DEGENERACY LOCI FORMULAS FOR MORPHISMS WITH SYMMETRIES

LASCOUX, Alain* and PRAGACZ, Piotr

*
L.I.T.P., Université Paris 7
2, Place Jussieu
75251 Paris cedex 05

France

Max-Planck-Institut für Mathematik Gottfried-Claren-Str. 26 53225 Bonn

Germany

. . .

DEGENERACY LOCI FORMULAS FOR MORPHISMS WITH SYMMETRIES

Alain Lascoux

k

L.I.T.P., Université Paris 7,2, Place Jussieu75251 Paris cedex 05, France

Piotr Pragacz

Max-Planck-Institut für Mathematik Gottfried-Claren Strasse 26 D-53225 Bonn, Germany

0. The goal of the present note is to give new explicit formulas for the fundamental classes of degeneracy loci associated with the following vector bundles homomorphisms.

For a given pair $B \subset A$ of vector bundles, we denote by $B \lor A$ (resp. $B \land A$) the image of the canonical composition $B \otimes A \to A \otimes A \twoheadrightarrow S^2 A$ (resp. $B \otimes A \to A \otimes A \twoheadrightarrow \Lambda^2(A)$).

Let now $F^{\vee} \subset E^{\vee}$ be two vector bundles of ranks f and e over a scheme X over a field K. Let $\varphi : F \to E^{\vee}$ be a morphism coming from a section of $F^{\vee} \vee E^{\vee}$ (resp. $F^{\vee} \wedge E^{\vee}$). Suppose that an integer $0 \leq r \leq f$ is given. In this note, we describe the fundamental classes of the loci $D_r(\varphi) = \{x \in X : rank \ \varphi(x) \leq r\}$ with the help of some explicitly given polynomials in the Chern classes of E and F.

When E = F, our formulas specialize to the ones given in [J-L-P], [H-T] and [P1].

When $F = \bigoplus_{i=1}^{f} \mathcal{O}(n_i)$, $E = \bigoplus_{i=1}^{f} \mathcal{O}(n_i) + \bigoplus_{j=1}^{e-f} \mathcal{O}(m_j)$ are two vector bundles over a projective space, some formulas for the degree of the above degeneracy loci were established by Bottaso in [Bo] by different tools. The present paper offers a modern version and a "compact" generalization of the results of [Bo].

The method used follows the second author's paper [P1] and relies on the technique of "constructions with a nontrivial generic fiber" invented in Section 2 of loc. cit. This method is recalled in Theorem 1, where, in fact, an improvement of [P1, Section 2] is presented.

1. The most popular method to compute the fundamental class of a subscheme $D \subset X$ tries to find a scheme X' mapping properly to X, on which one has a locus Z that maps birationally onto D and for which one can compute its class [Z]. Usually this is because [Z] is the zero locus of a section of some bundle whose rank is equal to $codim_{X'}Z$ so the class [Z] is evaluated to be the top Chern class of the bundle. For example, this pattern was used in [J-L-P] and many other papers (see [F]).

To compute the fundamental classes of subvarieties, one can also use appropriate geometric constructions with a nontrivial generic fibre. This method was invented in [P1] in order to give a short proof of the formulas from [J-L-P] and [H-T], and is summarized and improved in the following simple theorem. In this theorem, we may assume that the Chow groups have rational coefficients. We follow [F] for all needed notions and notation from intersection theory. **Theorem 1.** Let D be an irreducible (closed) subscheme of a scheme X. Let $\pi : \mathbf{G} \to X$ be a proper morphism of schemes and W be a (closed) subscheme of \mathbf{G} such that $\pi(W) = D$. We have the following two instances: (i) Suppose that \mathbf{G} is smooth. Assume that there exists

$$\mathbf{g} \in A_{dimG+dimD-dimW}(\mathbf{G})$$

and a point x in the smooth locus of D such that in $A_*(\mathbf{G}_x)$, where \mathbf{G}_x is the fibre of π over x, one has:

$$i_x^*(\mathbf{g}) \cdot [W_x] = [point].$$

Here, W_x is the fibre of W over x and $i_x : G_x \hookrightarrow G$ is the inclusion. Then the following equality holds in $A_*(X)$:

$$[D] = \pi_* \big(\mathbf{g} \cdot [W] \big) \,.$$

(ii) Suppose that there exists a family of vector bundles $\{E^{(\alpha)}\}$ on **G** and $\mathbf{g} = P(\{c.(E^{(\alpha)})\})$ - a homogeneous polynomial of degree dimW - dimD in the Chern classes of $\{E^{(\alpha)}\}$ (deg $c_i(E^{(\alpha)}) = i$) with rational coefficients, such that in $A_*(\mathbf{G}_x)$,

$$P(\{c.(i_x^*E^{(\alpha)})\}) \cap [W_x] = [point],$$

where x, \mathbf{G}_x , W_x and i_x are as above. Then the following equality holds in $A_*(X)$:

$$[D] = \pi_* \big(\mathbf{g} \cap [W] \big).$$

Proof. (i) Using a standard dimension argument, we can replace, in the assertion, D by its smooth part, i.e., we can assume D is smooth. Write $\mathbf{G}_D = \mathbf{G} \times_X D$, $W_D = W \times_X D$, $\eta : \mathbf{G}_D \to D$ the projection induced by π , and $k : \mathbf{G}_D \to \mathbf{G}$ - the inclusion. Then, the assertion is a consequence of the following identity in $A_*(D)$:

$$\eta_*\big(k^*(\mathbf{g})\cdot[W_D]\big)=[D].$$

To prove the latter equation, we first remark that the assumptions imply

$$\eta_*\big(k^*(\mathbf{g})\cdot[W_D]\big)=m[D],$$

where $m \in \mathbb{Z}$. Let x be a point in D and consider the fibre square:

$$\begin{array}{cccc} \mathbf{G}_{x} & \stackrel{j}{\smile} & \mathbf{G}_{D} \\ p \\ \downarrow & & & \downarrow^{\eta} \\ \{x\} & \stackrel{i}{\smile} & D \end{array}$$

Using the assumptions on \mathbf{g} and $[\mathbf{F}, \text{Theorem 6.2}]$, we have

$$i^*\eta_*(k^*(\mathbf{g})\cdot[W_D]) = p_*(j^*(k^*(\mathbf{g})\cdot[W_D]))$$
$$= p_*(i^*_x(\mathbf{g})\cdot[W_x]) = p_*([point]) = [point]$$

This implies m = 1 and assertion (i) is proved.

The proof of (ii) is essentially the same. \Box

Using this method, we now generalize the formulas from [J-L-P], [H-T] and [P1] to a wider class of degeneracy loci including, in the case of matrices of homogeneous forms, those studied in [Bo].

2. We follow the notation from Section 0. In the definition of the loci $D_r(\varphi)$ in the " \wedge -case", we assume r to be even. A proper scheme structure on $D_r(\varphi)$ is defined with the help of Schubert subschemes in Lagrangian (resp. orthogonal) Grassmannians. Let $V \subset U$ be vector spaces of dimensions f and e respectively. Let $X = Spec \ S^{\bullet}(V \lor U)$ (resp. $X = Spec \ S^{\bullet}(V \land U)$). In this situation, there exists a tautological morphism $\varphi : F = V_X \rightarrow (E = U_X)^{\vee}$. For such a φ , $D_r(\varphi)$ is the restriction to the "opposite big cell", of an appropriate Schubert variety in the Lagrangian (resp. orthogonal) Grassmannian of f-dimensional isotropic subspaces in K^{2e} . Hence, by results of [DC-L], $D_r(\varphi)$ is irreducible, normal and Cohen-Macaulay; moreover its codimension c equals

$$(e-f)(f-r) + (f-r)(f-r+1)/2$$
 (resp. $(e-f)(f-r) + (f-r)(f-r-1)/2$)

In general, $D_r(\varphi)$ can be obtained similarly as the scheme theoretic preimage of an open subset of a Schubert variety of a Lagrangian (resp. orthogonal) Grassmannian bundle. We omit the details of this fairly standard procedure. In the " \lor -case" the reduced scheme structure on $D_r(\varphi)$ is defined by the ideal generated locally by (r+1)-order minors of φ .

We now describe a certain geometric construction associated with φ . Let p be a natural number such that $2p \leq f$ and let $\pi_F : \mathbb{G}_F = G_{f-p}(F) \to X$, $\pi_E : \mathbb{G}_E = G_{e-p}(E) \to X$ be the Grassmannian bundles parametrizing (f-p)-subbundles of F and (e-p)-subbundles of E respectively. Consider the fibre product

$$\pi: \mathbb{G} = \mathbb{G}_F \times_X \mathbb{G}_E \to X.$$

Let $0 \to R_F \to F_{\mathbf{G}_F} \to Q_F \to 0$ and $0 \to R_E \to E_{\mathbf{G}_E} \to Q_E \to 0$ be two tautological sequences of vector bundles on \mathbf{G}_F and \mathbf{G}_E . In \mathbf{G} , we have the "incidence" subvariety \mathcal{I} parametrizing the points where $(R_F)_{\mathbf{G}} \subset (R_E)_{\mathbf{G}}$. We define a locus $W \subset \mathcal{I} \subset \mathbf{G}$ as the subscheme of zeros of the composite morphism:

$$(R_F)_{\mathcal{I}} \hookrightarrow F_{\mathcal{I}} \xrightarrow{\varphi_{\mathcal{I}}} E_{\mathcal{I}}^{\vee} \twoheadrightarrow (R_E^{\vee})_{\mathcal{I}}.$$

Let $D = D_{2p}(\varphi)$. We have $\pi(W) = D$. Indeed, if $w \in W$ then the matrix of φ over $\pi(w)$ has the upper left $(e - p) \times (f - p)$ rectangle consisting of zeros and every (2p + 1)-order minor of such a matrix vanishes (use the Laplace expansion w.r.t. the first p + 1 columns).

We want now to get information about the generic fibre $W_x =: \mathcal{F}$ of $\pi|_W$ like that in Theorem 1. Let $V \subset U$ be vector spaces of dimensions f and e respectively. Let $\phi: V \to U^{\vee}$ be a morphism coming from a section of $V^{\vee} \lor U^{\vee}$ (resp. $V^{\vee} \land U^{\vee}$).

h

Since we are interested in a regular point ϕ in the space of homomorphisms of rank $\leq 2p$, we assume that rank $\phi = 2p$. Then the fibre \mathcal{F} over ϕ is identified with

$$\{(L,M)\in I\mid p_{M^{\vee}}\circ\phi\circ i_L=0\},\$$

where $I = \{(L, M) \in G_{f-p}(V) \times G_{e-p}(U) | L \subset M\}$ and $i_L : L \hookrightarrow V$ and $p_{M^{\vee}} : U^{\vee} \to M^{\vee}$ are the canonical maps. We claim that the dimension of \mathcal{F} is equal to p(p-1)/2 (resp. p(p+1)/2) and thus it does not depend on f and e). This can be calculated by applying our construction to X being the affine space $Spec S^{\bullet}(V \vee U)$ (resp. $Spec S^{\bullet}(V \wedge U)$), endowed with the tautological homomorphism. In this case, looking at local coordinates, one easily checks that $W \subset \mathcal{I}$ is a locally complete intersection of codimension equal to the rank of $R_F \vee R_E$ (resp. $R_F \wedge R_E$). Thus knowing the dimension of W, we get $\dim \mathcal{F} = \dim W - \dim D_r(\varphi) = p(p-1)/2$ (resp. $\dim \mathcal{F} = p(p+1)/2$).

The following very simple fact is helpful to find the class \mathbf{g} satisfying the requirements of Theorem 1.

Lemma 2. Let $i: Y' \hookrightarrow Y$ be a closed embedding of smooth varieties, let $X \subset Y$ and $X' \subset Y'$ be two subvarieties such that $i(X') \subset X$ and $\dim X' = \dim X$. Assume that an element $z \in A^*(X)$ satisfies $[X'] \cdot i^*(z) = [point]$ in $A^*(Y')$. Then, $[X] \cdot z = [point]$ in $A^*(Y)$.

Indeed, we have $i_*[X'] = [X]$, and by the projection formula we infer $[point] = i_*([X'] \cdot i^*(z)) = i_*[X'] \cdot z = [X] \cdot z$, as claimed.

In the next proposition and in the following, we use the notation " $s_I(E)$ " for the Schur polynomial of a vector bundle E associated with a sequence of integers I, as defined in [P1,2]. In general, we refer the reader to [P2] for all unexplained here notions an notation concerning partitions and Schur polynomials. In particular, by ρ_p we understand the partition (p, p-1, ..., 1).

Proposition 3. The class $\mathbf{g} = 2^{-p} s_{\rho_{p-1}} ((R_E^{\vee})_{\mathcal{I}})$ (resp. $\mathbf{g} = s_{\rho_p} ((R_E^{\vee})_{\mathcal{I}})$) satisfies the assumption of Theorem 1(ii), with \mathcal{I} playing the role of \mathbf{G} .

Proof. We use the above description of the generic fibre \mathcal{F} as well as the above notation. Moreover, let R denote the tautological rank (e-p) bundle on $G_{e-p}(U)$. 1) Assume first that e = f = 2p so V = U and the corresponding bilinear form is nondegenerate. Then $[\mathcal{F}]$ is evaluated as the top Chern class of the bundle $S^2 R^{\vee}$ (resp. $\Lambda^2(R^{\vee})$). We get by [L] (see also [M, p.48])

$$[\mathcal{F}] = 2^p s_{\rho_p}(R^{\vee}) \qquad (\text{resp. } [\mathcal{F}] = s_{\rho_{p-1}}(R^{\vee})).$$

The assertion now follows by taking the dual Schubert cycles in the Grassmannian $G_p(U)$ (see [F, Chap.14]).

2) Let now 2p < e = f (so again V = U), and let $U' \subset U$ be an inclusion of vector spaces of dimensions 2p and e, respectively. Assume that U is endowed with a symmetric (resp. antisymmetric) form ϕ of rank 2p such that the form $\phi|_{U'}$ is nondegenerate. We now use the lemma with the following data: $Y' = G_p(U')$

and $Y = G_{e-p}(U)$; $i: G_p(U') \hookrightarrow G_{e-p}(U)$ being defined by $L \mapsto L \oplus A$, where $U = U' \oplus A$. Moreover, X and X' are the generic fibres under consideration and $z = 2^{-p} s_{\rho_p}(R^{\vee})$ (resp. $z = s_{\rho_{p-1}}(R^{\vee})$). Then part 1) and the lemma yield the desired assertion.

3) Finally, suppose that f < e and let $U = V \oplus B$, where $\dim B = e - f$. We now apply the lemma to the following embedding:

$$i: (Y' = G_{f-p}(V)) \hookrightarrow (Y = I)$$

where $i(L) = (L, L \oplus B)$. Moreover, X and X' are the generic fibres under consideration and $z = 2^{-p} s_{\rho_p}(R_I^{\vee})$ (resp. $z = s_{\rho_{p-1}}(R_I^{\vee})$). Then part 2) and the lemma yield the desired result. \Box

3. We need the following algebraic identity, where $c_{top}(A)$ denotes the top Chern class of a bundle A.

Proposition 4. If rank E = e and rank F = f, then, with n = e - f,

$$c_{top}(F \lor E) = 2^{f} s_{(e,e-1,\dots,n+2,n+1)} (F - z(E - F))$$

and
$$c_{top}(F \land E) = s_{(e-1,e-2,\dots,n+1,n)} (F - z(E - F)),$$

where z is a (formal) element of rank 1 in the corresponding λ -ring, specialized here with z = -1. More explicitly, one has

$$c_{top}(F \lor E) = 2^f \sum_{I} s_{(e,e-1,\dots,n+2,n+1)/I}(E-F) \ s_{I} \sim (F),$$

where the sum runs over all $I \subset (e, e-1, \ldots, n+2, n+1)$, and a similar expansion holds for $c_{top}(F \wedge E)$.

Proof. We give here the proof of the proposition for the bundle $F \vee E$. By the splitting principle, a (more general) question concerning the total Chern class of $F \vee E$ leads to the calculation of the product:

$$\prod_{\mathbf{i} \leq j} (1 + a_{\mathbf{i}} + a_{j}) \prod_{\mathbf{i},j} (1 + a_{\mathbf{i}} + b_{j}),$$

where, formally, $c(F) = \prod_{i} (1 + a_i)$ and $c(E/F) = \prod_{j} (1 + b_j)$. Using a well-known formula for the resultant (see, e.g., [M, p.59]) and the already quoted formula from [L], this, in turn, is equal to

$$2^{-N} \prod_{i \leq j} \left[(1+2a_i) + (1+2a_j) \right] \prod_{i,j} \left[(1+2a_i) + (1+2b_j) \right]$$
$$= 2^{-N+f} s_{\rho_f}(A^+) s_{(n)f}(A^+ - zB^+)|_{z=-1} ,$$

where $N = rk F \lor E$, $A^+ = (1+2a_1, 1+2a_2, \ldots, 1+2a_f)$, $B^+ = (1+2b_1, \ldots, 1+2b_n)$ and z is a (formal) element of rank 1 in an appropriate λ -ring. By the factorization formula (see, e.g. [M, p.59], we can rewrite the latter expression as:

$$2^{-N+f}s_{(n+f,n+f-1,\ldots,n+1)}(A^+ - zB^+)|_{z=-1},$$

the top-degree component of which gives the desired expression:

$$2^{f}s_{(e,e-1,\ldots,n+1)}(A-zB)|_{z=-1}$$

A computation for the bundle $F \wedge E$ is quite similar. \Box

4. We are now ready to perform the main computation. **Proposition 5.** The following equality holds in $A_*(X)$:

$$\pi_* \Big(c_{top}(R_F^{\vee} \vee R_E^{\vee}) \cdot c_{top}(R_F^{\vee} \otimes Q_E) \cdot 2^{-p} s_{\rho_{p-1}}(R_E^{\vee}) \cap [\mathbb{G}] \Big) \\= 2^{f-2p} s_{(e-2p,e-2p-1,\ldots,n+2,n+1)} \Big(F^{\vee} - z(E^{\vee} - F^{\vee}) \Big) \Big|_{z=-1} \cap [X] \,,$$

and respectively

$$\pi_* \left(c_{top}(R_F^{\vee} \wedge R_E^{\vee}) \cdot c_{top}(R_F^{\vee} \otimes Q_E) \cdot s_{\rho_p}(R_E^{\vee}) \cap [\mathbb{G}] \right)$$
$$= s_{(e-2p-1,e-2p-2,\dots,n+1,n)} \left(F^{\vee} - z(E^{\vee} - F^{\vee}) \right) \Big|_{z=-1} \cap [X],$$

where n = e - f and z has the same meaning as in Proposition 4. Proof. We treat the first case. We have by Proposition 4,

$$\begin{aligned} \pi_* \Big(c_{top}(R_F^{\vee} \vee R_E^{\vee}) \cdot c_{top}(R_F^{\vee} \otimes Q_E) \cdot 2^{-p} s_{\rho_{p-1}}(R_E^{\vee}) \cap [\mathbb{G}] \Big) \\ &= 2^{f-2p} \pi_* \Big(\Big[s_{(e-p,e-p-1,\ldots,n+2,n+1)} \Big(R_F^{\vee} - z(R_E^{\vee} - R_F^{\vee}) \Big) \\ &\quad \cdot s_{(f-p)^p}(Q_E - R_F) \cdot s_{\rho_{p-1}}(R_E^{\vee}) \Big]_{z=-1} \cap [\mathbb{G}] \Big). \end{aligned}$$

In the sequel we will denote the partition $(e - p, e - p - 1, \ldots, n + 2, n + 1)$ by T. Now using the addition/linearity formula, duality formula (see [M, p.72 and p.90]) and the following equality: $[R_E^{\vee}] - [R_F^{\vee}] = [E^{\vee}] - [F^{\vee}]$ in the Grothendieck group of \mathcal{I} (where here, and in the following, we omit the pulback indices, for brevity), we rewrite the latter expression in the form:

$$2^{f-2p} \pi_* \Big(\Big[\sum_I s_{T/I} (E^{\vee} - F^{\vee}) s_{I^{\sim}} (R_F^{\vee}) s_{(p)^{f-p}} (R_F^{\vee} - Q_E^{\vee}) s_{\rho_{p-1}} (R_E^{\vee}) \Big] \cap [\mathbb{G}] \Big)$$

= $2^{f-2p} \sum_I s_{T/I} (E^{\vee} - F^{\vee}) \cap (\pi_E)_* \Big(\Big[s_{\rho_{p-1}} R_E^{\vee} \cdot (\pi_F \times 1)_* s_{(p)^{f-p}+I^{\sim}} (R_F^{\vee} - Q_E^{\vee}) \Big] \cap [\mathbb{G}_E] \Big)$
= $2^{f-2p} \sum_I s_{T/I} (E^{\vee} - F^{\vee}) \cap (\pi_E)_* \Big(\Big[s_{\rho_{p-1}} (R_E^{\vee}) s_{I^{\sim}} (F^{\vee} - Q_E^{\vee}) \Big] \cap [\mathbb{G}_E] \Big),$

where we have used the factorization formula quoted above and, e.g., [P2, Proposition 1.3] w.r.t. π_F . The latter expression can be rewritten with the help of the addition/linearity formula (quoted above) as follows:

$$2^{f-2p} \sum_{I} \sum_{J} s_{T/I}(E^{\vee} - F^{\vee}) \, s_{I^{\sim}/J}(F^{\vee}) \cap (\pi_{E})_{*} \Big(\Big[s_{\rho_{p-1}}(R_{E}^{\vee}) \cdot s_{J}(-Q_{E}^{\vee}) \Big] \cap [\mathbb{G}_{E}] \Big).$$

Now, using [J-L-P, Proposition 1], we see that, in the above sum, there is only one partition J giving a non zero contribution while applying $(\pi_E)_*$: this is the partition $J = (p)^{e-p}/\rho_{p-1} = (p, \ldots, p, p-1, \ldots, 1)$ ("p" occurs e - 2p + 1 times). Hence this sum equals:

$$2^{f-2p} \sum_{I} s_{(e-p,e-p-1,\dots,n+1)/I} (E^{\vee} - F^{\vee}) s_{(I/(e-p,e-p-1,\dots,e-2p+1))} (F^{\vee}) \cap [X]$$

= $2^{f-2p} \sum_{K} s_{(e-2p,e-2p-1,\dots,n+1)/K} (E^{\vee} - F^{\vee}) s_{K^{\sim}} (F^{\vee}) \cap [X],$

where the latter sum runs over all $K \subset (e - 2p, e - 2p - 1, ..., n + 1)$. (Partitions I indexing the former sum are related to partitions $K = (k_1, k_2, ...)$ indexing the latter via the equality $I = (e - p, e - p - 1, ..., e - 2p + 1, k_1, k_2, ...)$.) The latter expression is rewritten in the form:

$$2^{f-2p}s_{(e-2p,e-2p-1,\ldots,n+2,n+1)} (F^{\vee} - z(E^{\vee} - F^{\vee})) \Big|_{z=-1} \cap [X],$$

as desired.

The second case is treated in an analogous way. \Box

5. Here comes the main result.

Theorem 6. If X is a pure-dimensional Cohen Macaulay scheme and $D_r(\varphi)$ is of expected pure codimension c or empty, then, in the " \lor -case", one has the equality:

$$[D_r(\varphi)] = 2^{f-r} s_{(e-r,e-r-1,\dots,n+2,n+1)} (F^{\vee} - z(E^{\vee} - F^{\vee})) \Big|_{z=-1} \cap [X].$$

and, in the " \land -case", the following equality holds:

$$[D_r(\varphi)] = s_{(e-r-1,e-r-2,\ldots,n+1,n)} (F^{\vee} - z(E^{\vee} - F^{\vee})) \Big|_{z=-1} \cap [X].$$

Proof. We pass to the "generic case". For a given morphism $\varphi : F \to E^{\vee}$ of one of the two considered types, we define $\overline{X} =: Spec \ S^{\bullet}(F \vee E)$ (resp. $\overline{X} =:$ $Spec \ S^{\bullet}(F \wedge E)$). Observe that φ induces a section $s : X \to \overline{X}$. On the other hand, there exists the tautological bundle homomorphism $\overline{\varphi} : \mathbb{F} \to \mathbb{E}^{\vee}$ where $\mathbb{F} = F_{\overline{X}}$, $\mathbb{E} = E_{\overline{X}}$ such that $s^*(\overline{\varphi}) = \varphi$. If X is Cohen-Macaulay, then so is $D_r(\overline{\varphi})$ (cf. [DC-L]). Hence, if $D_r(\varphi)$ is of pure codimension c in X, then by [F, Sect.6 and 7], we get $[D_r(\varphi)] = s^*[D_r(\overline{\varphi})]$. Now for $D_r(\overline{\varphi}) \subset \overline{X}$ and r = 2p we can apply Theorem 1 to the above W; the role of **G** is now played by \mathcal{I} and the class **g** is given in Proposition 3. Applying the formula of Theorem 1 leads to the calculation performed in Proposition 5 where, however, we have "shifted" the computation from the bundle $\mathcal{I} \to X$ to the bundle $\pi : \mathbb{G} \to X$. This proves the theorem for even values of r.

We compute now the class of $D_r(\varphi)$ with an odd r (in the " \lor -case"). Namely, consider the following morphism $\varphi' = \varphi \oplus \mathbf{1} : F \oplus \mathbf{1} \to (E \oplus \mathbf{1})^{\lor}$ of vector bundles on X. Then the ideals defined by the minors of φ and φ' of respective orders 2p - 1 and 2p are equal. In particular, the codimension of $D_{2p}(\varphi')$ is expected. Hence

$$\begin{aligned} [D_{2p-1}(\varphi)] &= [D_{2p}(\varphi')] \\ &= 2^{f+1-2p} s_{(e+1-2p,e+1-2p-1,\dots,n+1)} \Big((F^{\vee} \oplus \mathbf{1}) - z(E^{\vee} - F^{\vee}) \Big) \Big|_{z=-1} \cap [X] \\ &= 2^{f-(2p-1)} s_{(e-(2p-1),e-2p,\dots,n+1)} \Big(F^{\vee} - z(E^{\vee} - F^{\vee}) \Big) \Big|_{z=-1} \cap [X] \end{aligned}$$

by the addition/linearity formula quoted above.

The proof of the theorem is complete. \Box

Remark 7. (Revision and corrigenda to [P1].) Theorem 1 gives an improvement of [P1, Sect.2]. The class "g" in Theorem 1 corresponds to the class " \mathbf{F}^{d} " in [P1, Proposition 2.1]. The assumptions on g in Theorem 1 straighten an unprecise expression "the Poincaré dual of" from 5⁰ in [P1, Proposition 2.1]. As a matter of fact, it was proved in [P1, Sect.3] that the classes \mathbf{F}^{d} choosen in loc.cit., satisfy the assumptions imposed on the class g in Theorem 1; thus the computation in loc.cit. is complete. Moreover, the reference "Lemma 9 in [10]" on p.196 should be replaced by "[2, Sect.6 and 7]".

Acknowledgment. We thank Bill Fulton for a helfpful discussion concerning Theorem 1.

References

- [Bo] M. Bottaso, Sur une classe de variétés engendrées par des systemes linéaires projectives d'hypersurfaces, Annaes Scientificas du Academia Polytechnica de Porto 4 (1908), 194-205.
- [DC-L] C. De Concini, V. Lakshmibai, Arithmetic Cohen-Macaulayness and arithmetic normality of Schubert varieties, Amer. J. Math. 103 (1981), 835-850.
- [F] W. Fulton, Intersection Theory, Springer-Verlag, 1984.
- [H-T] J. Harris, L. Tu, On symmetric and skew-symmetric determinantal varieties, Topology 23 (1984), 71-84.
- [J-L-P] T. Józefiak, A. Lascoux, P. Pragacz, Classes of determinantal varieties associated with symmetric and antisymmetric matrices (in Russian), Izwiestja AN SSSR 45 (1981), 662-673.
- [L] A. Lascoux, Classes de Chern d'un produit tensoriel, C. R. Acad. Sci. Paris 286 (1978), 385-387.
- [M] I.G. Macdonald, Symmetric functions and Hall polynomials, Second edition, Oxford University Press, 1995.
- [P1] P. Pragacz, Cycles of isotropic subspaces and formulas for symmetric degeneracy loci, in "Topics in Algebra", Banach Center Publications (S. Balcerzyk et al. eds.) 26(2) (1990), 189-199.
- [P2] P. Pragacz, Symmetric polynomials and divided differences in formulas of intersection theory, in "Parameter Spaces", Banach Center Publications 36 (1996), 125-177.