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o. The goal of the present note is to give new cxplicit fonnulas for the fun­
damental classes of degeneracy loci associated with the following vector bundles
homomorphisms.

For a given pair B c A of vector bundles, we denote by B V A (resp. B 1\ A)
the image of the canonical composition B ~ A -t A ~ A ---# 8 2 A (resp. B ® A -+
A ~ A ---# A2 (A)).

Let now F V c E V be two vector bundles of ranks fand e ovcr a scheme X over
a field K. Let Ip : F -t E V be a morphism cOlning frOlll a seetioD of F V V E V (resp.
F V 1\ E V

). Suppose that an integer 0 ~ r ~ f is given. In this note, we describe
the fundamental classes ofthe loci Dr(lp) = {x EX: rank Ip(x) ~ r} with the help
of some explicitly given polynomials in the Chern classes of E anel F.

When E = F, our fonnulas specialize to thc oncs givcn in [.J-L-P], [H-T] and
[PI].

When F = EB{=l O(ni) , E == EB{=l O(ni) + El7j:{ O(1nj) are two vector blln­
dIes over a projectivc spacc, sonle formllIas for the dcgTee of thc abovc degeneracy
loci were established by Bottaso in [Bo] by different tools. The present paper offers
a modern version and a "eompact" generalization of thc rcsults of [Bo].

The method used follows the seeond author's paper [PI] and relies on the tech­
nique of "eonstructions with a nontrivial generie fiber" invented in Section 2 of loc.
cit. This lnethod is recalled in Theorem 1, whcre, in fact, an inlprovement of [PI,
Section 2] is presented.

1. The Inost popular method to eompllte thc fund;unental dass of a subschenlc
D c X tries to find a scheme X' nlapping properly to X, on which onc has a
locus Z that maps birationally onto D and for which one can COl1lpute its class (Z].
Usually this is because [Z] is thc zero locus of a section of SOUle bundle whose rank
is equal to codimxl Z so the class [Z] is evaluatcd to be the top Chern class of the
bundlc. For exalnple, this pattern was used in [.J-L-P] and many othcr papers (see
(F]).

To compute the fundamental classes of subvaricties, one can also usc appropriate
geometrie constructions with a nontrivial generic fibre. This method was invented
in [PI] in order to give a short proof of thc fonnulas from [J-L-P] and [H-T], and
is summarized and inlproved in the following silnple theoreln. In this theorem, we
may assume that the Chow groups have rational coefficients. Wc follow [F] for all
needed notions and notation frorn intcrseetion theory.
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Theorem 1. Let D be an irreducible (closed) subscheme of a scheme X. Let
'lr : G -t X be a proper morphism of schemes and W be a (closed) subscheme 0/ G
such that 'lr(W) = D. We have the following two instances:
(i) Suppose that G is smooth. Assume that thcre exists

g E AdimG+dimD-dimW(G)

and a point x in the smooth locus 0/ D such that in A* (G x ), where G x is the fibre
0/1T over x, one has:

i~ (g) . [WxJ = [point].

Bere, Wx is the fibre 0/ W over x and ix : G x Y G is the inclusion. Then the
lollowing equality holds in A* (X) :

[D] = 'lr*(g. [W]).

(ii) Suppose that there exists a fal1tily of vector bundles {E(o)} on G and g =
p ({ c. (E (a) ) }) - a homogeneous polynomial 0f degree di7nW - dimD in the ehern

classes 01 {E(a)} (deg Ci (E(O:)) = i) with rational coefficients, such that in A* (Gx) ,

where x, G x , W x and i x are as above. Then the /ollowing equality holds in A*(X) :

[D] = 'lr*(g n [W]).

Proo/. (i) Using a standard dimension argulllent, we can replace, in the assertion,
D by its smooth part, i.e., we cau assume D is smooth. Writc GD = G Xx D,
WD = W Xx D, 1] : GD -t D the projection incIuced by 'lr, ancI k : GD -t G - the
inclusion. Then, the assertion is a consequence of the following identity in A*(D):

71* (k*(g) . [WD]) = [D].

To prove the latter equation, we first rernark that thc assumptions imply

17* (k*(g) . [WD ]) = m[D],

where mEZ. Let x bc a point in D and consider thc fibre square:

{x}
i
~ D

Using the assumptions on g and [F, Theorem 6.2], wc have

i*r,*(k*(g). [WD]) =p*(j*(k*(g). [WDJ))

= p* (i: (g) . [Wx ]) = p* ([point]) = [point]
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This implies m = 1 and assertion (i) is proved.

The proof of (ii) is cssentially the same. D

Using this method, we now generalize the fonnulas froln [.J-L-P], [H-T] and [PI]
to a wider class of degeneracy Iod including, in the case of Inatriees of hOInogeneous
forms, those studied in [Bo].

2. We follow the notation from Section O. In the definition of the Iod Dr('P)
in the "I\-ease", we assurne r to be even. A proper seheme strueture on D r (<p)
is defined with the help of Sehubert subschemes in Lagrangian (resp. orthogonal)
Grassmannians. Let V C U be veetor spaces of diInensions 1 and e respeetively.
Let X = Spec S·(V V U) (resp. X = Spec S·(V 1\ U) ). In this situation, there
exists a tautologieal morphism c.p : F = VX -+ (E = Ux )v. For such a <p, D r ( c.p) is
the restrietion to the "opposite big cell" l of an appropriate Sehubert variety in the
Lagrangian (resp. orthogonal) Grassmannian of l-diInensional isotropie subspaces
in K 2e . Henee, by results of [DC-L], Dr(c.p) is irreelucible, norrnal and Cohen­
Maeaulay; moreover its codimension c eqllals

(e - I)(f - r) + (f - r)(1 - r + 1)/2 (resp. (e - I)(f - 1') + (f - r)(f - r - 1)/2).

In general, D,.(tp) can be obtained similarly as the scheme theoretic preimage of an
open subset of a Schubert variety of a Lagrangian (resp. orthogonal) Grassmannian
bllndle. We omit thc details of this fairly standard proccdurc. In the "V-case" thc
reduced schenIe strueture on Dr(c.p) is defined by the ideal generated locally by
(r + 1)-order Ininors of c.p.

We now describe a certain geometrie constrnction associated with c.p. Let p be
a natural number such that 2p ~ fand let 7rp : Gp = G i-p(F) -+ X, 7rE : GE =
Ge-p(E) -+ X be the GrassInannian bundles paranlctrizing (f - p)-sllbbundles of
Fand (e - p)-subbundles of E respectively. Consider thc fibre product

7r : G = Gp Xx GE -+ X .

Let 0 -+ RF -+ FGF -+ QP -+ 0 anel 0 -+ RE -+ EGE -+ QE -+ 0 be two tauto­
logieal sequences of vector bundles on Gp anel GE. In G, we have the l'incielence"
subvariety I paraInetrizing the points where (RF)G c (RE)G. We define a locus
W eIe G as the subscheIne of zeros of thc composite rnorphisn1:

Let D = D2p (<p). We have 7r(W) = D. Indeed, if w E W then thc Inatrix of c.p over
'Ir ( w) has the upper left (e - p) x (f - p) rectangle consisting of zeros and every
(2p + l)-order minor of such a matrix vanishcs (usc thc Laplace expansion w.r.t.
the first p + 1 columns).

We want now to get information about the generic fibrc W:r, =: :F of 'lrl w like
that in Theorem 1. Let V c U be vector spaces of dirnensions fand e respectively.
Let 4J : V -+ UV be a morphism coming from a scction of VV VUV (rcsp. VV I\UV

).
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Since we are interested in a regular point 4> in the space of homoIllorphisms of rank
~ 2p, we assume that rank 4> = 2p. Then the fibre :F over 4> is identified with

{(L,M) E I I PMV 0 4>oiL = Oll

where 1= {(L,M) E Gf-p(V) x Ge-p(U)1 L c M} and iL: L Y V and PMV
UV ---* MV are thc canonical maps. We clailn that the dimension of :F is equal to
p(p - 1)/2 (resp. p(p + 1)/2) and thus it does not depend on fand e). This can be
calculated by applying our construction to X being thc affine space 8pec S·(VV U)
(resp. Spec S·(V AU)), endowed with the tautological homornorphism. In this case,
looking at local coordinates, one easily checks that W c I is a locally cOlnplete
intersection of codimension equal to the rank of RF V RE (resp. RF ARE)' Thus
knowing the dimension of W, we get dirn F = dirn W - dirn D r (cp) = p(p - 1) /2
(resp. dirnF = p(p + 1)/2).

The following very simple fact is helpful to find the dass g satisfying the require­
ments of Theoreln l.

Lemma 2. Let i : Y' y Y be a closed embedding 01 smooth varieties, let X c Y
and X' c Y' be two subvarieties such that i(X') C X and dirn X' = dirn X .
Assume that an element z E A"'(X) satisfies [X']· i*(z) = [point] in A*(Y'). Then,
[X] . z = [point] in A*(Y).

Indeed, we have i", [X'] = [XL and by the projection fonnula we infel' [point] =
i",([X']. i*(z)) = i ... [X']· z = [X]· z, as clailned.

In the next proposition and in the following, we use the notation "sI(E)" for the
Schur polynomial of a vector bundle E associated with a sequence of integers I, as
defined in [P1 ,2]. In general 1 we refer the reader to [P2] for all unexplained here
notions an notation concerning partitions and Schur polynolnials. In particular, by
Pp we understand the partition (P, P - 1, ... , 1).

Proposition 3. The dass g = 2-PSPp_l ((R~JI) (res]). g = sPp ((R'k)I)) satisfies
the assumption 01 Theorem 1(ii), with I playing the role 01 G.

Proof. We use the above description of the generic fibre F as weIl as the above
notation. Moreover, let R denote the tautological rank (e - p) bundle on Ge-p(U).

1) Assume first that e = f = 2p so V = U and the corresponding bilinear form is
nondegenerate. Then [F] is evaluated as the top Chern class of the bundle 8 2RV

(resp. A2 (RV
) ). We get by [L] (see also [M, pAB])

The assertion now follows by taking the dual Schubert cycles in the Grassmannian
Gp(U) (see [F, Chap.14]).

2) Let now 2p < e = 1 (so again V = U), and let UI C U be an inclusion of
vector spaces of dimensions 2p and e, respectively. Assume that U is endowed
with a symnletric (resp. antisymmetrie) form 4> of rank 2p such that the form 4>1 u'
is nondegenerate. We now use the lenlma with the following data: Y' = Gp(U')
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and Y = Ge-p(V); i : Gp(V') Y Ge-p(V) bcing elcfincd by L ~ L Ef1 A, where
V = V' Ef1 A. Moreover, X anel X' are the gencric fibres uneler consideration anel
z = 2-PsPp (RV

) (resp. z = SPP_l (RV
) ). Then part 1) and thc lemma yield thc

desired assertion.

3) Finally, suppose that f < e and let U = V EB B, where dirn B = e - f. We now
apply the lemma to thc following embedding:

i : (Y' = G/_p(V)) y (Y = I)

where i(L) = (L, LEBB). Morcover, X and X' are thc generic fibres under consid­
eration and z = 2-P sPP (R'f) (resp. z = Spp_l (R'f) ). Thcn part 2) and the lenlma
yield the desired result. D

3. We need the following algebraic identity, whcre Gt(J])(A) dcnotcs the top Chern
dass of a bundle A.

Proposition 4. 1f rank E = e and rank F = f, then, with 11, = e - f,

Ctop(F V E) = 2/ S(e,e-l, ... ,n+2,n+l) (F - z(E - F))

and Ctop(F A E) = S(e-l,e-2, ... ,n+l,n) (F - z(E - F)),

where z is a (formal) elelnent of rank 1 in the corresponding A-ring, specialized here
witk z = -1. More explicitly, one has

Ctop(F V E) = 2/ L S(e,e-l, ... ,n+2 ,n+l)/1 (E - F) SI""' (F),
I

where the sum runs over all I c (e, e - 1, ... ,n+2, n +1), and a similar expansion
holds for Ctop (F A E) .

Proof. We give here the proof of the proposition for thc bundle F V E. By the
splitting principle, a (luore general) question concerllillg the total Chern dass of
F V E leads to the calculation of the product:

i~j i,j

where, formally, c(F) = 0(1 + ad and c(E/F) = 0(1 + bj ). Using a well-known
i j

formula for the resultant (see, e.g., [M, p.59]) anel the already quotcd formula from
[L], this, in turn, is equal to

2-N TI [(1 + 2ad + (1 + 2aj)] TI [(1 + 2nd + (1 + 2bj )]
i~j ili

= 2- N +/ spj(A+) s(n)/(A+ - zB+)!z=-l ,

where N = rk FvE, A+ = (1+2al' 1+2a2,' .. ,l+2a/), B+ = (1+2bt, ... ,1+2bn )

and z is a (formal) element of rank 1 in an appropriate A-ring. By thc factorization
formula (see, c.g. [M, p.59], wc can rewrite the latter expression as:
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2-N
+

f
S(n+f,n+f-l, ... ,n+l)(A+ - zB+)lz=-l,

the top-degree component of which gives the desired expression:

21S(e,e-l, ... ,n+l) (A - zB) Iz=-l'

A cOInputation for the bundle P 1\ E is quite similar. D

4. We are now ready to perform the main COIllputation.

Proposition 5. The following equality holds in A* (X):

1r... (Ctop(R'j;. V R~) . Ctop(Rj.. 0 QE) . 2-P spp _ t (R~) n [G])

=2/ - 2P s(e_2p,e_2p_l, ... ,n+2,n+l) (FV
- z(EV

- F V
)) IZ=-l n [X] ,

and respectively

1r... (Ctop(R'j;./\ R'j;)· Ctop(R'j;. 0 QE)' spp(R~) n [G])

= S(e-2p-l,e-2p-2, ... ,n+l,n) (pV - z(EV
- pV)) IZ=-l n [X],

where n = e - fand z has the same meaning as in Proposition 4.

Proof. We treat the first case. We have by Proposition 4,

1r. (Ctop(Rj;. V R~) . Ctop(Rj;. ® QE)·2-PsPP _ 1 (R~) n [G])

= 2f
-

2p
1r* ([S(e-p,e-V-l, ... ,n+2,n+l) (R'f;. - z(R~ - Rj..))

. s(f-p)p(QE - R F )· SPp_t (R~)]Z=_ln [G]).

In the sequel we will denote the partition (e - ]J, e - p - 1, ... ,n + 2, n + 1) by T .
Now using the addition/linearity formula, duality fornulla (see [M, p.72 and p.90J)
and thc following equality: [R~] - [Rj..] = [EV

] - [PV] in thc Grothendieck group
of I (where here, and in the following, we omit the pulback indices, for brevity), we
rewrite the latter expression in the form:

= 2/ - 2p L ST/ I(E
V-pV)n(1rE). ([SPP_l R:E';· (1TF X l)*S(p)f-p+I- (Rj..-Qk)] n[GE])

I
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where we have used the factorization formula quoted above anel, e.g., (P2, Propo­
sition 1.3] w.r.t.7fF. Thc latter expression can be rewritten with the help of thc
addition/linearity formula (quoted above) as follows:

2!-2p L L ST/I(EV
- F V

) sI""/J(FV
) n (7fE)* ([SPP_l (R'ft) . SJ (-Q'f)] n [GEl).

I J

Now, using [J-L-P, Proposition 1]' we see that, in the above sunl, there is only
one partition J giving a non zero contribution while applying (7fE)*: this is the
partition J == (p)e- p / Pp-l == (p, ... ,p, p - 1, ... ,1) ("p" occurs e - 2p + 1 times).
Hence this surn equals:

2!-2p~S(e-p,e-p-l, ... ,n+l)/1(E
V

- F V
) S(1/( ))"" (FV

) n [X]L...J e-p,e-p-l, ... ,e-21,+1
1

== 2!-2p L S(e-2p,e-2p-l, ... ,n+l)/K(E
V

- F V
) SK"" (FV

) n (X],
K

where the latter surn runs over all K c (e - 2p, e - 2p - 1, ... ,n + 1). (Partitions
I indexing the former sunl are related to partitions !( == (k1 , k2 , ..• ) indexing thc
latter via the equality I == (e - p, e - p - 1, ... ,e - 2]) + 1, kll k2 , ... ).) The latter
expression is rewritten in the form:

2!-2pS(e-2p,e-2p-l, ... ,71+2,n+l) (FV
- z(EV

- F V
)) Iz=-1 n [X],

as desireel.

The second case is treated in an analogous way. 0

5. Here comes the lnain result.

Theorem 6. 1/ Xis a pure-dimensional Cohen Macaulay scherne and Dr(cp) is 0/
expected pure codimension C or empty, then, in the 'V -case", one has the equality:

and, in the "/\-case", the /ollowing equality holds:

[Dr(cp)] = S(e-r.-l,e-r-2, ... ,71+1,71) (FV
- z(EV

- pV)) IZ=-1 n [X].

Proof. We pass to the "generic case". For a given 1l10rphislll cP : P -t E V of
one of the two considered types, we elefine J'Y =: Spec S·(F V E) (resp. X =:

Spec S·(F /\E)). Observe that cp induces a scction s : X -t X. On the other hand,
there exists the tautological bundle hOlllomorphism cp : IF -t JEv where IF == F"x ,
JE = Ex such that s* (cp) == cp. If X is Cohen-Macaulay, then so is Dr(cp) (cf.
[DC-L]). Hence, if D r ( cp) is of pure codimension c in X, thcn by [F, Bect.6 and
7], we get [Dr(cp)] = s*(Dr(cp)]. Now for Dr(cp) C X anel 1" = 2p we can apply
Theorem 1 to the above W; the role of G is now played by I and the class g is
given in Proposition 3. Applying thc formula of TheorClll 1lcads to the calculation
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performed in Proposition 5 where, howevcr, wc have "shiftcd" the computation
from the bundle I ~ X to thc bundle 7r : G ~ X. This provcs thc theorem for
even values of r.

We compute now the dass of Dr(<p) with an odd l' (in the "V-case"). Namely,
consider the following morphism <p' = <pE91 : FE91 ~ (EE91)V of vector bundles on
X. Then the ideals defined by the minors of <p and <p' of respcctive orders 2p - 1
and 2p are equal. In particular, the codimensio11 of D2p ( <p') is expected. Hence

[D2p- 1 (<p) J = [D2p (<p') J

= 2f +
1

-
2P

S(e+1_2P,e+1_2P_1, ... ,n+1) ((FV
E9 1) - z(EV

- F
V
)) IZ=-1 n [X]

= 2f -(2P-l)S(e_(2P_l),e_2P, ... ,n+1) (FV
- z(EV

- FV
)) lz=-1 n [X]

by the addition/linearity formula quoted abovc.

The proof of the theoreln is complete. 0

Remark 7. (Revision and corrigenda to [PI].) Theorern 1 givcs an improvement
of [PI, Sect.2J. The dass "g" in Theorem 1 corrcsponds to thc class "Fd

" in [PI,
Proposition 2.1J. The assumptions on g in Theorern 1 straighten an unprecise
expression "the Poincare dual oP' from 5° in [PI, Proposition 2.1]. As a matter
of fact, it was proved in [PI, Sect.3] that the classes F d choosen in loc.cit., satisfy
the assumptions imposed on thc dass g in Theorern 1; thus the cOlnputation in
loc.cit. is complete. Moreover, the reference "Lclnma 9 in [10]" on p.196 should be
replaced by "[2, Sect.6 and 7]".

Acknowledgment. We thank Bill Fulton for a helrpfnl discussion concernlng
Theorem 1.
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