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0. The goal of the present note is to give new explicit formulas for the fun-
damental classes of degeneracy loci associated with the following vector bundles
homomorphisms.

For a given pair B C A of vector bundles, we denote by BV A (resp. B A A)
the image of the canonical composition B A - A® A —+ S?A (resp. B A —
A® A - A2(A)).

Let now FVY C EV be two vector bundles of ranks f and e over a scheme X over
a field K. Let ¢ : F = EV be a morphism coming from a section of F¥ VvV EV (resp.
FY A EV). Suppose that an integer 0 < r € f is given. In this note, we describe
the fundamental classes of the loci D, (p) = {z € X : rank ¢(z) < r} with the help
of some explicitly given polynomials in the Chern classes of £ and F.

When E = F, our formulas specialize to the ones given in [J-L-P], [H-T] and
[P1].

When F = @le O(n;), E= @{=1 O(n;) + @j;{ O(m;) are two vector bun-
dles over a projective space, some formulas for the degree of the above degeneracy
loci were established by Bottaso in [Bo] by different tools. The present paper offers
a modern version and a “compact” generalization of the results of [Bo].

The method used follows the second author’s paper [P1] and relies on the tech-
nique of “constructions with a nontrivial generic fiber” invented in Section 2 of loc.
cit. This method is recalled in Theorem 1, where, in fact, an improvement of [P1,
Section 2] is presented.

1. The most popular method to compute the fundamental class of a subscheme
D ¢ X tries to find a scheme X’ mapping properly to X, on which one has a
locus Z that maps birationally onto D and for which one can compute its class [Z].
Usually this is because [Z] is the zero locus of a section of some bundle whose rank
is equal to codimx: Z so the class [Z] is evaluated to be the top Chern class of the
bundle. For example, this pattern was used in [J-L-P] and many other papers (see

[FD)-

To compute the fundamental classes of subvarieties, one can also use appropriate
geometric constructions with a nontrivial generic fibre. This method was invented
in [P1] in order to give a short proof of the formulas from [J-L-P] and [H-T], and
is summarized and improved in the following simple theorem. In this theorem, we
may assume that the Chow groups have rational coefficients. We follow [F] for all
needed notions and notation from intersection theory.
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Theorem 1. Let D be an irreducible (closed) subscheme of a scheme X. Let
7 : G = X be a proper morphism of schemes and W be a (closed) subscheme of G
such that 1(W) = D. We have the following two instances:

(i) Suppose that G is smooth. Assume that there exists

8 € AdimG+dimD—dimw (G)
and a point z in the smooth locus of D such that in A,(G;), where G is the fibre

of m over z, one has:
iz(8) - W] = [point].

Here, W is the fibre of W over z and 1, : G; — G s the inclusion. Then the
following equality holds in A, (X):

[D] = m.(g - [W])-

(i) Suppose that there exists a family of vector bundles {E{V} on G and g =
P({c.(E)}) - a homogeneous polynomial of degree dimW — dimD in the Chern
classes of {E(®)} (deg c;(E(®)) = i) with rational coefficients, such that in A,(G.),

P({c.(iE@)}) N [Wa] = [point],
where z, Gy, Wy and iz are as above. Then the following equality holds in A, (X) :

[D] = m.(g N [W]).
Proof. (i) Using a standard dimension argument, we can replace, in the assertion,
D by its smooth part, i.e., we can assume D is smooth. Write Gp = G xx D,

Wp =W xx D, n:Gp — D the projection induced by 7, and k : Gp — G - the
inclusion. Then, the assertion is a consequence of the following identity in A,(D):

. (k*(g) - [Wp]) = [D].
To prove the latter equation, we first remark that the assumptions imply
n. (k*(g) - [Wp]) = m[D],

where m € Z. Let  be a point in D and consider the fibre square:
G, < Gp
| K
{z} < D
Using the assumptions on g and [F, Theorem 6.2], we have
i*n. (k" (&) - Wp)) = p. (5 (K (&) - W)
pu(iz(8) - [Wa]) = pu ([point]) = [point]



This implies m = 1 and assertion (i) is proved.
The proof of (ii) is essentially the same. O

Using this method, we now generalize the formulas from {J-L-P], [H-T] and [P1]
to a wider class of degeneracy loci including, in the case of matrices of homogeneous
forms, those studied in [Bo].

2. We follow the notation from Section 0. In the definition of the loci D, ()
in the “A-case”, we assume 7 to be even. A proper scheme structure on D, ()
is defined with the help of Schubert subschemes in Lagrangian (resp. orthogonal)
Grassmannians. Let V C U be vector spaces of dimensions f and e respectively.
Let X = Spec S*(V v U) (resp. X = Spec S*(V AU) ). In this situation, there
exists a tautological morphism ¢ : F = Vx — (F = Ux)Y. For such a ¢, D, (@) is
the restriction to the “opposite big cell”, of an appropriate Schubert variety in the
Lagrangian (resp. orthogonal) Grassmannian of f-dimensional isotropic subspaces
in K2¢. Hence, by results of [DC-L], D,(p) is irreducible, normal and Cohen-
Macaulay; moreover its codimension ¢ equals

(e-NF—r)+(F—n)(f —r+1)/2 (resp. (e = f)(f =)+ ([ - r)(f -7 = 1)/2).

In general, D,.(¢) can be obtained similarly as the scheme theoretic preimage of an
open subset of a Schubert variety of a Lagrangian (resp. orthogonal) Grassmannian
bundle. We omit the details of this fairly standard procedure. In the “V-case” the
reduced scheme structure on D,(p) is defined by the ideal generated locally by
(r + 1)-order minors of ¢.

We now describe a certain geometric construction associated with . Let p be
a natural number such that 2p < f and let 7p : Gp = Gj_p(F) - X, 75 : Gg =
Ge-p(E) = X be the Grassmannian bundles paramectrizing (f — p)-subbundles of
F and (e — p)-subbundles of E respectively. Consider the fibre product

W:G=GFXX(GE - X.

Let 0 & Rp — Fg, = Qr — 0and 0 - Rg — Eg, — Qg — 0 be two tauto-
logical sequences of vector bundles on Gz and Gg. In G, we have the “incidence”
subvariety T parametrizing the points where (Rp)g C (Rg)g. We define a locus
W CcZ C G as the subscheme of zeros of the composite morphism:

RFI“-}FI—'E—}EV—» R}, T.
z B

Let D = Dy,(p). We have (W) = D. Indeed, if w € W then the matrix of ¢ over
m(w) has the upper left (e — p) x (f — p) rectangle consisting of zeros and every
(2p + 1)-order minor of such a matrix vanishes (use the Laplace expansion w.r.t.
the first p 4+ 1 columns).

We want now to get information about the generic fibre W, =: F of 7r|w like
that in Theorem 1. Let V C U be vector spaces of dimensions f and e respectively.
Let ¢ : V — UV be a morphism coming from a section of V¥V UV (resp. VYV AUVY).
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Since we are interested in a regular point ¢ in the space of homomorphisms of rank
< 2p, we assume that rank ¢ = 2p. Then the fibre F over ¢ is identified with

{(L,M) EIl PMY O oty =0},

where I = {(L,M) € Gy_p(V) X Ge—p(U)| L C M} and ig : L — V and ppyv :
UY — MY are the canonical maps. We claim that the dimension of F is equal to
p(p—1)/2 (resp. p(p+1)/2) and thus it does not depend on f and e). This can be
calculated by applying our construction to X being the affine space Spec S*(V v U)
(resp. Spec S*(V AU)), endowed with the tautological homomorphism. In this case,
looking at local coordinates, one easily checks that W C Z is a locally complete
intersection of codimension equal to the rank of Rp V Rg (resp. Rp A Rg). Thus
knowing the dimension of W, we get dimF = dimW — dim D, (¢) = p(p — 1)/2
(resp. dimF = p(p+1)/2).

The following very simple fact is helpful to find the class g satisfying the require-
ments of Theorem 1.

Lemma 2. Leti:Y' — Y be a closed embedding of smooth varieties, let X C Y
and X' C Y’ be two subvarieties such that i(X') C X and dim X' = dimX .
Assume that an element z € A*(X) satisfies [X']-i*(z) = [point] in A*(Y'). Then,
[X] - z = [point] in A*(Y).

Indeed, we have 4,[X’] = [X], and by the projection formula we infer [point] =
i ([X] 3" (2)) = 0.[X'] 2 = [X] - 2, as claimed.

In the next proposition and in the following, we use the notation “sy(E)” for the
Schur polynomial of a vector bundle F associated with a sequence of integers I, as
defined in [P1,2]. In general, we refer the reader to [P2] for all unexplained here
notions an notation concerning partitions and Schur polynomials. In particular, by
pp we understand the partition (p,p —1,...,1).

Proposition 3. The classg = 2775, _, ((R})z) (resp. g = s,, (R%)z1)) satisfies
the assumption of Theorem 1(ii), with T playing the role of G.

Proof. We use the above description of the generic fibre F as well as the above
notation. Moreover, let R denote the tautological rank (e —p) bundle on Ge_,(U).
1) Assume first that e = f = 2p so V = U and the corresponding bilinear form is

nondegenerate. Then [F] is evaluated as the top Chern class of the bundle S2RY
(resp. A2(RY) ). We get by [I] (see also [M, p.48))

[F] =275, (RY)  (vesp. [F] = s, (RY) ).

The assertion now follows by taking the dual Schubert cycles in the Grassmannian
G,(U) (see [F, Chap.14]).

2) Let now 2p < e = f (so again V = U), and let U’ C U be an inclusion of
vector spaces of dimensions 2p and e, respectively. Assume that U is endowed
with a symmetric (resp. antisymmetric) form ¢ of rank 2p such that the form ¢|U,
is nondegenerate. We now use the lemma with the following data: Y’ = G,(U’)
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and Y = Ge_p(U); i : Gp(U') = Ge—p(U) being defined by L — L& A, where
U=U"& A. Moreover, X and X’ are the generic fibres under consideration and
z =27Ps, (RY) (resp. 2z = s, _,(RY) ). Then part 1) and the lemma yield the
desired assertion.

3) Finally, suppose that f < e and let U = V @& B, where dim B = e — f. We now
apply the lemma to the following embedding:

(Y = Gy V) o (v = 1)

where (L)} = (L, L&®B). Moreover, X and X' are the generic fibres under consid-
eration and z = 27Ps, (RY) (resp. z=s, _,(R}) ). Then part 2) and the lemma
yield the desired result. [

3. We need the following algebraic identity, where cm,,(A) denotes the top Chern
class of a bundle A.

Proposition 4. If rank £ = ¢ and rank F = f, then, withn =¢ — f,
Ctop(F Vv E) = 2fs(e,e—l,...,11-|--2,n~{-—1) (F - Z(E - F))
and  Ciop(F AE) = S(e—1,e—2, . ni1,m)(F — 2(E — F)),

where z is a (formal) element of rank 1 in the corresponding A-ring, specialized here
with z = —1. More explicitly, one has

Ctop(F \Y E) = 2f ZS(e‘e—l,...,n+2,r:+1)/I(E - F) Sy~ (F)’
I

where the sum runs over all I C (e,e—1,... ,n+2,n+1), and a similar expansion
holds for ciop(F A E).

Proof. We give here the proof of the proposition for the bundle F VvV E. By the
splitting principle, a (more general) question concerning the total Chern class of
F v F leads to the calculation of the product:

H(l +a; + aj) H(l + a; + f)j),
iy 2%

where, formally, ¢(F) = [[(1 + a;) and ¢(E/F) = [[(1 + b;). Using a well-known

H 7
formula for the resultant (see, e.g., [M, p.59]) and the already quoted formula from

[L], this, in turn, is equal to

27N TT I+ 2a0) + (14 2a5)) [T (1 + 2a4) + (1 + 25)]
i<y 1,7
= 2—N+f3pf (A+) S(n)f(A+ — ZB+)|z=—1 )

where N = rk FVE, AT = (1+2ay,142a2,... ,142a5), Bt = (14+2by,...,1+2b,)
and z is a (formal) element of rank 1 in an appropriate A-ring. By the factorization
formula (see, e.g. [M, p.59], we can rewrite the latter expression as:



2—N+fs(n+f.n+f—1,... ,n+1)(A+ - ZB+)|2=—1a

the top-degree component of which gives the desired expression:

2f3(e,e-1,...,n+l)(A - ZB)|z=—l-
A computation for the bundle F' A E is quite similar. O

4. We are now ready to perform the main computation.

Proposition 5. The following equality holds in A,(X):

7. (crop(R¥. V RY,) - cuop(RY- ® Q) - 2775,,_, (%) N [G])

= 2f_2p5(e—2p,e—2p—1,.-. n+2,n4+1) (Fv - Z(EV - Fv)) |z=—1 n [X] !
and respectively
T a (Ctop (R} A RE') N Ctop (R}f‘ ® QE) ) spp (RE') N [G])
= S(e—?p—l,e—2p—2,...,n+1,n) (FV - Z(El\ir - FV)) |z=-1 N [X]a

where n = e ~ f and 2z has the same meaning as in Proposition 4.
Proof. We treat the first case. We have by Proposition 4,

7o (Ceap(REV RY) - ciop(RY ® QE)-277s,,, (1) 1 [6])

= 2f—2p Ty ([S(B—p,e-—p—l,... n42,n+1) (R} - Z(RE - R%))

(- (@ = RF) - 5, (BY)],__, N[G]).
In the sequel we will denote the partition (e —p,e—p—1,... ,n+2,n+1) by T.
Now using the addition/linearity formula, duality formula (see [M, p.72 and p.90])
and the following equality: [RY%] — [R}] = {EVY] = [F] in the Grothendieck group

of Z (where here, and in the following, we omit the pulback indices, for brevity), we
rewrite the latter expression in the form:

/-2, ([Z,: st/ (BY = FV) 31~ (R) s> (10 = Q) 55,, ()] N [6))

=2f~% Z st/1(BY=FYYN(7E)« ( (86,1 RE (TP X1)a8 () =p 41~ (R§_QE)]H[GE])
1

= 2}'-21); ST/I(EV — Fv) N (WE)*([Spp-1(RE) Sr~ (Fv - Q\é)] n [GE])’
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where we have used the factorization formula quoted above and, e.g., [P2, Propo-
sition 1.3] w.r.t. 7p. The latter expression can be rewritten with the help of the
addition/linearity formula (quoted above) as follows:

207NN " sry(BY = FY) 1~y 5 (FY) N (). ([Spp—l (RE) - sy (-QE)] N [GE])'
i J

Now, using [J-L-P, Proposition 1], we see that, in the above sum, there is only
one partition J giving a non zero contribution while applying (7g).: this is the
partition J = (p)¢"?/pp—1 = (p,...,p,p—1,...,1) (“p” occurs e — 2p + 1 times).
Hence this sum equals:

27D Stepiepmt i1 (B = FY)s( )~ (F¥) N [X]
I

I/(e—=p,e~p—1,...,e—2p+1)

=217 " s ape—2p-1,.. ni1y/ K (EY = F¥) sk~ (FY) N [X],
K

where the latter sum runs over all K C (e — 2p,e —2p—1,... ,n+ 1). (Partitions
I indexing the former sum are related to partitions K = (kq, ke, ...) indexing the
latter via the equality I = (e —p,e—p~1,...,e~2p+ 1,k1, ks,...).) The latter
expression is rewritten in the form:

2f_2ps(e—2p'e—2p—l,... nt+2,n+1) (FV - z2(EY - Fv))| N [X],

z=-—1

as desired.
The second case is treated in an analogous way. [

5. Here comes the main result.

Theorem 6. If X is a pure-dimensional Cohen Macaulay scheme and D, (yp) is of
expected pure codimension ¢ or empty, then, in the “V-case”, one has the equality:

[Dr((p)] = 2f_rs(e—r,e—r—l,... n+2,n+1) (FV - Z(Ev - FV)) |,_=_1 N [X]a
and, in the “A-case”, the following equality holds:

[Dr(@)] = 3(8-’:‘115-7’_2:“- n+1,n) (Fv - Z(EV - FV)) |z=—1 n [X]

Proof. We pass to the “generic case”. For a given morphism ¢ : F — EY of
one of the two considered types, we define X =: Spec S*(F V E) (resp. X =:
Spec S*(FAE)). Observe that ¢ induces a section s : X — X . On the other hand,
there exists the tautological bundle homomorphism @ : F — EY where F = Fy,
E = FEwsuch that s*(@) = ¢. If X is Cohen-Macaulay, then so is D, (@) (cf.
[DC-L]). Hence, if D,(p) is of pure codimension ¢ in X, then by [F, Sect.6 and
7], we get [Dy(9)] = s*[D.(®)]. Now for D,.(p) C X and r = 2p we can apply
Theorem 1 to the above W; the role of G is now played by Z and the class g is
given in Proposition 3. Applying the formula of Theorem 1 leads to the calculation



performed in Proposition 5 where, however, we have “shifted” the computation
from the bundle Z — X to the bundle = : G — X. This proves the theorem for
even values of r.

We compute now the class of D, () with an odd = (in the “v-case”). Namely,
consider the following morphism ¢’ = ¢ @1 : F®1 — (E®1)Y of vector bundles on
X . Then the ideals defined by the minors of ¢ and ¢’ of respective orders 2p — 1
and 2p are equal. In particular, the codimension of Dq,(¢’) is expected. Hence

[D2p-1(9)] = [Di’-p(ﬁo’)]
= 2f+1_2p3(e+1—2p,e+1—2p—1,... n+1) ((Fv ®1) - 2(EY - FV))

= 2f_(2p_1)3(6—(2p—1),e—2p,... n+1) (FV - Z(EV i Fv))

by the addition/linearity formula quoted above.

The proof of the theorem is complete. O

Remark 7. (Revision and corrigenda to [P1].) Theorem 1 gives an improvement
of [P1, Sect.2]. The class “g” in Theorem 1 corresponds to the class “F in [P1,
Proposition 2.1]. The assumptions on g in Theorem 1 straighten an unprecise
expression “the Poincaré dual of” from 5% in [P1, Proposition 2.1]. As a matter
of fact, it was proved in [P1, Sect.3) that the classes F4 choosen in loc.cit., satisfy
the assumptions imposed on the class g in Theorem 1; thus the computation in
loc.cit. is complete. Moreover, the reference “Lemma 9 in [10])” on p.196 should be
replaced by “[2, Sect.6 and 7).

Acknowledgment. We thank Bill Fulton for a helfpful discussion concerning
Theorem 1.
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