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On the tensor algebra of a non abelian
group and applications

H. J. Baues and D. Conduché -

For the classifying space BG = K(G, 1) of a group G we consider
the word length filtration J,BG, n20, in the infinite reduced product
J(BG) of James [15] which is homotopy equivalent to the loop space
QZ(BG). We introduce the "crossed tensor algebra" J(G) which is a dif-
ferential algebra in the monoidal category of crossed chain complexes
and we describe J(G) together with its differential d explicitly in terms
of the elements of G. Our main result shows that one has a natural
isomorphism (see (1.2) and (1.9))

(D J(G)n = 7 (JnBG, Jp1BG)

where the right hand side is a relative homotopy group. This
isomorphism 1is compatible with the boundary maps and with the
multiplications in J(G) and J(BG) respectively. Let IG be the augmen-
tation ideal in the group ring Z[G]. We form the quotient

G
LG = f[GeoIc

where (G,G) is the commutator subgroup. Moreover let J,BG be the
subspace of the universal covering JBG of JBG which is determined
by J,BG. Using (1) one gets the natural isomorphism of differential
algebras

l

(2) TzigLG) = @HNJ.BG,Jn1BG)

~ where the left hand side is the graded tensor algebra with a canonical
differental, see (2.6). The right hand side of (2) is given by relative
homology groups with integral coefficients. The proof of the iso-
morphisms above is based on the fundamental theory of Brown-Higgins



on crossed complexes. The tensor algebra in (1) and (2) satisfy the
algebraic formula

(3) Tz i&) = LG =  CU®

where C is the chain functor (studied by J.H.C. Whitehead [21] and
Brown-Higgins [7]) and where the algebra I,G is defined by universal
"multicrossed homomorphisms” on G, see (2.1) and (2.4). The connection
between the homology groups =,JG and H,(I.G) is clarified by theorem
(2.16); examples of such homology groups are computed in section 3.
We also obtain the natural isomorphisms ' '

(4) G&G = EJJ% =BG, BG)

which yield a new topological interpretation of the tensor square of
- Brown-Loday [10]. The isomorphisms (4) are actually isomorphisms of
G—crossed modules. Therefore one has the formula '

(5) =n3IBG = nJ(BG) = o J(G) = ker(G®G — G)

for the third homotopy group #n3XBG of the suspended classifying space
ZBG. Using different methods this result is due to Brown-Loday in [10].
In addition to (5) we obtain new exact sequences for the homotopy
group m4ZBG, see (3.5); in particular, one has always the surjection

(6) w4 BG —» n3(JQ@)

The computation of the homotopy groups #,ZBG is analogous to
the computation of the homotopy groups n,(BG* of Quillen's (+)-cons-
truction which is a fundamental problem of algebraic K-theory. For a
perfect group G we study these homotopy groups by use of the
suspension homomorphism

(7) z: ”n(BG)+ -_ 7[n+1(Z(BG)+) = Tn+12BG



compare (3.15). In this case, however, the tensor algebras (1) and (2)
are degenerate, that is 1G = 0 and J(G), = 0 forn 2 3. For an abelian

group or for a free group G the tensor algebra JG and I.G are highly non

trivial, compare the computation of H,I.G in (3.9) and (3.11)1.
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§1 The crossed tensor algebra of a group

We consider the classical infinite reduced product JX of a pointed
space X as a special case of a free monoid in a monoidal category. The
"crossed tensor algebra” of a group G is such a free monoid in the
category of crossed chain complexes.

For a filtered space X, = Xy cX; c Xy c ...} with Xy = * we have
the (fundamental) crossed chain complex #n(X,):

(1.1) . — 73(X3, X)) —2 mo(Xp, X1) —2o m(Xy)

given by relative homotopy groups. For example let J(X) be the James
construction of a pointed space (X, %) with the word length filtration

JX) = x=J XcX=J1XcJX ..}
Then the crossed chain complex 7J.(X) 1is defined by (1.1). A

crucial result for this paper is the following computation of #nJ.(X) in
case X = BG = K(G, 1) is a classifying space of a discrete group G.

(1.2) Theorem: Let G be a group, then there is a natural isomorphism of
crossed chaincomplexes

7. J(G) = 7nJ BG

I

where J(G)is the crossed tensor algebra of G defined as follows.

For the definition of J(G) we introduce first the following general
notion of a free monoid in a monoidal category.

(1.3) Definitidn: Let (C, ® be a monoidal category with initial object
satisfying X® + = X = x® X for X e C. We suppose that the colimits
below exist in C. Then we get for the n-fold tensor product X®* the

maps



(1) Ip:  X®n-D X®n (1<t<n)

given by i, = X®(-1)@0®X®(n—) - where 0: *+ — X. These
maps define the diagram

(2) . — X =3 X =3 X®3

the limit of which is the free monoid J(X). Here J(X) is filtered by
JX) = limd,(X) where J,(X) 1is the limit of the finite subdiagram of (2)
given by X®, | <n. Moreover J(X) is a monoid in C with mulwtiplication
JX)®JX) —> JX) in case the bifunctor ® preserves the corresponding
limits. In this case J(X) is actually the free monoid generated by X in C.
Clearly J yields a functor C — C.

- We consider the following examples (A), ... , (E) of free monoids.

(A) Let (Set*, x) be the category of pointed sets (X, %) with the cartesian
; product x . Then J(X, *) = Mon(X - «) is actually the free monoid
generated by the set X — =,

(B) Let R be a commutative ring and let (ModZ® , ®)) be the category of
R-modules under and over R, which are given by diagrams
R—>X-9R) = X with0i = 1. Then J(X) = Tx(X) is the classical
tensor algebra of the R-module X = kernel(X — R) with
X=X ®R. Similarly we obtain the tensor algebra Tgx( X) of a
graded R-module X by J( X ®R) where R is commutative in
degree 0. Clearly here the monoidal structure is given by the
(graded) tensor product ®. | '

(C) Let (Top*, x ) be the category of pointed topological spaces X = (X, «)
with the monoidal structure given by product of spaces. Then the
free monoid J(X) is the classical James construction or "infinite
reduced product” of X, compare [15] and [12].



(D)

(E)

Let (CW5, x) be the category of cellular maps between CW-com-
plexes X with Xo = * Here we take the CW-topology for the
product X x Y so that the monoid J(X) is again a CW-complex. The
cells of J(X) are in 1-1 correspondance with the words in the free
monoid Mon(Z,) where Z, is the graded set of cells in X — =,

‘Moreover we know by an old result of James [15] that there is a

natural monoid homomorphism
JX = QXX

which is a homotopy equivalence. Here QXX is the Moore loop
space of the suspension XX,

Crossed chain complexes p = (.. > p2 d, p1) or "homotopy
systems” as in (1.1) first appeared in the paper [21] of
J.H.C. Whitehead, they are "reduced crossed complexes” in the
sense of Brown-Higgins [7]. The category crosschain of crossed
chain complexes for example is studied in chapter VI [1] and
chapter III [2]. The monoidal structure for this category is given
by the tensor product ® of Brown-Higgins [8], see also (III §9) [2].
The initial object x is the crossed chain complex which is trivial in
each degree. We call the free monoid J(p) the crossed tensor
algebra of the crossed chain complex p. In fact, if p; = * this is just
the tensor algebra T5(p) of the chain complex p. In case p = G is
just a group (that is, p is concentrated in degree 1) we get the
crossed tensor algebra J(G) of the group G which is used in
theorem (1.2). The tensor product preserves direct limits so that
J(p) and J(G) are monoids in cross chain which we call "crossed
chain algebra”. Recall that for a crossed chain complex p we define

kernel(d,)
image(dp.1)

ma(p) =
where d,=d:p,—pn-1,d; = 0. An n-equiv_alénce fip—>p isa
map which induces isomorphisms #;(f) fori <n and a weak
equivalence f is a map for which z;(f) is an isomorphism, i > 1.



(1.4) Explicit description of J(p). We now describe the crossed
tensor algebra J(p) 1in terms of the elements of the crossed chain
complex p = (.. > Py d, py). We write x| = {ifx € p; and we set
labl =|a| + |b]if a, b are elements in the free monoid Mon(p). Words of
length one in Mon(p) are denoted by y = [y],y € p. The action in a crossed

complex p is written y* where y¥* = y for |x|] 2 2. Moreover the group
structure of p; is denoted by + for i 2 1, clearly x + x" is only defined if

x| = |x’|. We introduce the bracket
—x-y+x+y if  |x|=lyl=1
_ -¥+y i 1=lx[<ly]
M =yl = —x+xy if x| > ly| =1
0 otherwise
for all x, y € p.

Now the crossed tensor algebra J(p) is the crossed chain complex
generated by the graded set Mon(p) with the following relations where
x,x,y,y e€pand a,b € Mon(p)

(2) [V =[] and [x+x7 = [x]+[x]
(3) (alxlbY =alxl for x| =2

. _ [ax’b+(axby’  for |a|21
(4) a[x+x]b-{(axb)"'+ax'b for |b]21

The boundary d of J(p) is given by the formulas

(5) S dlx] = [dx]
(6) d@b) =  (da)b + (-1l g, b + (-1)lela(db)

where we setda = 0 forja] = 1 and0bd =0 = 50.
The filtration of J(p) is given by the subcomplex J (p) < J(p) given

by all words of length < n in Mon(p). Moreover the multiplication
Jp)®J(p)—>J(p)  carries generators a®btoa b . We get Jlp); = p; by
(2) and J(p), is generated as a p,—~crossed module by Mon(p), = pyUp;xp;.
Moreover J(p), , n 2 3, is generated as a x,(J(p))-module by the set
Mon(p), . Here n,;(J(p)) = xl(p)“b is the abelianization of =,(p) by (6).

We now consider the functor



(1.5) p: CwW; ——> cross chain

which carries a CW-complex X, X° = x, to the crossed chain complex
pX) = =n(X*) given by the CW-filtration X*= {(X° c X! c ..). The crossed
tensor algebra J(p) above has the following important property. -

(1.6) Proposition: For XY in CW,' one has natural isomorphisms
7: pX)®p(Y) = pXxY)
7. Jp(X) = pJ(X)

The proposition is based on the following general property of the
tensor product in crosschain. Let X, , Y, be filtered topological spaces
with Xo=+*=Y(y and let X.® Y, be the filtered topological product for
which (X.® Y.), is the union of all X, x Y, ,p+¢q = nin XxY. Then one has
by [9] or [2] theorem III2.3 a natural transformation

(1.7) T nX.,) ® n(Y,) — X, ®Y,)

which is an isomorphism in case X, , Y, are CW-complexes in CW,".

Since we assume X° = x we see that the James filtration satisfies
JX)* = J,X)". Whence the filtered map i JX)* — J,(X) induces a
natural surjective transformation

(1.8) i pJX) = X)) —» #nJX)

In addition to theorem (1.2) we show the next result which
characterises the isomorphism 7 in (1.2).

(1.9) Theorem: Let G be a group. Then the classifying space BG in CW
admits a unique weak equivalence € : p(BG) —» G in cross chain which induces
the identity on my and for which the following diagram commutes



pJ(BG) —i 5 2JJ(BG)

Jp(BG) —Ee J(G)

Moreovere, = J(¢) is a 2—equivalence but in general not a 3—equivalence.

The theorem shows that J in general does not carry weak
equivalence to weak equivalence. The functor J, however, carries weak
equivalences between totally free objects in crosschain to homotopy
equivalences.

Proof: For X, = (B@G, ) we have nX, = G, whence we get by (1.7)
natural maps

1 G®..0G — 1(X®..9X,)

for n-fold tensor product, n = 1. These maps induce 7 in (1.9) since one
has the filtered map ®"X, — J,BG for all n > 1. Moreover the
naturality of © in (1.7) shows that the diagram in (1.9) commutes. We
now show that t on the right hand side of (1.9) is an isomorphism. For
this we consider the following commutative diagram where J, = J,BG
and J=JBG,p = p(BG). We have surjections

Qn: (an)n+1 = 7rn+1(Jn;1,J7rD g ”n+1(Jn,Jn)
Moreover we have exact sequences of triples:
Tt s I =2 T I s myda, I

. “ .
, Tn(Jn-1, Jn_l) R TnlJn , Jn—l) “L')‘)n'n(Jn » Jn-1)
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where ji = i, is the map in (1.9). This actwally shows that i, is
surjective. We now have the commutative diagram

nPIas1=230s 7, (% TN Ly pon, D s (T, Tnet)

n
.-‘
s
Q
\l
[y
/7
®
<}
|

Pl E 5 (JG)n
SN

By definition of ¢ it is clear that the compositions &, 7! dgn and &,,-1 are
trivial maps. Here we use the fact that X% = « so that (Jnpln+1 and
(Jn-1P)n do not contain generators which are products only of 1-—cells in
X. We know see that e,714dg, = 0 implies that there is a broken
arrow x with xi = g, 71. Moreover x induces the inverse of 71, since
Xi'Qn-1= Esin-1 = 0. This completes the proof that 7 on the right hand side
of (1.9) is an isomorphism. O

(J, —1p)n

The properties of ¢, = J(e) are obtained by the next lemma.

(1.10) Lemma: e, in (1.9) induces the map
TnEs i TpdpBG — 7o J(G)

which is an isomorphism for n <2 and surjective forn = 3. For G = Z/2the map
n3E, is not an isomorphism. Moreover there is a perfect group G for which n3e, is

not an isomorphism.

This lemma is a consequence of the exact sequences in §3, see
(3.6), (3.9) and (3.14).
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We now study the crossed module JGg — JGi = G with the
tensor square G ® G of Brown-Loday [10] .

(1.11) Definition: Let G and B be groups.We say that a function
O :GxG——> B is a 2—rossed morphism if the following equation are
satisfied (x,y,z € G)

i) x+y)Oz-y0z = -x0y +x0(z+y)
i) 000 = 0

Observe that, first taking x=y=0 and then, taking y=2z=0 in i)
we get, using ii)
00x = x00 = 0

(1.12) Proposition: The function G x G — JGo which carries (x , y) to the
product xyisthe universal 2—crossed morphism for G.

In §2 we shall see that the composition GxG y JGo > (JGo)??
is the universal 2-crossed homomorphism in the sense of (2.1) with
o =ab: G— G°°.

Proof of (1.12): For JGgin (1.4) only reminds relation (3), which, in
this case, can be written
x[z+y] = xy+(xz)y
x+ylz = (xzVW+yz
These equalities imply relations i) and ii).
Now we can equivalently see JG2 as a group generated by
elements xy with x, y e G with relations

x+ylz —yz = -xy + x[z+y]
00 = 0
and define the operation of G on generators of JGg by
(xzy = —-xy +x[z+y];
as the equalities -
xzy® = (xzyY  and (x20= =xz

are consequences of this definition, this yields no further relation. g
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We have the following examples of 2-crossed morphisms on G.
First the commutator map

(,): GxG — @G

is a 2-crossed morphism which induces the homomorphism
d:JGa— G in JG. Moreover for the tensor product of Brown-Loday
the function

®: GxG— G®G

is a 2—crossed morphism which induces the natural homomorphism
®:JG;— G®G. '

(1.13) Proposition: The sequence
JG3 -2 JG, B G®G—0

is exact . Moreover dJGs = kernel ® is generated as a normal subgroup by the

-relations

(xy = [xz21[y?], (x,y,zeG).

Proof: The isomorphism

JG2
(xy® = [x%][y?]

is given in [13].

The proof of the inclusion dJG3 < kernel ® is given in [11]. We
translate it from left to right operations and commutators. We use the
equality

(x @ yP = (x2) ® (y2)
in G®G. As x®Z+y—2z+2) = @z +(x ® (z+y-2)F
and G+xy+y)®z = (Y+x-y)®@2zY+y®z
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we have (a) x®z+y) = 1Qz+(x2) Dy . and
(b) (+x)®z = B @)+y®z
Then, by (a) x®y¥ = x@2z+xQ(y +2) = x®z+xQy+ )z
= (x)®zF+xQy+()®2z = (x)Q@E*)+xQy+ )@z
= L@y +(x)@zr+EN + () Q 2z (here we use the second
crossed modules property) |
= t®y+(=x)®M@Ex+EN)+ () @z
= 2@y +((~x) I+ +N @ (*+&)) + () @ z

We can write relation b) a®(8) = B+a)®y-B®y

and take o = (x)Y+*+y, B =—y+x+y, Y=z _
Then we have (=x)Y+*+¥)® (z¥+*+Y) = (x,y)Qz-(x)®z
and (x®yF = x®y + x,y)2z -()®z+ )z

so that (x, y)®z = @y + (x®yR S
and Rdxyz) = (x,9)®z —-x®y)+x®y = 0

thus we have  dJGs c  kernel®

Conversely we show that [x?][y?] is congruent to (x y¥ modulo dJGs.
We have [x21ly?] = [x+&,2]y+(@,2)]
= Gxl+0,2D)%2 + (&, 2]y +©@,2)]
= -xz+ x[y+ (y,2)] +xz + [(x,2)]ly+(,2)]
=  =xz+x[0,2] + @D + 2z + (&, 2] [, 2)] + (&, 2)] )02
==xz+z[(,2)] ~yz+xy+yz+xz+[(x2]1[0,2)] —~yz + [(x,2)]ly + y2

We have [(x,2)][(y,2)] = -d((x,2)lyz) —(yz2)&2) + yz

= -d((x,2)]y2) + (xz,y2)

and [z, 2)]y = dixzy) —xz + (x2)y

so that, taking congruences modulo dJGs we get

[x2](y?] = xz+x[(02]l-yz+xy+yz+@xzY +yz |
Otherwise, using relation (4) in (1.4), =xI[(y,2)] = x[y—z+y+2z]
= xz + (xyP + x[2]0+2 + (x[y])2+y+2

but =x[-2] = {x2z)% so that x[=zly+z = —(x z)}'*"(y, 2)

= —5z—-@xzY +yz

and @[yDz+ty+z = Gy =  yz-xy+yz

so x[y,2)] = xZ+ (xyPF -yz —(xzV -xy +yz

thus we have  [x?] [y2] = (x y?. and the sequence is exact. O
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(1.14) Corollary: There are natural isomorphisms

]

nsXBG = 7o (G) = ke lG® G — G)

where the right hand side isomorphism is the commutator map.

Proof: The isomorphism on the left hand side is given by (1.3)(D) and
(1.10), see also (3.5). The isomorphism on the right hand side is given
by (1.13). In fact one has the following commutative diagram _

n9(JoBG,BG) —>» n(JBG,BG) —9% m,BG

LT

JGo — G®G —_— G

i

in which the vertical arrows are isomorphisms. 0O

This corolléry was proved by Brown-Loday using different
~methods, see [10] proposition 4.12. In section 3 we shall give also some

informations on the homotopy group #4XBG.

There is a further description of JGy —— G by the following
result of Gilbert-Higgins [13]. Consider the commutative diagram of

groups
G‘l'_'l G ——‘l’—é JGo
i l “ ld
G+G — G

where G+G is the free product and where V is the folding map.
Moreover GOG is the kernel of the projection map (p1,p2): GxG— GxG
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and i is the inclusion. The map i is a crossed module since the injection
of a normal subgroup is a classical example of crossed module.

(1.15) Proposition: There is a natural map ¢ such that d: JGg — G is the
G—crossed module induced by V.

Proof: Let i; and iy be the two canonical injections: G — G=#G. Then,
by [17] (see also [18]) GOG is a free group with basis the elements

x0z = —i1x =9z + Iix + iz = (1x, i92), x,z2eG-(0};

the group G+G acting by conjugaison on GOG we have, by commutators
identities

(xOzyV [x +ylOz —yQOz

(xOz)2 = -x0Oy + x0O[z +y]

For any G*G—equivarient homomorphism y with domain GOG we have

w(a2lY) =  (ylxCz)y w((x02)?)
otherwise y(x +y10z - y02) = v(—=xOy + xOlz+y]

whence, relation ii) being clear, the map y factors throught the group

JGe. O

In the next section we give a simple description of the higher
dimensional part of JG, namely (JG), = I,G for n = 3.
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§2 The multi crossed algebra of a group

We consider multi crossed homomorphisms which generalise the
notion of a crossed homomorphism introduced by J.H.C. Whitehead in
[21]. The universal multi crossed homomorphisms yield an algebra I.G
which is actually a tensor algebra and which is isomorphic to the
algebra C(JG) of chains on JG.

(2.1) Definition: Let ¢: G — A be a homomophlsm between groups
and let M be a (nght) A-module. A function
f: G"=Gx...xG —@ M
is @ multi p-crossed homomorphism if
(1) flen....8i+&....80) = flgn, ... .8 - .., 8n)?ED +f(é1,---»gi',---,gn)
for g1,...,8n,8;€G, 1<i<n. Let
(2) hn: G* — I,(G,9)

be the universal multi cp-crossed homomorphism. For any multi
p-crossed homomorphism f: G""™ —— M we define a Z-bilinear map

@) f LG xIG ¢)— M
by the multi p-crossed homomorphism
7 & — Homy(In(G, 9), M)
which carries g = (g1,....2») to the A-module map 7g) which is given by
the multi p-crossed homomorphism (gns1, «-sgnsm) = flg1, ...y Gnem). Thus,

taking M = I,.m(G, ¢) and f = h,.m, We define a multiplication

(4) p: L(G,9)xI,(G,0e) — Lim (G, )
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The map f is even Z[Al-bilinear if A is abelian. Whence p yields a
Z-algebra for I(G,p) which is a Z[Al-algebra if A is abelian. For the
abelianization homomorphism ab : G — G®® we get the Z[G**]-algebra

(5) L& I(G,ab) |, «20,

which we call the multi p—crossed algebra of the group G. Here we set
IG) = ZIG*.

As a well known special case we get the augmentation ideal
IG =kernel € : Z[G] —— Z of the group ring Z[G], that is

(22)I(G,15 = IG with hy(g) = -l+g

compare for example [14]. The algebra I.(G, ¢) above, however, seems
not to be considered in the litterature. For n = 2 there is a connection .of
I (G, ¢) with biderivations studied by Papakyriakopoulos in [19], p 266.
This. algebra has the following properties.

(2.3) Lemma: For homomorphisms G’ Y6254 there is a natural
- isomorphism of A-modules
LG,oy) = (G, y)®zygoe ZA]

in particular for v =1 we get

L(G,9)

(G, 1g) ®gq 0" ZIA]

Proof: The A-modules I,(G',py) and I(G',y) ®zg, @*Z[A] solve the same
universal problem. More precisely any multi py—crossed
homomorphism f: G'* — M is as well a y—crossed homomorphism, so it
factors through a G-linear map: I,(G’,y)—> M which extends to a
A-linear map. a '
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Using (VI6.2) in [14] we thus get by (2.2) and (2.3) the formula

L(G) = Il(G, ab) = IG ®Z[G]Z[Gab] = I1G ®Z[(G,G)]Z = T('G{g—)jc_;

where (G,G) is the commutator subgroup of G.

(2.4) Proposition: The multi crossed algebra I.(G) of a group G is the
Z[G®®}-tensor algebra generated by I G, that is I,G = Tr(I1G) withR =Z[G?), see

(1.3XB).

Proof: When the group A is abelian the multiplication x4 induces an

isomorphism ‘
I(G, ?) ®Z[A] In(G, ) = Iim(G, ?)

since these two A-modules solve the same universal problem. Whence
we have

LG,p) = ®,.hG,9)

thus, in the case where ¢ = ab, we have I,G = Tr(1G). O

(2.5) Example: If G is perfect we have

IG

LG = IGIG = HG = 0

so that in this case I,G = 0, see also (3.12). In case G is abelian we get
I)G = IG so that then I,G = Tgs(IG) is the tensor algebra of the

augmentation ideal.

(2.6) Definition: The multi crossed algebra I,G is a differential graded
Z[G%}-algebra by the differential

d:1,G — I,G = Z[G*]



19

given by dhi(g) = 1 - ab(g). Here we use (2.5) and the fact that
g —1-ab(g) is an ab-crossed homomorphism. On products we set
d@b)=(da)d + (-1)la db. Clearly (I,G, d) is a functor in G.

(2.7) Proposition: The differential in (2.6) as well is determined by the multi
ab—crossed homomorphism

6§ =dh,:G" —I,G —I,,1G

with
ORI D VR (SRR S- Ay NI SW- NN o)
Moreover 6(g1,82) = hi(-g1-g2+g1+g2) forn=2.

Proof: By (2.4) we have h,(g1,....8n) = h1(@1)® hi(g2)®...® hi(gs)
thus, by 'indl_lcti‘on on the differential of a product, we obtain

8(g1,.-,8n) = i)s.l(—l)i"l(h1(g vehi@gze..ohi(gi1)edhi(g)e hi(git1)® ...® hi1(gs)

then the formula for dhi(g;) and the Z[A]-algebra structure gives the

result.
Now, as the map A; is a crossed homomorphism, we have

ha(-g) ~hy(gpH(-8)

so that we can write

hi(-g1-gz+g1 +82) = hi(—g1)*PCE281%8D) ¢ p)(—g,)3bE148D) | py(g,)00ED 1 py(gy)
_ _ hl(gl)ab(—g1“g2+g1+g2) - hl(gz)ab(—g#g1+g2) + hl(gl)ab(&)... hi(g2)

= —higD) -hig2)¥PE + hy(g1)%06D 4 hy(gy) =  &g1,820 O
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We now describe the topological signifiance of the multi crossed

algebra I.G of a group G. For this we consider the universal covering
¢:X — X of a filtered space X, with lim X, = X. We obtain the filtered

space X. by X,, = 1X,1 . We now replace the crossed chain complex
- n(X,) in (1.1) by the chain complex of m1(X)-modules #(X,):

(2.8) ...— Hs(X3, %) - HoXp, X)) -2 H (%, %) -S> Ho(Xo)

given by integral relative homology groups. Whence the filtered space
JX,XeCW;, yields in the same way the chain complex X*(J.X) which is

actually a Z[G**}-algebra with G = =X by using the multiplication of JX
which induces a unique basepoint preserving covering map

JXxJX = JXxJ.X)" — JX

of filtered spaces.

(2.9) Theorem: Let G be a group with classifying space BG. Then there is a
natural isomorphism of dif ferential Z[G*®] —algebras

t: I.G = #*J.BG

where IG is the multi crossed algebra of G.

We next compare the result with the corresponding result in (1.2).
For this we observe first that the Hurewicz homomorphism yields a

map (n 2 1)
(210) hn: (X, Xn-1) = ”nCXn: n—l) —_— HnQ{n ) n-l)

which gives a "chain map" h: nX, — #X,. Moreover for any crossed
chain complex p one has a natural map h: p —— Cp which is the
analogue of the map (2.10). For this we consider the commutative

diagram
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— p3 — p2 — pp Lo Ty

@2.11). .. slhg » 1;12 1}:1

— (Cp)3 — (Cp)e —> (Cp); —— (Cp)o

where ¢ is the quotient map for m; = mp. We set (Cp)=Z[ry],
(Cp)y =I1(p1,q) with hy as in (2.1)(2) and (Cp)e = p3® with hg = ab. For n23
the map A, in (2.11) is the identity. The differential d in the bottom row

is uniquely determined by the diagram and by the g—crossed
homomorphism p; — Z[m], x — 1 - q(x). Let Chainyz be the category

of chain complexes over group rings, morphisms are pairs (p, f) where ¢
is a homomorphism between groups and where fis a p—equivariant
homomorphism between modules, see [l]. The construction in (2.11)
yields a functor

C: crosschain — Chainy

which is studied in [21], [6] and in (VI.1.2) [1]. For a filtered' space'X h
with Xy = * one has a natural commutative diagram :

m(X,)

(2.12) ;/ \\}‘z

CrX,) —2—  #(X,)

where A is induced by A in (2.10). It is a classical result of
J.H.C. Whitehead [21] that A is an isomorphism if X, = X* is a
CW-complex, moreover Brown-Higgins in (5.2) [6] show that A is an
isomorphism if X, is a connected filtered space. For a CW-complex X

with Xy = * for example the filtered space J, X is connected so that we
have an isomorphism '

(2.13) A:CndX = #IX

We use this result in the following proof of (2.9).
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(2.14) Proof of (2.9): We apply the functor C to the isomorphism 7
in (1.2) and (1.9) so that we get isomorphisms

a

meQ

. A

LG CJG CrJ (BG) #J.BG

The isomorphism a is a direct consequence of the definition of C and of
the description of JG in (1.4). In fact, the multi crossed homomorphism

G" — (CJGn, (€1,...,81) 2 higy,...,8n)
induces the isomorphism a. O

We now compare the homology of JG and I.G, for this we use the
natural map

(2.15) h: JG — CJG = I.G

given by (2.11) and (2.14).

(2.16) Theorem: The natural map h in (2.15) induces an isomorphism
h:n,JG=H,I.G for n>4. Moreoverone has the natural exact sequence

0 — 73JG Py Hyl,G — FoJ.BG — 12JG s HI,G — 0
where T2J.BG is the group defined in (3.2) below.
By definition of CJG it is clear that h,'is an isomorphism in degree

> 4 and injective in degree 3. The exact sequence of (2.16) is obtained in
(3.7) below.

(2.17) Remark: Theorem (2.9) leads to a result of homological algebra
which for example can be found in the book of Hilton-Stammbach
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(VI, th6.3) [14]. For this we consider the homology sequence of the pair
(J1BG, JoBG) = (J1, Jo). Since Jo = * we see Hy; Jo = 0. Moreover since
m1JBG = G we see that :11 is the G*®—cover of J1 = BG. Therefore we
get mid1 = (G, @ and. whence Hy J1 = (G, G)*b. Thus we have the
following commutative: diagram of exact sequences where the vertical
arrows are isomorphisms

0 — G® — IGRzGZIG*] — ZIG*] — Z —0

0 — HiJy, — HWy,do) —>  Hody —> Hody — 0

Here we use (2.9) and (2.4).
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§3 On the homology of the crossed tensor algebra J(G).

In this section we embed the homology of the crossed tensor
algebra J(G in an exact sequence which is an analogue of
J.H.C. Whitehead 's certain exact sequence [20], see also [1]. This leads
to applications concerning the homotopy groups of a suspended
classifying space ZBG.

For a filtered space X, with Xo = * we define
(3.1) X, = image(mpXn-1 — 7,X,)

For the skeletal filtration X, of a CW-complex X the group
T X=T,X, is the classical I'-group of J.H.C. Whitehead in [20]. Moreover

we define
(3.2) X = image(H X,y — HX,)

where X, as in (2.8). We now consider the filtered space J,BG given by
the James construction of the pointed classifying space BG. In this case
we get the following natural commutative diagram; the top row in the
diagram is the certain exact sequence of J.H.C. Whitehead applied to the

space JBG. ‘ '

—>» T.WJBG - x,.5BG —B& H,JBG®) -5 I, ,(JBG)

A

— I.(J.BG) — mn,(JBG) — 7,,(JG) — I'p1(JBG)

R P N

— TW(J.BG) — H,JBG) — H(I.G) — T,4(J.BG)

n
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(3.3) Proposition: This diagram is well defined for n 2 2 and the rows are
longexact sequences.

Proof: Let BGeCWy Then X = JBG is a CW-complex with the CW-fil-
tration X* and with the James filtration X, = J .BG. We have the filtered
inclusion map i: X* — X, since we assume (BG)° = . Now we apply the
certain exact sequence (III 10.7) [1] for 4 =X"or % = X, “and we get the
top row and the row in the middle respectively. Moreover we can apply
(IIT 10.7) [1] in the category of chain complexes for U=CX, where C,
denotes the cellular chain complex. Then we get the bottom row of the
diagram. The maps A, and A are given by the Hurewicz map. O

We now consider the diagram above for low degrees, for this we
first observe that one has the following formulas for the corresponding
I'-groups.

- (3.4) Lemma: I'1JBG

= TIW.BG = TJBG = 0
IJBG = ToJBG = 0
I'/JBG =  TI'mZBG

The natural isomorphism for I'sJBG follows by an old result of
J.H.C. Whitehead which shows that for any CW-complex X one has
I'3X =TmX , see [20]. The other equations in (3.4) are easily derived
from the definitions. Using (3.4) we derive from (3.3) the following
commutative diagram with exact rows in which —» is a surjection and
>—— an injection.
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(3.5)
— ngBG ——>» H3JBG —>

0
.
0

— n3JBG —>» n3JG >

RSt

—_ HsjBG —_ HsI. G ——->I=2J.,BG——-—>H373G _— HZI;G

—
n

(3.6) Proof of (1.10): The map =#,e,, n 2 2, can be identified with
i HeJBG —— m,JG so that (1.10) follows immediately from (3.5) since
i. is an isomorphism for n = 2 and surjective for n =3. O

(3.7) Proof of (2.16): The exact sequence (2.16) is a consequence of
the bottom row of (3.5) since ngJBG —— n3JG is surjective. 0O

For J, = J,BG we obtain the natural transformation (n = 2)
o: H.(G,ZIG®) = H,J1 — Hgn —» I,J.BG
which is induced by the inclusion J; c Jn-1 . One gets the isomorphism
on the left hand side since J; is the G°P-cover of BG. Moreover one gets
the
(3.8) Lemma: There is an exact sequence
H3(G, ZIG®)) -2 ['3J,BG — P(G)— H(G, Z[G®?)) %5 T5J.BG—0

where P(G)is the cokernel of the boundary o: HyJs,do) — Hslo ,J1).
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The exact sequence is an easy consequence of the homology exact
sequence for (:13 ,do ,dJ1).

(3.9) Example: If G is abelian we see by (3.8) that I9J.BG = 0 and
I'3J.BG =P(G). Therefore we get in this case by (3.3) and (3.5) the
isomorphism

(1) HoJBG Hol,G

n

and the exact sequence
(2) HJd.G — P(G) — H3JBG —> H3l.G —> 0

Here LG = (TzgUIG), d) is a differential tensor algebra. If G = Z we

have P(Z) = 0. Moreover we have for G = Z the classifying space
BG=S8' so that by the well known homotopy equivalence
JS! = S1xJ(S?%) one has the homotopy equivalence

JBZ = JS' =  J(S?
- Whence we get
| - Z if n is even
(3) H,\LZ) = H.JBZ = { 0 otherwise

Here the isomorphism on the left hand side is obtained by the bottom
sequence in (3.3) since [,J,BZ = 0 by (3.2). It is not so easy to prove
(3) directly by the formula for (I,G, d) in (2.6). For the group G=7Z/2
one has IG = Z generated by x = 1 -[1] and with the action of G on Z
by -1. One now can compute directly by the formula in (2.6)

Z n=0
(4) H,LZ2) = Z/2 neven, n>0
0 n odd
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Since we know n4XBZ/2=7/4 by a result of Hennes [5] and
H3JBZ/2 = 7Z/2 we see by (2) and (4) that P(Z/2) = 0, see (3.8). This as
well shows that for G = 7Z/2 the map mze, is not an isomorphism, see
(1.10).

(3.10) Definition: Let S(A,n) and 7{A,n) be the free graded symmetric
algebra and tensor algebra respectively generated by the free abelian
group A which is concentrated in degree n. Then T(A,n) is a graded Lie
algebra by setting g

[x,y] = xy - Dk y &

where the right hand side is defined via the multiplication for
x,yeT(A,n). Let L(A, n) .be the Lie subalgebra generated by A < T(A, n);
this is a free graded Lie algebra.

(3.11) Theorem: For a free group G with A = G*® one has natural
isomorphisms ' :

Z

. n

0
HUAG) = A .
n

L(A,1)3

(I TR I |
WN=O

Moreover there is a (non natural) isomorphism of graded free abelian groups

It

HALG) = SA4,20 Q,SLA, 25, ,n)

"Proof: We can choose BG=VS! to be a one point union of 1-spheres.
- Therefore JL.BG = (JBG)" is the skeletal filtration and whence we get by
(2.12) the isomorphism

(1) mndG=  HI.G =  HJBG , n=2.

Since n2JG = n3ZBG we get the isomorphism in (3.11) for n = 2, see also
(3.4). Moreover we have the natural surjection (see (3.5))
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(3) 74 ZBG =  m3JBG — H3JBG
where n2BG = T(ARZ/2®L(A,1)s, compare [3]. This surjection induces

the isomorphism in (3.11) for n = 3. Finally we derive the formula for
H,(I.,G) via (1) from the Hilton Milnor theorem. Let @, be a basis of
L(A,2)9, , n 2 1. Then the Hilton Milnor theorem shows that one has a
homotopy equivalence

(4) J(BG) QIBG Uy X Usg

ll
I

where | QY = xé‘QlJ(Sl)’ Uz = %, xéan(S")

are products with the CW-topology. Since %2 is simply connected we
see that

(5) J(BG) 62?1 X 61[22

i

where 4, is the universal covering of %; which by the argument in
(3.9)(3) admits a homotopy equivalence

(6) Uy = xé‘QlJ(Sz)

No_w one obtains the formula for HJI.G by (1), (5) and (6). O

We finally consider perfect groups G for which we have the
(+)}—construction = BG —— BG" which induces an isomorphism in
homology. Here BG* is l-connected. Clearly the induced maps

(3.12) IBG — ZIBG', JBG — JBG"
are homotopy equivalences. This as well implies I,G = 0 by use of (2.9),

compare (2.5). Moreover one obtains by (3.12) easily the next result
where JBG = JBG and where « is the map in (3.8).
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(3.13) Proposition: Let G be perfect. Then the map
o H,(G) —s ILJ.BG) =  H,JBG

is split injective for n=>1and an lsomorphzsm for n £3. This implies P(G) = 0 by
(3.8). For n = 4 one has

HJBG = Hy(G)® Ho(G)®H(G)

For the proof of (3.13) we use (3.12) and the well known
homotopy equivalence XJX = XI}ZX(‘) where X® is the i-fold smash

product.

(3.14) Example: Let G be a perfect group with H3G # 0; such a perfect
group exists since we can use the result in [16] on the existence of
groups with prescribed homology. Since I,G = 0 we get by (2.16)
n3JG =0, but

i
n

nsJpBG =  HsJJBG = 13J.BG = HsG = 0

Whence n3e, in (1.9) is not an isomorphism in this case.

Using (3.12) one obtains for a perfect group G the suspension
operator

(3.15) pX, n.BG* — maXBGt = Tn12BG

which by the Freudenthal suspension theorem is an isomorphism for
n=2 and surjective for n=3. Moreover this operator is embedded in

the following commutative diagram the rows of which are the certain
exact sequences of J.H.C. Whitehead [20] for the spaces XBG, JBG' and
JBG respectively. The bottom row coincides with the top row in (3.3)

and (3.5).
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— n52BG — HG — HGPR®Z2 — neIBG —» H3G

Eoo bk

— mBG" —>» HG —> NHyG) —— n3BGt ——>» H3G

S

— n52BG — HW/BG —— TI'(HeG) —> mZBG —>» H3G

|
Hy{(@)O Ho)®H(G)

The map from the row for BG" to the top row is given by the
functor X, compare the remark following (I.3.3) and (III.10.13) in [1].
Moreover the map to the bottom row is induced by the inclusion
BG* c J(BG)*.

The diagram for example shows that one has the exact sequence
(G perfect)

HyG®HNG)  — n(BG* 25 nBG — 0

where #n,2BG can be computed by the top row of the diagram. This
seems to be a new estimation of x3(BG)* in terms of the homology
groups H,G. The continuation of the diagram above uses the
computation of the group I',)X which is described in [3], a further
discussion of the operator X in (3.15) for n = 4 will appear elsewhere.
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