1X
k=1

�
7LB(k)� 7LB

�jk
2

k�
+ bk

�
PB(k)

Bk(Bk + 1) � � � (Bk +B)
;

where b0 = 0; bk = bb k
B
c + (�1)k�1(6k + 3); k � 1:

In particular, if B = 2 we get

logA =
13

48
� 1

36

1X
k=1

ck
2k(2k + 1)(2k + 2)

;

where c1 = 16; ck = cb k
2
c + (�1)k�1(6k + 3); k � 2:

Using the formula expressing �0(2)
�2

in terms of Glaisher-Kinkelin's constant [7, p.135]

logA = ��
0(2)

�2
+
log 2� + 

12
by Corollaries 8, 10 and 13, we get

Corollary 14. Let B > 1 be a positive integer. Then

� 0(2)

�2
= � 1

16
+

1

36

1X
k=1

�
4LB(k)� LB

�jk
2

k�
+ ck

�
PB(k)

Bk(Bk + 1) � � � (Bk +B)
;

where c0 = 0; ck = cb k
B
c + (�1)k�16k; k � 1:

Example 7. First we evaluate 
(l)
2;1(�1) for l = 0; 1: From Corollaries 1, 2 and [12,

Ex.3.12, 3.13] we have

2;1(�1) =
Z 1

0

Z 1

0

(x� 1) dxdy

(1 + x2y2) log xy
=
�

4
� 2 log �

�1
4

�
+ log

p
2�3

and

02;1(�1) =� 1

4
�(�1; 1; 3=2) + 1

2
�(�1; 0; 3=2) + 1

2

@�

@s
(�1; 0; 3=2)

� @�

@s
(�1;�1; 3=2)� @�

@s
(�1; 0; 2) + @�

@s
(�1;�1; 2):

The last expression can be evaluated explicitly (see [12, Section 2]) and we get

02;1(�1) =
G

�
+
�

8
� log �

�1
4

�
� 3 logA+ log � +

1

3
log 2;

or

(38)
G

�
= 02;1(�1)�

1

2
2;1(�1) + 1

4
log

4

�
+ 3 logA� 7

12
log 2:
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On the other hand, by Theorem 5 and (28) we have

(39) 2;1(�1) = �

8
� 1

4
log 2 +

1X
k=1

ak;0
PB(k)

Bk(Bk + 1) � � � (Bk +B)
;

where a0;0 = 0; a2k;0 = ab 2k
B
c;0; k � 1; a2k+1;0 = ab 2k+1

B
c;0 + (�1)k; k � 0; and

(40) 02;1(�1) =
�

16
� 1

4
log 2 +

1X
k=1

ak;1
PB(k)

Bk(Bk + 1) � � � (Bk +B)
;

where a0;1 = 0; a2k;1 = ab 2k
B
c;1; k � 1; a2k+1;1 = ab 2k+1

B
c;1 + (�1)k�1k; k � 0: Now from

(38) { (40), (33) and Corollary 10 we get the following expansion for G=�:

Corollary 15. Let B > 1 be a positive integer. Then

G

�
=

11

32
+

1X
k=1

�
1

8
LB

�jk
2

k�
� 1

8
LB(k) + ck

�
PB(k)

Bk(Bk + 1) � � � (Bk +B)
;

where c0 = 0; c2k = cb 2k
B
c + k; k � 1; c2k+1 = cb 2k+1

B
c +

(�1)k�1�1
2

(2k + 1); k � 0:

In particular, if B = 2 we get

G

�
=

11

32
+

1X
k=1

ck
2k(2k + 1)(2k + 2)

;

where c1 = �9
8
; c2k = ck + k; c2k+1 = ck +

(�1)k�1�1
2

(2k + 1); k � 1:
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