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VOLUMES, LATTICE POINTS, and SINGULARITIES

BEN LICHTIN

Introduction.

A classical result, cf. [La-I], for a positive definite quadratic form Q on Rn, n ~ 5, states
the following. For t > 0 set

NQ(t) = #{m E zn: Q(m) ~ t}

VQ(t) = [ dXI ... dX n .
lQ'5 t

Then

(0.1) NQ(t) - VQ(t) = O(VQ(t)/tntr) Q,j t ~ 00.

Furthermore, it is simple to see that VQ(t) = Atn / 2 , where

This is to be understood as a significant improvement over the trivial error estimate of
O(VQ(t)/t!), obtained solely because ofthe homogeneity of Q and compactness of {Q :$ I}.

The argument of Landau relles heavily upon the functional equation satisfied by the
quadratic theta function. It is therefore not capable of generalization to polynomials of
degree at least three. There are however quite reasonable problems to consider that require
an extension of this type of result. For one example, a general question in nwnerical
integration is the following.

Given an unbounded semialgebraic set S S Rn with positive Lebesgue measure, polyno
mial P that is proper on S, and rational function VJ, defined on S, define

Np(t,cp,S) = L cp(m)
{ mEl n ns:IP{m)l'5t}

Vp(t, 'P, S) = [ cpdX l ... dX n .
J{!pl'5 t }ns
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Problem. Analyze the asymptotie of Np(t, <p,S) - Vp(t, <p, S) 8.S t -. 00.

This general problem has both a geometrie and arithmetie feature and is in general
diffieult. On the other hand, if S is Rn then some sueeess has been aehieved. For example,
if P is homogenous and positive definite on Rn, n ~ 6, the lower bound

(0.2)
2 n

8>-·-
- d n+l

has been derived by using fonnulae for the indices of oseillation of the simple singularities,
cf. [CdV-l], [Ra], [Va-I]. However, this method does not seem to extend so easily to
inhomogeneous polynomials, nor to the inc1usion of weights, as determined by <po It is also
not yet known how these results ean be extended to arbitrary n.

An alternative and more funetional analytie method exploits the existenee of an integral
representation for N pet, <p, Rn) as the Mellin transform of a meromorphie funetion whose
first pole and growth at infinity in bounded vertieal strips (of the eomplex plane) are
understood reasonably weIl. The first signifieant result along these lines was given by
Mahler-Bocbner when P satisfied an ellipticity eondition on Rn and <p was a quotient of
relatively prime polynomiaIs, each of which was elliptie on Rn.

One says that P E R[Xl,' .. , x n ] is elliptie on Rn if the top degree term appearing in P is
not zero on Rn - {(O, ... , O)}. Let d denote the degree of P and 8 the differenee of degrees
of the numerator and denominator of <po Mahler [Ma] and Bochner [Bo] investigated the
behavior in t of Np(t,<p,Rn) - Vp(t,<p,Rn) in two different ways. One ean eombine their
analysis into one result that says the foIlowing.

THEOREM. Tbere exist A > 0,82: I/nd, and sequences oE real numbers {Ai}i, {Tdi, Ti >
oand satisfying limi_oo Ti = +00, such that

00

Vp(t,<p,Rn) = At~ + LAitn+ia-Tj
i=l

(0.3)

The reader will note that if n ~ 2, then the estimate obtained in (0.2) is eonsiderably
better than (0.3). Presumably, the methods of [CdV-2] apply to elliptie polynomials when
n ~ 6.

Reeently [Li-3,4,7], the author has extended (0.3) to a eonsiderably larger dass of P, Q, T
where <p = Q/T. These eonsist of hypoelliptie polynomials on Rn, cf. Seetion I for a
definition. It is however, not yet known whether the estimate I/nd ean be improved by
eombining the geometrie methods of [CdV.l, Ra] with the analytieal ones developed in
[ibid]. This appears to be a very interesting question to eonsider.

The set Rn being the largest possible, it is natural to search for smaller sets S for which
Borne reasonable analogue of (0.2) is still true. The first goal of this paper is to describe
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some progress on this problem when S equals the box [1,00)" and the polynomials P, Q, T
are hypoelliptic on [1,00)".

In the following let N pet, )0), Vp(t,)O) denote the function N p(t,)O, [1,00)"), Vp(t,)O, [I, oo)n).

If one is interested only in tbe standard lattice point problem, in which )0 = 1, then an
elementaryargument, given in Section 2, will show the following.

THEOREM A. H P is hypoelliptic on [l,oo)n then tbere exists (J > 0 such that

N pet, 1) - Vp(t, 1) = O(Vp(t, 1)/t8
) B8 -+ 00.

However the argument does not give 80 explicit an estimate for the error tenn's rate of
growth. Indeed, the estimate for (J involves terms that are, so far, difficult to understand.
Essentially, the behavior of P near the boundary of S can affect the estimate of (J, and this
is difficult to understand simply in tenns of P. This should be expected for any S ~ Rn
one might use.

More generally, when )0 is a rational function whose nwnerator and denominator, in
reduced form, a.re both hypoelliptic on [1, 00) n, it is natural to ask how well Np (t, )0 )

approximates Vp(t,)O) (or vice versal as t -+ 00. For the analysis of this weighted lattice
point problem, the simple argument, used in the proof of Theorem A, no longer suflices,
and one apparently needs to use a subtler analytical argument. To formulate the answer
given here, one first recalls (cf. Theorem 2.1) the

THEOREM. There exist Pt ()O), >'1 ()O), f > 0, nonzero polynomials At (c.p, u), B) (c.p, u) E R[u],
as weil as sequences oE positive numbers Ti and polynomials Ai( c.p, u), i ~ 2, so tbat

00

Vp(t, cp) = t>'dlp) At ()O, logt) + L t>'d"P)-ri Ai()O, logt)
i=2

[Li - 1, Ig],

[Li - 3] .

The first main result of this paper is proved in Section 4 and is a simple consequence of
Theorem 4.1. Using the notation in this theorem, it states-

THEOREM B. H P is bypoe1liptic on [l,oo)n, and )0 is a quotient oE bypoelliptic polynü
mials on [1, 00 ) n, tben

Set p{cp) to be the number denoted Pt (cp), >q ()O). Ftom this result, one concIudes

COROLLARY. Tbere exists (J > 0 such that
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However, a reasonable expression or estimate for () is not yet available. Obtaining such
an estimate would be very useful.

Theorem B answers a question posed by Prof. Ehrenpreis to the author in the spring
1990. As noted below, this question has significance considerably beyond the context of
lattice point problems involving one polynomial.

There are two immediate, but also interesting, applications of Theorems A, B. Theorem
A provides an alternative "discrete" method for deriving the asymptotic for the number of
eigenvalues at most t for a self·adjoint extension of a hypoelliptic PsDO. This is discussed
in Section 5. Theorem B allows one to extend the results of [Li-2] to all hypoelliptic
polynomials that are, in addition, "tarne" on C" in the sense of [Br]. This is discussed
in Section 6. Thus, the main tenn in the asymptotic for Np(t,<p) is agam shown to be a
"eohomologieal invariant" whenever<p is a hypoelliptie polynomial on [1,(0)". This gives
further evidenee of a topologieal "loeal-global" principle that deseribes the eontribution
to Npet, <p) of the singularities of P in C". This principle may be viewed as an analogue
of an arithmetie loeal-global prineiple that determines wben tbe singular series, ansing in
the Hardy-Littlewood-Vinogradov analysis (cf. [Dav-1]) of the counts #{P = t} n N" as
t ~ 00, possesses a well-defined rate of growth 88 t ~ 00.

Because tbe metbods used in this paper combine general analytie and geometrie teeb
niques, they provide a convenient framework to help analyze the precise asymptotics of
"simultaneous" lattiee point or volume problems, about whieh one ean find very little
in the literature. These are problems similar to that formulated at the beginning of the
Introduetion, but involving k > 1 polynomials Pi in plaee of the single polynomial P.
The approach, taken to deal with such questions, attempts to use a multivariable inverse
Mellin transform to extraet asymptotie information in a manner analogous to the wen
known method in the eomplex plane (= one variable). An important theme will be the in
corporation of geometrie information obtained !rom a resolution of singularities at infinity
to find the asymptoties, if they exist.

Understanding/detennining precisely such asymptotics would be of interest in several
subjeets. A few of these will now be briefly described. There is an obvious eonnection
to numerical integration and integer programming problems over semialgebraic subsets.
Seeondly, Gromov has pointed out how one can bOWld from below the first eigenvalue of
a family of semialgebraic sets in terms of their volume. Thus, the ability to give precise
asymptotieB for volwnes of multiparameter families of semialgebraic sets should find a
use in Gromov's program, described in [Gro]. Thirdly, the asymptotics of the number of
simultaneous eigenvalues of finitely many differential operators cao sometimes be related
to those of the asymptotics of the volume of regions like those eonsidered in this paper
[CdV-2]. Thus, one could give very precise descriptions of such asymptotics ifthis program
proves successful. Fourthly, a method, successful in obtaining asymptotics of multivariable
inverse Mellin transforms, should in principle be useful to analyse the convergence of the
"singular integral" in the adelic Hardy-Littlewood method, an example of which is the
Poisson fonnula of Igusa [Ig, eh. 4]. Fifthly, such a method should enable one to refine the
reeent results of Passare [Pas] who studied the behavior of residue currents, defined via
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limits of a eertain integral over "admissible paths." That is, in plaee of limits, one should
be able to describe the precise asymptotie behavior over such paths.

Seetion 7 is signifieant in light oI these remarks. The most important results are con
tained in Theorems 7.8 and Theorem Bk, which are generalizations oI Theorem 4.1. The
orem Bk is of basie importance and is the second main result of the paper. Essentially,
Theorem Bk implies that if the dominant term(s) oI the asymptoties of a simultaneous
volume integral

(0.4)

exist and are determined by a eertain Newton polyhedron (cf. 7.7), then tbese are also tbe
dominant terms of the eorresponding simultaneous lattiee point problem. Thus, one needs
a criterion to determine when this polyhedron in fact does determine asymptoties of (0.4).

Theorem 7.14 gives one sueh eriterion, which is expressed in geometrie terms. It appears
to be diffieult, however, to show that tbe criterion holds in general.

A method of analysis, needed to determine iI the eriterion is satisfied, involves a natural
(but not necessarily easy) extension of the techniques used to find the largest pole oI the
generalized funetions PJ: in terms of data ansing from a resolution of singularities, cf.
[Ig], [Li-8], [Lo-1]. When the weight function 'P is identically 1, [Li-6] will carry out this
analysis for certain classes of pair$ of nondegenerate polynomials, whose resolution data
can be analyzed with sufficient precision in order to verify that the conditions of 7.14 are
satisfied. Such results in fact enable one to sharpen the upper bound estimates of [Li-5, sec.
6] and therefore, to find the first nontrivial classes of examples of multivariable Tauberian
theorems with preeise asymptotics (cf. [Ga] for a much more general discussion of this type
of problem). In this way, the reader will note the significant advantage of incorporating
geometrie reasoning into a fWldamentally analytic problem.

This question is also closely related to the work of Loeser in [Lo-2]. It should certainly
be possible to show that -the integrals in (0.4) are essentially functions of "regular singular
type" ("de type singulier-regulier"), in the sense of [ibid, p. 458]. This would give a general
and reasonably conerete representation of the volwne integrals as t 1 , ... ,tk --+ 00. It should
then be possible, by the Mellin transform methods developed in Seetion 7, to connect such
a description with the geometry of the Newton polybedron, defined in 7.7. H this approach
worked, it would lead to a very important generalization of tbe results, obtained in [Li-5].
Indeed, it would undoubtedly lead to a systematic calculus for multivariable asymptotic
expansions "detennined by geometry" that would prove valuable in many different subjects.
Here the key point is the fact that the Newton polyhedron -in 7.7 is effectively calculable
given an explicit resolution of singularities of the type described in section 7. The recent
work of Bierstone-Milman provides this, in principle.

The author would like to express bis appreciation to Profs. Arnold, Ehrenpreis, and
Sarnak for interesting discussions on the subjects investigated in this artic1e.
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Notation. Trus paper will use the following notations.
(1) For A = (A}, ... , An) ERn, one sets lAI = AI + + An.
(2) S = Cf + it denotes a complex variable. s = (SI, , SI;) E Cl;. It is sometimes useful to
write B = tT + it to emphasize the real and imaginary parts.
(3) If x = (XI,.' ., x n ), then IlxlI = max {lxi I}.
(4) Set dx = dXI ... dx n .

(5) The interior of a set A is denoted int(A).
(6) For a function 9 : X --+ R define

(x) = { g(x) if g(x) > 0
g+ 0 if g(x) ~ 0

g_(x) = { -g(x) if g(x) < 0
o if g(x) ~ 0

(7) H r.p is a weight fWlction and P is a polynomial,

Np(t,r.p) = L r.p(m),
mEN n

P(m):5 t

Vp(t, r.p) = ( Cf' dXl ... dX n .
J{ p:5 t }n[l ,oo)n

When <p =1, one denotes these functions as N pet), Vp(t).
(8) One writes t ll for the product t~l ... tZJr

•
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Section 1. Some propertie3 0/ hypoelliptic polynomia13

Recall that P E R[XI, ... ,X n ] is hypoelliptic on [1,oo)n if for all differential monomialsD: one has

(1.1) lim
I1rll-<x>

rE[I,<X»"

D~P(x) = 0
P(x) .

Hörmander [Hö, eh. 11] has shown that (1.1) is equivalent to

(1.2) Tkere ex;"t c, C > 0 ~uck tnat fOT all x E [1,00t ID~fx\X)I~ Cllxll-cIA1 .

Further, he also observed that (1.2) is equivalent to the satisfaction of (1.1) for all A with
lAI = 1.

Definition 1.3. The exponent of hypoellipticity for P is the largest c so that 1.2 holds.
It will be denoted cp in the following. •

The consequence of (1.2) of use in this paper is

PROPOSITION 1.4. There exist G, C, D > 0 such tbat

The best 0:' so that 1.5 holds is denoted a p in the following.

Note. One will assume in the rest of the paper, without loss of generallty, that P is
positive on [1,oo)n n {11(x}, ... ,xn )1l ;::: D}. Then

(1.6) there exi3t3 b;::: 0 3uch that P +b> 0 on [1, oo)n .

Remark 1.7. If it is in fact necessary to use a positive b to msure (1.6), then one will
replace P by P + b below. However, for simplicity, this translation of P will continue to be
denoted as P throughout the rest of the paper. As a result, one will assume throughout
the rest of the article that P is positive on [1, 00) n .

The effect of the translation will not at all affect the conclusions in the Theorems. The
reason for this follows from the properties stated in Corollaries 2.2, 2.4, which have been
proved for arbitrary P hypoelliptic on [l,oo)n, and theeasily established statements given
below. In these, the notations from 2.2 and 2.4 are used.

Np(t,cp) - Np+b(t,cp) = Np(t,cp) - Np(t - b,cp) = O(t Pt{<p)-8) ,

Vp(t,cp) - Vp+b(t,CP) = O(tAd<P)-8) ,
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1im
IIzll-tXl

zE[l,tXl)"

(1.8)

for some (J > O. •

A simple calcu1ation will also show the following. Assume that <p = Q/T, with gcd(Q, T) =
1. H Q, T are both hypoelliptic on [1,00)", then for any nonzero index A one has

D1cp(x) = o.
<f'(x)

A fraction cp = Q/T with Q, T hypoelliptic polynomials will be called a "hypoelliptic
fraction" .

Remark 1.9. In order to avoid wmecessary complications in the discussion be10w, one
will also assume in the rest of the article that T(x) i= 0 for a.l1 x E [1,(0)". The industrious
reader will easily be able to modify the arguments in the event that T is a.llowed to vanish
on at most a compact subset of [1,00)". Since Q, T cannot, in general, vanish outside a
compact subset of [1,(0)", the sign of cp is constant outside such a set. Without 10ss of
generality, one will assurne that cp is positive. •

Section 2. A Dirichlet .!erie.! determined by cp and P

Given P, cp satisfying the properties discussed in Section 1, define

" cp(m)
D(s,cp) = LJ P(m)"

mEN"

I( s, cp) = 1 .!!.... dx .
[1,00)" pa

Results proved in [Li-l,3,4] and [Ig, Ni] established the

THEOREM 2.1.
(i) Tbere exists B > 0 such that if 0' > B tben D(s, cp ), I( S l cp) are analytic.
(il) D(s, cp), I( s, cp) admit analytic continuations to C as meromorphic functions witb polar
locus contained in finitely many arithmetic progressions of rational numbers.

Let PI (cp) resp. ,\ I ( cp) denote tbe largest pole of D( s, cp) resp. I (s, cp).

(ili) Tbere exists A > 0 so that for each T > 0, and 0'1 < 0'2 ~ PI (cp) tbere exists
C = C(T, 0'1,0'2) such tbat

if 0' E [O"b 0'2] and Itl ~ 1.
(iv) For any polynomial B(s), and 0"1 < 0"2 there exists C > 0 such that

IB( s) I( s, cp) I< C, for an 0' E [0'], 0'2] and ltl ~ 1.

A tauberian argument, due to Landau [La-2], uses (i-iii) of (2.1) to prove:
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COROLLARY 2.2. Let PI(<P) > P2(<P) > ... > Pt(<p) > PI(<P) - ~ ;::: Pt+I(<P)'" be the first
e+1 poles oE D(s, <p). Tben there exist nonzero polynomials Al (<p, u), ... , At(<P, u) E R[u]
such tbat

t

Np(t,<p) = L tPi(V')Ai(c.p, logt) + Of(tPl(V')-t+ f
) as t -+ 00.

i=l

Remark 2.3. An estimate for the smallest possible A has been given in two eases. In
[Sa-2], Sargos showed that if P has positive eoefficients then one ean ehoose A = degP.
Moreover, this is an optimal (i.e. the smallest) estimate when taken over all polynomials
with positive eoeffieients. H P is hypoelliptie, then [Li-4] showed that one ean choose
A = n degP. However, this is not an optimal estimate, as Sargos' example indieates. It is
not clear what is an optimal estimate for A if the degree of P is at least two. •

A standard argwnent (cf. [Ig]) uses (i), (ii), (iv) of (2.1) to give a complete asymptotic
expansion for Vp(t, <p) :

COROLLARY 2.4. Let Al(<p) > A2(<p) > ... be tbe poles oE J(s,c.p). Tben there exist
nonzero polynomials BI (Cf', u), B 2 ( Cf', u), ... , E R[u] such that

00

Vp( t, c.p) =L t>'i(V') B i ( Cf', logt) as t -+ 00.

i=l

One next observes the following identities. For b sufficiently large,

(2.5)

Theorem B now follows by combining (2.5), (Hi), (iv) of (2.1), a standard application of
residue theory, and the following:

THEOREM B*.
(i) PI(cp) = AI(cp),

Let p(Cf') denote the common first pole oE D(s, Cf' ), J( s, Cf' ).

(ii) D(s, c.p) - J( s, c.p) is analytic at s = p(<p).

Theorem B*, in turn, follows immediately from the proof of Theorem 4.1.

Remark 2.6. Indeed, Theorem B* implies that the principal parts of D(s, cp), J( s, Cf')
agree at the first pole s = p( Cf' ). The polynomials Al (Cf', u), BI (Cf', u), appearing in the
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statement of Theorem B, are uniquely detennined by the principal parts. Thus, Theorem
B* implies A1{cp,u) = B 1{cp,u).•

Gf course, Theorem A will also follow from Theorem B*. However, one can give an
elernentary argument that uses only (2.2), (2.4) when cP =1.

PROOF OF THEOREM A: Let f > 0 and Cp the hypoellipticity exponent of (1.3). Define
the sets

U({t) = {x E [l,oo)R : P{x) ::; t + t1-(CP} ,
1

'c({t) = {x E [l,oo)R : IIxll ~ t( - 2' and P{x) ::; t - t1-(CP} ,

1
i({t) = {x E [l,oo)R : Ilxll ::; t( - 2" and P{x) ::; t - t1-(Cp

} ,

C({t) = U C{m) ,
mEN n

IJmU;:::tC

P(m)~t

where
C{m) = {x : lXi - md < 1/2, for each i}.

The following is easily verified.

(2.7.1)

and

vol{'c({t)) + vol{ i f { t)) = vol ({x E [l,oo)R : P{x) ~ t - t1-(Cp
}) ,

(2.7.2) vol{i«t)) ~ vol{{x E [l,oo)R: Itxll ~ t{ -1/2}) ~ C(t E -1/2)R for sorne C > O.

In (2.4), when cP =1, drop the "cp" as an argument of the exponents '\i and polynomials
Bi{U). Then, setting ß = '\1 - '\2, one has

00

vol{Uf{t)) = L {t + t1-(CP),i Bi (log (t + t1
-

fCP ))
i=1

= (t + t1-fC p ), 1 BI (log (t + t1-f CP)) +0"({t +tl- (C p ), 1 - P+K )

(2.8.1) = t),l BI (log t) +O,,(tAl-fCP+") +OK(t),l-P+,,)

and similarly

(2.8.2) vol('c{(t)) = t),l BI (log t) +OK{t),l- fCP+K) +O,,(t),l-P+,,).

Property (1.2) ·of hypoellipticity implies, by means of the Taylor expansion of P around
each point m, used in the definition of Cf ( t), that for all t sufficiently large,

(2.9)
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Moreover,

where

Clearly,
Vf(t) = O(t fn ).

Thus, combining this estimate with (2.7)-(2.9) implies

Np(t) = Vp(t) +O(fm
) +O,,(tAt-fCP+") +O,,(tAt - P+K

).

Choosing f so that fn < ..\1 - fCp then proves Theorem A. •

Section 3. Ske.tch 0/ analytic continuation 0/ D(s, c.p)

For the benefit of the reader a brief sketch is now given of the analytic continuation of
D(s,c.p) that uses the Euler-Maclaurin summation fonnula. More details may be found
by consulting [Li-4, Ma, Lnd]. The key point is that hypoellipticity of P, c.p allows this
summation method to be used to give an analytic continuation to the entire splane. For
certain purposes, such as proving Theorem 4.1, this seems to give a simpler type of integral
representation of the series than that provided by Cauchy residues, as has been used in
[L-1,3,5).

To begin, one must introduce sorne convenient notations.

Notation (3.1).
(1) For any fE N and C = (Cl,'''' Cl) E (Z+.)l set

l

D~(p)/pl = II D~i(P)/P.
i=l

The reader should note that implicit in this notation is the fact that the exponent of P
equals the number of n-tuples comprising the components of C.

(2) For each positive integer k set

I~ = {I = (i1 , •.• , in) : i j < k for all j}

I~ = {I = (it, ... , in) : i j ::; k for all j and i j = k for sorne j}.

(3) For any I E I~ and i E N, define

Ml(I) = {(B, C) E Z+ X Z+l: if C = (Cl, ... ,Cl), then ICil 2:: 1 for each

i, and B +Cl +... +Cl = I},
and M(I) = UlMl(I).
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It is convenient below to use the notation C E M (I). This means that Cl + ... + Cl = I
when C = (Cl' ... ,Cl).

(4) For i = 0, 1, 2, ... , set [- s] i = (- s)(- S - 1) ... ( - S - i). •

A simple calculation, left to the reader, shows

LEMMA 3.2. For each positive integer k, index I E 7A: and pair (B, C) E M(I) tbere exist
integers nB ,0 such that

1°1 DC(P) 1
D~(cpIP·)= L nB,cL[-S]l-lD:(cp). ~l . p.. •

(B ,C)EM(I) l=1

Using cp, CT from (1.2), Op from (1.4), and Lemma 3.2, one next sees that the conditions
satisfied by P and cp = Q/T imply

PROPOSITION 3.3. Set N = n deg Q - CiT. Then
(a) For each compact subset K oE the halfplane (1 > (N +2)lo:p,

1;.1 = OK(l!xlI-2
), xE [l,oo)n.

(b) For each index I and each compact subset K oE tbe halEplane (1 > (N + 2 - cplIl)/op

ID~(;.)1 = OK(llx ll-2
), x E [l,oo)n.

PROOF: The straightforward verification is given in [Li-4]. •

The Euler-Maclaurin summation fonnula constructs for each k = 1, 2, ... , numbers Cl ( k),
i = 0,1, ... , k - 1, and aperiodie Coo function (1k(u), where u denotes a coordinate on R
so that if J(u + iv) is any holomorphie function satisfying the property

(3.4) lim J(i)(u) = 0, for each i = 0,1, ... ,
u-+oo

then

~ f(v) = [<> f(u)du +~ c;(k)j<il(l) +100

lTk(u)j<kl(u) du.

The precise values of the ci(k) and expressions of (1k are not needed for this paper. The
reader can work out their values by consulting [Lnd, pgs. 75-83].

Set, for each k = 1,2, ... and i = 0,1, ... ,k - 1

h~ k) ( u) = Ci ( k)

h~k)(u) = (1l;(U).

Proposition 3.3 implies that (3.4) is satisfied in the interval [1,00) of the Xi coordinate
plane, for each i, for any funetion of the form Die'PIp.), whenever (1 is sufficiently large.
One can therefore first set k = 1 and iterate the Euler-Maclaurin summation fonnula
n-times to show
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THEOREM 3.5: H u > (N + 2)/op, and I = (i 1 , ••• , in), tben
1 1

D(s,lp) = 2: ... 2: 1 h~~)(xd'" h~=)(xn)D~(;a )dx
i1=0 in=O [1,oo)n

1

= 1(s,ep) + 2: 1 h~~)(xd··· h~~)(xn)D~(;. )dx. •
. . [1,oo)n
11,···,ln =0

1#0

Moreover, it is clear by Proposition 3.3 that for each I 1:- (0, ... ,0),

1 (1) (1) 1 Ip . .. N +2 - Cp
(3.6) hh (Xl)'" hin (xn)Dz ( p_) dx u analytlc si (1 >

[1,oo)n ap

One can then repeat this procedure k > 1 times. In this way oue proves

THEOREM 3.7. H u > (N + 2)/op then
k k

(1) D(s, ep) = 2: ... 2: r h~~)(xd··· h~:)(xn)D~( ;.) dx.
h=O in=O J[l,oo)n

Thus, there exist constants c( I) for each I =I (0, ... , 0) E I k so that

(2) D(s,lp) = I(s,lp) + 2: c(I)1 D~(;6) dx
( )

I (l,oo)n1# 0".. ,0 EI,

+ 2: r h~~)(Xl)· .. h~:)(xn)D~(;.) dx .
lEI" J[l,oo)n,

As in (3.6) one observes that for any I E I~

(3.8) 1 h~~)(Xl)'" h~:)(xn)D~( ;a) dx
[1,oo)n

Shown in [Li-4] was the

N + 2 - kcp
ü analytic il (1 > .

Op

THEOREM 3.9. For each I E I~ tbe lunction

s -+ r D~(Ip/Pß) dx
J[l,oo)n

admits an analytic continuation to C as a meromorpbic lunction witb polar locus contained
in finite1y many arithmetic progressions 01 rational numbers.

Thus, (3.8), (3.9) imply

(3.10) Any pole of D(s, <p) in the ~trip

N +2 - kcp N +2 - (k - l)cp----- < (1 < ----..,;",.---:.--
Op - Op

must be a pole of the analytic continuation of ~1,oo)n D~(<p/pa) dx fOT same lEIk' I

13



Notation. Given I E I~ for some k and any (B, C) E M(I) one sets

1 B D':P 1
I(s,B,C,r.p) = Dz (r.p)' -pt . pa dx.

[1,(0)" •
Remark 3.11. It is useful to write the integrand of this fWlction as

since (1.2) allows oue to interpret the factor of r.plpa as a function that vanishes at infinity
in [l,oo)n. •

Section 4. Proo/ 0/ fir~t main re~ult

From the description of the analytic continuation of D(8, r.p) sketched in Section 3, it is
clear that Theorem B* is a corollary of the following theorem. Using the notations from
Section 3 this is

THEOREM 4.1. Assume P, Q, T are polynomials hypoelliptic on [1, oo)n. Set r.p = QIT.
Let k, i be positive integers. Assume I E I~ and (B, C) E Mt(I). Then the first pole of
I( 8, B, C, r.p) is strictly smaller than the first pole of I( 8, r.p).

Preliminary remarks. Since the analysis needed to prove Theorem 4.1 is carried out at
infinity, it is first necessary to define the following objects.

Deftnit ionsINotations.

1) The chart at infinity in (p1R)n will be denoted (Rn, (Wb"" w n)). The hyperplane
at infinity {W1 .•• W n = O} is denoted H oo • The notations 1/w resp. dw are used to denote
the point (llw], . .. ,1/wn ) resp. the differential dw] ... dwn .

2) Define the polynomials G(w), tPl, tP2 by these conditions.

(4.2)

3) For l E N and (B, C) E Z+ X Z+t, define the rational fWlction 'lB,C(W)

(w) - D~(r.p)D':(P)(l/W)
'lB,C - r.p pi .

14



Since T is hypoelliptic and assumed to be positive (for simplicity) on [1,00)", 1]B,O and 4
are defined on (0,1]". This suffices for the proof of (4.1). I

By the assumptions of hypoellipticity for P, Q, Tone conc1udes from (1.2) the existence
of d, C' > 0 such that for all w E (0,1]" and any '7B,O defined as in (4.1), one has

I'7B,C(Wt, ... ,w")1 < C'IWl" .w"lc
' .

Thus, one concludes for each p E ä[O, 1]" nH00

(4.3) lim '7B,O(W) = 0.
w-p

wE(O,l)"

Note. It will be convenient in the following to fix a particular pair B, C and drop the
subscript B, C from '7 whenever there is no possibility of confusion. •

The proof of (4.1) is based upon analyzing the integrands in the statement of the theorem,
using aresolution of singularities "at infinity".

There exist a nonsingular real algebraic manifold Y and projective morphisffi 1r : Y ~

(R", (Wl" .. ,w")) such that the following properties are satisfied.
(4.4)

i) There exists a divisor V C Y so that 1r : Y - V ~ R" is an isomorphism onto its
Image;

ii) V is a normally crossing divisor. That is, V = UVa where each Va is sffiooth and
at ea.ch point p E V the set oI divisors containing p are mutually transverse;

üi) The divisor equal to the zero and polar locus defined by

" "[TI (Wi - 1) . TI Wi . R . 4- . '7] 0 1r

i=l i=l

has support in V (so that it too is loca.11y normal crossing);
iv) (0,1)" n 1r(V) = 0.

Thus, (0,1)" is disjoint from the locus of blowing up determined by 1r.

Next, one takes an open polydisc U containing [0,1]" in the chart af infinity and sets

x = 1r- I (U)

D=VnX
B = 1r-1(O, 1)" n X .

An elementary observation is the

LEMMA 4.5.

i) aB cD.
ii) B nD = äB.
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PROOF: (i) follows from (4.4)(iii). To verify (ii), one notes that (4.4)(i,iv) imply

1r-
1(0, 1)n n D = 0.

Moreover, since 1r is continuous, 1r-1(0, l)n is open in X and equals int(B). Thus, BnD =
aB n D = aB by (i). •

A second elementary result will also be needed below. For each point q E aB there
exists an open neighborhood Uq and coordinates (Zl,' .. , zn), defined in Uq and centered
at q, such that

(4.6)

A "sign distribution" is a function

f : {1, ... ,n} -+ {+, -}.

To each sign distribution one defines an open subset of any Uq by setting

OE = {z E Uq : f(i)Zi > 0, for each i = 1, ... ,n}.

One notes that the only geometrie property of interest possessed by these sets is their
disjointness !rom D.

LEMMA 4.7. For eacb q E aB there exists a set Eq oE sign distributions such that

UEEt, OE = int(B) nUq •

PROOF: By (4.4)(i) and (4.5)(i), it is clear that

int(B) nUq C U(O(.

Suppose for same fO that int(B) nUq n OEO =f 0. Further, suppose that 0(0 1= int(B) nuq •

Then, Lemma (4.5) and (4.6) imply that

0(0 n (int(B) n Uq ) =f 0 and OEO n (Be n Uq ) # 0
but 0(0 n (aB nUq ) = 0.

Since 0(0 is eonnected this decomposition of 0(0 into two disjoint open subsets cannot
occur. Thus, OEO C int(B) nuq . This implies Lemma (4.7). •

To each irreducible component D o of D one defines the following orders.

(4.8)
Mo = ordDa R 0 'Ir = def ordDa (wtt1

••• w~n) 01r - ordDa Go 'Ir

m o = ordDa cI» o 'Ir = def ordDa t/11 0 1r - ordDa (W~l ... w:n
) o 'Ir - ordDa tP2 0 1r,

K o = ordDa '" 0 'Ir,

IQ = ordDa Jac(7r) - ordDa(W~ ... w~) 0 7r,
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where Jac{1r) denotes the jacobian of 1r.

To each Da for which Ma =f 0 define the ratios

H Ma = 0 one sets p(Do ) = ß(Da ) = -00. The p(Da ) resp. ß(Do;) are possible values for
the first pole of I(s,ep) resp. I(s,B,C,ep).

Define

(4.9)

Then any pole of I( s, ep) is at most p{ 7r) and any pole of I( s, B, C, ep) is at most ß(7r). The
key step in the proof of Theorem 4.1 is therefore the proof of the inequality

(4.10)

This will follow immediately from

LEMMA 4.11. Suppose q is apoint in aB such that 7r(q) E Hoc. Let Da be any component
ol D containing q. Then K a > o.

PROOF: Asswne there exists a point q E äB with 7r(q) E Hoc far which KO' ~ 0 for
some divisor Da' containing q. Let Uq denote a neighborhood of the point so that (4.6)
holds. Assume that coordinates are chosen so that the divisor D o ' satisfies the property
Da' nUq = {Zl = O}. There exists at least one sign distribution f 80 that Oe! C int(B) nuq.

Given any point p = (PbP') E Oe! the path J.l(t) = (1 - t)p + t(O,p'), t E [0,1) is entirely
contained in OE' By definition, one has that

ordt (7] 07r 0 JJ) = K a ' .

Thus, K a ' ~ °implies

On the other hand, OE C int(B) nUq implies that for all t > 0, 7rO ",(t) E (0, 1)n. Moreover,
as t -+ 0, 7r 0 J.l(t) approaches a point in Hoc. Thus, by (4.3) the limit of 7] along the path
7rO JJ(t) must equal o. So, the point q with the above properties must not exist. This proves
the Lemma. •

An entirely similar argument that uses (1.4), as expressed in the (w}, ... ,wn ) coordi
nates, shows
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LEMMA 4.12. Suppose q js a point ofaB such that 1r(q) E H oo • Let Do: be any component
oE D containing q. Then Mo: > O. Moreover, jf q E aB is such that 1r(q) rt H oo tben
Mo: = 0 for any component Da containing q.

Remark 4.13. Geometrica.11y, Lemma 4.12 says that the strict transform of G is a com
ponent of D that is disjoint from B in X. That is, the polar divisor of R 0 1rlx cannot
intersect B. An entirely similar conc1usion holds for the polar locus of <.plx' This property
is important in describing the polar part of I(s,cp) at s = p(1r), as seen in (4.16)ff. •

Supplied with these preliminary observations, one can proceed to the

PROOF OF THEOREM 4.1: In light of (4.10), it evidently Buffices to show, p(<.p) = p(1r),
(cf. Theorem 2.1), that is,

(4.14) p(1r) i~ the first pole of I( s, 'P).

It is clear that one can assume that the sign of<.p is constant outside a compact subset of
[1,00)n. For simplicity, one may therefore assume that cp is positive on all but a compact
subset of [1,00)n.

One has for (1 >- 1,

where 11r*(dw/wr ... w~)1 denotes a density on X.

Since 1r is proper and B is a closed subset of the compact set 1r-1[0, l]n, B is also
compact. For each q E B there exists an open neigborhood Uq so that (4.6) holds Hf
q E aB. The open cover {Uq } of B admits a finite open subcover {Ud~l' where Ui is
centered at qi. Oue now takes a finite partition of illlity {vc } subordinate to the cover
{Ui}' Thus, for a :;» 1

Oue next fixes an arbitrary Ui. One chooses the coordinates centered at qi so that
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Assume that {fl"'" f R( i)} are the sign distributions so that 0 f... eint(B) n Ui, k 
1, ... , R(i). Define for each j = 1, ... , r

Mj( i) = ordDj (R 0 11")

mj(i) = ordDj (tP 0 11")

lj( i) = ordDj 11r-(dw/w~ ... w~)1 ,

and for each i = 1, ... ,N

(. ( »=#{'. -(1+mj(i)+,j(i» = ( )}
V l, P 11" J . Mj( i) P 11" •

DeBne
:J(p(1I"» = {i: v(i,p(1I"»;::: 1}.

By definition, :J(p(1I"» i= 0. In this regard, one should also note that r = 0 is possible.
This occurs iff qi E int(B). In this case, each Mj(i) = 0 and i r:t. :J(p(1r».

The Gelfand-Shapiro-Shilov regularization method [G-S] applies to the integral over each
open set 0 f. .. , k = 1, ... , R( i) and i = 1, ... , N, and thereby gives an analytic continuation
to each summand on the right side of (4.15). In particular, if i E :J(p( 11"» then the principal
part at s = p(1r) of

LnB (R 0 'Ir)' (<T> 0 'Ir) V c 1'Ir'(w~ ~~w~)1

consists of at most v(i, p(1r» nonzero tenns. The main point is to show that the term of
order equal to v(i,p(1r» fiust be pOJitive.

Note. When one i is fixed, i and p( 11") are subSequently dropped as the arguments for
v. •

After reindexing, if necessary, one may asswne that

. -(1 +mj(i) +lj(i»
{]: Mj(i) =p(1I")}={1,2, ... ,v}C{1, ... ,r}.

One sets z' = (zv+1, .. . , zn).

Then the contribution from Ui to the term of order v in the principal part has the form

(4.16)

where the following properties are satisfied:

(1) (v+1, ... , (n > -1, (cf. [Va-2] where this property was first used for a related
problem);
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(2) 91(Z') is the restrietion to nj=1 Dj n Ui of the quotient of the strict transforms of
w M1 ..• w Mn and G·1 n ,

(3) 92(Z') is the restrietion to nj=1 Dj n Ui of the quotient of the strict transfonns of
1P1 and W~l ••• w~n ·1/J2;

(4) 9a(Z') is the restrietion to nj=1 Dj nUi of the strict transfonn of
IJac(7r)1/(w~... w~) 07r.

From Lemma 4.12 and the assumed positivity of P,'P over [l,oo)n (cf. section 1), one
concludes that 91 (z'), 92 (z'), 93(Z') are finite and po"itive over the domain of integration in
(4.16). Moreover, since {vc } forms a partition of unity, one concludes that the double suro
in (4.16) must be positive.

Thus, p(1r) m-rut be a pole of 1(s, 'P). Furthermore, any rational number larger than p(1r)
could not be a pole of 1(8, cp) since it would be larger than any candidate pole pa used to
define p(1r). This proves (4.14) and therefore completes the proof of Theorem 4.1. •

Remark 4.17. At this point, it is also useful to discuss briefly the work of Sargos. In
[Sa-1] the questions addressed in this section were considered for polynomials satisfying a
nondegeneracy condition on [l,oo)n. This is formulated in terms of the Newton polyhedron
of P at infinity. Recall that if S denotes the support of P then the Newton polyhedron at
infinity is the boundary of the convex hull of UIES (1 - R+). Given P, its polyhedron r 00'

and the set of vertices V of r 00, one first deBnes the polynomial Proo by

Proo(XI, .. . , xn) = Lxii .. .x~n .

(i1, ... ,in)EV

P is said to be nondegenerate with respect to r 00, if there exists C > 0 such that

Evidently, this condition, which generalizes the property that P h88 positive coefficients,
is considerably weaker than ellipticity.

No elementary argument appears to be available to establish (0.3) when 'P =1 and P
is nondegenerate. Indeed, it is not in general true that Np(t, 1) and Vp(t, l) agree up to
a strictly lower order in t. For example, if a =f:. b are positive integers, then the polynomial
P = x~ x~ is nondegenerate but N p(t, 1) and Vp(t, 1) do not have the same dominant term
as t ~ 00, as a simple calculation will verify.

The first result in [ibid] detennines the precise rate of growth of N p(t, 1), Vp(t, 1), as
suming nondegeneracy over [1, 00) n. Sargos showed:

THEOREM 1. There are numbers Po, v, expressible in tenns oE the polynedron oE P at
infinity, and positive numbers A, B such that

N p(t, 1) = AtPO logllt (1 +O{1/1ogt)) ,

and Vp{t, 1) = BtPOlogll t(l + O(l/1ogt)).
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The constants A, B are given by explicit expressions. Moreover, the values of Po and v
are expressed in terms of r oen in a manner analogous to that obtained in [Va-2, Vas].

The second major result of [ibid] showed:

THEOREM 2. Assume that tbe diagonal intersects tbe Newton polybedron at iniinity o{
P{X], .. . , x n ) in compact (aces only. FUrtber, assume tbat P is nondegenerate witb respect
to trus polyhedron. Then there exists 8 > 0 so that

Np{t, 1) - Vp{t, 1) = O{tPO -
S ).

An extension of (0.3), involving weights determined by polynomiaJs with positive coef
ficients, follows from the arguments given in [ibid]. Preswnably, if cp is a rational ftulction
whase nwnerator and denominator are nondegenerate with respect to their polyhedra at
infinity, Theorem 2 continues to hold. However, it is not yet known if one can give an
"elementary" praof of this theorem, analogous to that given in Section 2, when cp == 1.
These would also be interesting questions to answer.

Tbe precise relation between the nondegeneracy condition used in [Sa-1] and hypoellip
ticity is not yet completely tulderstood. It would be interesting to eharacterize precisely
the nondegenerate polynomials which must also be hypoelliptic on [l,oo)n, or on [a, oo)n
for some a E (O, 1). To this end, it is useful to observe that Hörmander [Hö, eh. 11] found
a dass of polynomials that were hypoelliptic on [l,oo)n, degenerate with respect to their
polyhedra at infinity, and for which the diagonal intersected each polyhedron in exactly
one compact face. •

Section 5. DiJtribution of eigen1Jaluej for hypoelliptic PjDO 'j

Let p(x, e) denote tbe symbol of a pseudo differential operator P on Rn. Let P denote
a self-adjoint extension to the Hilbert space L 2 {[1, oo)n). Assume that the spectrum of P
is discrete. Denote the eigenvalues as .\] ~ .\2 ~ .... A standard problem is to understand
the behavior as t ---+ 00 of the spectral function

N{t) = L 1.
An :5 t

This question has been studied by numerous authors Wlder va.rying asswnptions on p(x, ~).

Of interest here is the behavior of N{t) when p(x,~) is hypoelliptic on [1,00 )2n. Robert [R]
and Smagin [Sm] (among others, cf. their artides' bibliographies) have shown tbe following
result. In the notation of the Introduction,

THEOREM.

Theorem A shows that the asymptotic of N{t) is determined by a discrete version of
Vp{t). That is, one sees immediately, again in the notation of the Introduction,
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THEOREM 5.1.

Theorem 5.1 appears to be ofinterest because each Np(t) can be calculated in polynomial
time as a function of t. That is, Proposition 1.3 implies that any lattice point m E N2n for
which lP(m)1 ~ t must be contained inside the part of the hyperboloid given by

(5.2) {YI" 'Y2n < tl/al n [1,oo)2n,

where adenotes an exponent for p(x, e) so that (1.4) holds. Since the number of lattice
points satisfying (5.2) ia O(t2n / a ), the complexity of determining Np(t) is clearly poly
nomial in t. One can therefore determine a reasonable approximation to N(t) for any
sufficiently large t in polynomial time by ca1culating Np(t), rather than the analytically
more difficult function Vp(t). The same properties hold if one replaces [1, oo)2n by R2n and
insists that p(x, e) be hypoelliptic on R2n.

A second interesting feature of Theorem 5.1 can be seen by comparing it with the
results of Bochner [Bo], who studied N(t) for a constant coefficient operator P(D) on the
n dimensional torus. He essentially showed that if the symbol p{e) was hypoelliptic on Rn,
then the DiricWet series

1
L p(m)a

{mEln:p(m):;J!O}

determined the spectral function for P. The reason for this was that the identity N(t) =
Np(t) follows easily from an explicit description of the eigenfunctions of P(D). As a result,
the eigenvalues of P(D) are easily seen to be the values of p at the lattice points m.

Thus, Theorem 5.1 shows that a Dirichlet senes of the form

"'" -
1I10

9'1n h 0L.-, Cn e , w ere < 1]1 < "12 < ... ,
n

exists in general so that

N(t) - L Cn ·

'1n :s: t
In particular, this occurs even though the actual eigenvalues are not known to be expressible
algebraically in terms of the values of p at any set of lattice points contained in [1,00 )2n.

This intriguing property does not seem to have been observed earlier.

Section 6. Cohomological invariance 0/ the main term in Np(t,rp)

Suppose that 'PI, 'P2 are two polynomials that are positive outside a compact subset of
[1,00)n. By Theorem 2.1 (cf. [Li-3,4]), there exist nonzero real polynomials A I (u),A2 (u)
and rational numbers p('PI)' p('(2) such that for some T > 0

Np(t,rpl) = tp(cpt) Al (logt) +O(tP(cpd- T
)

Np(t,'P2) = t p
(CP2)A2(logt) +O(tP(CP2)-T).
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Denote the dominant tenn in Np(t,<p) by Np(t,<p) below.

A natural question asks:
What conditions upon <PI, <P2 can be imposed that insures

In [Li-2] a cohomological criterion was found that answered this question under condi
tions a bit more restrictive than were really necessary, in light of Theorem B of this paper.
It will suffice here to state the extension of [Li-2, Theorem 4] that can now be made. To do
so, first recall the standard constructions of the cohomology fiber bundle for a polynomial
mapping on Cn and the section induced by the Leray residue operation.

According to Verdier [Yen, for any polynomial mapping P : cn --+ C, there is a finite
set Ep C C such that P : cn - p-I (Ep ) --+ C - Ep is a locally trivial fibration. Set
C· = C - Ep, and define p. = plp-l(c.r For t E C· set X t = P-I(t). Let Hn-I denote
the Hat vector bundle on C· with fiber at t equal to the finite dimensional vector space
Hn-I (Xt , C). Let 1in - 1 = Hn-l ® Oc. be the sheaf of genns of analytic sections of Hn-l.
Any rational differential n-fonn w determines an analytic section of l1n

- 1 , defined as

q(w) : t --+ [w/dPlx t ]

where w/dP IXe = Res (w/(P - t))lx
"

THEOREM 6.1. Assume tbe following bypotheses.

(1) P is a tarne polynomial (cf. [Br]).
(2) P, <Pb <P2 are bypoelliptic polynomials on [l,oo)n.
(3) For a11 t rt. E p one has

where <pdz is tbe (n, 0) form determined by<p.

Then Np(t,'Pl) = Np(t,'P2)'

In this sense one can say that the dominant term is a "cohomological invariant". That
such a result might be possible arose from studying the work of Cassou-Nogues [Ca-N].
On the other hand, one is still quite far from achieving a result with the precision found
in [ibid], which was obtained lUlder the assumption that P was a polynomial of the type
studied by Dwork.

Section 7. The ca."e 0/ k > 1 polynomiaz., - proo/ 0/ Jecond main reJult

The proof of Theorem B· via Theorem 4.1 extends easily to a several variable setting.
The main result of this section is Theorem Bk which is an inunediate corollary of Theorem
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7.8. Theorem Bk appears to be of particular interest because it is an essential ingredient,
needed in an eventual sharpening of the results described in [Li-5]. This is discussed at
the end oi the section.

Let Pb"" PI. E R[Xb"" X n ] be hypoelliptic on [l,oo)n. Let <p be a hypoelliptic frac
tion, in the sense of Section 1. One assumes, for simplicity, that each Pi > 0 and <p > 0
on [1, co)n. Denote the best constants c, a so that (1.2), (1.5) hold for each p. by c., a •.
Define, for 6 > 0,

I.

n(6) = {s : L G.U. > 6, and u. > 0, for each i} .
•=1

One also defines

An elementary argument shows

PROPOSITION 7.1. There exists 6 > 0 so tbat D(s,<p) is absolutely convergent in 0(6).

In [Li-5] an analytic continuation of D(s, r.p) to Cl. was given, using a summatory formula
(or integral representation) based upon an iteration of Cauchy residue theory, and a set
of k functional equations in SI, . .. , SI. deduced from the work of Sabbah [Sb]. In this way,
one showed

THEOREM 7.2. There exist b. E Zi, i = 1, ... , M, ß1,"" ßM E Z such tbat tbe polar
divisor oE D(s, r.p) is contained in

00 M

UU{s : b•. s = ß. - e} .
e=O .=1

Oue denotes the polar divisor of D(s, r.p) by Polv.

On the other hand, as observed in [Li-4], as weil as Section 4 of this paper, a somewhat
sharper set of results can be deduced for hypoelliptic polynomials if one uses the EuIer
Maclaurin formula. A similar sharpening is also possible in the several variable setting.
Define

l(s, r.p) =1 P&l r.p P&" dx.
[l,oo)n 1 ... I.

To proceed as in Section 3, one must first give the natural extension of Lemma 3.2. oe
course, the notations from Section 3 are adopted here.

For J E Z+., set

P(J) = {(Ja, ... ,Jk) E (lf,)k+1 : Ja +... + Jk = J}.
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LEMMA 7.3. For each index J E Z+ and element J = (Jo, •.• , Jk) E P( J), tbere exist
jntegers a(J) such tbat

The hypoellipticity of each Pi and <p shows clearly that

PROPOSITION 7.4. For each J, the function

is analytjc if s E S1(8).

The argwnents of [Li-4] extend easily to show

THEOREM 7.5. For eacb J, tbe (unctjon defined in (7.4) admits an analytjc contjnuatjon to
Ck as a meromorphic functjon. Further, tbere exist bi(J) E Zi, i = 1, ... , M (J), ßl (J), ... ,ßM( J) (J)
Z such that its polar divisor is contained in

CX) M( J)

U U{s:bi(J)·S=ßi(J)-e}.
e=O i=l

Notation. One denotes the polar divisor of 1(s, <p) by POil, •

For given rEN set

I(r) = {1= (it, ... ,in ): i j E [O,r],j = 1, ... ,n}.

In the notation of (3.1) (with k = r), one sees the

THEOREM 7.6.

(1) H s E S1(8) and r 2:: 1 then
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(2) Tbere exist constants c(1) for eacb 1 i= (0, ... , 0) E I~ so tbat

D(s, <p) = I(s, <p) + L c(I)1 D~( p'! <p p •• ) dx
1~(O, ...,O)EI~ [1,00)" 1· .. k

+ L ( hl~)(Xl)···hl:)(xn)D~(p., .~.p•• )dx.
lEI" J[I,oo)" 1 k,.

Notation. For any Jo, J1 , •. . , JIe E Z+. and (Cl, ... ,CIe ) E M( J1 ) X •.. x M(J,;), set
C = (Jo, Cl, ... , C k ). Define

Ta any meromorphic function on Cle analytic on a domain like 11(6) and with polar divisor
pol contained in a union of hyperplanes as described in (7.2), (7.4), one can associate a
Newton polyhedron of pol, denoted r(pol). This is an unbounded subset of Hk and defined
as follows.

Definition 7.7. Suppose

00 M

pol C UU{b( i) . s = ß(i) - e} .
e=O i=1

Assume each hyperplane {b(i) . s = ß(i)}, i = 1, ... ,M, is a component of pol. Set

M

1i = n{u E H le : b(i) . tT ?:. ß(i), (71, ••. ,(71e > 0 }

i=l

and r(pol) = O?-l. •
Denote the Newton polyhedra of PolD resp. POIl by rD resp. rio For simplicity these
polyhedra will be called the Newton polyhedra of D resp. 1.

The main result of this section ia

THEOREM BI;. Assume each Pi is hypoe1liptic on [1,00)n, and r.p is a bypoelliptic fraction.
Then

(1) rj=rD •

Denote the common polyhedron in (1) by r.
(2) D(s, r.p) - l(s, r.p) is analytic at each point of r + iHk .
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Remark. One should interpret Theorem Bk as the several variable analogue of Theorem
B* of Section 3. In particular, one should think of r as the analogue of the "largest
pole" for aseries in one variable (with real poles). The reader should also note that if
{b(i

/
) . tT = ß(i ' )} contains a face of r, then the only t E Rk for which (2) is a nontrivial

assertion are those that satisfy the equation b( i
/
) . t = 0. •

Theorem Bk will follow directly from Theorem 7.6 and the following result.

THEOREM 7.8. For any C f; (0, ... ,0) tbe Newton polybedron oE [(s,C,ep) is strict1y
below rIo

Remark. By the phrase "strictly below" is meant that the Newton polyhedron of [(s, C, ep)
is contained in r I - (f, oo)k, for some f > O. •

PROOF: One can give a similar proof to that of Theorem 4.1. A sketch of the proof should
therefore suffice here. The notation of (4.4) will be used below. In the following, an
arbitrarily given C = (Jo, Cl,' .. , C k ) f; (0, ... ,0) is fixed throughout the discussion.

As in (4.2), define each Ri by

1
lli(w) =de/ Pi(l/w) for each i .

In addition, def1ne the rational function ~c as

D;O(ep) D~l(Pl) D~"(Pk)
cI»c( Wl, ••• ,wn ) =de/ • p Vl . . . pVk (l/w) .

ep 1 k

One constructs a nonsingular real algebraic manifold Y and proper birational map 7f :

Y --+ (Rn, (WI , ••• , W n» such that properties (4.4)( i~i ,iv) are satisfied. On the other hand,
one modifies (4.4)(iii) so that the divisor determined by

n n k

(II (wi-I) . II W i . II Ri . cI>c] 0 7f

i=l i=l i=l

has support in the nonnally crossing divisor V. Restricting V to a divisor D over a polydisc
U, as in the proof of (4.1), and setting D = UaDa to denote its decomposition into
irreducible components, one next defines the multiplicities

M a ( i) = ordDo Ri 0 'Ir

Ka(C) = ordDo cI»c 0 1r

;a = ordDo Jac(1r) - ordDa(W~.·' w~) 0 1r.

Additionally, for each component Da, define the linear fonn and hyperplane

k

La(u) = L Ma(i) l1i +;a ,
i=l

1i(Da) = {u : La(a) = -1 } .
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Define

Q = n{u : La(u) 2: -1 and Ui 2: 0 for each i} ,
a

Q(C) = n{u : La(u) +Ka(C) 2: -1 and Ui 2: 0 for each i} .
a

Define the polyhedra

r I satisfies an important (and evident) "convexity" property that is used below:

(7.9) Assume that tbe plane 1l(Da) is disjoint from rIo Tben La(u) > -1 wbenever
uE rIo

The hypoellipticity condition satisfied by each Pi implies by (1.2):

(7.10.1) If q is a point of aB such that 1r(q) E H oo and Da is any component of D
containing q, then Ka(C) > O.

(7.10.2) Assume q is a point of aB such tbat 1r(q) E H00' Let Da be any component of D
containing q. Then, Ma(i) > 0 for each i. In addition, if q E aB is such tbat 1r(q) rt Hoo ,
then Ma(i) = 0 for each i and any component Da containing q.

It is clear that (7.10.1) implies:

r(C) must lie below t I in the sense of tbe above Remark.

To eompiete the proof of Theorem 7.8, it suffiees to show that rI = r I. This is done
'by a straightforward adaptation of the analysis used to prove Theorem 4.1. In partieular,
one reduees to the Ioeal situation, as deseribed in (4.16). The fact that rI is the eonvex
envelope of Q, whieh implies (7.9), is now used to insure that the four properties fonnulated
below (4.16) are satisfied in this new setting. In partieular, the exponents (v+b' .. ,(n,
appearing in (4.16), are now understood to be fun'ctions of S = u + it. (7.9) implies that
for any 8 E rI + iRk one must have Re((V+l),'" ,Re((n) > -1. The rest of the argument
is entirely similar to that in the proof of Theorem 4.1. Details are left to the reader. •

There is an important applieation of Theorem Bk. To formulate this, sorne preliminary
remarks are needed.

Definition 7.11. A component L of POlD satisfying the property that Ln Rk contains
a face of dimension k - 1 of r is called an initial component of POlD. A divisor Da in a
resolution of singularities, as eonstructed in the proof of Theorem 7.8, is called an extremal
divisor if the plane 1l(Da ) is an initial component of POID. Define

u
{L'#L:L' a component of PolD}
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Definition 7.12. Avertex of the polyhedron r is called an initial vertex of Polvo More
generally, set

The intersection of any k normally crossing components of P-;;(v is called a vertex of P-;;(v.
A distinguished vertex of p-;;Tv is any vertex contained in an initial component of Polv .

•

v(:rt.iCt:~

cJj stingub;hod
vcrtlt:"~

I' (Poll

Notation. Define the differential fonns

Let v be avertex of Polv. Let q(v) equal the number of components of P-;;(v containing
v. Let ..c(v) = {LI, .. 0' Lq(v)} be the set of components.

In a neighborhood of v there exist meromorphic functions CPi,i which are polar along
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Li U L j for each i i= j E {l, ... ,q(v)} such that

q(v)

WD = ta L <Pi,j ds) ... ds k •

i:#j

Then, sufficiently near v one defines the residue form along the component L e by the
fonnula

q(v)

'RL.(WD) = L ResL
fl
(ta~e,jds)" ·dsk ) •

j:#e

Here, ResL. is meant the standard (k - 1,0) Leray residue form along the nonsingular
variety Le •

Note. For simplicity in the following discussion, one now sets k = 2. When k > 2 one
needs to iterate the discussion k - 2 additional times. This is left to the reader. •

As emphasized in [Li-5], the precise description of the polar locus of the 'RL(WD) (see
below for the definition) is needed to determine asymptotics of certain sirnultaneous lattice
point problems (cf. below).

Assume that v is an initial vertex. Let L e E .c(v). By definition, v is a pole of the
residue (1,0) form 'RLe(WD) if the iterated residue

Resv'RLe(WD) =def LReSLj (ResL fl t ll <I»e,jds)ds2 ) i= O.
j:#e

One also observes that the iterated residue with L j in this surn is, up to a sign, the
coefficient of the term L;) Lj) in the Laurent expansion of tllcfJe,j.

Theorem Bk evidently implies the set of 4'i,j, used for D(s, !,f)), can be taken to be the
same as those for J(s, !,f)) when v is an initial vertex. Thus, one concludes

THEOREM 7.13. For any initial vertex v and component L e oE PolD containing v, one bas

Theorem 7.13 is now seen to be helpful in detecting if an initial vertex is indeed a pole of
the residue form taken along an initial component of PolD that contains this vertex. The
reason for this is that the methods of Gelfand-Shapiro-Shilov, used to determine precisely
poles of generalized functions P± for a polynomial P, can now also be applied to describe
with sorne precision the polar locus of such residue forms.

The observations above lead to a simple to state geometric criterion that locates precisely
a pole of 'RL(Wj) on the polygon r. This is formulated in terms of the geometry of the
divisors Deo appeanng in aresolution of singularities, tr : Y ~ Rn, that proves Theorem
7.8. Although this is, by uo means, the most general version of the criterion, it will suffice,
with some minor modifications, for [Li-6].
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(7.15)

THEOREM 7.14. Let L be an initial component oE Poh (or equivalently oE PolD ) and Da
an extremal divisor such that 1i(Da ) = L n R2. Let v be an initial vertex contained in
L. Assume that q(v) = 2. Tben Resv"R.L(wI) =f 0 if tbere exists an exceptional divisor
Dp C Y such tbat

(7.14.1) Dpn Da nB =f 0
(7.14.2)

1i(DfJ) is the otber initial component oENI containing v.

Remark. It is clear that (7.14.2) must be true by hypothesis. The substance of the
theorem lies in the validity of the geometrie property (7.14.1), from which the analytieal
infoImation is deduced. •

PROOF OF 7.14: This will follow from the regularization of the integral whieh represents
the loeal eontribution to WI in each open set Ui n B, defined in (4.16). One first chooses
and fixes one such pair of divisors Da, D p satisfying the conditions in (7.14).

In the following, the notation, employed in the proof of (7.8), will be used. (7.14.1)
implies there exist open sets Ui(a,ß),i E {i 1 , •.. ,iq }, (the set ofindices apparently depend
upon 0', ß) whieb intersect Der n Dp, such that in each conneeted component of (Ui (Q', ß) 
D) n B, there are loeal coordinates (Zl, . .. , zn) SO that the integrand

tr*( cp / Pt1
••• P:- dX1 ... dxn ) I(Ui (er,p)':"'V)nB

has the fOIm
II a+b

II La(a) II L~(.) ii ( )
Zt,±' zk,±' Ui,er,p S, Z .

t=l k=a+1

In this expression, one has grouped with the first product any Zi whose exponent is one
less than a nonzero multiple of Ler(s) +1. Sirnilarly, in the seeond produet, any Zj appears
whose exponent is one less than a nonzero multiple of L fJ (B )+1. Notation has been abused,
for simplicity, by identifying the exponents by Ler(s), Lp(s). This however will not affeet
in any significant manner the arguments below.

The choice of signs in (7.15) is made so that the product is positive on each connected
component of (Ui(0', ß) - D) n B. This is because one assumes, as indicated above, that
each Pi and cp are positive outside a compact subset of [1, 00) n. Moreover, one has chosen,
for simplicity, the indices so that {Zl = O} = Der nUi(O',ß), {Za+1 = O} = Dp nUi(a,ß).
In addition, 11 i ,er,p is an n- form wmch satisfies these properties for each i, 0', ß:

(1) it is real analytic in Z whenever z E (Ui(0', ß) - D) n B;
(2) it is locally integrable if tT is contained in an open neighborhood of rn Lj
(3) one has for each i E {i1 , •.• , i q }

(7.16) L: ~ ni,a,p(V, z) dZa+b+1 ... dZn > o.Jce n{zl="'=Z_+60=O} ,
Ce

a componeni of
(Uj(er,p)-D)nB

31



One calls the integral of 'fr*(cp/P;l ... P:" dXI ... dXn)!(ui(o,ß)-D)nB' taken over the stun
of the connected components of (Ui(a, ß) - D) n B, the Iocal contribution to w/ !rom
Ui(a, ß).

Adapting the method of regularization of Gelfand-ShiIov-Shapiro, one now analytically
continues

(7.17)

o,ß
s.t. Deo ,D~ aatiafy

7.14.1,7.14.2

Evidently, this is done by regularizing each stullmand in the Iocal contribution to W/ !rom
Ui ( 0, ß) for each i, 0:, ß. It is then straightforward to verify that the following crucial
properties hold.

There exists a sufficiently small neighborhood W of v and an analytic function Av (8)
on W satisfying

Av(v) > 0

I Av(s) r ... b
w/ W = (L

o
+ 1)a (Lp + 1)" lor some posItIve Integers a, .

An elementary verification will now show that the positivity of Av(v) implies that

This completes the proof of Theorem 7.14. •

Remark 7.18. There is a different method of understanding the residue forms 'RL(W/)
that al10ws one to weaken the condition (7.14.2), given a divisor Dp satisfying (7.14.1), to:

(#) 1i(Dp) n 1i(Do ) = {v} .

The reason for this is that the SUffi in (7.17) also determines an integral representation
of 'RL(W/) when s is contained in any open neighborhood V of a point in r n t that is
disjoint from all other components of PolIo Now, fix one tripie of i, 0:, ß indexing the sum
in (7.17). Let (z}, . .. , zn) be the coordinates on Ui(a, ß), used in (7.15).

The main observation to make is that inside V one has the following property. The
convexity of r implies that the real part of the exponent of each coordinate Z j, j ~ a +1 is
strictly Iarger than -1 whenever s E V. Trus implies that if Cis any connected component
of (Ui ( 0, ß) - D) nD then the integral
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eonverges absolutely and represents an analytie funetion of a global parameter (say SI or
S2) on L.

Let dz' = dZo+1 ••• dzn . Now eonsider the following surn:

a,p
S.t. Da ,D~ satisfy

7.1.(.1 and #

Ca
a component of

(U;(a,p)-D)nB

H S denotes a global parameter on L, then up to the faetor t- this tripie sumequals the
factor of ds for 'R.L(WI), when 8 is restrieted to VnL. So, one has an integral representation
of the residue form inside sorne open subset of t. Evidently, each summand ean then be
analytieally eontinued to the entire splane a.s a rneromorphie ftu1etion, using exaetly
the same regularization proeedure of [G-S]. In a neighborhood of v it follows that the
representation of "RL(WI), given earlier in the seetion, must agree with that obtained by
the proeess just deseribed. One then observes that if (#) holds, there is at least one tenn
in the tripie surn which roust have a pole at the value s = Sv, eorresponding to the point
v. By (7.16) the residue at Sv must also be positive. Summing over all such tenns that
ean eontribute to the pole at Sv, one sees that the (1,0) fonn "RL(WI) also has a pole at
sv' •

Concluding Remarks.

(1) To understand what is the relation of Theorem 7.14 to asymptoties of (weighted)
lattiee point counts, the following precis may be helpful. The reader ean also consult [Li-5]
for further details.

One can formulate a (simplified) "simultaneous" lattice point problem, whose asyrnptotic
behavior can be precisely determined whenever the eriteria in (7.14) are satisfied. Again,
for simplicity only, k = 2 is assumed. Let a = (aI, a2) E (0,00)2, and t > O. Define

Np(t,a,ep) = 2: ep(m).
{mEN" :Pi(m);:5tGj ,i=1,2}

Evidently, one ean interpret the family of counts Np(t, a, ep) as a natural generalization
of Np(t,ep) when given 2 polynomials. Thus, the analysis of the asymptotic behavior of
N p ( t, a, ep) is an interesting problem to understand. Proceeding classically, one can now
see why the polygon r should be defined so as to lie in [0,00)2.

One starts with the following integral formula for Np(t, a, ep). Assume that b is a suf
ficiently large positive number. Then, a 2-fold iteration of Perron's formula [Ti, eh. 9]
shows:

(7.19) N ( ) 1 1 t a '8 D(s,/n)ds 1ds 2 •
p t, a, ep = (2~;)2 T

".. D'l=a~=b S1 S 2
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Thus, WD is an evident (2,0) form to introduce for purposes of studying Np(t, a, I.p). The
polygon r is evidently the polygon of the polar divisor of the meromorphic function ap
pearing in W D.

[Li-5] gave a general description of an upper bound for any Np(t, a, c.p) in terms of
the geometry of the initial components of PoID. In order to sharpen such estimates, in
particular, to detennine a precise asymptotic for Np(t, a, c.p), it is clear from the analysis
in [ibid] that one needs to answer the following:

Question. For each initial component L, what is the polar loeus of "RL(WD)?

The point of Theorem 7.14 is that it enables oue to exploit geometrie propertities implicit
in the problem. [Li-6] will indicate one way of sueeessfully doing so. Surely there are other
ways, as indieated in the Introduetion, that remain to be worked out.

(2) The relation between the number of lattice points in and volume of an expanding
family (depending upon one or several parameters) of semialgebraie sets was (implieitly)
the subjeet of a paper of Davenport [Dav-2], who actually worked in a eonsiderably more
general setting. It seems likely that if the semialgebraic sets in question are determined by
the intersection of proper polynomial mappings on Rn then his analysis should apply and
result in a pair of inequalities for the difference between the number of lattiee points and
the volume. However, this begs the question of how one actually detennines the asymptotie
behavior of the volume of the region.

Moreover, the proof of Theorem A ean easily be seen to extend to analyze the difference
of the number of lattiee points in and volume of a family of interseetions

when each Pi ia hypoelliptie-once one has the asymptotics of the volume of these sets.

Neither method however extends to deal with the ease of weights detennined by rea
sanable c1asses of rational funetions, which a general theory of multivariable asymptotie
expansions should eertainly be eapable of ineorporating. For this, ideas from the analytie
theory of singularities appear essential.
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