VACCA-TYPE SERIES FOR VALUES OF THE GENERALIZED-EULER-CONSTANT FUNCTION AND ITS DERIVATIVE

KH. HESSAMI PILEHROOD ${ }^{1}$ AND T. HESSAMI PILEHROOD ${ }^{2}$

Abstract

We generalize well-known Catalan-type integrals for Euler's constant to values of the generalized-Euler-constant function and its derivatives. Using generating functions appeared in these integral representations we give new Vacca and Ramanujan-type series for values of the generalized-Euler-constant function and Ad-dison-type series for values of the generalized-Euler-constant function and its derivative. As a consequence, we get base B rational series for $\log \frac{4}{\pi}, \frac{G}{\pi}$ (where G is Catalan's constant), $\frac{\zeta^{\prime}(2)}{\pi^{2}}$ and also for logarithms of Somos's and Glaisher-Kinkelin's constants.

1. Introduction

In [11], J. Sondow proved the following two formulas:

$$
\begin{align*}
\gamma & =\sum_{n=1}^{\infty} \frac{N_{1,2}(n)+N_{0,2}(n)}{2 n(2 n+1)}, \tag{1}\\
\log \frac{4}{\pi} & =\sum_{n=1}^{\infty} \frac{N_{1,2}(n)-N_{0,2}(n)}{2 n(2 n+1)},
\end{align*}
$$

where γ is Euler's constant and $N_{i, 2}(n)$ is the number of i 's in the binary expansion of n. The series (1) is equivalent to the well-known Vacca series [13]

$$
\begin{equation*}
\gamma=\sum_{n=1}^{\infty}(-1)^{n} \frac{\left\lfloor\log _{2} n\right\rfloor}{n}=\sum_{n=1}^{\infty}(-1)^{n} \frac{N_{1,2}\left(\left\lfloor\frac{n}{2}\right\rfloor\right)+N_{0,2}\left(\left\lfloor\frac{n}{2}\right\rfloor\right)}{n} \tag{3}
\end{equation*}
$$

and both series (1) and (3) may be derived from Catalan's integral [6]

$$
\begin{equation*}
\gamma=\int_{0}^{1} \frac{1}{1+x} \sum_{n=1}^{\infty} x^{2^{n}-1} d x \tag{4}
\end{equation*}
$$

To see this it suffices to note that

$$
G(x)=\frac{1}{1-x} \sum_{n=0}^{\infty} x^{2^{n}}=\sum_{n=1}^{\infty}\left(N_{1,2}(n)+N_{0,2}(n)\right) x^{n}
$$

1991 Mathematics Subject Classification. 11Y60, 65B10, 40A05, 05A15.
Key words and phrases. Euler's constant, series summation, generating function, Lerch transcendent, Somos's constant, Glaisher-Kinkelin's constant .
${ }^{1}$ This research was in part supported by a grant from IPM (No. 86110025).
${ }^{2}$ This research was in part supported by a grant from IPM (No. 86110020).
is a generating function of the sequence $N_{1,2}(n)+N_{0,2}(n)$, (see [10, sequence A070939]), which is the binary length of n, rewrite (4) as

$$
\gamma=\int_{0}^{1}(1-x) \frac{G\left(x^{2}\right)}{x} d x
$$

and integrate the power series termwise. In view of the equality

$$
1=\int_{0}^{1} \sum_{n=1}^{\infty} x^{2^{n}-1} d x
$$

which is easily verified by termwise integration, (4) is equivalent to the formula

$$
\begin{equation*}
\gamma=1-\int_{0}^{1} \frac{1}{1+x} \sum_{n=1}^{\infty} x^{2^{n}} d x \tag{5}
\end{equation*}
$$

obtained independently by Ramanujan (see [4, Cor. 2.3]). Catalan's integral (5) gives the following rational series for γ :

$$
\begin{equation*}
\gamma=1-\int_{0}^{1}(1-x) G\left(x^{2}\right) d x=1-\sum_{n=1}^{\infty} \frac{N_{1,2}(n)+N_{0,2}(n)}{(2 n+1)(2 n+2)} \tag{6}
\end{equation*}
$$

Averaging (1), (6) and (4), (5), respectively, we get Addison's series for γ [1]

$$
\gamma=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{N_{1,2}(n)+N_{0,2}(n)}{2 n(2 n+1)(2 n+2)}
$$

and its corresponding integral

$$
\begin{equation*}
\gamma=\frac{1}{2}+\frac{1}{2} \int_{0}^{1} \frac{1-x}{1+x} \sum_{n=1}^{\infty} x^{2^{n}-1} \tag{7}
\end{equation*}
$$

respectively. Integrals (5), (4) were generalized to an arbitrary integer base $B>1$ by S. Ramanujan and B. C. Berndt and D. C. Bowman (see [4])

$$
\begin{array}{lr}
\gamma=1-\int_{0}^{1}\left(\frac{1}{1-x}-\frac{B x^{B-1}}{1-x^{B}}\right) \sum_{n=1}^{\infty} x^{B^{n}} d x & \text { (Ramanujan), } \tag{8}\\
\gamma=\int_{0}^{1}\left(\frac{B}{1-x^{B}}-\frac{1}{1-x}\right) \sum_{n=1}^{\infty} x^{B^{n}-1} & \text { (Berndt-Bowman). }
\end{array}
$$

Formula (9) implies the generalized Vacca series for γ (see [4, Th. 2.6]) proposed by L. Carlitz [5]

$$
\begin{equation*}
\gamma=\sum_{n=1}^{\infty} \frac{\varepsilon(n)}{n}\left\lfloor\log _{B} n\right\rfloor, \tag{10}
\end{equation*}
$$

where

$$
\varepsilon(n)= \begin{cases}B-1 & \text { if } B \text { divides } n \tag{11}\\ -1 & \text { otherwise }\end{cases}
$$

and the averaging integral of (8) and (9) produces the generalized Addison series for γ found by Sondow in [11]

$$
\begin{equation*}
\gamma=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{\left\lfloor\log _{B} B n\right\rfloor P_{B}(n)}{B n(B n+1) \cdots(B n+B)}, \tag{12}
\end{equation*}
$$

where $P_{B}(x)$ is a polynomial of degree $B-2$ denoted by

$$
\begin{equation*}
P_{B}(x)=(B x+1)(B x+2) \ldots(B x+B-1) \sum_{m=1}^{B-1} \frac{m(B-m)}{B x+m} . \tag{13}
\end{equation*}
$$

In this short note, we generalize Catalan-type integrals (8), (9) to values of the genera-lized-Euler-constant function

$$
\begin{equation*}
\gamma_{a, b}(z)=\sum_{n=0}^{\infty}\left(\frac{1}{a n+b}-\log \left(\frac{a n+b+1}{a n+b}\right)\right) z^{n}, \quad a, b \in \mathbb{N}, \tag{14}
\end{equation*}
$$

and its derivatives, which is related to constants (1), (2) as $\gamma_{1,1}(1)=\gamma, \gamma_{1,1}(-1)=\log \frac{4}{\pi}$. Using generating functions appeared in these integral representations we give new Vacca and Ramanujan-type series for values of $\gamma_{a, b}(z)$ and Addison-type series for values of $\gamma_{a, b}(z)$ and its derivative. As a consequence, we get base B rational series for $\log \frac{4}{\pi}, \frac{G}{\pi}$, (where G is Catalan's constant), $\frac{\zeta^{\prime}(2)}{\pi^{2}}$ and also for logarithms of Somos's and GlaisherKinkelin's constants. We also mention on connection of our approach to summation of series of the form

$$
\sum_{n=1}^{\infty} N_{\omega, B}(n) Q(n, B) \quad \text { and } \quad \sum_{n=1}^{\infty} \frac{N_{\omega, B}(n) P_{B}(n)}{B n(B n+1) \cdots(B n+B)},
$$

where $Q(n, B)$ is a rational function of B and n

$$
\begin{equation*}
Q(n, B)=\frac{1}{B n(B n+1)}+\frac{2}{B n(B n+2)}+\cdots+\frac{B-1}{B n(B n+B-1)} \tag{15}
\end{equation*}
$$

and $N_{\omega, B}(n)$ is the number of occurrences of a word ω over the alphabet $\{0,1, \ldots, B-1\}$ in the B-ary expansion of n, considered in [2]. In this notation, the generalized Vacca series (10) can be written as follows:

$$
\begin{equation*}
\gamma=\sum_{k=1}^{\infty} L_{B}(k) Q(k, B), \tag{16}
\end{equation*}
$$

where $L_{B}(k):=\left\lfloor\log _{B} B k\right\rfloor=\sum_{\alpha=0}^{B-1} N_{\alpha, B}(k)$ is the B-ary length of k. Indeed, representing $n=B k+r, 0 \leq r \leq B-1$ and summing in (10) over $k \geq 1$ and $0 \leq r \leq B-1$ we get

$$
\gamma=\sum_{k=1}^{\infty}\left\lfloor\log _{B} B k\right\rfloor\left(\frac{B-1}{B k}-\frac{1}{B k+1}-\cdots-\frac{1}{B k+B-1}\right)=\sum_{k=1}^{\infty}\left\lfloor\log _{B} B k\right\rfloor Q(k, B) .
$$

By the same notation, the generalized Addison series (12) gives another base B expansion of Euler's constant

$$
\begin{equation*}
\gamma=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{L_{B}(n) P_{B}(n)}{B n(B n+1) \cdots(B n+B)}=\frac{1}{2}+\sum_{n=1}^{\infty} L_{B}(n)\left(Q(n, B)-\frac{B-1}{2 B n(n+1)}\right) \tag{17}
\end{equation*}
$$

which converges faster than (16) to γ. Here we used the fact that

$$
\sum_{n=1}^{\infty} \sum_{\alpha=0}^{B-1} \frac{N_{\alpha, B}(n)}{n(n+1)}=\frac{B}{B-1},
$$

which can be easily checked by [3, Section 3]. On the other hand,

$$
\begin{aligned}
& Q(n, B)-\frac{B-1}{2 B n(n+1)}=\frac{1}{2} \sum_{m=1}^{B-1}\left(\frac{1}{B n}-\frac{2}{B n+m}+\frac{1}{B n+B}\right) \\
& \quad=\frac{1}{B n(B n+B)} \sum_{m=1}^{B-1}\left(2 m-B+\frac{2 m(B-m)}{B n+m}\right)=\frac{P_{B}(n)}{B n(B n+1) \cdots(B n+B)}
\end{aligned}
$$

Acknowledgements: Both authors thank the Max Planck Institute for Mathematics at Bonn where this research was carried out. Special gratitude is due to professor B. C. Berndt for providing paper [4].

2. Analytic continuation

We consider the generalized-Euler-constant function $\gamma_{a, b}(z)$ defined in (14), where a, b are positive real numbers, $z \in \mathbb{C}$, and the series converges when $|z| \leq 1$. We show that $\gamma_{a, b}(z)$ admits an analytic continuation to the domain $\mathbb{C} \backslash[1,+\infty)$. The following theorem is a slight modification of [12, Th.3].
Theorem 1. Let a, b be positive real numbers, $z \in \mathbb{C},|z| \leq 1$. Then

$$
\begin{equation*}
\gamma_{a, b}(z)=\int_{0}^{1} \int_{0}^{1} \frac{(x y)^{b-1}(1-x)}{\left(1-z x^{a} y^{a}\right)(-\log x y)} d x d y=\int_{0}^{1} \frac{x^{b-1}(1-x)}{1-z x^{a}}\left(\frac{1}{1-x}+\frac{1}{\log x}\right) d x \tag{18}
\end{equation*}
$$

The integrals converge for all $z \in \mathbb{C} \backslash(1,+\infty)$ and give the analytic continuation of the generalized-Euler-constant function $\gamma_{a, b}(z)$ for $z \in \mathbb{C} \backslash[1,+\infty)$.

Proof. Denoting the double integral in (18) by $I(z)$ and for $|z| \leq 1$, expanding $\left(1-z x^{a} y^{a}\right)^{-1}$ in a geometric series we have

$$
\begin{aligned}
I(z) & =\sum_{k=0}^{\infty} z^{k} \int_{0}^{1} \int_{0}^{1} \frac{(x y)^{a k+b-1}(1-x)}{(-\log x y)} d x d y \\
& =\sum_{k=0}^{\infty} z^{k} \int_{0}^{1} \int_{0}^{1} \int_{0}^{+\infty}(x y)^{t+a k+b-1}(1-x) d x d y d t \\
& =\sum_{k=0}^{\infty} z^{k} \int_{0}^{+\infty}\left(\frac{1}{(t+a k+b)^{2}}-\left(\frac{1}{t+a k+b}-\frac{1}{t+a k+b+1}\right)\right) d t=\gamma_{a, b}(z)
\end{aligned}
$$

On the other hand, making the change of variables $u=x^{a}, v=y^{a}$ in the double integral we get

$$
I(z)=\frac{1}{a} \int_{0}^{1} \int_{0}^{1} \frac{(u v)^{\frac{b}{a}-1}\left(1-u^{\frac{1}{a}}\right)}{(1-z u v)(-\log u v)} d u d v .
$$

Now by [8, Corollary 3.3], for $z \in \mathbb{C} \backslash[1,+\infty)$ we have

$$
I(z)=\frac{1}{a} \Phi\left(z, 1, \frac{b}{a}\right)-\frac{\partial \Phi}{\partial s}\left(z, 0, \frac{b}{a}\right)+\frac{\partial \Phi}{\partial s}\left(z, 0, \frac{b+1}{a}\right),
$$

where $\Phi(z, s, u)$ is the Lerch transcendent, a holomorphic function in z and s, for $z \in \mathbb{C} \backslash[1,+\infty$) and all complex s (see [8, Lemma 2.2]), which is the analytic continuation of the series

$$
\Phi(z, s, u)=\sum_{n=0}^{\infty} \frac{z^{n}}{(n+u)^{s}}, \quad u>0 .
$$

To prove the second equality in (18), make the change of variables $X=x y, Y=y$ and integrate with respect to Y.

Corollary 1. Let a, b be positive real numbers, $l \in \mathbb{N}, z \in \mathbb{C} \backslash[1,+\infty)$. Then for the l-th derivative we have

$$
\gamma_{a, b}^{(l)}(z)=\int_{0}^{1} \int_{0}^{1} \frac{(x y)^{a l+b-1}(x-1)}{\left(1-z x^{a} y^{a}\right)^{l+1} \log x y} d x d y=\int_{0}^{1} \frac{x^{l a+b-1}(1-x)}{\left(1-z x^{a}\right)^{l+1}}\left(\frac{1}{1-x}+\frac{1}{\log x}\right) d x .
$$

From Corollary 1, [8, Cor.3.3, 3.8, 3.9] and [2, Lemma 4] we get
Corollary 2. Let a, b be positive real numbers, $z \in \mathbb{C} \backslash[1,+\infty)$. Then the following equalities are valid:

$$
\begin{gathered}
\gamma_{a, b}(1)=\log \Gamma\left(\frac{b+1}{a}\right)-\log \Gamma\left(\frac{b}{a}\right)-\frac{1}{a} \psi\left(\frac{b}{a}\right), \\
\gamma_{a, b}(z)=\frac{1}{a} \Phi\left(z, 1, \frac{b}{a}\right)-\frac{\partial \Phi}{\partial s}\left(z, 0, \frac{b}{a}\right)+\frac{\partial \Phi}{\partial s}\left(z, 0, \frac{b+1}{a}\right), \\
\gamma_{a, b}^{\prime}(z)=-\frac{b}{a^{2}} \Phi\left(z, 1, \frac{b}{a}+1\right)+\frac{1}{a(1-z)}+\frac{b}{a} \frac{\partial \Phi}{\partial s}\left(z, 0, \frac{b}{a}+1\right)-\frac{\partial \Phi}{\partial s}\left(z,-1, \frac{b}{a}+1\right)- \\
\frac{b+1}{a} \frac{\partial \Phi}{\partial s}\left(z, 0, \frac{b+1}{a}+1\right)+\frac{\partial \Phi}{\partial s}\left(z,-1, \frac{b+1}{a}+1\right),
\end{gathered}
$$

where $\Phi(z, s, u)$ is the Lerch transcendent and $\psi(x)=\frac{d}{d x} \log \Gamma(x)$ is the logarithmic derivative of the gamma function.

3. Catalan-Type integrals for $\gamma_{a, b}^{(l)}(z)$.

In [4] it was demonstrated that for $x>0$ and any integer $B>1$, one has

$$
\begin{equation*}
\frac{1}{1-x}+\frac{1}{\log x}=\sum_{k=1}^{\infty} \frac{(B-1)+(B-2) x^{\frac{1}{B^{k}}}+(B-3) x^{\frac{2}{B^{k}}}+\cdots+x^{\frac{B-2}{B^{k}}}}{B^{k}\left(1+x^{\frac{1}{B^{k}}}+x^{\frac{2}{B^{k}}}+\cdots+x^{\frac{B-1}{B^{k}}}\right)} \tag{19}
\end{equation*}
$$

The special cases $B=2,3$ of this equality can be found in Ramanujan's third note book [9, p.364]. Using this key formula we prove the following generalization of integral (9).

Theorem 2. Let $a, b, B>1$ be positive integers, l a non-negative integer. If either $z \in \mathbb{C} \backslash[1,+\infty)$ and $l \geq 1$, or $z \in \mathbb{C} \backslash(1,+\infty)$ and $l=0$, then

$$
\begin{equation*}
\gamma_{a, b}^{(l)}(z)=\int_{0}^{1}\left(\frac{B}{1-x^{B}}-\frac{1}{1-x}\right) F_{l}(z, x) d x \tag{20}
\end{equation*}
$$

where

$$
\begin{equation*}
F_{l}(z, x)=\sum_{k=1}^{\infty} \frac{x^{(b+a l) B^{k}-1}\left(1-x^{B^{k}}\right)}{\left(1-z x^{B^{k}}\right)^{l+1}} . \tag{21}
\end{equation*}
$$

Proof. First we note that the series of variable x on the right-hand side of (19) uniformly converges on $[0,1]$, since the absolute value of its general term does not exceed $\frac{B-1}{2 B^{k-1}}$. Then for $l \geq 0$, multiplying both sides of (19) by $\frac{x^{l a+b-1}(1-x)}{\left(1-z x^{a}\right)^{l+1}}$ and integrating over $0 \leq x \leq 1$ we get

$$
\gamma_{a, b}^{(l)}(z)=\sum_{k=1}^{\infty} \int_{0}^{1} \frac{x^{l a+b-1}(1-x)}{\left(1-z x^{a}\right)^{l+1}} \cdot \frac{(B-1)+(B-2) x^{\frac{1}{B^{k}}}+\cdots+x^{\frac{B-2}{B^{k}}}}{B^{k}\left(1+x^{\frac{1}{B^{k}}}+x^{\frac{2}{B^{k}}}+\cdots+x^{\frac{B-1}{B^{k}}}\right)} d x .
$$

Replacing x by $x^{B^{k}}$ in each integral we find

$$
\begin{aligned}
\gamma_{a, b}^{(l)}(z) & =\sum_{k=1}^{\infty} \int_{0}^{1} \frac{x^{(l a+b) B^{k}-1}\left(1-x^{B^{k}}\right)}{\left(1-z x^{a B^{k}}\right)^{l+1}} \cdot \frac{(B-1)+(B-2) x+\cdots+x^{B-2}}{1+x+x^{2}+\cdots+x^{B-1}} d x \\
& =\int_{0}^{1}\left(\frac{B}{1-x^{B}}-\frac{1}{1-x}\right) F_{l}(z, x) d x
\end{aligned}
$$

as required.
From Theorem 2 we readily get a generalization of Ramanujan's integral.
Corollary 3. Let $a, b, B>1$ be positive integers, l a non-negative integer. If either $z \in \mathbb{C} \backslash[1,+\infty)$ and $l \geq 1$, or $z \in \mathbb{C} \backslash(1,+\infty)$ and $l=0$, then

$$
\begin{equation*}
\gamma_{a, b}^{(l)}(z)=\int_{0}^{1} \frac{x^{b+a l-1}(1-x)}{\left(1-z x^{a}\right)^{l+1}} d x+\int_{0}^{1}\left(\frac{B x^{B}}{1-x^{B}}-\frac{x}{1-x}\right) F_{l}(z, x) d x . \tag{22}
\end{equation*}
$$

Proof. First we note that the series (21) considered as a sum of functions of variable x uniformly converges on $[0,1-\varepsilon]$ for any $\varepsilon>0$. Then integrating termwise we have

$$
\int_{0}^{1-\varepsilon} F_{l}(z, x) d x=\sum_{k=1}^{\infty} \int_{0}^{1-\varepsilon} \frac{x^{(b+a l) B^{k}-1}\left(1-x^{B^{k}}\right)}{\left(1-z x^{a B^{k}}\right)^{l+1}} d x .
$$

Making the change of variable $y=x^{B^{k}}$ in each integral we get

$$
\int_{0}^{1-\varepsilon} F_{l}(z, x) d x=\sum_{k=1}^{\infty} \frac{1}{B^{k}} \int_{0}^{(1-\varepsilon)^{B^{k}}} \frac{y^{b+a l-1}(1-y)}{\left(1-z y^{a}\right)^{l+1}} d y .
$$

Since the last series of variable ε uniformly converges on $[0,1]$, letting ε tend to zero we get

$$
\begin{equation*}
\int_{0}^{1} F_{l}(z, x) d x=\frac{1}{B-1} \int_{0}^{1} \frac{y^{b+a l-1}(1-y)}{\left(1-z y^{a}\right)^{l+1}} d y . \tag{23}
\end{equation*}
$$

Now from (20) and (23) it follows that

$$
\gamma_{a, b}^{(l)}(z)-\int_{0}^{1} \frac{y^{b+a l-1}(1-y)}{\left(1-z y^{a}\right)^{l+1}} d y=\int_{0}^{1}\left(\frac{B x^{B}}{1-x^{B}}-\frac{x}{1-x}\right) F_{l}(z, x) d x
$$

and the proof is complete.
Averaging both formulas (20), (22) we get the following generalization of integral (7).
Corollary 4. Let $a, b, B>1$ be positive integers, l a non-negative integer. If either $z \in \mathbb{C} \backslash[1,+\infty)$ and $l \geq 1$, or $z \in \mathbb{C} \backslash(1,+\infty)$ and $l=0$, then

$$
\gamma_{a, b}^{(l)}(z)=\frac{1}{2} \int_{0}^{1} \frac{x^{b+a l-1}(1-x)}{\left(1-z x^{a}\right)^{l+1}} d x+\frac{1}{2} \int_{0}^{1}\left(\frac{B\left(1+x^{B}\right)}{1-x^{B}}-\frac{1+x}{1-x}\right) F_{l}(z, x) d x .
$$

4. Vacca-type series for $\gamma_{a, b}(z)$ and $\gamma_{a, b}^{\prime}(z)$.

Theorem 3. Let $a, b, B>1$ be positive integers, $z \in \mathbb{C},|z| \leq 1$. Then for the generalized-Euler-constant function $\gamma_{a, b}(z)$, the following expansion is valid:

$$
\gamma_{a, b}(z)=\sum_{k=1}^{\infty} a_{k} Q(k, B)=\sum_{k=1}^{\infty} a_{\left\lfloor\frac{k}{B}\right\rfloor} \frac{\varepsilon(k)}{k},
$$

where $Q(k, B)$ is a rational function given by (15), $\left\{a_{k}\right\}_{k=0}^{\infty}$ is a sequence defined by the generating function

$$
\begin{equation*}
G(z, x)=\frac{1}{1-x} \sum_{k=0}^{\infty} \frac{x^{b B^{k}}\left(1-x^{B^{k}}\right)}{1-z x^{a B^{k}}}=\sum_{k=0}^{\infty} a_{k} x^{k} \tag{24}
\end{equation*}
$$

and $\varepsilon(k)$ is denoted in (11).
Proof. For $l=0$, rewrite (20) in the form

$$
\gamma_{a, b}(z)=\int_{0}^{1} \frac{1-x^{B}}{x}\left(\frac{B}{1-x^{B}}-\frac{1}{1-x}\right) G\left(z, x^{B}\right) d x
$$

where $G(z, x)$ is defined in (24). Then, since $a_{0}=0$, we have

$$
\begin{equation*}
\gamma_{a, b}(z)=\int_{0}^{1}\left(B-1-x-x^{2}-\cdots-x^{B-1}\right) \sum_{k=1}^{\infty} a_{k} x^{B k-1} d x . \tag{25}
\end{equation*}
$$

Expanding $G(z, x)$ in a power series of x

$$
G(z, x)=\sum_{k=0}^{\infty} \sum_{m=0}^{\infty} z^{m} x^{(a m+b) B^{k}}\left(1+x+\cdots+x^{B^{k}-1}\right)
$$

we see that $a_{k}=O\left(\ln _{B} k\right)$. Therefore, by termwise integration in (25), which can be easily justified by the same way as in the proof of Corollary 3 , we get

$$
\begin{aligned}
\gamma_{a, b}(z) & =\sum_{k=1}^{\infty} a_{k} \int_{0}^{1}\left[\left(x^{B k-1}-x^{B k}\right)+\left(x^{B k-1}-x^{B k+1}\right)+\cdots+\left(x^{B k-1}-x^{B k+B-2}\right)\right] d x \\
& =\sum_{k=1}^{\infty} a_{k} Q(k, B) . \quad \square
\end{aligned}
$$

Theorem 4. Let $a, b, B>1$ be positive integers, $z \in \mathbb{C},|z| \leq 1$. Then for the generalized-Euler-constant function, the following expansion is valid:

$$
\gamma_{a, b}(z)=\int_{0}^{1} \frac{x^{b-1}(1-x)}{1-z x^{a}} d x-\sum_{k=1}^{\infty} a_{k} \widetilde{Q}(k, B)
$$

where

$$
\begin{aligned}
\widetilde{Q}(k, B) & =\frac{B-1}{B k(k+1)}-Q(k, B) \\
& =\frac{B-1}{(B k+B)(B k+1)}+\frac{B-2}{(B k+B)(B k+2)}+\cdots+\frac{1}{(B k+B)(B k+B-1)}
\end{aligned}
$$

and the sequence $\left\{a_{k}\right\}_{k=1}^{\infty}$ is defined in Theorem 3.
Proof. From Corollary 3 with $l=0$, by the same way as in the proof of Theorem 3 , we get

$$
\begin{aligned}
& \int_{0}^{1}\left(\frac{B x^{B}}{1-x^{B}}-\frac{x}{1-x}\right) F_{0}(z, x)=\int_{0}^{1} \frac{1-x^{B}}{x}\left(\frac{B x^{B}}{1-x^{B}}-\frac{x}{1-x}\right) G\left(z, x^{B}\right) d x \\
& =\int_{0}^{1}\left(B x^{B-1}-\left(1+x+\cdots+x^{B-1}\right)\right) \sum_{k=1}^{\infty} a_{k} x^{B k} d x \\
& =\sum_{k=1}^{\infty} a_{k} \int_{0}^{1}\left[\left(x^{B k+B-1}-x^{B k+B-2}\right)+\cdots+\left(x^{B k+B-1}-x^{B k+1}\right)+\left(x^{B k+B-1}-x^{B k}\right)\right] d x \\
& =-\sum_{k=1}^{\infty} a_{k} \widetilde{Q}(k, B) .
\end{aligned}
$$

Theorem 5. Let $a, b, B>1$ be positive integers, $z \in \mathbb{C},|z| \leq 1$. Then for the generalized-Euler-constant function $\gamma_{a, b}(z)$ and its derivative, the following expansion is valid:

$$
\gamma_{a, b}^{(l)}(z)=\frac{1}{2} \int_{0}^{1} \frac{x^{b+a l-1}(1-x)}{\left(1-z x^{a}\right)^{l+1}} d x+\sum_{k=1}^{\infty} a_{k, l} \frac{P_{B}(k)}{B k(B k+1) \cdots(B k+B)}, \quad l=0,1,
$$

where $P_{B}(k)$ is a polynomial of degree $B-2$ given by (13), $(z-1)^{2}+(l-1)^{2} \neq 0$ and the sequence $\left\{a_{k, l}\right\}_{k=0}^{\infty}$ is defined by the generating function

$$
\begin{equation*}
G_{l}(z, x)=\frac{1}{1-x} \sum_{k=0}^{\infty} \frac{x^{(b+a l) B^{k}}\left(1-x^{B^{k}}\right)}{\left(1-z x^{a B^{k}}\right)^{l+1}}=\sum_{k=0}^{\infty} a_{k, l} x^{k}, \quad l=0,1 . \tag{26}
\end{equation*}
$$

Proof. Expanding $G_{l}(z, x)$ in a power series of x

$$
G_{l}(z, x)=\sum_{k=0}^{\infty} \sum_{m=0}^{\infty}\binom{m+l}{l} z^{m} x^{(b+a l+a m) B^{k}}\left(1+x+x^{2}+\cdots+x^{B^{k}-1}\right)
$$

we see that $a_{k, l}=O\left(k^{l} \ln _{B} k\right)$. Therefore, for $l=0,1$, by termwise integration we get

$$
\begin{aligned}
& \int_{0}^{1}\left(\frac{B\left(1+x^{B}\right)}{1-x^{B}}-\frac{1+x}{1-x}\right) F_{l}(z, x) d x=\int_{0}^{1} \frac{1-x^{B}}{x}\left(\frac{B\left(1+x^{B}\right)}{1-x^{B}}-\frac{1+x}{1-x}\right) G_{l}\left(z, x^{B}\right) d x \\
& =\int_{0}^{1}\left[(B-1)-2 x-2 x^{2}-\cdots-2 x^{B-1}+(B-1) x^{B}\right] \sum_{k=1}^{\infty} a_{k, l} x^{B k-1} d x \\
& =\sum_{k=1}^{\infty} a_{k, l}\left(\frac{B-1}{B k}-\frac{2}{B k+1}-\frac{2}{B k+2}-\cdots-\frac{2}{B k+B-1}+\frac{B-1}{B k+B}\right) \\
& =2 \sum_{k=1}^{\infty} a_{k, l} \frac{P_{B}(k)}{B k(B k+1) \cdots(B k+B)},
\end{aligned}
$$

where $P_{B}(k)$ is defined in (13) and the last series converges since $\frac{P_{B}(k)}{B k(B k+1) \cdots(B k+B)}=$ $O\left(k^{-3}\right)$. Now our theorem easily follows from Corollary 4.

5. Summation of series in terms of the Lerch transcendent

It is easily seen that the generating function (26) satisfies the following functional equation:

$$
\begin{equation*}
G_{l}(z, x)-\frac{1-x^{B}}{1-x} G_{l}\left(z, x^{B}\right)=\frac{x^{b+a l}}{\left(1-z x^{a}\right)^{l+1}}, \tag{27}
\end{equation*}
$$

which is equivalent to the identity for series:

$$
\sum_{k=0}^{\infty} a_{k, l} x^{k}-\left(1+x+\cdots+x^{B-1}\right) \sum_{k=0}^{\infty} a_{k, l} x^{B k}=\sum_{k=l}^{\infty}\binom{k}{l} z^{k-l} x^{a k+b} .
$$

Comparing coefficients of powers of x we get an alternative definition of the sequence $\left\{a_{k, l}\right\}_{k=0}^{\infty}$ by means of the recursion

$$
a_{0, l}=a_{1, l}=\ldots=a_{a l+b-1, l}=0
$$

and for $k \geq a l+b$,

$$
a_{k, l}=\left\{\begin{array}{llll}
a_{\left\lfloor\frac{k}{B}\right\rfloor, l} & \text { if } & k \not \equiv b & (\bmod a), \tag{28}\\
a_{\left\lfloor\frac{k}{B}\right\rfloor, l}+\binom{(k-b) / a}{l} z^{\frac{k-b}{a}-l} & \text { if } & k \equiv b & (\bmod a) .
\end{array}\right.
$$

On the other hand, in view of Corollary $2, \gamma_{a, b}(z)$ and $\gamma_{a, b}^{\prime}(z)$ can be explicitly expressed in terms of the Lerch transcendent, ψ-function and logarithm of the gamma function. This allows us to sum the series figured in Theorems 3-5 in terms of these functions.

6. Examples of rational series

Example 1. Suppose that ω is a non-empty word over the alphabet $\{0,1, \ldots, B-1\}$. Then obviously ω is uniquely defined by its length $|\omega|$ and its size $v_{B}(\omega)$ which is the value of ω when interpreted as an integer in base B. Let $N_{\omega, B}(k)$ be the number of (possibly overlapping) occurrences of the block ω in the B-ary expansion of k. Note that for every B and $\omega, N_{\omega, B}(0)=0$, since the B-ary expansion of zero is the empty word. If the word ω begins with 0 , but $v_{B}(\omega) \neq 0$, then in computing $N_{\omega, B}(k)$ we assume that the B-ary expansion of k starts with an arbitrary long prefix of 0 's. If $v_{B}(\omega)=0$ we take for k the usual shortest B-ary expansion of k.

Now we consider equation (27) with $l=0, z=1$

$$
\begin{equation*}
G(1, x)-\frac{1-x^{B}}{1-x} G\left(1, x^{B}\right)=\frac{x^{b}}{1-x^{a}} \tag{29}
\end{equation*}
$$

and for a given non-empty word ω, set in (29) $a=B^{|\omega|}$ and

$$
b=\left\{\begin{array}{lll}
B^{|\omega|} & \text { if } & v_{B}(\omega)=0 \\
v_{B}(\omega) & \text { if } & v_{B}(\omega) \neq 0
\end{array}\right.
$$

Then by (28), it is easily seen that $a_{k}:=a_{k, 0}=N_{\omega, B}(k), k=1,2, \ldots$, and by Theorem 3 , we get one more proof of the following statement (see [2, Sections 3, 4.2]).

Corollary 5. Let ω be a non-empty word over the alphabet $\{0,1, \ldots, B-1\}$. Then

$$
\sum_{k=1}^{\infty} N_{\omega, B}(k) Q(k, B)=\left\{\begin{array}{ll}
\gamma_{B}^{|\omega|}, v_{B}(\omega) \\
\gamma_{B}^{|\omega|}, B^{|\omega|} \mid & (1)
\end{array} \text { if } \quad \text { if } \quad v_{B}(\omega) \neq 0 .(\omega)=0\right.
$$

By Corollary 2, the right-hand side of the last equality can be calculated explicitly and we have
$\sum_{k=1}^{\infty} N_{\omega, B}(k) Q(k, B)= \begin{cases}\log \Gamma\left(\frac{v_{B}(\omega)+1}{B}\right)-\log \Gamma\left(\frac{v_{B}(\omega)}{B|\omega|}\right)-\frac{1}{B|\omega|} \psi\left(\frac{v_{B}(\omega)}{B|\omega|}\right) & \text { if } v_{B}(\omega) \neq 0 \\ \log \Gamma\left(\frac{1}{B|\omega|}\right)+\frac{\gamma}{B^{|\omega|}}-|\omega| \log B & \text { if } v_{B}(\omega)=0 .\end{cases}$
Corollary 6. Let ω be a non-empty word over the alphabet $\{0,1, \ldots, B-1\}$. Then

$$
\begin{aligned}
& \sum_{k=1}^{\infty} \frac{N_{\omega, B}(k) P_{B}(k)}{B k(B k+1) \cdots(B k+B)} \\
& \left.=\left\{\begin{array}{ll}
\gamma_{B}^{|\omega|}, v_{B}(\omega) \\
\gamma_{B}|\omega|, B^{|\omega|} & (1)-\frac{1}{2 B^{|\omega|}}\left(\psi \left(\frac{1}{2 B_{B}^{|\omega|}} \psi\left(\frac{1}{B^{|\omega|}}\right)-\frac{\gamma}{2 B^{|\omega|}}-\frac{1}{2}\right.\right.
\end{array}\right)-\psi\left(\frac{v_{B}(\omega)}{B^{|\omega|}}\right)\right) \\
& \text { if } v_{B}(\omega) \neq 0 \\
& \text { if } v_{B}(\omega)=0 .
\end{aligned}
$$

Proof. The required statement easily follows from Theorem 5, Corollary 5 and the equality

$$
\int_{0}^{1} \frac{x^{b-1}(1-x)}{1-x^{a}} d x=\sum_{k=0}^{\infty}\left(\frac{1}{a k+b}-\frac{1}{a k+b+1}\right)=\frac{1}{a}\left(\psi\left(\frac{b+1}{a}\right)-\psi\left(\frac{b}{a}\right)\right) .
$$

From Theorem 3, (27) and (28) with $a=1, l=0$ we have
Corollary 7. Let $b, B>1$ be positive integers, $z \in \mathbb{C},|z| \leq 1$. Then

$$
\gamma_{1, b}(z)=\sum_{k=1}^{\infty} a_{k} Q(k, B)=\sum_{k=1}^{\infty} a_{\left\lfloor\frac{k}{B}\right\rfloor} \frac{\varepsilon(k)}{k}
$$

where $a_{0}=a_{1}=\ldots=a_{b-1}=0, a_{k}=a_{\left\lfloor\frac{k}{B}\right\rfloor}+z^{k-b}, k \geq b$.
Similarly, from Theorem 5 we have
Corollary 8. Let $b, B>1$ be positive integers, $z \in \mathbb{C},|z| \leq 1$. Then

$$
\gamma_{1, b}(z)=\frac{1}{2} \sum_{k=0}^{\infty} \frac{z^{k}}{(k+b)(k+b+1)}+\sum_{k=1}^{\infty} a_{k} \frac{P_{B}(k)}{B k(B k+1) \cdots(B k+B)},
$$

where $a_{0}=a_{1}=\ldots=a_{b-1}=0, a_{k}=a_{\left\lfloor\frac{k}{B}\right\rfloor}+z^{k-b}, k \geq b$.
Example 2. If in Corollary 7 we take $z=1$, then we get that a_{k} is equal to the B-ary length of $\left\lfloor\frac{k}{b}\right\rfloor$, i. e.,

$$
a_{k}=\sum_{\alpha=0}^{B-1} N_{\alpha, B}\left(\left\lfloor\frac{k}{b}\right\rfloor\right)=L_{B}\left(\left\lfloor\frac{k}{b}\right\rfloor\right) .
$$

On the other hand,

$$
\gamma_{1, b}(1)=\log b-\psi(b)=\log b-\sum_{k=1}^{b-1} \frac{1}{k}+\gamma
$$

and hence we get

$$
\begin{equation*}
\log b-\psi(b)=\sum_{k=1}^{\infty} L_{B}\left(\left\lfloor\frac{k}{b}\right\rfloor\right) Q(k, B) \tag{31}
\end{equation*}
$$

If $b=1$, formula (31) gives (16). If $b>1$, then from (31) and (16) we get

$$
\begin{equation*}
\log b=\sum_{k=1}^{b-1} \frac{1}{k}+\sum_{k=1}^{\infty}\left(L_{B}\left(\left\lfloor\frac{k}{b}\right\rfloor\right)-L_{B}(k)\right) Q(k, B), \tag{32}
\end{equation*}
$$

which is equivalent to [4, Theorem 2.8]. Similarly, from Corollary 8 we obtain (17) and

$$
\begin{equation*}
\log b=\sum_{k=1}^{b-1} \frac{1}{k}-\frac{b-1}{2 b}+\sum_{k=1}^{\infty} \frac{\left(L_{B}\left(\left\lfloor\frac{k}{b}\right\rfloor\right)-L_{B}(k)\right) P_{B}(k)}{B k(B k+1) \cdots(B k+B)} . \tag{33}
\end{equation*}
$$

Example 3. Using the fact that for any integer $B>1$

$$
L_{B}\left(\left\lfloor\frac{k}{B}\right\rfloor\right)-L_{B}(k)=-1
$$

from (30), (16) and (32) we get the following rational series for $\log \Gamma(1 / B)$:

$$
\log \Gamma\left(\frac{1}{B}\right)=\sum_{k=1}^{B-1} \frac{1}{k}+\sum_{k=1}^{\infty}\left(N_{0, B}(k)-\frac{1}{B} L_{B}(k)-1\right) Q(k, B)
$$

Example 4. Substituting $b=1, z=-1$ in Corollary 7 we get the generalized Vacca series for $\log \frac{4}{\pi}$.
Corollary 9. Let $B \in \mathbb{N}, B>1$. Then

$$
\log \frac{4}{\pi}=\sum_{k=1}^{\infty} a_{k} Q(k, B)=\sum_{k=1}^{\infty} a_{\left\lfloor\frac{k}{B}\right\rfloor} \frac{\varepsilon(k)}{k}
$$

where

$$
\begin{equation*}
a_{0}=0, \quad a_{k}=a_{\left\lfloor\frac{k}{B}\right\rfloor}+(-1)^{k-1}, \quad k \geq 1 \tag{34}
\end{equation*}
$$

In particular, if B is even, then

$$
\begin{equation*}
\log \frac{4}{\pi}=\sum_{k=1}^{\infty}\left(N_{o d d, B}(k)-N_{\text {even }, B}(k)\right) Q(k, B)=\sum_{k=1}^{\infty} \frac{\left(N_{o d d, B}\left(\left\lfloor\frac{k}{B}\right\rfloor\right)-N_{\text {even }, B}\left(\left\lfloor\frac{k}{B}\right\rfloor\right)\right)}{k} \varepsilon(k) \tag{35}
\end{equation*}
$$

where $N_{o d d, B}(k)$ (respectively $N_{\text {even }, B}(k)$) is the number of occurrences of the odd (respectively even) digits in the B-ary expansion of k.

Proof. To prove (35), we notice that if B is even, then the sequence $\widetilde{a}_{k}:=N_{o d d, B}(k)-$ $N_{\text {even }, B}(k)$ satisfies recurrence (34).

Substituting $b=1, z=-1$ in Corollary 8 with the help of (33) we get the generalized Addison series for $\log \frac{4}{\pi}$.
Corollary 10. Let $B>1$ be a positive integer. Then

$$
\log \frac{4}{\pi}=\frac{1}{4}+\sum_{k=1}^{\infty} \frac{\left(L_{B}\left(\left\lfloor\frac{k}{2}\right\rfloor\right)-L_{B}(k)+a_{k}\right) P_{B}(k)}{B k(B k+1) \cdots(B k+B)}
$$

where the sequence a_{k} is defined in Corollary 9. In particular, if B is even, then

$$
\log \frac{4}{\pi}=\frac{1}{4}+\sum_{k=1}^{\infty} \frac{\left(L_{B}\left(\left\lfloor\frac{k}{2}\right\rfloor\right)-2 N_{\text {even }, B}(k)\right) P_{B}(k)}{B k(B k+1) \cdots(B k+B)}
$$

Example 5. For $t>1$, the generalized Somos constant σ_{t} is defined by

$$
\sigma_{t}=\sqrt[t]{1 \sqrt[t]{2 \sqrt[t]{3 \ldots}}}=1^{1 / t} 2^{1 / t^{2}} 3^{1 / t^{3}} \cdots=\prod_{n=1}^{\infty} n^{1 / t^{n}}
$$

In view of the relation $[12$, Th. 8$]$

$$
\begin{equation*}
\gamma_{1,1}\left(\frac{1}{t}\right)=t \log \frac{t}{(t-1) \sigma_{t}^{t-1}} \tag{36}
\end{equation*}
$$

by Corollary 7 and formula (32) we get
Corollary 11. Let $B \in \mathbb{N}, B>1, t \in \mathbb{R}, t>1$. Then

$$
\log \sigma_{t}=\frac{1}{(t-1)^{2}}+\frac{1}{t-1} \sum_{k=1}^{\infty}\left(L_{B}\left(\left\lfloor\frac{k}{t}\right\rfloor\right)-L_{B}\left(\left\lfloor\frac{k}{t-1}\right\rfloor\right)-\frac{a_{k}}{t}\right) Q(k, B),
$$

where $a_{0}=0, a_{k}=a_{\left\lfloor\frac{k}{B}\right\rfloor}+t^{1-k}, k \geq 1$.
In particular, setting $B=t=2$ we get the following rational series for Somos's quadratic recurrence constant:

$$
\log \sigma_{2}=1-\frac{1}{2} \sum_{k=1}^{\infty} \frac{a_{k}}{2 k(2 k+1)},
$$

where $a_{1}=3, a_{k}=a_{\left\lfloor\frac{k}{2}\right\rfloor}+\frac{1}{2^{k-1}}, k \geq 2$.
From (36), (33) and Theorem 5 we find
Corollary 12. Let $B \in \mathbb{N}, B>1, t \in \mathbb{R}, t>1$. Then

$$
\begin{aligned}
& \log \sigma_{t}=\frac{3 t-1}{4 t(t-1)^{2}} \\
& +\frac{t+1}{2(t-1)} \sum_{k=1}^{\infty}\left(L_{B}\left(\left\lfloor\frac{k}{t}\right\rfloor\right)-L_{B}\left(\left\lfloor\frac{k}{t-1}\right\rfloor\right)-\frac{2 a_{k}}{t(t+1)}\right) \frac{P_{B}(k)}{B k(B k+1) \cdots(B k+B)},
\end{aligned}
$$

where the sequence a_{k} is defined in Corollary 11.
In particular, if $B=t=2$ we get

$$
\log \sigma_{2}=\frac{5}{8}-\frac{1}{2} \sum_{k=1}^{\infty} \frac{a_{k}}{2 k(2 k+1)(2 k+2)},
$$

where $a_{1}=4, a_{k}=a_{\left\lfloor\frac{k}{2}\right\rfloor}+\frac{1}{2^{k-1}}, k \geq 2$.
Example 6. The Glaisher-Kinkelin constant is defined by the limit [7, p.135]

$$
A:=\lim _{n \rightarrow \infty} \frac{1^{2} 2^{2} \cdots n^{n}}{n^{\frac{n^{2}+n}{2}+\frac{1}{12}} e^{-\frac{n^{2}}{4}}}=1.28242712 \cdots
$$

Its connection to the generalized-Euler-constant function $\gamma_{a, b}(z)$ is given by the formula [12, Cor.4]

$$
\begin{equation*}
\gamma_{1,1}^{\prime}(-1)=\log \frac{2^{11 / 6} A^{6}}{\pi^{3 / 2} e} \tag{37}
\end{equation*}
$$

By Theorem 5, since

$$
\int_{0}^{1} \frac{x(1-x)}{(1+x)^{2}} d x=3 \log 2-2
$$

we have

$$
\log A=\frac{4}{9} \log 2-\frac{1}{4} \log \frac{4}{\pi}+\frac{1}{6} \sum_{k=1}^{\infty} a_{k, 1} \frac{P_{B}(k)}{B k(B k+1) \cdots(B k+B)},
$$

where the sequence $a_{k, 1}$ is defined by the generating function (26) with $a=b=l=1$, $z=-1$, or using (28) by the recursion

$$
a_{0,1}=a_{1,1}=0, \quad a_{k, 1}=a_{\left\lfloor\frac{k}{B}\right\rfloor, 1}+(-1)^{k}(k-1), \quad k \geq 2 .
$$

Now by Corollary 10 and (33) we get
Corollary 13. Let $B>1$ be a positive integer. Then

$$
\log A=\frac{13}{48}-\frac{1}{36} \sum_{k=1}^{\infty}\left(7 L_{B}(k)-7 L_{B}\left(\left\lfloor\frac{k}{2}\right\rfloor\right)+b_{k}\right) \frac{P_{B}(k)}{B k(B k+1) \cdots(B k+B)},
$$

where $b_{0}=0, b_{k}=b_{\left\lfloor\frac{k}{B}\right\rfloor}+(-1)^{k-1}(6 k+3), k \geq 1$.
In particular, if $B=2$ we get

$$
\log A=\frac{13}{48}-\frac{1}{36} \sum_{k=1}^{\infty} \frac{c_{k}}{2 k(2 k+1)(2 k+2)},
$$

where $c_{1}=16, c_{k}=c_{\left\lfloor\frac{k}{2}\right\rfloor}+(-1)^{k-1}(6 k+3), k \geq 2$.
Using the formula expressing $\frac{\zeta^{\prime}(2)}{\pi^{2}}$ in terms of Glaisher-Kinkelin's constant [7, p.135]

$$
\log A=-\frac{\zeta^{\prime}(2)}{\pi^{2}}+\frac{\log 2 \pi+\gamma}{12}
$$

by Corollaries 8,10 and 13 , we get
Corollary 14. Let $B>1$ be a positive integer. Then

$$
\frac{\zeta^{\prime}(2)}{\pi^{2}}=-\frac{1}{16}+\frac{1}{36} \sum_{k=1}^{\infty}\left(4 L_{B}(k)-L_{B}\left(\left\lfloor\frac{k}{2}\right\rfloor\right)+c_{k}\right) \frac{P_{B}(k)}{B k(B k+1) \cdots(B k+B)},
$$

where $c_{0}=0, c_{k}=c_{\left\lfloor\frac{k}{B}\right\rfloor}+(-1)^{k-1} 6 k, k \geq 1$.
Example 7. First we evaluate $\gamma_{2,1}^{(l)}(-1)$ for $l=0,1$. From Corollaries 1,2 and [12, Ex.3.12, 3.13] we have

$$
\gamma_{2,1}(-1)=\int_{0}^{1} \int_{0}^{1} \frac{(x-1) d x d y}{\left(1+x^{2} y^{2}\right) \log x y}=\frac{\pi}{4}-2 \log \Gamma\left(\frac{1}{4}\right)+\log \sqrt{2 \pi^{3}}
$$

and

$$
\begin{aligned}
\gamma_{2,1}^{\prime}(-1)= & -\frac{1}{4} \Phi(-1,1,3 / 2)+\frac{1}{2} \Phi(-1,0,3 / 2)+\frac{1}{2} \frac{\partial \Phi}{\partial s}(-1,0,3 / 2) \\
& -\frac{\partial \Phi}{\partial s}(-1,-1,3 / 2)-\frac{\partial \Phi}{\partial s}(-1,0,2)+\frac{\partial \Phi}{\partial s}(-1,-1,2) .
\end{aligned}
$$

The last expression can be evaluated explicitly (see [12, Section 2]) and we get

$$
\gamma_{2,1}^{\prime}(-1)=\frac{G}{\pi}+\frac{\pi}{8}-\log \Gamma\left(\frac{1}{4}\right)-3 \log A+\log \pi+\frac{1}{3} \log 2,
$$

or

$$
\begin{equation*}
\frac{G}{\pi}=\gamma_{2,1}^{\prime}(-1)-\frac{1}{2} \gamma_{2,1}(-1)+\frac{1}{4} \log \frac{4}{\pi}+3 \log A-\frac{7}{12} \log 2 \tag{38}
\end{equation*}
$$

On the other hand, by Theorem 5 and (28) we have

$$
\begin{equation*}
\gamma_{2,1}(-1)=\frac{\pi}{8}-\frac{1}{4} \log 2+\sum_{k=1}^{\infty} a_{k, 0} \frac{P_{B}(k)}{B k(B k+1) \cdots(B k+B)}, \tag{39}
\end{equation*}
$$

where $a_{0,0}=0, a_{2 k, 0}=a_{\left\lfloor\frac{2 k}{B}\right\rfloor, 0}, k \geq 1, a_{2 k+1,0}=a_{\left\lfloor\frac{2 k+1}{B}\right\rfloor, 0}+(-1)^{k}, k \geq 0$, and

$$
\begin{equation*}
\gamma_{2,1}^{\prime}(-1)=\frac{\pi}{16}-\frac{1}{4} \log 2+\sum_{k=1}^{\infty} a_{k, 1} \frac{P_{B}(k)}{B k(B k+1) \cdots(B k+B)}, \tag{40}
\end{equation*}
$$

where $a_{0,1}=0, a_{2 k, 1}=a_{\left\lfloor\frac{2 k}{B}\right\rfloor, 1}, k \geq 1, a_{2 k+1,1}=a_{\left\lfloor\frac{2 k+1}{B}\right\rfloor, 1}+(-1)^{k-1} k, k \geq 0$. Now from (38) - (40), (33) and Corollary 10 we get the following expansion for G / π.

Corollary 15. Let $B>1$ be a positive integer. Then

$$
\frac{G}{\pi}=\frac{11}{32}+\sum_{k=1}^{\infty}\left(\frac{1}{8} L_{B}\left(\left\lfloor\frac{k}{2}\right\rfloor\right)-\frac{1}{8} L_{B}(k)+c_{k}\right) \frac{P_{B}(k)}{B k(B k+1) \cdots(B k+B)}
$$

where $c_{0}=0, c_{2 k}=c_{\left\lfloor\frac{2 k}{B}\right\rfloor}+k, k \geq 1, c_{2 k+1}=c_{\left\lfloor\frac{2 k+1}{B}\right\rfloor}+\frac{(-1)^{k-1}-1}{2}(2 k+1), k \geq 0$.
In particular, if $B=2$ we get

$$
\frac{G}{\pi}=\frac{11}{32}+\sum_{k=1}^{\infty} \frac{c_{k}}{2 k(2 k+1)(2 k+2)},
$$

where $c_{1}=-\frac{9}{8}, c_{2 k}=c_{k}+k, c_{2 k+1}=c_{k}+\frac{(-1)^{k-1}-1}{2}(2 k+1), k \geq 1$.

References

[1] A. W. Addison, A series representation for Euler's constant, Amer. Math. Monthly 74 (1967), 823-824.
[2] J.-P. Allouche, J. Shalit, J. Sondow, Summation of series defined by counting blocks of digits, J. Number Theory 123 (2007), no. 1, 133-143.
[3] J.-P. Allouche, J. Shallit, Sums of digits and the Hurwitz zeta function. Analytic Number Theory (Tokyo, 1988), 19-30, Lecture Notes in Math., 1434, Springer, Berlin, 1990.
[4] B. C. Berndt, D. C. Bowman, Ramanujan's short unpublished manuscript on integrals and series related to Euler's constant, in Constructive, Experimental and Nonlinear Analysis (Limoges, 1999), 19-27, CMS Conf. Proc., 27, Amer. Math. Soc., Providence, RI, 2000.
[5] L. Carlitz, Advanced problem 5601, Solution by Heiko Harborth, Amer. Math. Monthly 76 (1969) 567-568.
[6] E. Catalan, Sur la constante d'Euler et la fonction de Binet, J. Math. Pures Appl. 1 (1875) 209-240.
[7] S. Finch, Mathematical constants, Cambridge University Press, Cambridge, 2003.
[8] J. Guillera, J. Sondow, Double integrals and infinite products for some classical constants via analytic continuations of Lerch's transcendent, Ramanujan J. (to appear). e-print (2005) http://www.arxiv.org/abs/math.NT/0506319
[9] S. Ramanujan, Notebooks (2 volumes), Tata Institute of Fundamental Research, Bombay, 1957.
[10] N. J. A. Sloane, The on-line encyclopedia of integer sequences (2005), published online at http://www.research.att.com/njas/sequences/
[11] J. Sondow, New Vacca-type rational series for Euler's constant and its "alternating" analog $\log \frac{4}{\pi}$, e-print (2005) http://www.arxiv.org/abs/math.NT/0508042
[12] J. Sondow, P. Hadjicostas, The generalized-Euler-constant function $\gamma(z)$ and a generalization of Somos's quadratic recurrence constant, J. Math. Anal. Appl. 332 (2007), no. 1, 292-314.
[13] G. Vacca, A new series for the Eulerian constant $\gamma=.577 \ldots$, Quart. J. Pure Appl. Math. 41(1910) 363-364.

Institute for Studies in Theoretical Physics and Mathematics (IPM), Tehran, Iran Current address: Mathemetics Department, Faculty of Basic Sciences, Shahrekord University, Shahrekord, P.O. Box 115, Iran.

E-mail address: hessamik@ipm.ir, hessamik@gmail.com, hessamit@ipm.ir

