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Abstract

This paper introduces new techniques for the efficient
computation of the Discrete Fourier Transform (DFT)
for a finite group G and in so doing, relates the complex-
ity of a finite group to its adapted diameter, relative
to a given generating set and chain of subgroups. Con-
sequently, we are able to show, for the first time, that
the complexity of the DFT of a finite group is intimately
related to group structure and thereby begin to link two
major areas of research in computational group theory. In
many particular cases, the resulting algorithms have po-
tential applications for data analysis and signal process-
ing. Given a chain of subgroups for a group G we intro-
duce a technique which produces factorizations of group
elements into short products of elements which commute
with various subgroups along the chain. The commutativ-
ity properties of the factors is used to to show that for any
irreducible matrix representation of the group these ele-
ments will have factorizations as highly structured sparse
matrices. This allows a separation of variables style algo-
rithm to be used in computing the associated DFT and
consequent speedups follow immediately. In particular,
this technique recovers the best known algorithms for the
symmetric groups and wreath products and beyond that,
dramatically improves on the known complexity of the
DFT for the finite groups G'L(n,¢) and gives first com-
plexity results for all finite classical groups, finite groups
of Lie type and groups with a (B, N)-pair.

*Partially supported as a Shapiro Visitor while at Dartmouth.
T This work supported in part by ARPA as administered by the

" AFOSR under contract DOD F4960-93-1-0567 as well as an NSF
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1 Introduction

Recently, increased attention has begun to be paid to the
problem of finding efficient algorithms for the computa-
tion of the Discrete Fourier Transform (DFT) for a fi-
nite group G. The abelian case has long been of interest
and its “solution” in the form of the Cooley-Tukey Fast
Fourier Transform (FFT) [14] and its many variants (cf.
[19, 37, 36] and the many references contained therein)
have been crucial to the development and utility of digi-
tal signal processing.

The initial motivation for developing FFT’s for non-
abelian groups was also driven by applications. To date,
FFT’s for nonabelian finite groups were found to be use-
ful and necessary for new approaches to problems in data
analysis [15], VLSI design [7}, the design of matched filters
[26] and efficient group convolution algorithms [10, 29]. In
the continuous setting, applications to computer vision,
geophysics and climate modeling have been identified and
pursued [18, 23]. Conversely, as new algorithms are de-
veloped, new applications are sought. This symbiosis be-
tween application and theory continues.

Beyond their applicability, these algorithms are of in-
trinsic theoretical interest within the current effort to-
wards the classification of finite groups according to up-
per bounds on the complexity of an associated DFT (cf.
Section 2.1). Direct computation of any DFT for G re-
quires at most |G| operations. Whereas in the abelian
case there is an essentially unique choice of DFT, for non-
abelian groups there are an infinite number of possibilities
and upper bounds on the complexity of the computation
vary with choice of basis for the DFT. The complexity
of the group is defined as the least upper bound over the
complexities of all DFT’s. It is conjectured that all finite
groups have complexity O(|G|log® |G|). To date, this has
been shown to be true for many different classes of non-
abelian groups ({11, 30, 31, 5]).



Until now, the development of FFT algorithms has fo-
cused almost exclusively on the representation theory of
the various groups of interest, with little attention paid to
the intrinsic structure of the group. The main tool in cur-
rent use is the construction of subgroup-adapted bases
which permit the DFT of the group G to be “reduced”
to the computation of DFT’s over a subgroup H, which
are then “glued together” via multiplication by “twid-
dle factors” - which are precisely the evaluation of irre-
ducible matrix representations at coset representatives for
the subgroup. In the abelian case these twiddle factors
are simply roots of unity and their multiplication does
not affect the asymptotic complexity of the computation.
However, in the nonabelian case, these twiddle factors
become full matrices and without any information about
their structure, require a complete matrix multiplication
in order to be applied. The accumulation of these matrix
multiplications severely degrades the efficiency of the al-
gorithm. In particular cases, structure for these matrices
has been discovered and consequent savings obtained, but
to date, no general theory indicating how such structure
might be uncovered has been presented. [t is the purpose
of this paper to exhibit such a theory and show its wide
range of applicability.

In brief, the main idea of this paper is as follows. Given
a chain of subgroups for a group G and subgroup-adapted
bases for the irreducible representations of G, the goal
is to factor the successive sets of coset representatives
in terms of group elements which commute with vari-
ous subgroups within the chain. Commutativity then im-
plies that the irreducible matrix representations at these
“commuting elements” are generally block diagonal ma-
trices in which the blocks are themselves block matrices
with scalar diagonal blocks. Consequently by applying
the twiddle factors as a succession of matrices of these
type, great savings are obtained. For many situations of
interest (e.g. symmetric groups, finite classical groups,
finite groups of Lie type) the groups are given by natu-
ral sets of generators and the resulting complexity of the
DFT has an upper bound neatly encoded in terms of the
adapted diameter of the group (cf. Section 2) for the
given generating set and subgroup chain. The search for
optimal DFT’s then becomes a problem in minimizing
various intrinsically group theoretic parameters.

By bringing the internal structure of the group to bear
on the problem of group complexity, the results in this pa-
per imply a closer connection than had previously been
thought between the areas of FFT research and compu-
tational group theory. The latter subject, as pioneered
by C. C. Sims, grew out of the necessity for the devel-
opment of computational tools to aid the completion of
the Classification of Finite Simple Groups. It has since
then grown to encompass a huge wealth of both theoret-
ical and practical algorithmic techniques for determining

the structure of any finitely presented group. The volume .
[20] is a current source for many of the new developments
in computational group theory and provides pointers to
much of the important literature.

Section 2 presents the background and gives a brief ex-
planation of the problem. In Section 3 we present the
main result (Theorem 3.2 and its Corollary), deferring a
discussion of its proof to Section 5, in order to proceed
directly to some of the important consequences in Section
4. There we show how our techniques reobtain many of
the best known FI'T algorithms and beyond that are able
to dertve greatly improved complexity results for the ma-
trix groups over finite fields GL(n, q), as well as the first
results for the other finite classical groups, finite groups of
Lie type and more generally, finite groups with a (B, N)-
pair. We close in Section 6 with a brief indication of
possible improvements and generalizations.

Acknowledgement. Special thanks to Tom Hagedorn
for patiently explaining his interesting recent work on
multiplicities for restricted representations. Thanks also
to Herr Prof. Michael Clausen for some very helpful con-
versations.

2 Preliminaries

2.1 DFT’s and FFT’s

The familiar “usual” or circular, or more generally,
abelian Discrete Fourier Transform (DFT) and subse-
quent efficient reorganization via the Cooley-Tukey Fast
Fourier Transform (FFT) [14] has a natural formula-
tion in terms of the representation theory of cyclic or
abelian groups. This larger {ramework is necessary for
posing the general problem of efficient computation of
DFT’s for finite groups. What follows is a brief review of
these ideas, including the notion of subgroup-adapted
set of representations which is crucial for many of the
constructions of FI'T’s for finite nonabelian groups. For
a complete introduction to the subject Serre’s book [32]
is a good reference.

Recall that a (complex) matrix representation of a
finite group G is a function p from G into GL4(C), the
group of d x d invertible matrices with complex entries
such that p(st) = p(s)p(t} for every s,t € G. In this case
d is called the degree or dimension of the representation
g, and is denoted d,,.

Two representations py and pg are said to be equiva-
lent if they differ only by a change of basis, so if there ex-
ists an invertible matrix A such that p;(s)’= A~!pa(s)A
for all s € G. Notice that 1-dimensional matrix repre-
sentations are uniquely determined by their equivalence
class, while multidimensional representations have an in-
finite number of equivalent realizations.



A subspace W C V = C¥ is said to be G-invariant if
forall s € G, p(s)W C W. The representation p is said to
be irreducible if ¥V = C?% has no G-invariant subspaces
other than the trivial subspaces {0} and V and reducible
otherwise. Up to equivalence there are only a finite num-
ber of irreducible representations of any finite group - in
fact there are as many as there are conjugacy classes in
the group. Irreducible representations are the fundamen-
tal building blocks of all representations of a finite group.
That is to say that any representation is equivalent to
the direct sum of irreducible representations, where the
direct sum of two representations is the matrix direct sum
of the representations.

There are several equivalent definitions of the discrete
Fourier transform for a finite group (10, 7, 16]. The fol-
lowing is the most convenient for this paper.

Definition 1 (Discrete Fourier Transform) Let G
be a finite group, and f be a complez valued function on

G.

{a) For a matriz re;)resentation p G, the Fourier trans-
form of f at p, denoted f(p) is the matriz sum,

flo) =3 1(s)pls).

1€G

(b) Assume R = {p1,...,px} is a complete set of irre-
ducible matriz representations of G. The Discrete
Fourier transform of f (with respect to R), de-
noted DFT(f), is the set of Fourier transforms of f
at the representations in R,

A DFT of f determines f through the Fourier inversion
formula,

S weee(Fpe™). ()

1
f(s) = 7=

il PER
Example: The “usual” DFT The irreducible matrix
representations of the cyclic group Z/nZ, are all one di-
mensional. For each integral j with 0 < j <n -1, define
the representation, ¢;, by (;(k) = exp(z—’,’;ﬁ) where £ is
in Z/nZ. The set of such representations is a complete
set of inequivalent irreducible representations for Z/nZ
and the corresponding DFT is the usual discrete Fourier
transform.

Definition 2 (Complexity) Assume G is a finite
group, and R is any set of matriz representations of G.
Let Tg(R) denote the minimum number of operations
needed to compute DFT(f, R) via a straight line program
for an arbitrary compler function on G. Tg{R) is called

the complexity of the DFT for the set R. Furthermore,
define the complexity of the group G to be

C(G) = min{T(R)}

where R vartes over complete sets of inequivalent irre-
ducible matriz representations of G.

The computational model used here is a common one
in which an operation 1s defined as a single complex mul-
tiplication followed by a complex addition.

Elementary representation theory shows that the sum
of the squares of the degrees of a complete set of irre-
ducible representations of (G is equal to |G|? [32]. Conse-
quently direct computation of any DFT shows

|G| < T < |GI2.

Remark. Another common interpretation of the DFT
is as a change of basis for L(G), from the basis of point
masses on G, to a basis of matrix coefficients making up
a complete set of inequivalent irreducible representations.
When this approach is adopted, the complexity of the
DFT can be measured as the c-linear complexity of
the DFT matrix [6]. The c-linear complexity of a group
G, is defined to be the minimum e¢-linear complexity of
any DFT matrix for G. Assuming a choice of unitary rep-
resentations, the results stated here can all be translated
into statements about the 2-linear complexity of finite
groups.

Fast Fourier transforms (FFT’s) are algorithms for
computing DFT’s efficiently. As remarked earlier, there
are an infinite number of matrix representations equiva-
lent to any given multidimensional matrix representation;
these correspond to changing bases in C4. The complex-
ity of the discrete Fourier transform may vary with the
representation even amongst equivalent representations.
Subgroup-adapted sets of representations permit the com-
putation of a DFT on a group G to be reduced to the
computation of & DFT on a chosen subgroup H. The
idea is quite simple to explain.

If H is a subgroup of G and ¥ C G is a set of coset
representatives for G/H (so G can be factored as the
disjoint union of subsets yff = {yh h € H} for all
y € Y) then for any representation p of G, we can use the
relation p(ab) = p(a)p(b) to obtain a factorization of f(p)
by

f(p) ZSEG f(S)p(S) (2)
= Zye)' p(y) Zten fy()p(t)
where for each y € Y, fy is the function on /{ defined
by f,(t) = f(yt) for all t € H. Consequently, with this
notation we can rewrite f(p) as a sum of DFT’s on H,

oy =S pwiulp L H)

yey



where p | H is the representation on H given by restrict-
ing p to elements of the subgroup H.

Thus, if the DFT’s f,(p | H) were computed for a com-
plete set of irreducible representations p of GG, then these
matrices could then be glued together by the "twiddle
factors”! p(y) to build all the f(p) and the DFT of f.

Subgroup adapted representations permit the re-
stricted transforms fy(p 1l H) to be computed quickly.
In general, a restricted representation, p { H will be re-
ducible, even when p is irreducible. Consequently, p | H
will be equivalent to the direct sum of irreducible rep-
resentations of H, although not necessarily equal. H-
adapted representations guarantee that (1) the re-
striction of any representation of G to H is equal to a
direct sum of irreducible representations of H and fur-
thermore (2) that equivalent irreducible blocks among the
restricted representations are in fact equal. To briefly il-
lustrate, suppose that p;,...,pr are a complete set of
irreducible representations for G. Then this set will be
H-adapted if for every t € H,

Bit) 0 - 0

0 B; .ty --- 0
pilt) = : 2( : . :

0 0 Bir(t)

where the B; ;(1) are irreducible representations of / such
that if B;; and B, give rise to equivalent irreducible
representations then in fact, B; ;(t) = By m(t).

Consequently, it is easy to see that an algorithm for
computing a DFT of any function f on & with respect
to an H-adapted basis for the irreducible representations
of G is to (1) choose a set of coset representatives Y for
G/H, compute the the DFT’s on H for each f,, and
(2) build the restricted transforms f;(p 1 H) - these will
be block diagonal with the individual Fourier transforms
of fy making up the blocks and then (3) compute the
products p(y)f;,(p |l H) and add them together. Thus,
the following theorem is obtained.

Theorem 2.1 (Diaconis and Rockmore) Let H be a
subgroup of G and let Y C G be a set of coset represen-
tatives for G/H. Furthermore, let

Mg(Y) = The number of operations needed

to compute T, ey p()Fy ()
for arbitrary d, x d, matrices Fy(p).

(3)

I The terminology "twiddle factor” comes from the usual signal

processing situation in which G is an abelian group. Then all irre-
ducible representations are one-dimensional and the matrices p(y)

are then simply roots of unity.

Then the complexity of the DFT on G at a complete H-
adapted set of inequivalent irreducible representations of
G 1s related to the corvesponding DFT on H by

|G

Gl 4 Moy

T <
|H|

(4)
The inequality (4) can be viewed as recurrence, bound-
ing the complexity of a group in terms of a subgroup.
This generalizes immediately to a chain of subgroups for
G:
Kn>Kn_1>...> Ky

(5)
We say that a complete set of irreducible matrix repre-
sentations is adapted to the chain provided that it is K-
adapted for each subgroup, K;, in the chain. It is easy
to see that this in turn implies that for each Kj, the set
of irreducible representations occurring in the restrictions
to K is then Kj-adapted for each j < 7. Theorem 2.1
now generalizes immediately.

Theorem 2.2 Let G have the chain of subgroups (5) with
G = K, and suppose that fori = 1,...,n, Y; is a sel
of cosel representatives for K;/K;_1. Then for a set of
matriz representations adapted to this chain we have

Te < |0 (ﬁm +) l;—,'_lMK.-(Y.-)) (6)

Consequently, one approach to minimizing an upper
bound of T¢ is to find an efficient way of evaluating sums
of the form 3= .y p(y)Ay.

There are several choices available to perform this min-
imization. The subgroup chain can be varied, as can the
choice of coset representatives in order to obtain matrices
p(y) with useful computational properties. Another idea
is to attempt to use the properties of the matrix elements
of p(y) as special functions on the set Y. The former idea
is akin to the method of separation of variables and uses
more the large scale internal structure of the group. As
we will soon show, in many cases of interest this can be
quantified in terms of relations between subgroup chains
and generating sets.

Remark. The requirement of adaptability does not limit
us. For any finite group G generated by a subset S, a
complete set of irreducible representations can always be
constructed in polynomial time {2}. Using techniques for
decomposing representations into their irreducible con-
stituents [3], these representations can then be trans-
formed so that they are subgroup-adapted.

2.2 Adapted diameters, subgroup chains

and generators

A common theme in the algorithms presented here is that
of a factorization of coset representatives as products of



elements which have “nice” commutativity properties rel-
ative to a given subgroup chain. Alternatively, it is per-
haps useful to focus on the elements instead, necessarily
generators for the group, and derive some general upper
bounds from this perspective. In particular, this relates
to the notion of the diameter of the group relative to this
generating set.

Assume G is a finite group, and let S C G, be a set
of generators for G. Recall that the diameter of G
with respect to S is the maximum length of a product of
elements in S required to express any element of G, i.e.

715(G) = min{n >0: U S = G}.

0gi<k
Let a chain of subgroups of G be given,

Km > > Ko (7
Then S is said to be a generating set for the chain of
subgroups if SN K generates a set of coset represen-
tatives for K; /Ko for each j. When the subgroup chain
contains both the whole group, (7, and the trivial sub-
group, 1, a generating set for the chain (7) is called a
strong generating set for G with respect to the chain
of subgroups 7. Strong generating sets arise naturally in
the context of many algorithmic issues in computational
group theory [33]. In particular, fast algorithms for their
construction for stabilizer subgroup chains in permuta-
tion groups are a cornerstone for many important tech-
niques [1].

The notion of diameter has a natural extension to sub-
group chains and strong generating sets. Given a gener-
ating set .S for a chain of subgroups of G, consider the
sequence of integers,

p=min{l20: JENK) K=K} ®)
i<t

Thus v; is the maximum length of a product of elements
in §N K; needed to construct the coset representatives
of Kj/K;_,. Now define the adapted diameter of the
chain {K;} relative to § to be
T=7{K},S)=n+-+m (9)
Notice that in this notation v; = y(K; > K;_1,5) and so
is the adapted diameter of the chain K; > K;_;. When
the chain of subgroups contains both G and {1} we call
(9) the adapted diameter of G, relative to S and { K}
The adapted diameter of G reflects the way in which

the Cayley graph on S can be “grown” through a chain
of subgroups.

3 The Improved FFT

Suppose, as in Section 2.2, that G is generated by a subset
S and furthermore, that a chain of subgroups of G is given

G=K,>Ku,_1> - > K. (10)

As remarked in the discussion leading to Theorem 2.1,
in order to compute a DFT for a complete set of irre-
ducible representations of G adapted to (10), we need an
efficient way to evaluate the matrix products p(y) _f;,(p)
as y varies over a complete set of coset representatives
of G/H and p varies over a complete set of irreducible
representations of G. The idea behind effecting this is
the crucial observation that p(z) for any element ¢ € G
which commutes with any subgroup in the chain will be a
highly-structured and sparse matrix. Thus, if coset repre-
sentatives y can be factored in terms of such elements the
application of p(y) to any d, x d, matrix can be achieved
as a sequence of sparse matrix multiplications, thereby
inducing great savings. We proceed by stating these re-
sults and postpone sketches of the proofs until Section
5.

Given any ¢ in G, let it (g) be such that K+ is the
smallest subgroup in the chain containing g, and similarly,
let 17 (g) be such that K- (g) < K;+(g) is the largest sub-
group of K+ (g in the chain (10} which commutes with g.
Let M(g) be the maximum multiplicity (cl. Section 2.1)
of any irreducible representation of K;-(4) in the restric-
tion of an irreducible representation of Kj+(y, and for a
subset of G let M(S) denote the maximum of M(g) on
S.

Lemma 3.1 Assume p is an chain-adapted irreducible
matriz representation of G, and F is any d, x d, matriz.
Then for any s € G, the matriz multiplication p(z) - F
may be performed in less than than M(y)d} operations.

Using Lemma 3.1 it is straightforward to bound the quan-
tity Mg (Y') appearing in Theorem 2.1. In particular, sup-
pose that y € ¥ has a factorization y = s, -- -5, with
si € 5. Then using the fact that 3 d2 = |G|, we obtain

Ma(y) < k- M(S) - [G].

Since any coset of G/H has a representative which is a
product of at most ¥(G > H, S) elements of S {cf. Section
2.2), by taking Y to be a set of coset representatives of
G/ H of minimal lengths in the elements of S yields

Ma(Y) € M(S)¥(S,G > H)|G/H]-|G].

This is summarized in the following Theorem and its
Corollary.

Theorem 3.2 Let G be a finite group with subgroup H
and let S C G generate a sel of coset representatives for



G/H. Assume that G = K,, > ... > Ky is a chain
of subgroups of G such that H = K; for some i. Then
relative to a complete set of irreducible representations of
G which are chain-adapted, we have

c(G) < Gl
el = IGI = |ay”

Ty

AS,G > H)M(S) + T

(11)
Corollary 3.3 Assume G is a finite group, S C G is a
strong generating set for G relative to the chain of sub-
groups G = K, > Kn1 > - > Kg = 1. Then the num-
ber of operations needed to compute the Fourier transform
of any given complez function on G at any chain-adapted
set of representations satisfies

Te < |G|Z‘ =1 K ‘7(3 K; > Ki_1)M(SNKy)
_<_ |G|K7(SI{I\I}:‘=O)'M )

where & is the mazimum of |K;/K;_q| for 1 < i < n.
Consequently, the complezity of G, C(G) is similarly
bounded.

4 Applications

We postpone the proof of Lemma 3.1 in order to move
directly to some of its important applications. We first
show how our general machinery reobtains the best, known
FFT’s for some abelian groups, the symmetric groups and
their wreath products and then move on to derive new
results for the general linear groups over finite fields as
well as their various generalizations.

4.1 Finite abelian groups

The corollary 3.3 immediately gives us some well known
results bounding the complexity of the Fourier transform
on finite abelian groups.

Assume A is a finite abelian group. Then the irre-
ducible representations of A are all one dimensional so any
choice of bases for a complete set of irreducible represen-
tations is adapted with respect to any chain of subgroups
of G. We shall take S = A to be our generating set; it is
immediate that M(S) = 1. Let A=K, > .. .Kg=1be
any chain of subgroups of A. Then the adapted diameter
of this chain with respect to S is simply n. In partic-
ular, the adapted diameter of the two subgroup chain
R; > K;_1 15 v(A,K; > K;_1) = 1. Applying corollary

3.3 yields
Z

The left-hand side of (12) is a sum of factors of | 4] whose
product is equal to |A|, and it is casy to see that such a
sum is minimized precisely when each term |K;|/|Ki-1]

(12)

IAI IK--ll

is prime. One can always find such a chain in an abelian
group; any chain of subgroups may be refined to such a
chain. Thus we obtain

Theorem 4.1 Assume A is a finite abelian group whose
order has the prime factorization |A| = p]* ...pl». Then
complexity of the Fourier transform on A satisfies

m
Ta <|AlY ripi
i=1

This is essentially the well-known Cooley-Tukey FFT
[14].

4.2 FFT’s for S, and its wreath products

For the symmetric group S, consider the subgroup chain

Sn >S,1_1>~“>Sl={1}

where S, is identified with the subgroup of S, of elements
fixing the points k + 1,...,n. Take as generating set the
pairwise-adjacent transpositions

S = {fz, . .in}
where
t; denoles the transposition (j — 1, 7).

Then note that t; € S; and commutes with Sy for & <
J — L. Thus, in the notation of Section 3.3

()= and () =j-2

Furthermore, it is an easily derived fact from the combi-
natorics of Young tableaux, (cf. [24]) that the maximum
multiplicity occurring in the restriction of any irreducible
representation from S; to S;_» is 2, so that M(tj) =2

Lastly, note that coset representatives for Si/Sk_) are
given by the elements

and

L, te—1de, ... g 1g.

Thus (5, Sk > Sk_1) = k. Plugging this data into The-
orem 3.3 gives

Theorem 4.2

l\D

C(Sn)} <Ts n(n + 1)%a!

i 3

This is of order n!(logn!)®. Note that in this case
the bases given by either Young’s orthogonal form or
Young’s seminormal form are adapted for the chain
of subgroups for Sy,. The resulting algorithm is precisely
the best known for computing the DFT for S, [13].



For wreath products of the form G[S,], a similar con-
struction works. Wreath products are of interest in data
analysis as the symmetry groups of nested designs and
in structural chemistry as the automorphism groups of
non-rigid molecules. They are often studied as the au-
tomorphism groups of graphs obtained by “composition”
(cf. [22]).

Elements of this group may be described by patrs (f; o)
where f : {1,...,n} — G, so f(i) is the automor-
phism group acting on the i*# subgraph and = € S, with
a multiplication defined by (f;w) - (g;0) = (f - ¢"; 7o)
where £ - g (i) = /(j)g" (4) and g" is defined by g% (j) =
g(m=1(5)). In this notation it is clear that S, sits natu-
rally as a subgroup of G[S,] as is the product G” - which
is in fact a normal subgroup. A thorough but accessible
treatment of wreath products may be found in [27].

Then a natural chain of subgroups for G[S,] is

G[Sa] > G x G[Sn-1] > G[Sn-1] > - (13)

As before we let S denote the set of pairwise-adjacent
transpositions in S,, so S generates G[S,] modulo G x
G[Sn-1] and the adapted diameter of the chain G[S,] >
G x G[Sy -] relative to S is n. The transposition ¢; lies in
G[S;] and commutes with G[Sj_2]. It then can be shown
that M(S) is 2(dg)?, for dg the maximum dimension of
an irreducible representation of G. Hence we have

Teis,) Toxafs...) “(de)?
- + 2n4({dg
AT CTTC R
(14)
< T6[50-1) + Ts + 2n%(dg)*?

1G[Sn—1]|

where the second inequality follows [rom the faci that in
general, Tyxx < |H|Tk +|K|TH (cf. [10]). Applying the
inequality (14) recursively gives us

Gl

Theorem 4.3

2 T
CGIS]) < Tapsa) < IGISal | 3n(n+ 1 (da)? + n 15 ).
Given a subgroup chain for G one can construct a chain
of subgroups of G[S,) refining the chain (13). Complete
sets of irreducible matrix representations adapted to the
subgroup chain (13) have been constructed and the above

discussion recovers the best known algorithm for wreath
products of the form G{S,] [31].

4.3 A new FFT for the general linear
group over a finite field
As usual, let GL,(g) denote the group of invertible n x n

matrices with entries in the field of ¢ elements where ¢ 1s
some prime power. For data analysis, these groups and

their generalizations are of interest as the automorphism
groups of the many designs based on finite geometries and
codes.

Throughout this section all matrix groups are assumed
to be over the finite field of ¢ elements F so that GL, =
GLn(q), ete.

Theorem 4.4 There is a positive constant, K, such that
fJoranyn > 2, q > 2, the DFT of a function defined on
GLn(g) can be computed, using an adapted set of matriz
representations for the chain of subgroups (15), in less
than

Tor, <IGLa(9)l [30(29)* " + Kn(29)*" 7%

operations, and hence the complezity C(GLn(q)) is simi-
larly bounded.

Sketch of Proof: To apply our ideas to these groups,
we consider the chain of subgroups

GLy > P 1> GLy_ 1 xGLy>GLaoy > > GLy
(15)
where P,_, is the subgroup of all block matrices of the

form
* *
0...0168,

for b, € F¥, and GLr x GL; is identified with the sub-
group of block diagonal matrices Diag{ A, bx, Irs_k4+1) with
Ain GLy and by in GL;. ?

In order to apply Theorem 3.2 we will describe a set
of generators which have good commutativity properties
relative to the subgroup chain (15).

Fori=2,...,ndefine the subgroups A; = G L, consist-
ing of block diagonal matrices with an arbitrary element
of GLy in the i—1,1 block and all other diagonal elements
equal to 1. We let our generating set, S, be the union of
the A; for 2 <i < n.

Notice that A; commutes with GL;_5. Following the
general philosophy then of separation of variables, the
idea is to build the coset representatives out of the A;.
We shall only give a rough description of how this is done,
together with the size of the corresponding coset spaces.

(16)

Lemma 4.5 The following factorizations hold:
(a) GLy, = As---An - Py

(b) PnZAn.-A,;_q ---Az-Ag- - -An_lzztn{GLn_l X GLl]
where Ap = Ap [} Pa.

2In general, it will be useful to adopt the standard notation that
if By,..., By are square matrices of dimensions d;,...,dr, then let
Diag(8,...,B8r) = (Bi®: - -®B,) denote the block diagonal matrix
with i*" block equal to B;.



These decompositions are highly redundant and do not
give unique coset representatives for the coset spaces.
However it is not too difficult to derive unique represen-
tatives for the cosets; see [25, 9]. Lemma 4.5 shows that
we have

YWGLp > Pp,S)<n—-1

and

Y(Pa > GLy x GLy) < 2n—3.

The only additional information we shall need are the
sizes of the coset spaces,

qn+1 -1

I

L./P
|G Ln/ Pal o
n—1

IPﬂ/(GLn x GLI)! q

The final piece of information required by the general
theory is the maximum multiplicity, M(S). Using a result
of Thoma [35], for the restrictions of GL, to GL,_y, and
some asymptotics of Stong [34] for the number of repre-
sentations of GL, - we may obtain a bound on the max-
imum multiplicity of the restriction from GL, to GL,_2
and hence that

M(S) < 27(¢" + K'q"7?)

where K’ is a constant which is independent of both n
and g.

Now we have the data, a straightforward application of
theorem 3.2 show us that

TaL Tp, 2n( 2n-1 - 2n~2
A = (n—1)2°(¢" T + (KN + 2)¢g™"
GL] < 1Pa] ( ) { ) )

and

Tp TeL,., , Tar, D S S
e g Zmmml SO (90— 1)22 (g2 4 K
l-Pnl - IGLn—ll g—-1 ( ) (q 1 )

Using these relations recursively leads to a sum that can
be easily evaluated to give

TcL. Ter,

+3n(2¢9)2" " + Kn(2¢)*2
Ichnl —-|C;L2| ( 9) ( Q)

There is a naive bound for Tgy, of ¢® operations so by a
slight alteration of the constant iK', we obtain the desired
result for n > 3. When n = 2, a generalization of these
methods shows that Tgyp, < |GLo|(5¢ = 1).

D

Remarks. 1. Variations of the algorithm. There
is of course nothing canonical about either the genera-
tors chosen here for G L, or the subgroup chain. It seems
highly likely that better choices for either are possible.
Always, commutativity will need to be exploited and here

it may be necessary to effectively compute the centralizers
of various subsets of elements. Recent advances in com-
putational group theory for matrix groups [4] may prove
useful.

In fact slightly more complicated variants of Theorem

3.2 and its Corollary can improve Theorem 4.4. For an
indication of this approach see Section 6.
2. Earlier work. The problem of finding an efficient
algorithm for computing a DFT for GL,(q) was first con-
sidered in [28]. There an algorithm is proposed which uses
“models” (direct sumns of induced one-dimensional repre-
sentations which contain each irreducible of the group
exactly once) to compute a DFT for GL,;. In so doing
the algorithm proceeds in two parts: (1) Computing the
Fourier transform at reducible representations which are
given by monomial matrices and then (2) applying pro-
jection operators to these reducible matrices in order to
obtain collection of unique irreducible Fourier transforms.
Some simple asymptotics for the bounds they obtain yield
an estimate for the complexity of their algorithm to be

n?_gn

O(IGLalg)lg= ).

3. Direct approach. 1i is also necessary to compare our
algorithm with the algorithm which uses the subgroup
chain but does not factor the coset representatives and
thus performs direct matrix multiplication of the twiddle
factors. Straightforward analysis then shows that such an
algorithm yields an upper bound which depends on the
maximum degree of an irreducible representation of GL,,
which is of the order of ¢3(®»*=")_ This direct algorithm
gives an upper bound of

O(ng3™ 3G L, (g)]).

4.4 Finite groups of Lie type and their

generalizations

The techniques used to compute the DFT in GL, may
be extended in a relatively straightforward manner, to
Chevalley groups, finite groups of Lie type, or in a more
abstract setting to any finite group with a split BN pair
which satisfies appropriate commutator relations. We re-
fer the reader to the book of Carter [9] for definitions.
These groups are essentially subgroups of GLyp(g) - so-
called finite classical groups.

Any finite group of Lie type, GG, has a subgroup chain
analogous to (15), where P,_; is replaced by a maxi-
mal parabolic subgroup, GL,,_; x GL; by its reduc-
tive part, and GL,_; by the semisimple part of the
parabolic subgroup. Each Lie group of finite type GG has
an associated Weyl group, which has an analogous rela-
tion to ¢ as does the symmetric group to GL,,, where S,
is embedded in G L, as permutation matrices. For each



simple reflection in the Weyl group (in Sy, these are the
pairwise adjacent transpositions) there is a correspond-
ing subgroup of G with a “split (B, N)-pair of type 4;”
which is generated by the positive and negative root sub-
groups of G associated to that simple reflection. These
subgroups correspond to the A; defined in the proof of
Theorem 4.4 and we take their union as our generating
set.

The factorization GL, = As;---A, - P, comes from
a factorization of the minimal coset representative of
Sn/Sa_1 of maximal length, i.e. t5...t,. There is a sim-
ilar relationship between any finite group of Lie type and
its Weyl group; there is a factorization of cosets of G rel-
ative to a parabolic subgroup corresponding to a factor-
ization of coset representatives in the Weyl group. Fac-
torizing coset representatives of the parabolic subgroup
relative to its reductive part simply amounts to factor-
izing elements of its largest normal unipotent subgroup
(in GL, this is the abelian subgroup of matrices with 1s
on the diagonal, and zeroes everywhere else except for
the last column), and this can be done within the Borel
subgroup (in G Ly, the upper triangular matrices).

The most difficult part of the G L, calculation to gen-
eralize to this setting is the bound on the multiplicities
of the restrictions to parabolic subgroups. For GL,, we
used an explicit result of Thoma [35], but for more gen-
eral finite groups of Lie type this is still a matter of cur-
rent research. Recent results of Hagedorn [21}, indicate
that if the parabolic subgroup is well chosen then an ef-
ficient algorithm will result. For example, for the groups
Ba(g) which are essentially the odd special orthogonal
groups of F,, Hagedorn has shown [21] that the maximum
multiplicity of the restriction from By(q) to Bh_2(g) is
O(¢®"~?). Using this result, the techniques of the preced-
ing section yield a DFT of complexity O(¢%"~%|Bn(gq)])
for fixed n.

5 Proof Sketch of Ma.in Theorem

The fundamental technique introduced in this paper is
the use of commutativity properties of the group G to
construct a chain of subgroups and accompanying coset
representatives with advantageous computational prop-
erties. To make use of commutativity between certain
elements of (7, Schur’s lemma is applied. There are a
number of essentially equivalent formulations of Schur’s
Lemma. The following form is most useful for this paper.

Lemma 5.1 (Schur) Let K < G, and suppose that a is
in the centralizer of K. Suppose that p is a K-adapted
representation of G so that p(a) = m(a)®---®n(a) @
@ n(a)® - - @ ne(a) where my, ..., 7, inequivalent ir-
reducible matriz representations of K, and 1; occurs with

multiplicity m;. Then up to a permulation of rows and
columns, p(a) is of the form

(GLm,(C) @ 1a,) B -+ (GLm,(C) ® 14,) (17)
where I, denotes the k x k identity matriz, ® the usual
tensor product of matrices, and d; = d,,, is the dimension
of 7

iFrom a computational point of view (17) expresses
the fact that commutativity combined with adaptability
imply that the commuting matrix will be sparse.

Now suppose that G > H > K and a commutes with K
and is also contained in H. If p is adapted to both H and
K, then p(e) will not only have the form (17), but also
have block diagonal form according to the decomposition
of the restriction of p to H. A simple count of the number
and position of the nonzero entries of p(a) then gives us
the following theorem which immediately implies Lemma
3.1.

Theorem 5.2 Assume G > H > K is a chain of sub-
groups of G, and p is a chain-adapted representation of
G. Let {pi}, {n;} be complete sets of representations of
H and K respectively. Let m; denote the multiplicity of
5 in the restriction p, and let my; denote the multiplicity
n; in the restriction of p;. Then the matriz multiplica-
tion p(a) - F can be performed for any d, x d, matriz I
performed in

> mimidid, < M(H, K)d} (18)
i

operations.

6 Further improvements and di-
rections

1. Variations on the main results. Theorem 3.2 and
its corollary are particularly easy to use but are by no
means the best results possible. A more careful count
of the number of operations for the algorithms corre-
sponding to these theorems gives an immediate improve-
ment; complicated expressions bul exact expressions for
the number of operations can be obtained, but they all
essentially derive from the ideas of Sections 3 and 5.
Even further improvements are possible. By working
on the level of matrix entries rather than the matrices
themselves we may perform the matrix products occur-
ing in the above results in any order; this requires a much
more complicated indexing scheme and the partial results
are no longer matrices but more general indexed quanti-
ties. It is possible to give an explicit expression for the
complexity of the resulting algorithms, in a form similar



to but generalizing (3.2). For certain groups these al-
gorithms are more efficient than the ones above. As an
example, we get a better bound on the complexity of the
DFT on GL,(g) using the same bases as in section 4.

Theorem 6.1 For any n, there is a positive contant, K,
such that

TGLn(q) < Kag" |GLa(q)
forany ¢ > 2.

2. Homogeneous spaces. For many statistical appli-
cations data on homogeneous spaces is of interest, rather
than data on the full group. In brief, a homogeneous
space for a finite group is simply a set on which the group
acts transitively as permutations. A common example is
the action of the finite affine group on point-line pairs and
more generally, the action of an automorphism group of
a design on its block-point pairs. In this case general-
izations of the “usual” analysis of variance for data on
such sets requires the computation of projections of the
data vector onto group-invariant subspaces. The ideas
of Section 3 may be applied and again speed-ups of the
currently known most efficient algorithms (cf. [17] and
references therein) can be obtained.
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