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derivatives of order < k—2 vanish on [R2m+d . When M is real—analytic, we may take %

to be holomorphic. In particular, D® is C—linear at each point of rem+d

We let TCCx ™ be the local image of & near $(0)= (O,TgM). In the

near the origin.
real—analytic case I is the usual complexification of M .
Next we want to find a nonempty wedge
v, = @22+d4ir ) nv, ¢ ¢2mHd
with edge rZm+d Vo ( V, being a small neighbprhood of the origin) such that
(16) | o V)C ¥ .

Let TC RS be the cone cietermini:ig the wedge  ¥. Choose an arbitrary finer cone
I’ <T and let fO C [R2m+d be a cone contained in a small conical neighborhood of
{0}2® x T/ | satisfying T,y N ({0} xrdy=r" . We claim that the inclusion (16)
holds provided that I‘O and V0 are chosen sufficiently small. To see this, notice that for
each t € RY the vector

d
iD,&(0) =i ) t; 88/ u(0)

=1

belongs to Ti(o)z- Since at the origin ¢ contains no quadratic terms except the Levi

form, a simple calculation shows

i D, #(0) = (0,it,0) .
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Convolutions of Hilbert modular forms, motives,
and p-adic L-functions.

A.A . Panchishkin

Introduction. Let p be a prime number. One of the purposes of this p;dper is to
describe some p-adic properties of the special values of the Rankin convolution

L(s,f,g) = »_C(n,f)C(n,g)N(n)™* (0.1)

attached to two Hilbert modular forms f, g over a totally real field F of degree n =
[F: Q], where C(n,f), C(n,g) are normalized ”Fourier cocflicients“ of f and g, indexed
by integral ideals n of the maximal order O C F. We suppose that f is a primitive
cusp form of vector weight & = (ky,---, k), and g a primitive cusp form of weight
I=(l, +,1;), such that

for each 7 either k; < l;, or l; < ki, (0.2)
and the following parity conditions are satisfied:

k] Ekg

-+ =k, mod 2, (0.3)

and

Lh=lh=---=1,mod2. (0.4)

Let ¢(f) C O denote the conductor and 3 the character of f and ¢(g), w denote the
conductor and the character of g (¢,w : AL/F* — C* being Hecke characters of ﬁmte
order, where A% /F is the idele class group of F).

We formulate these p-adic properties in framework of the theory of motives over a
number field F'. Following a suggestion of A.A.Beilinson, we state first in 1.7 a refined
form of the Deligne’s conjecture on critical values of the corresponding L-functions
twisted with Hecke characters x : AR/F* — C* of finite order. We formulate also
in 1.8 a general conjecture on p-adic L-functions attached to motives over F. In case
F = Q the above two conjectures were stated in [Co-PeRi]. Conditions (0.3) and (0.4)
are essential for a geometric interpretation of f and g in terms of motives over F' which
is given below. _

We give a description of the type of motives, which should correspond to a primitive
Hilbert cusp form f € Mj(c,v), where the components k; of the vector weight k =
(ky,--+,kn) of f are indexed by real embeddings o; : FF — R. We assume that the
L-function L(s,f) of f is normalized so that

Ls,f) =3 C(n,ON () =[] (1-Clr, N ()~ + .“[)(p)N(b)ko‘—l—za)_l |
n p

where ko = max; k;. If 7 € AutC then we have f7 € M+ (c,97), so that the coefficient
field T of f must contain the ficld F* generated by products [, (%)%, z € F, which
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can be characterized as the fixed field for all automorphisms 7 € AutC such that k™ = .
Note that for each 7 the vector k7 is defined by means of the formula .

[ = (ITe)

1=1

In particular, if &) = -+ = k, then F* = Q, and from the viewpoint of the theory of
canonical models, the field F* will coincide essentially with the reflex field of the Hodge
structure of a motive M (f) attached to f.

Table of contents
§1. Motives
§2. p-adic L-functions
§3. Hilbert modular forms
§4. Motives and p-adic L-functions of Hilbert modular forms
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§1. Motives

1.1. By a motive M over a number field F' with coefficients in (another) number
field T' we mean a collection of the following objects:

Mpos=M,, Mpr, My, Io,s, Ir 0,

where ¢ : F — C runs over the set Jr of all complex embeddings of F, M, are vector
spaces over T of dimension d (Betti realization of M relative to the complex embedding
o), which for real ¢ € Jp are endowed with a T-rational involutions p,; Mpr is a free
module of rank d over the tensor product T'® F' (de Rham realization of M), which
posesses a decreasing filtration {F5p(M) C Mprli € Z} of free T ® F-submodules;
My is a vector space of degree d over Th, a completion of T at an arbitrary finite
place A of the coefficient field T (A-adic realization of M), which is a Galois module
over Galp = Gal(F/F) so that we have a compatible system of A-adic representations
denoted by
raa =1 Gal(F/F) — GL(M)).

Also,
Io: Me®C S Mpr®F,eC -

is the (complex) comparison isomorfism of T'® C-modules, and
Ing: M, @ Ty = My

is the A-adic comparison isomorphism of Ty-vector spaces. It is assumed in the notation,
that the complex vector space M, ® C is decomposed in the Hodge bigraduation

M,QC =@ MY,

such that . -
po(MI) = M,



provided o is real, and
Ioo,o(®ir>iME ) = Fhp(M) ®F, C.

We assume that ¢ + ;7 = w for some fixed integer w which is called in that case the
weight of the motive M. The number d is called the rank of .

The important propery of a motive M with coefficients in T is that T-structure of
M is closely related to its Hodge structure since all of the terms Fip ®F o C of the
Hodge filtration are free T @ F @ C-modules. Recall that T'® F' is a product of fields
F;, which bijectively correspond to orbits under the action of Galg on the set

Jrx Jp ={(r,0)|r € Jp,0 € JF}.

Let
My CM,83qQC, MpRrerCMpr®r.C

be the subspaces, on which T acts via 7 € J7, then the isomorphism I, induces the
1somorphism
Ioo,cr,‘r : J’Mcl','.r' — ﬁ‘f[DR,a',r-

Typical examples of motives come from algebraic varieties.
There are various definitions of motives (by means of correspondences, by means
of absolute Hodge cycles and abelian varieties of CM-type etc., see [De3], [Bl1], [Bi2])

1.2. L-functions of motives. By definition, the L-function L(M, s) of a motive
M takes values in T @ C =[], C;, and it is defined as the Euler product

L(M,s) =[] Lo(MNp~*)7T,
p

where
Ly(M, X)™! = det(1 = X -ra(Fry) M) = (1 - aD(p)X)--- (1 = oD (p)X),

and Frp is the Frobenius element at p, defined modulo the inertia group Ip (so that
Frp_l is the “geometric Frobenius”), the upper index I, denotes the subspace of ele-
ments, pointwise fixed by the inertia group. We make here a standard hypothesis that
coefficients of Lp(M,X)™! =14+ A;(p)X +--- + Aa(p)X? belong to T, and we regard
this polynomial over the ring T'® C so that ‘

Ly(M, X)) = (L0 (M, X)), LM, X) ™ = 14 Ar(p) X + -+ + AJ(p) X

According to the Deligne’s theorem on Weil’s conjectures, for a motive M of weight w
and rank d, coming from algebraic varieties, all of the complex absolute values ]a(‘)(p)[
are equal to Npwld,

Properties of motives and their L-functions:

(a) Dual motive M is defined, if we replace all realizations of M by their duals. In
terms of L-functions, ‘

Ly(M1,X)™" = (1= a®(p)7'X) - (1 = D (p) 1 X),



where .
LM, X)™ = (1 = aO(p)X)- (1 - aD(p)X).
(b) Direct sum M, @ M,. In terms of L-functions we have that

L(ﬂ{ﬁ @ Mz,s) = L(ﬂ’f],S)L(A’fg,s).

(c) Tensor product M; @ M. The corresponding L-function has the form of the
convolution
Lo(My ® My, X) = [J(1 =« (p)8Y(p)X),
i,j
where a(i)(p), BY(p) are the invers roots of the characteristic p-polynomials for M,
M,.

(d) Restriction of scalars. For a subfield & C F one can define a motive M' =
Rp/i(M) over k (with the same coefficient field) such that L(M’,s) = L(M,s), and the
A-adic Galois representation rap a of Galg is induced from the representation rar .y of
the subgroup Galp C Galy.

(e) Extension of the ground field. For an extension K/F one can define a motive
M" = M ®F K over I with coefficients in T such that the Galois representation ras x
Galk for M" coincides with the restriction of ra  to the subgroup Galyx C Galp.

Examples of motives and their L-functions.

(a) Cyclotomic (Tate) motive Fryc(m) over F. Let us consider the cyclotomic
character

@chc : Gal(a/Q)ab - Zx:
then, for a number ficld F, define

ey : Gal(F/F)*® — 2%

by restriction. For any m € Z dcfine the cyclotomic motive Fgyc(m) over F' with
coefficients in Q in terms of its realizations:

(i) Fcyc(m)DR = (QWi)-mF

(11) Fc_yc(m)a Q, cyc(nz)—n,—n = Fcyc(m)DR ® Ca

(iii) ch{c(m)p = Q, with the action of Gal(F/F) given by teye;

(iv) Iso,0 is the identification (277) " F Qp, C=Q ® C C;

(v) I, is the identification Q ® Q, = Q,.

In this case we have

L(Feye(n)ys) = Cr(s + n)

(the Dedekind zeta function, shifted by n).

(b) Motive M = H'(A) of an abelian variety 4 over F has the Hodge structure of
the type M%! @ M'% and the corresponding Galois representation is (contragreduant)
-to the representation of Galg on points of finite order.

(c) Motive M(f) of a primitive cusp form (see [De3], [Ja], [Sch])

f= Z ane(nz) € Sp(N,¥) (e(z) = exp(2riz))

n=1
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of conductor N, weight k, and Dirichlet character ¢ mod N is defined over Q and has
coefficients in the field Q(f) generated by Fourier coefficients a,. Its Hodge structure
is of the type M®*~1 @ M*-10 d =2 w=4%k—1, and

047, = S = [[ (= w12

n=1 P

1.3. Twist with a Hecke character of finite order. Let x : AR/F* — C*
be a Hecke character of finite order, and

L(s,x) = [[(1 = x(p)Np~)~
¥

be its L-function, where x(p) denotes the value of x at a uniformizing element for p, and
the product is taken over all prime idcals p, not dividing the conductor ¢ of x. Then there
exists a motive M = [x] of rank d, weight 0 over F' with values in a field T, containing the
field Q(x) generated by values of y, such that L(M,s) = L(s, x). In order to describe
realizations of {x], we denote by the same symbol [x] a 1-dimensional vector space over
T with the action of Gal(F*®/F) given by the character ¥ : Gal(_}:‘-/F)"b — T which
corresponds to y by class field theory. The A-adic representation rpr x : Gal(F/F) —
GL([x]r) is then determined by the character ¥. For each ¢ € Jr, the Betti realization
[¥]e is the 1-dimensional vector space over T such that for real o the involution pe
acts as €, = x{po) = *1, where we denote by the same symbol p, the element of
Gal(F/F) given by the complex conjugation over the image o(F) C C. Also, we have
that [x], ® C = [x]3*.

Let F be totally real, and Sgny C FX be the group of signs of F (elements of order
2). If we denote by xoo the restriction of x to FY = (F @ R)* then for a totally real
F we have sgn(xoo) = (€0 )o € Sgnp. De Rham realization [x]pr is a one dimentional
T @q F-module, and if we fix ¢ € Jp then (x]pr can be regarded as the submodule of

[Xlpr ®Fs C =T ®qC,
generated by the Gauss sum (sec [De3))
C)= Y, . Xeol®)X((2)0) 1o,y ®q e(Tr(z)) € T ® C;
rEd—tc-t fo-t

here n = [F : Q], 0 is the different of F, Tr(z) = 7' + --- 2", e(2) = exp(27iz), and
we denote by 15,5 a basis of the one dimentional T-vector space [x]o.
Moreover, the o-comparison isomorphism (of T' ® F-modules)

Ioo,a : [X]a’ ®C 5 [X]DR RF,0 C

is an isomorphism of T ® F-modules, such that F' acts on the second factors via o, and
Iw,0 becomes the identity map T ®q C — T ®q C if we use the above identification.
We have that

I=0,1, : [xX]®q C = ®s[x] ®F s C = [X|pr ®q C
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is the isomorphism of free one dimentional T'® F' ® C-modules. Also, the A-adic com-
parison isomorphism

Ino : [x]le @ Ta = [X]a

reduces to tensorization by T over T
Let M([x] = M @r|x] denote the twist of a motive M over F' with a Hecke character
of finite order y over F. Realizations of M{x] are given by

Mxloe = M, ®7 [Xlo, MX]DR = MpR ®TeF [X]DR, M[X]A = M) ®T, [X]A.

Without loss of generality we may regard M and [x] as motives with the same coefficient
field T(x) generated over T by values of x.

1.4. Periods. The following period construction is due to Deligne [De3] (see also
[Bl1], [B12]. Consider the T-linear automorphism p, : M, 5 M, defined for real & € Jg
as above, and put

My, =MI oM, MF=Ke(p,F1:M, > M,).

w/2, w/2

Assume that p, acts on M, by a scalar (o) = 1 if M, grivl? # 0. Define

FopM = FEREM  (w € 2Z,e = -1)
FiaM = FERM (we2Z,e=1)
FppM = FRPPV'M (we2Z,e=1)
FhoM = FUIPPM (we2Z,e=-1)
FhoM =Fp,M = FSP (w odd)

and set
MZE, = Mpp/FE,M

(this is a free factormodule of the free T @ F-modules Mpgr which is well defined only
in case when all of the signes ¢(¢)) are equal, say, to a fixed sign € independent of o,
and in this case M’gR depends only on €). Put

d=dimr M,, df =dimr M¥ =dimrgr Mjp.

Define
I, :M¥®C— M3, ®F.C,

to be the composition
MEQ®C = M, ®C = Mpr®roC — M, ®p, C,

and note that the T'® F isomorphisms I, » and I;g,, give rise to the following isomor-
phisms of free T @ F' @ C-modules:

To = @01 00,0 P Do My ®Qc—’MDR ®QC ®sMpr OF,s C,



and
IZ=@,1%,: ®.MFeqC > ME,0qC=0.,ME,F, C.

Note that these isomorphisms describe the corresponding comparison isomorphisms for
the motive Rrp;qM over Q obtained from M by restriction of scalars.
Let

c*(0) = (o M) = det(I% ) € (T ® C)*,

and
8(c) =6(0; M) =det(Io,0) € (T ® C)*,

where the right-hand sides denote the determinants of matrices representing the maps
relative to T ® F-rational bases of the sourse and target. Note that the quantities ¢*(¢),
8(c) € (T ® C)* are defined only modulo the multiplcative subgroup (T ® o(F))* of
(T® C)*.

However, the quantities

ct =cH(M)=][c*(o), §=6(M)=]]b(c) e (T®C)

arc defined already modulo the multiplicative subgroup T C (T ® C)*, and they are
called periods of M. Using the above identification T'® C £ ]_[1_ C, we may describe
these periods as certain vectors

ci(a); (cE(o;7, M), 6(0) = (8(a;7,M)), € (T®C)*

in terms of T-invariant subspaces.

Let
‘nd-o:'%r C ﬂ{;t ®Q Ci AJI:%R,U,T C ﬁIIDR ®:I§,cr C

be the subspaces, on which T acts via r € Jp, then IO:E,U and I,s induce the isomor-
phisms
+ V¢ S *
Ioo,O,f . Ma’,r - AJDR,U,r

and

Icor:Myr = MpR,or
Let ,

H(o;7, M) = det(I% , )
and

8(o; 7, M) = det(Ioo,0,7),

where the right-hand sides also denote the determinants of matrices representing the
maps relative to T' @ F-rational bases (with F acting via ¢ on C). Then

E(0) = (H(0;7, M))r, 8(0) = (6(037,M)), € (T ® C)*.
We shall often fix 7 and M and allow us a convenient abuse of notation by writing

ct(o) = ct(o; 7, M), 6(c) = §(a;7, M) € C* mod (o (F>*)r(T>)).
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Example. Let [x] be the motive over a totally real field F attached to a Hecke
character y of finite order, then the periods ¢*([x]) can be defined only in case when
signy is a scalar, i.e. &,(x) = €(x) does not depend on o. Then from the above
description of realizations of [x] we now deduce that that

<([x]) = 6(1x)) = GX)DE?, c~*([x]) = 1.

Indeed, [x];¢ = [x]|pk = {0} so that IZf, are all trivial, proving the second equality.

00,0
The determinant of the isomorphism

I;o = Ioo . @a[}(]o’ ® C= @o(T ® C)cr 5 [X]DR ® C= @a[X]DR ®F,o' C,

of free T ® C-modules is easy to compute using the standard T-rational base of (T ®
C),, and the T-rational base of [x]pr ® C = ®s(x]DrR ®F,c C given by

60810 = Y Xeal@X(2)D) 1y ®q 2l e(Te(x)) € (T ® C)*

T€d-lc-1/p~1

(: =1,--+,n); here {z;}_, is a Q-rational base of F over Q so that det((z7),) ~ D}?/z,
and the first equality follows.

Periods of a twisted motive. Let M[x] = M ®F [x] denote the twist of a motive
M over a totally real field F' with a Hecke character of finite order x, and let e(x) =
(es(x))s € Sgnp. Then

M(x]e = Mo @7 [X]ey Mx|lDR = MpDR ®@TeF [X|DR,

and we can use the above description of the realizations of [x] to compute the periods
c*(M|x]). First we suppose that M2 # {0} and p acts by a scalar € = £1 which
is independent of ¢. Then the periods c*(M[x]) may only be defined when signy is a

scalar, i.e. £,(x) = €()¥) does not depend on o in which case we have that

H(M[x) = G(x)™" =X ().
Next, assume that AJ;"”‘“’/Z = 0, and y has an arbitrary sign. Then the rank d of A
is even, and we obtain from the above that

c*(M[x]) ~ G(,\’)—‘Uz H o, A% mod (T(Y) ® F')*,

o

where ¢ = &, and F' = [[, o(F) is a subfield of C. However, we shall show using
L-{unctions that the last equivalence also may make sense modulo T'(x)*.

Example. For the cyclotomic Tate motive Feyc(m) (m € Z), and a motive M over
F we define M(m) = M ®r F(m). Then

cE(o; T, M(m)) ~ (27ri)d$ meE(=D" (.2 M) (mod(a( F*)r(T*))

and

§(a; 7, M(m)) ~ (27)4™m6(a; 7, M) (mod(a(F*)r(T™)).
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Moreover, using the same arguments as in the previous exemple, we get

dEnm pdEm =0T (A1) (M (m)) ~ (278) 4" DENS(M) (modT™).

¢F(M(m)) ~ (2n7)

1.5. The gamma-factors of L(M, s). We know that for a motive M over F with
coefficients in T' its L-function coincides with that of the motive RM = Rp;qM over
Q obtained from A by restriction of scalars, i.e.

L(M,s)=L(RM,s) € T® C (for Re(s) sufficiently large).

Therfore, we may restrict ourselves to the case of motives over Q, and recall the con-
jectures about analytic prorerties and about the special values of L(AM, s). '

Put A(M,s) = Loo(M,s)L(M,s), where Loo(M,3) = Lo(M,s)Lr(M,s) is the
gamma-factor, defined by the Hodge structure of AM:

Mp®C =@My,
as follows

Lo(M,s) = HI‘c(s — i)hu, Lr(M,s)=Tr(s — w/2)7+FR(3 +1—w/2)7,
i<Jj

where k' = dimM b/ ~* = dim(l\vf'“/z"”/2 N .M(-—])w/z:i:), and

T'e(s) = (2ri)°T(s), Tr(s) =7""/2T(s/2).

1.6. Conjecture on analytic properties of A(M,s). The function L(M,s)
can be analytically continued onto the entire complex plane and satisfies the functional
equation

A(M, ) = e(M)c( M) HD/2=sA\(N1 1 — ),

where e(M) = (e(M)"), € T® C (r € J,;) with e(M)" being complex numbers
of the absolute value equal to 1, which is independent of s and ¢(M) is determined
by conductors of the corresponding l-adic representations ryar. Morcover, L(M,s) is
holomorphic unless both w is even and the motive Q(—w/2) is a direct summand of M,
in which case L(M,s) may possibly have a pole at s =1+ (w/2).

Turning to critical values, we recall that s = m is said to be critical for M if both
I-factors Leo(M,s) and Leo(M,1 — s) are holomorphic at s = m and eigher v+ = 0 or
¥~ =0, or M®/2w/? =,

1.7. Conjecture on critical values [De3]. If s = m is critical for M then

L{A,m) T
ct(M(m))
For example, if M = [x] is the motive attached to a Hecke character of finite order
x, and F is totally real, then s = m is critical if and only if all of the signes ¢, are
equal, say to € = &%, and cither ¢
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(a) m = —e for m <0, when

¢t (bd(m)) =1, L(m,x) € Qx),
or |
(b) m=¢ for m > 0, when
L(M, x)
G(x)(2ri)"Dp/*
For motives M over F' we set A(M,s) = A(RM,s) and call s = m critical for M

iff it is critical for the corresponding motive RM over Q.
We shall need the special case when

H(Ix(m)) = GOO)(2ri)™ D22, and & Q).

A{w/Z,w/‘Z — {0} (*)

One can deduce from the above formulae for ¢*(M(m)) that under (*) for m critical
the original conjecture takes the form [Co-PeRi):

A(M,m)
RELIgYS eT.

Also, for the motive M{x], obtained by twist with a Hecke character of finite order the
above conjecture transforms in this case to the following:

A(M[x],m) )
0oy €T

Following a suggestion of A.A.Beilinson, we formulate a refined form of the above
conjecture assuming (*).

1.8. Modified conjecture on the critical values. Assume that there exists an
integer s = m which Is critical for a motive M over a totally real field F' with coefficients

in T satisfying My 2wl 0, where w is the weight of M. Then there exist constants

o, M) e (T @ C)X,
which are well defined modulo T such that
&&(o; M) ~ ¢*(o, M) mod (T @ o(F))*
and if we put

e (MIXI(m)) = G(x)™** Dy J](2mi)* " eer D" (g5 1)

[~

then
L(M(x],m)

LML) = sxaigem)y

T(x)™,
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or equivalently
A(Mx],m)

e (M(x])

In other words, the L-function L{MT{y], s) determines a canonical choice of constants
&*(o; M) € (T ® C)* modulo T*. The existence of such constants has been proven for
a number of L-functions attached to Hilbert modular forms (see [Shl] — [Sh3], [Ha3],
(which conjecturally can be associated with certain motives).

Remark. Under the assumption (*) we can easily list all the critical points of the
L-function L(M|x],s). Let us set

€ T(x)*.

h, = max {i|lai’w‘i #0,i <w/2}, h*=min {illli'w_i #0,i>w/2},

so that h, = w — h*. Then all the critical points of L(M([x], s) are given by s € Z, h, <
5 < h*.

§2. p-adic L-functions

2.1. p-ordinary motives. We shall formulate a general conjecture on p-adic
L-functions attachcd to motives over a totally real ficld F' in terms of the existence of
certain p-adic measures p on the Galois group Gal, = Gal(F(p)/F), where Gal(F(p)/F)
is the Galois group of the maximal abelian extension of F' unramified outside p and co.
For Hecke character x of finite order whose conductor contains only prime divisors of p
this conjecture interprets the critical values A(M|x],r) in terms of certain integrals of x
over Gal,, where we use the same symbol x to denote a character of Gal, attached to the
Hecke character by class field theory. We start by recalling the notion of a p-ordinary
motive [Co-PeRi] and suppose first that M is a mftive over Q of weight w, and rank d.

We fix an embedding 7, Q- C,, where C, = ap denotes the Tate fleld (completion
of an algebraic closure of the p-adic field Q,).
Let .
3, : D, = Gal(Q,/Q,) — Z

be the cyclotomic character of Dj.
Definition. We say that M is ordinary at p if the following conditions are satisfied:
(i) The inertia group I, acts trivially on Ay for A not dw:dmg pinT.
(ii) There exists a filtration on My
Wi(M) = ﬁ/.f,\(ﬂff)

Wa(M)™ -+ = Wit (M) = {0)

£

by Tx-vector spaces which are stable under the action of Dy, and which are such that the

inertia subgroup I, operates on W;(M)/Wi11(M) by some power of ®,, say &, «i(A)

(1<i<t). Moreover, these integers satisfy
ei(M) 2 ea(M) 2 -+ 2 er(M).

If M is ordinary at p there is a close connection between the Galois module Ay
(for A dividing p) and the Hodge decomposition of M, @ C. The precise conjecture on
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this connection is given below. Assuming M is ordinary at p condition (i) ensures that
the p-Euler factor L,(M, X) has exact degree d. Hence factorizing it in Q,, we have

Ly(M,X)™ = (1= a1(p)X) -+ (1 — a(p)X) (cri(p) € Qp)

where none of the «;(p) is equal to zero. Here we fixed some embedding 7 : T — Q and
assumed that

LM X) ' =1+ A4 X 4+ 4+ 4:X € TIX] € Q,[X]

Let ord, denote the order valuation of Q,, normalized so that ord,(p) = 1. We suppose
that we have chosen our indices so that

ordy(a(p)) 2 ordy(aa(p)) = - - 2 ordy(aa(p)).

2.2. Conjecture on p-ordinary motives. Assume that M is ordinary at p. Then
the above sequence of p-adic orders consists of e; repeated h®' '~ times, followed by
e, repeated h®¥ ™2 times, ..., followed finally by e, repeated h® ¥ ~° times.

Actually, this conjecture has already been proven in a vast generality by the alge-
braic geometers [Blo-K]. '

2.3. Datum for the non-Archimedean construction. Let us consider the
p-adic completion

Or®Zp =[] O
rlp
of Op.

The domain of definition of our non-Archimedean L-functions is the p-adic analytic

Lie group
Ap = Homeoniin (Galp, C;‘)

of all continuouos p-adic characters of the Galois group Gal,. Elements of finite order
X € X, can be identified with those Hecke characters of finite order whose conductors
contain only prime divisors of p. This identification uses the map
X:AF C—Fr>PG¢'-llj,J Q7 C,,
where CTF is the homomorphism of class field theory.
We shall use the same symbol y to denote both Hecke character and the corre-

sponding element of A%. Since Q(p) C F(p), the restriction of Galois automorphisms
to Q(p) determines a natural homomorphism

N : Gal, — Gal(Q(p)/Q) = Z,'.
We shall let Nz, denote the composition of this homomorphism with the inclusion
Z; CC.
Starting from the algebraicity property of the critical values in the modified conjec-
ture 1.8, we shall describe the general form of p-adic L-function attached to a motived
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over a totally real ficld F. We call M ordinary at p if the motive RM of rank dn
obtained from M by restriction of scalars to Q is p-ordinary. In this case we set

Ly(RM, X)™ = [ Lo(M, X) ™" =
plp
(1= a1(p)X) -+ (1~ aan(p)X) (ai(p) € Qp),
where
Lp(M, X)7 = (1= aM(p)X) - (1~ o D(pi)X).
For the motive M dual to M we set
Ly(RM, X))~ =[] Lo (31, X)) =
plp
(1 - él(P)X) T (1 - ddn(P)X) (d'i(P) € Qp)a
and _
Lo (M, X)™" = (1= aP(p)X) - (1 - &D(pi) 71 X),

so that we have
&i(p) = aans1-i(p)™"' (1 <i < dn), and we set d(j)(p,-) = a(d"j)(p,-)"l.

In order to formulate precisely the conjecture we set

I ={Gi)lpilp, ordya?(pi) > 0}, ar = {(6,9)[pilp, ordpaP(pi) 2 1= 17},
and

ep(Mx, ) = [ @=x(r)ePeNp?) [ Q-x7'p)aP(p)Npi),

(5,5)€Jnm (i.5)edn
Iy = {(z',j)|ordpa(j)(p;) < h.}.

Suppose that M is a motive over F' with coefficients in T € Q C C which posesses a
critical point. Let us also fix €9 = (€0,0)0 € Sgnp, where €9, = %1, and define the
following constant : :

Qeo) = [J & (o),

-4

where £%°(g) € C* are the same as in the modified conjecture 1.8 on the critical
values. Assume also that (*) is satisfied, i.e. M2/*™/% 0. Then d is even and all the

critical points r are given by h, < r <A™,

2.4. Conjecture on p-adic L-functions. Under the conventions and notation
as in 2.3 there exists a bounded C,-valued measure p., = pio(M) on Gal, which is
uniquely determined by the following condition: for all Hecke characters x € A;°™ and
all r € Z satisfying

(=1)eo(x) =€0,0 (for all 0}, ho<r <h*
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the following equality holds:

/ x“]JV':c;d;t,o =
Gal,

' Der/2(_1)[rd/4] A(ﬂf \] r—1 y ordp; c(x)
z'D( GO Qleo)®, (M[x L) 11 (a(n(p )) :

5,J)ETn

Note that the measure ., defines a bounded C,-analytic function
Legrm:Ap - Cp, Ap Dz / T djte, (M)
Gal,,

(the p-adic Mellin transform of p.,(M)), which is uniquely determined by its values on
the characters ¢ = x~'Vz} € A;.

§3. Hilbert modular forms

3.1. The group. We shall regard the group GL,(F') as the group Gq of all Q-
rational points of a certain Q-subgroup G C GL2,. Then Hilbert modular forms will
be regarded as complex functions on the adelic group Gao = G(A), which is apparently
identified with the product @
GLQ(FA) = Goo X Ga,

where

Goo = GLao(Fa) 2 GLo(R)", Gg = GLo(F).

The subgroup
Gt =2GLI(R)" C G

a=(a17°-~$aﬂ)a Qy = (:: ?:),

consists of all elements

such that détau >0, v =1,..,n Every element @ € GZ, acts on the product H" of the
n copies of the upper half planes according to the formula

a2y, zn) = (aq(21), -, an(2n)),

where
au(zv) = (auzu + bt/)/(cuzu + dv)»

For z = (z1,--+,2n) we put {2} = z1 + -+ + z, and ep(2) = e({z}), with e(z) =
exp(2wiz), and we use notation A(z) =z;:--2zp. Let i=(7,---,1) € H”, then

{a € GEla(i) = i} /RX 2 SO(2)"
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is a maximal compact subgroup in G /RY. For o € G, , an integer n-tuple k =
(k1,-++,kn) and an arbitrary function f: ™ — C we use the notation

n

(flka)(z) = H(Cyz + dy)-—k.. f(a(z))det(a,,)k"/z_

v=1

Let ¢ C OF be an integral ideal, ¢; = ¢Oy its p-part,0p = 00, the local different. We
shall nced the open subgroups W = W, C Ga dcfined by

W =G x [Tw®),
p

W(p) = (3.)

b
{(‘:d) € GLy(Fy)|b € 05 ¢ € dpcp, a,d € Op,ad — be € 0;}.

Let h = |51;[ be the number of ideal classes of F' (in the narrow sense),

Clr = I/{(z)l= € F}},

and let us choose the ideles t1,---,¢; so that £y C Op form a complete system of
representatives for Clp, (tA)eo = 1 and £ty + mg = Op (A =1,-+-, h, Wy = [Taese 9)-

If we put z) = (3 :1) then there is the following decomposition into a disjoint union

(“the approximation theorem”):
Ga = UrGqeaW = U Gqzy ‘W, (3.2)

-1
where zy‘ = ('% ?) , t denotes the involution given by

(fe) = (&7)
(see [Sh1], p.647).

3.2. Hilbert automorphic forms. By a Hilbert automorphic form of weight
k= (ki, -, kn),level ¢ C Op, and Hecke character ¢ we mcan a function f : GA — C*
satisfying the following conditions (3.3) — (3.5):

f(saz) =9(s)f(z) for all z € Ga

x (3.3)
for s € F5 ( the center of Ga), and o € Gq.

If we let 3o : (Of/c)* — C* denote the c-part of the character ¥, and then extend the
definition of ¥ over W by the formula

" (( 1)) = #a(aanodo),
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( ac being the c-part of @) then for all z € Ga
f(z wj = YP(w')f(z) for w € W, with we = 1. (3.4)
If w=w(8) = (wi1(61),...,wn(0n)) where

w0, (8,) = (cos()u —51119,,) ,

sinf, cosf,

then _
Fzw(®)) = f(@)e=ko+=kdn) (5 € Gy). (3.5)

An automorphic form f is called a cusp form if

f | f((lt)g) dt = 0 for all g € Ga. (3.6)
FA/F 01

The vector space My(c, ) of Hilbert automorphic forms of holomorphic type is
defined as the set of functions satisfying (3.3) ~ (3.5) and the following holomorphy
condition (3.7): for any ¢ € Ga with zo, = 1 there exists a holmorphic function

gz : H” — C, such that for all y = (i Z) € GL, we have

flzy) = (9=lev)(i) (3.7)

(in the case FF = Q we must also require that the functions ¢g; be holomorphic at the
cusps). The property (3.7) enables one to describe the automorphic forms f € M (¢, )
more explicitely in terms of Hilbert modular forms on $™. For this purpose we put

fr= gps where 23" = (t%l ll)) , then fy(2) € M(Tx, o) for the congruence subgroup
P,\ = PA(C) C Ga,
T'y= :I:,\I'V:E;l N GQ =

b . -
{(a d) e GElbe i, celrvc,a,d € OF, ad—bceo;i}.
[

This means that for all ¥ € I"x(¢) the following condition (3.8) is satisfied:

Ay =v9()fr and fa(z) =) ax(f)er(€2), (3.8)
‘ 13

where 0 € £ € ty or € = 0 in the sum over € (sce [Sh1] for a more detailed discussion of
Fourier expansions). The map f — (fi,...fs) provides a vector space isomorophism

M(c,¥) 2 &M (T, )
Put

kol it the el o £5=1 e _
C(m, f) = {(LA(E)N(tA) /2 if the ideal m = ££7" is integral;

3.9
0, if m is not integral. (3.9)
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We have the following Fourier expansion:

((33)= > NC 20, (o) 2er(Civeo)x(Ca),  (3.10)

0L (Cef (=0

where YF : Fo/F — C¥ is a fixed additive character with the condition yr{zs) =
er(Too) (see [Shl], p. 650).

Let Sk(c,) C M(c,1) be the subspace of cusp forms and f € Si(c,) then
ax(0)=0forall A=1,.---,h

3.3. Hecke operators are introduced by means of double cosets of the type
WyW for y in the semigroup

Ye = Gan(Gh x [T Ye(m)),

where
b
},t(p) = {(C; d) S GLQ(FP) | aOp + Cp = Op, b € D;I,C S tpbp,d (S Op} (311)

The Hecke algebra H. consists of all formal finite sums of the type 3, ¢, WyW
with y € Y.,¢;, € C and with the standard multiplication law defined by means of
decomposition of double cosets into a disjoint union of a finite number of left cosets. By
definition, T¢(m) is an element of the ring H. obtained by taking the sum of all different

WyW with y € Y. such that det(y) = m. Let
T! = N (m)Fe=D/27 (m) (3.12)

be the normalized Hecke operator, whose action on the Fourier coefficients of an auto-
morphic form (of holomorphic type) f € My(c,9) is given by the usual formula

C(m, fITi(m) = Y P(a)N () C(a"mn, f) (3.13)
m4n=q
If f € My(c,) is an eigenfunction of all Hecke operators T;(m) with f{zT;(m) = A(m)f
then we have that C(m, f) = A(m)C(OF, ). If we normalize the form f by the condition
C(Op,f) =1 then the L-function has the following Euler product expansion:

L(s,f) = 3 C(n, DN (0)™ = 3 MmN (n) ™ =

1 3.14
[T =Cr,ONE)™ + 9PV (p) 1) (3.14)
p

For such a form f all of the numbers C(n, f) are algebraic integers.
The Petersson inner product is defined for f = (f1,..., fr) € Sk(c,%) and g =

(g1y -y gn) € Mp(c, 1)) by setting

(f,g)e = Zf (:)\s)n Fa(@)ga(z) v* du(2), (3.15)
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where
n

v =y, du(z) = [ vt des dy

v=1

is a G, -invariant measurc on H".
84. Motives and p-adic L-functions of Hilbert modular forms

4.1. Let f € Si(c,%) be a primitive Hilbert cusp eigenform of weight &, (k =
(ky,--+,kn)), and character ¥. Then the important analytic property of the corre-
sponding L-function ( see [Shl], p. 655)

L{s,f) = ZC(n,f‘)N(n)“’ = H (1= Cp, N (p)™* + w(p)Af(p)ko—l—Za)—]

p

is ( see [Shl], p. 655) that it admits a holomorphic analytic continuation onto the entire
complex plane, and if we set

Als, f) = ﬁFc(s — (ko — &i)/2)L(s, 1),

then A(s,f) satisfies a certain functional equation expressing A(s,f) in terms of the
function A(ky — s,£?). Also, for any ¢ € AutC we have that f¢ € Sys(c,9?), where

L(s,0%) = ¥ C(n, £)* N (n)~",

and the action of ¢ on weights k is defined by the formula

(z**) = (z*)? for all z € F*,

where z¥ = z¥' ... 25 z; = 0y(z). According to the above conjecture on analytic

properties of L(M, s) we may suggest a conjecture that f should correspond to a motive
M = M(f) over F of rank d = 2, and weight w = k¢ — 1 with coefficients in a field T
containing C(n, f) and z* for all n € @ and = € F such that

L(M,s) = L{s,f), A(M,s)=A(s,f) e T®C,
and for a fixed o; : F — R the Hodge decomposition of My, is given by

M, 8C > ®es (Mgfo-k.-’)fz,(kﬁkr)/z—l @ A gfwk!)/zml,(ku—k:)/z) ’

where k7 = (k7,---, k7)) is the weight of the modular form f7 with coefficients 7(C(n, f)),
which is obtained from f by action of a certain complex automorphism (note that the
Hodge type of this decomposition does not depend on o;).

There are several confirmation of this conjecture. First of all, this is already proven
in the elliptic modular case (F=Q) by U.Jannssen and A.T.Scholl [Ja], [Sch]; the ex-
istence of Galois representations of Gal(Q/Q) corresponding to A-adic realizations of
these motives was discovered earlier by P.Deligne [Del]. By the restriction of such rep-
resentation to the subgroup Gal(F/F) = Gal(Q/Q) we obtain the L-function of certain
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Hilbert modular form, which is the Doi-Naganuma (or “base change”) lift of the original
elliptic cusp form.

In the general case the existence of Galois representations attached to Hilbert mod-
ular forms was established by R.Taylor (n odd) [Ta] and H.Carayol (n even)[Ca]. Also,
a number of results on special values of L(s,f) were proven, which match the above
conjectures on the critical values and on p-adic L-function ([Sh1], [Man], [Ka3]).

Asin the elliptic modular case there is a conjectural link of motives of the type M (f)
with Kuga — Shimura varicties, namely, that for the decomposition RpjqM = @, M
the tensor product @7, M°, Whlch is a motive over Q of rank 2", should be contained
in the cohomology of certain Kuga — Shimura variety (fiber product of several copies
of the universal Hilbert — Blumenthal abelian variety with a level structure, see the
interesting discussion of this link in [Ha3], [O]).

If ky = = ky, = 2 then M? should have the Hodge type H®? @ H!°. In some
cases (e.g. when n = [F : Q] is odd) the motives M can be realized as factors of
Jacobians of Shimura curves corresponding to quaternion algebras, which split at o;,
ramified at ¢; (¢ # j) (M.Harris, T.Oda) [Oda], [Ha3].

4.2. Periods of the Hilbert cusp forms. Let f € Si(c,) be a primitive Hilbert
cusp eigenform with coefficients in a field T as above, and

L(s, f(x)) Zx(n n, )N (n)~* =
1

I (1= x(P)C(p, DN (8)~" + x(P)* (PN (p) o1 —2) ™

p

be its L-function, twisted with a Hecke character x(p) of finite order. Then it was es-
tablished by G.Shimura [Sh1] using Rankin — Selberg method that there exist constants

t(a,f), 6(c,f) € (T ® C)*

defined modulo T such that
H ct(o,f)c (o,f) = H&(a) G(y)~ (27rz)"“°_l)
and if we put
he = max {(ko — %i)/2}, k* = min {(ko + ki)/2 — 1},
(so that hy = ko — 1 — h*), and
E(x, f) = G() 7 [[ e* W (o, 1),

then for all the points r € Z, h, < r < h* we have that

A, (X))

T(x).
C(_l)m(;\’,f) e (A)

Note that from the point of view of the modified conjecture 1.8 on the critical values,
the quantities ¢* (o, f) determine the corresponding constants é*(o, M(f)) under the
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assumption that the motive M = M(f) exists. Earlier the analogous algebraicity result
was established by Yu. I. Manin [Man] using the theory of generalized modular symbols
- on Hilbert — Blumenthal modular varieties.

4.3. p-ordinary Hilbert modular forms. Let us now analyze the condition
that f is p-ordinary and assume for simplicity that p splits in F, pOp = p1:+-pa.
We let in this case the ideals p; be indexed by the embeddings o; : F — Q so that
ord,oi(p;) = &i ; (we regard —Q as a subfield of C, via i,). Consider the numbers a(p;),
a'(p;) (the roots of the Hecke polynomials

— C(pi, X + PPN (p)*o7! = (X — a(p))(X = o'(pi)) € Cp[X]).

Then the condition that the motive M = M(f) attached to f is p-ordinary takes the
form:

ordya(p;) = (ko — ki)/2, ord,a’(p;) = (ko + ki)/2 -1,

or equivalently, ord,C(p;, f) = (ko — ki)/2.
An example of a p-ordinary motive. Let K O F be a totally imaginary quadratic
extension, and 17 : A} /K™ — C* be an algebraic Hecke's Grossencharakter such that

n((a)) = (%—i)wl (IZ%I)% N (a)we/2=

for « € K,a = 1(modc(n)), where {¢i: ' = C} is the sct of complex embeddings
satisfying ¢:|F = o; (CM-type), w; are positive integers, wy = max; w;. Then there
exists a Hilbert modular form f of weight £ = (wy + 1,---,w, + 1) such that L(s,f) =
L(s,n), and M(f) coincides with the motive Ry r[y] obtained by restriction of scalars
from the motive [] (the last motive exists as an object of the category of motives of
CM-type, see [Bl1]).

In order to give an example of a p-ordinary motive, let us assume that p totally
splits in K:

POk = B1 B BaBrn, pi0Ok = PPl

Taking into account that ord,o;i(p;) = 6; ; we shall assume that
ordpdi(P:) =0, ord,¢:(Pi) =1

then the roots a(p;), a'(pi) of the pi;-Hecke polynomial are cqual to n(*B;), n(B%), and
from the above formula for y((«)) it follows that

ordpn(*Bi) = (wi — wo)/2 = (ki — ko)/2, ordpn(Pi) = (wi +wo)/2 = (ki + ko)/2 - 1,

i.e. that M is p-ordinary.

4.4. p-adic L-functions of Hilbert modular forms. We now state a general
result on p-adic L-functions of Hilbert modular form, which was proven (in a weaker
form) by Yu.I.Manin [Man]. In order to give a precise formulation we assume that f is
p-ordinary, so that

ordya(p;i) = (ko — ki)/2, ordpa’(p:) = (ko + k:)/2 -1,
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or equivalently, ord, C(p;, f) = (ko — *i)/2. Then for a Hecke character x of finite order
whose conductor is divisible only by prime divisors of p in F we consider the L-function

L(s,£(x)) =
> x(m)C, HN ()™ = [T (1 = x()C(p, ON ()™ + x(P)*$(PIN (p)*o~172)
n p

-1

of the Hilbert cusp cigenform f(x) € S(cc(x)?,¥x?), obtained from f by twisting with
X, where ¢(x) is the conductor of x, and we assume that ¢(x) is coprime with the level
¢ of f. We mentioned above that there exist constants

ci(a, f), 6(o,f) € (T @ C)*
defined modulo T such that

H c*(o,f)e™ (o, 1) = (£, 1) Ha(a G(¢)"1(2wi)"(k°“),

and if we put
h, = max {(ko — ki)/2}, h* = min {(ko + *:)/2 -1},
t(x,f) = G(x)7 [[ X (o, 1),

then for all of the points r € Z, h, < r < h* we have that

A(r, £(x))
=g €70

In order to describe p-adic L-functions we sct

‘I’P(M[X])'s)—l =
[T - x@REWP )~ Ba(p) Vo',
PES(PN\S(X)

where S(p) is the set of all prime divisors of p in F, and the product is extended over
the subset of of those prime divisors which do not belong to the support S{x) of x. Let
us also fix €9 = (€0,0 )0 € Sgnp, where €0,, = %1, and define the constant

Qeo, f) = [[ e (0, 1)

o

Theorem (on p-adic L-functions attached to Hilbert cusp forms). Under the con-
ventions and notation as above there exists a bounded Cp-valued measure e, = pleq, ¢ 0n
Gal, which is uniquely determined by the following condition: for all Hecke characters
X € A;°" and all r € Z satisfying

(=1)ee(x) = €00 (for all ¢), h, <r <h*



the following equality holds
/ X '\Nazpdpe, =
Galp
(DRI A0, H(Np.*")""‘""” .
g G(x)  QUeo, NPH(T(X),m) L\ alp) ’

the measure p,, defines a bounded Cp-analytic function

Legar: Xy = Cp, ApSz / z dpteo (M)
Gal,

(the p-adic Mellin transform of y.,(M)), which is uniquely determined by its values on
the characters 2 = x"l./\/':z:; € &,

§5. Non-Archimedean convolutions of Hilbert modular forms

5.1. Let us consider the Rankin convolution

L(s,f,8) = ) C(n,f)C(n,g)N (n)~* (5.1)

attached to two Hilbert modular forms f, g over a totally real field F of degree n =
[F': Q], where C(n,f), C(n, g) are normalized "Fourier coefficients® of f and g, indexed
by integral ideals n of the maximal order O C F (see §3). We suppose that f is a
primitive cusp form of vector weight & = (k1,---,kn), and g a primitive cusp form of
weight ! = (Iy,---,1,) We assume that for a decomposition of Jr into a disjoint union
Jr = JU J' the following condition is satisfied

ki>li(foro; € J), and I > k; (for o; € J’). (5.2)
Also, assume that |
k] Esz"'Ekn mod2, (53)
and
L=lh=.---=], mod 2. ‘ (5.4)

Let ¢(f) C Op denote the conductor and % the character of f and ¢(g), w denote the

conductor and the character of g (,w : Afz/F* — C* being Hecke characters of finite

order). '
The essential property of the convolution

L(s,f,g(x)) = Y x(n)C(n,f) C(n,g)N (n)~*
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(twisted with a Hecke characer y of finite order) is the following Euler product decom-
position ’
L(25 42— ko — lo,wx?®)L(s,f,g(x)) =
IT (@ = x(na(@)B(a)M(a)*)(1 = x(9)a(@)B' ()N (a)~*)x (5.5)

q
x (1= x(0)a'()B(aN(2)™)(1 = x(0)'(0)B' (DN (2)™)) 7,
where the numbers a(q), a'(q), B(q), and F'(q) are roots of the Hecke polynomials
X? — Cq, D)X + PV ()7 = (X — a(@))(X - «'(q)),

and
X2 = C(q, @)X +w(@W(0)"" = (X = B(a))(X — B'(a).

The decomposition (5.5) is not difficult to deduce from the following elementary lemma
on rational functions, applied to each of the Euler g-factors: if

ot i 1 - s 1
Z_A.‘A TO-aX)(l-oX) ;B"X T (1-8X)(1-pXY

i=0

then

S i 1—- o' X?
2L ABX = A —ep ) — e~ e 09

5.2. The Rankin convolution and the tensor product of motives. Assume
that there exist motives M(f) and M(g) associated with f and g. Then the identity
(5.6) shows that

L(2s+2-k—-1, ¢wx2)L(s, f,g(x)) = L(M]x], s)

where M = M(f) ® r M(g) is the tensor product of motives over F with coeflicients in
some common number field T'. Using the Hogde decompositions for M (f) and M(g) (see
§4) and the Kiinneth formula for M = M(f)®r M(g) we sce that under our assumption
the motive M has d = 4, w = ko + lo — 2, and the following Hodge type:

My, ®@C=

kot+lo—k] —17)/2,(kotlo+k] +I]) /22
Dresr (ﬁdﬂ(f.'n /allorhot ” )EB
@ Moo K —H D21 (Rotlok ] =L D/2=1 gy (Koot =1 D/2=1 (koo kT =17 /21y

ko+lo+ kI +I7)/2—2,(ko+lo—kT ~IT}/2
A{I£‘O+ 0+ .+|)/ ( D+U I |)/

Moreover,

A(M[X],S) = A(Saf:g(X)) =

f] (Ta(s = (ko + lo — ki — 1)/2)To(s — (ko + lo — ki — Li])/2 + 1))

=1

X L¢(23 -t 2— k(l - 10) ¢wx2)L(sa fy g(;\')))
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and this function satisfies a functional equation of the type s — ko +lp — 2 — s.
5.3. The critical values of the Rankin convolution. Let us now set

he = ma.x((ko + 1y — |k,‘ - [,‘I)/2— 1), h* =ke+1lp—2— h..

The periods ¢*(o, M) can be easily computed in terms of ¢t(o, M) (as in the ellip-
tic modular case; see a more general calculation in [Bl2]). As a result one gets that
ct(o, M) = ¢(o, M) does not depend on the sign 4, and is given by

_ [ ct(o,f)c(0,f)6(0,g), foeJ
¢*(o, M) = {c"‘(a, g)c (o, g)&(o‘,gf), ifoeJ.

Moreover,

E(M[x]) = G(x)? [] (o, M).
ced

Let us apply the modified conjecture on special values 1.8 to the L-function

A(M(x], ) = Als, £, 8(x)),
and set c(f, g) =[], ¢t (o, M),

o(J,f) = [] ¢*(o,8)c (0, ), e(J',8) = [ ¢*(o,8)c(,8),

ceJ ocJ!

and

‘5(Jsf) = H 6(0‘,f), 7g) H 6 '7 g)

oecJ ot
Then we see in view of §4 that

o(J,£)e(J', ) = (£, 1), &6(J,)6(J', ) = G(y)~" (2ma)" oD,
o(7,8)c(J',g) = (g, g), 6(J,0)8(J',g) = G(w) ' (2ri) o1,
and
o(Mx]) = F(M[x]) = G(x)"*<(J, £)6(J,g)e(J', 8)8(J", £).

With this notation the conjecture 1.8 takes the following form: for all Hecke char-
acters y of finite order and r € Z, h, < r < I* we have that

Al f,8(x) _AM[X), )
G(x)2e(J, 0)8(J, g)e(J, g)86(J', F) ~ G(x)~2c(M) € Q(f,g, x)-

5.4. Let us consider the special case when J' = @, 1.e. k; > ; for all o; € Jp. Then
o(J,£) = o(Jp, 1) = (£,1), 6(J,8)=6(Jr,g) = G(w) " (2ms)" o7,
and the above property transforms to the following:

Al f,8(x))
G(x)~ (£, 1), Gw)~1(2r¢)ll—1)

€ Q(f,g, x),
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where Q(f, g, x) denotes the subfield of C generated by the Fourier coefficients of f and
g, and the values of x. This algebraicity property was established by G.Shimura [Shi]
by means of a version of the Rankin —Selberg method.

In the general case the above algebraicity property was also studies by G.Shimura
[Sh2], [Sh3] (for some special Hilbert modular forms, coming from quaternion algebras)
and by M.Harris [Ha3] using the theory of arithmetical vector bundles on Shimura
varieties. The idea of the proof was to replace the original automorphic cusp form
f: G(A) — C of holomorphic type by another cusp form 7 : G(A) — C such that

fj(gla e 1gn) = f(gljh' " )gnjn):

where g; € GL2(R),
Ji =

{(;‘1’), ifieJ

(35), ifier.

Then f7 can be described by functions fj on ", which are holomorphic in z; (i € J)
and antiholomorphic in z; ( € J'). Then the differential forms

fi’ Nigs dz;

define a certain class cl(f”) of the degree |J| in the coherent cohomology of the Hilbert —
Blumenthal modular variety, or rather its toroidal compactification ([Hal], [Ha2]). This
space of coherent cohomology has a natural rational structure over a certain number
field F/, defined in terms of canonical models. From the theory of new forms it follows
that there exist a constant v(J,f) € C* such that the differential form attached to
v(J,£)71f7 is rational over the extension of '/ obtained by adjoining the Hecke cigen-
values of f. Then the critical values of the type A(r,f, g) can be expressed in terms of
a cup product of the form
cd(fyucl(g”)UE,

where E is a (nearly) holomorphic Eisenstein series. Then the above algebraicity prop-
erty can be deduced from the fact that the cup product preserves the rational structure
in the coherent cohomology. However, the technical details of the proof are quite diffi-
cult.

5.5. p-adic convolutions of Hilbert cusp forms. Now we give a precise
description of the p-adic convolution of f and g assuming that both f and g are p-
ordinary, i.e.

ord,a(p;) = (ko — ki)/2, ordpa'(p:) = (ko + k:)/2 -1,
ord, A(pi) = (Io — 1;)/2, ordp,f'(pi) = (lo +1)/2 -1,
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or equivalently, ord, C(p;,f) = (ko — %;)/2, and ord,C(pi,g) = (lo — 1;)/2. We assume
also that the conductors of f and g are coprime to p and we set
tI)lf’(‘gaf» g(X))—l =
II (= x(rae'(p)B(PONPT)L = x(pi)e (pi)B' (PN D) X

i €J\S(x)
X (1= x(pi) " a(ps) ™ Bp) T AP = x(pi) T a(pi) T B (p) TN T )X
x JI @ =x(p)a(p)B (pIN P71 = x(Pi)a'(pi)B ()N P; )X

o €J'\S(x)
X (1= x(P) ™ a(p) ' AP NV i (L = x(pi) T ! (pi) T B(pi) T PETY).
Then we introduce the following constant:
Qf,g) = (J,1)8(J,g)e(J',8)8(J', ) =
I c*(o.f)c™ (0, £)6(a,8) [] c*(o,8)c(v,8)8(o, 1)

ocJ ocJ’

5.6. Description of the p-adic convolution. Under the conventions and no-
tation as above there cxists a bounded C,-valued measure yu = pr g on Gal,, which is
uniquely determined by the following condition: for all Hecke characters x € A,°™ and
all r € Z satisfying h. < r < h* the following equality holds:

/ x_l./\f:r;d/q-‘g =
Gal,

L (REC At
? G(X)2 Q(f,g)@p(r,f,g(x))

Npi? ordy; ¢(x) Npr-! ordy; c(x)
* ,,:'[EIJ (G(Pi)zﬁ(ll.‘)ﬁ'(m)) V a:.-l;IJ' (ﬁ(bg)za(p;)a'(pi)) )’

and the measure ¢ g defines a bounded Cp-analytic function

Leg : X, = Cp, ApDz— zdur g
Gal,

e p-adic Mellin transform of p¢ g ), which is uniquely determined by its values on the
the p-adic Mellin transfc f yie g ), which i iquely determined by its val h
characters z = x ' Nz} € X,.

(Note that the above expression could be written in a slightly simplier form if we
take into account the equalities:

a(p)?B(P)B'(P) = a(p)w(PINpP!,  B(p) a(p)e(p) = B(p) $(p)VP™ 1)

5.7. Concluding remarks. The existence of the p-adic measure in 5.6 is known
in the special case, and J = 0 (see [Pa2]), where f and g are assumed to be automorphic
forms of scalar weights &k and I, & > I. Also, this construction was recently extended by
My Vinh Quang (Moscow University) to Hilbert automorphic forms f and g of arbitrary
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vector weights k = (k1,---,kn), and I = (I1,---,1;) such that k; > [ foralli =1,--- | n,
and to the non-p-ordinary, i.e. supersingular case, when | i,(a(p) [,< 1forall p|p. In
this situation the p-adic convolution of Lt g is also uniquely determined by the above
condition provided that it has the prescribed logarithmic growth on X}, (see [V1]).

In the general case the proof of the algebraic properties of the Rankin convolution
in [Ha3] can be used also in order to carry out a p-adic construction. First of all, one
obtains an expression for complex-valued distributions attached to A(r, f,g(x)) in terms
of the cup product of certain coherent cohomology classes, and one verifies that these
distributions take algebraic values. Then, integrality properties of the arithmetic vector
bundles can be used for proving some generalized Kummer congruences for the values
of these distributions, which is equivalent to the existence of p-adic L-functions in 5.6.
However, some essential technical difficulties remain in the general case, and 5.6 can
not be regarded yet as a theorem proven in full generality.
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