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VOLUMES, LATTICE POINTS, and SINGULARITIES

BEN LICHTIN

Introduction.

A classical result, cf. [La-1], for a positive definite quadratic form @ on R, n > 5, states
the following. For ¢ > 0 set

No(t) = #{m e ZI":Q(m) < t}
= dzy---dz, .
Vo(t) f%t z

Then
(0.1) No(t) = Vo(t) = O(Vo(t)/t74T) as t — oo.

Furthermore, it is simple to see that Vg(t) = At"/? where

A= da:l "'dzn-
Q<1

This is to be understood as a significant improvement over the trivial error estimate of
O(Vq(t)/t?), obtained solely because of the homogeneity of @ and compactness of {Q < 1}.

The argument of Landau relies heavily upon the functional equation satisfied by the
quadratic theta function. It is therefore not capable of generalization to polynomials of
degree at least three. There are however quite reasonable problems to consider that require
an extension of this type of result. For one example, a general question in numerical
integration is the following.

Given an unbounded semialgebraic set § € R™ with positive Lebesgue measure, polyno-
mial P that is proper on §, and rational function ¢, defined on §, define

NP(tvtpsS) = Z @(m)
{meXIrnsS:|P(m)|<t}
Vp(lﬁ,(p,S):/ pdzy---dz,.
{IP|gt}ns
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Problem. Analyze the asymptotic of Np(t,¢,8) — Vp(t,9,S) as t — oco.

This general problem has both a geometric and arithmetic feature and is in general
difficult. On the other hand, if S is R™ then some success has been achieved. For example,
if P is homogenous and positive definite on R",n < 6, the lower bound

n

. 0>
(0.2) - n+1

S

has been derived by using formulae for the indices of oscillation of the simple singularities,
cf. [CdV-1], [Ra], [Va-1]. However, this method does not seem to extend so easily to
inhomogeneous polynomials, nor to the inclusion of weights, as determined by ¢. It is also
not yet known how these results can be extended to arbitrary n.

An alternative and more functional analytic method exploits the existence of an integral
representation for Np(t,p,R™) as the Mellin transform of a meromorphic function whose
first pole and growth at infinity in bounded vertical strips (of the complex plane) are
understood reasonably well. The first significant result along these lines was given by
Mahler-Bochner when P satisfied an ellipticity condition on R” and ¢ was a quotient of
relatively prime polynomials, each of which was elliptic on R™.

One says that P € R[z,,...,z,] is elliptic on R™ if the top degree term appearing in P is
not zero on R® — {(0,...,0)}. Let d denote the degree of P and 6 the difference of degrees
of the numerator and denominator of ¢. Mahler [Ma] and Bochner [Bo] investigated the
behavior in t of Np(t,¢,R") — Vp(t,,R™) in two different ways. One can combine their
analysis into one result that says the following,.

THEOREM. There exist A > 0,0 > 1/nd, and sequences of real numbers {A;};, {ri}i,1i >
0 and satisfying lim;_.., 7; = 400, such that

n4é—r1;

Ve(t,o,R™) = At 13" 4,057
i=1

(03) - NP(t» Py Rn) - VP(t1 ¥y Rn) = O(VP(t’ ‘P)/to) .

The reader will note that if n > 2, then the estimate obtained in (0.2} is considerably
better than (0.3). Presumably, the methods of [CdV-2] apply to elliptic polynomials when
n < 6.

Recently [Li-3,4,7], the author has extended (0.3) to a considerably larger class of P,Q,T
where ¢ = Q/T. These consist of hypoelliptic polynomials on R®, cf. Section 1 for a
definition. It is however, not yet known whether the estimate 1/nd can be improved by
combining the geometric methods of [CdV-1, Ra] with the analytical ones developed in
[ibid]. This appears to be a very interesting question to consider.

The set R™ being the largest possible, it is natural to search for smaller sets § for which
some reasonable analogue of (0.2) is still true. The first goal of this paper is to describe
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some progress on this problem when § equals the box [1,00)™ and the polynomials P,Q,T
are hypoelliptic on [1, 00)".

In the following let Np(t, ), Vp(t, ¢) denote the function Np(t, ¢, [1,00)"), Vp(t,,[1,00)").
If one is interested only in the standard lattice point problem, in which ¢ =1, then an

elementary argument, given in Section 2, will show the following.

THEOREM A. If P is hypoelliptic on [1,00)" then there exists § > 0 such that

Np(t,1) — Vp(t,1) = O(Vp(t,1)/t?) as — oo.

However the argument does not give so explicit an estimate for the error term’s rate of
growth. Indeed, the estimate for # involves terms that are, so far, difficult to understand.
Essentially, the behavior of P near the boundary of § can affect the estimate of §, and this
is difficult to understand simply in terms of P. This should be expected for any § & R"
one might use.

More generally, when ¢ is a rational function whose numerator and denominator, in
reduced form, are both hypoelliptic on [1,00)", it is natural to ask how well Np(t,¢)
approximates Vp(t, ) (or vice versa) as t — co. For the analysis of this weighted lattice
point problem, the simple argument, used in the proof of Theorem A, no longer suffices,
and one apparently needs to use a subtler analytical argument. To formulate the answer
given here, one first recalls (cf. Theorem 2.1) the

THEOREM. There exist py(¢), A1{¢), € > 0, nonzero polynomials A(p,u), By(p,u) € Rlu],
as well as sequences of positive numbers ; and polynomials A;(p,u),t > 2, so that

Ve(t, @) =t (D A, (p, logt) + Zt'\‘(")"‘ Ai(p,logt) [Li —1,1g],

§=2

Np(t,¢) = t"* ) By (¢, logt) (1 + O(t™¢)) [Li - 3].

The first main result of this paper is proved in Section 4 and is a simple consequence of
Theorem 4.1. Using the notation in this theorem, it states-

THEOREM B. If P is hypoelliptic on [1,00)", and ¢ is a quotient of hypoelliptic polyno-
mials on [1,00)", then

pi(®) = M(p) and Ai(p,u) = Bi(p,u).
Set p(p) to be the number denoted p1(¢), A1 (). From this result, one concludes
COROLLARY. There exists § > 0 such that
Np(t,¢) — Vp(t,p) = Ot ~*) as t — oo.
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However, a reasonable expression or estimate for 8 is not yet available. Obtaining such
an estimate would be very useful.

Theorem B answers a question posed by Prof. Ehrenpreis to the author in the spring
1990. As noted below, this question has significance considerably beyond the context of
lattice point problems involving one polynomial.

There are two immediate, but also interesting, applications of Theorems A, B. Theorem
A provides an alternative “discrete” method for deriving the asymptotic for the number of
eigenvalues at most ¢ for a self-adjoint extension of a hypoelliptic PsDO. This is discussed
in Section 5. Theorem B allows one to extend the results of [Li-2] to all hypoelliptic
polynomials that are, in addition, “tame” on C" in the sense of [Br]. This is discussed
in Section 6. Thus, the main term in the asymptotic for Np(t,) is again shown to be a
“cohomological invariant” whenever ¢ is a hypoelliptic polynomial on [1,00)™. This gives
further evidence of a topological “local-global” principle that describes the contribution
to Np(2,) of the singularities of P in C*. This principle may be viewed as an analogue
of an arithmetic local-global principle that determines when the singular series, arising in
the Hardy-Littlewood-Vinogradov analysis (cf. [Dav-1]) of the counts #{P =t} NN" as

t — 00, possesses a well-defined rate of growth as t — oo.

Because the methods used in this paper combine general analytic and geometric tech-
niques, they provide a convenient framework to help analyze the precise asymptotics of
“simultaneous” lattice point or volume problems, about which one can find very little
in the literature. These are problems similar to that formulated at the beginning of the
Introduction, but involving ¥ > 1 polynomials P; in place of the single polynomial P.
The approach, taken to deal with such questions, attempts to use a multivariable inverse
Mellin transform to extract asymptotic information in a manner analogous to the well
known method in the complex plane (= one variable). An important theme will be the in-
corporation of geometric information obtained from a resolution of singularities at infinity
to find the asymptotics, if they exist.

Understanding/determining precisely such asymptotics would be of interest in several
subjects. A few of these will now be briefly described. There is an obvious connection
to numerical integration and integer programming problems over semialgebraic subsets.
Secondly, Gromov has pointed out how one can bound from below the first eigenvalue of
a family of semialgebraic sets in terms of their volume. Thus, the ability to give precise
asymptotics for volumes of multiparameter families of semialgebraic sets should find a
use in Gromov’s program, described in [Gro]. Thirdly, the asymptotics of the number of
simultaneous eigenvalues of finitely many differential operators can sometimes be related
to those of the asymptotics of the volume of regions like those considered in this paper
[CdV-2]. Thus, one could give very precise descriptions of such asymptotics if this program
proves successful. Fourthly, a method, successful in obtaining asymptotics of multivariable
inverse Mellin transforms, should in principle be useful to analyse the convergence of the
“singular integral” in the adelic Hardy-Littlewood method, an example of which is the
Poisson formula of Igusa [Ig, ch. 4]. Fifthly, such a method should enable one to refine the
recent results of Passare {Pas] who studied the behavior of residue currents, defined via



limits of a certain integral over “admissible paths.” That is, in place of limits, one should
be able to describe the precise asymptotic behavior over such paths.

Section 7 is significant in light of these remarks. The most important results are con-
tained in Theorems 7.8 and Theorem By, which are generalizations of Theorem 4.1. The-
orem By is of basic importance and is the second main result of the paper. Essentially,
Theorem By implies that if the dominant term(s) of the asymptotics of a simultaneous
volume integral

(0.4) pdzy ---dz,,

./;Pl Lty P <ty }JN[1,00)"°

exist and are determined by a certain Newton polyhedron (cf. 7.7), then these are also the
dominant terms of the corresponding simultaneous lattice point problem. Thus, one needs
a criterion to determine when this polyhedron in fact does determine asymptotics of (0.4).

Theorem 7.14 gives one such criterion, which is expressed in geometric terms. It appears
to be difficult, however, to show that the criterion holds in general.

A method of analysis, needed to determine if the criterion is satisfied, involves a natural
(but not necessarily easy) extension of the techniques used to find the largest pole of the
generalized functions P] in terms of data arising from a resolution of singularities, cf.
{Ig], [Li-8], [Lo-1]. When the weight function ¢ is identically 1, [Li-6] will carry out this
analysis for certain classes of pairs of nondegenerate polynomials, whose resolution data
can be analyzed with sufficient precision in order to verify that the conditions of 7.14 are
satisfled. Such results in fact enable one to sharpen the upper bound estimates of [Li-5, sec.
6] and therefore, to find the first nontrivial classes of examples of multivariable Tauberian
theorems with precise asymptotics (cf. [Ga] for a much more general discussion of this type
of problem). In this way, the reader will note the significant advantage of incorporating
geometric reasoning into a fundamentally analytic problem.

This question is also closely related to the work of Loeser in [Lo-2]. It should certainly
be possible to show that the integrals in (0.4) are essentially functions of “regular singular
type” (“de type singulier-régulier”), in the sense of [ibid, p. 458]. This would give a general
and reasonably concrete representation of the volume integrals as ¢1,...,t — oco. It should
then be possible, by the Mellin transform methods developed in Section 7, to connect such
a description with the geometry of the Newton polyhedron, defined in 7.7. If this approach
worked, it would lead to a very important generalization of the results, obtained in [Li-6].
Indeed, it would undoubtedly lead to a systematic calculus for multivariable asymptotic
expansions “determined by geometry” that would prove valuable in many different subjects.
Here the key point is the fact that the Newton polyhedron in 7.7 is effectively calculable
given an explicit resolution of singularities of the type described in section 7. The recent
work of Bierstone-Milman provides this, in principle.

The author would like to express his appreciation to Profs. Arnold, Ehrenpreis, and
Sarnak for interesting discussions on the subjects investigated in this article.
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Notation. This paper will use the following notations.

(1) For A=(Ay,...,A,) €R" onesets |[A| = A, +...+ A,.

(2) s = o + it denotes a complex variable. s = (s;,..., ;) € CF. It is sometimes useful to
write 8 = o + it to emphasize the real and imaginary parts.

(3) If z = (21,...,%n), then ||z|| = maz {]z;|}.

(4) Set dz = dz; -+ - dz,,.

(5) The interior of a set A is denoted int(A).

(6) For a function g : X — R define

_ [ 9(z)if g(z) >0
()= { 0if g(2) < 0

_ [ —9(z)if g(z) <0
-() = { 0 if g(z) > 0

(7) If ¢ is a weight function and P is a polynomial,

NP(ts‘P) = E : ‘P(m)a
mENT
P(m)<t

Ve(t,p) = / pdz,---dz, .
{P<t}N[1,00)"

When ¢ = 1, one denotes these functions as Np(t), Vp(?).
(8) One writes t® for the product 7' -- - 3*.



Section 1. Some properties of hypoelliptic polynomials

Recall that P € R[z1,...,,] is hypoelliptic on [1,00)™ if for all differential monomials
D2 one has

A
(1.1) im 222 g
Izl—oo  P()
z€[1,00)"

Hérmander (HG, ch. 11} has shown that (1.1) is equivalent to

D P(z)

(1.2) There ezist ¢,C > 0 such that for all z € [1,00)" Pz)

< Cllz|I~Hl.

Further, he also observed that (1.2) is equivalent to the satisfaction of (1.1) for all A with
|4| = 1.

Definition 1.3. The exponent of hypoellipticity for P is the largest ¢ so that 1.2 holds.
It will be denoted cp in the following. 1§

The consequence of (1.2) of use in this paper is
PROPOSITION 1.4. There exist a,C, D > 0 such that

(1.5) |P(z1,---,2p)] > C(zy - 20)® if (21,...,24) € [1,00)" N {||(z1,.--,z4)|| = D}.

The best a so that 1.5 holds is denoted ap in the following.

Note. One will assume in the rest of the paper, without loss of generality, that P is
positive on [1,00)" N {||{z1,...,24)|| 2 D}. Then

(1.6) there ezists b > 0 such that P+b>0 on [1,00)".

Remark 1.7. If it is in fact necessary to use a positive b to insure (1.6), then one will
replace P by P + b below. However, for simplicity, this translation of P will continue to be
denoted as P throughout the rest of the paper. As a result, one will assume throughout
the rest of the article that P is positive on [1,00)".

The effect of the translation will not at all affect the conclusions in the Theorems. The
reason for this follows from the properties stated in Corollaries 2.2, 2.4, which have been
proved for arbitrary P hypoelliptic on [1,00)", and the easily established statements given
below. In these, the notations from 2.2 and 2.4 are used.

Np(t, o) — Npyi(t,p) = Np(t,p) — Np(t — b,p) = O(tm(w)—ﬂ)’
Vp(t, @) — Veas(t,p) = Ot (979)
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for some 8 > 0. §

A simple calculation will also show the following. Assume that ¢ = Q/T, with ged(Q,T) =
1. If @, T are both hypoelliptic on [1,00)", then for any nonzero index A one has

A

(1.8) im 222 g
lzl—oo  #(Z)
z€[1,00)"

A fraction ¢ = Q/T with @, T hypoelliptic polynomials will be called a “hypoelliptic
fraction”.

Remark 1.8. In order to avoid unnecessary complications in the discussion below, one
will also assume in the rest of the article that T(z) # 0 for all = € [1,00)". The industrious
reader will easily be able to modify the arguments in the event that T is allowed to vanish
on at most a compact subset of [1,00)". Since @, T cannot, in general, vanish outside a
compact subset of [1,00)", the sign of ¢ is constant outside such a set. Without loss of
generality, one will assume that ¢ is positive. |

Section 2. A Dirichlet series determined by ¢ and P
Given P, ¢ satisfying the properties discussed in Section 1, define

D(s,p)= Y 2L

e P(m

@
I(s,p) = / —dzx.
( ) [1,00)" pe
Results proved in [Li-1,3,4] and [Ig, Ni] established the

THEOREM 2.1.

(i) There exists B > 0 such that if ¢ > B then D(s, ), I(s,y) are analytic.

(i) D(s, ), I(s,¢) admit analytic continuations to C as meromorphic functions with polar
locus contained in finitely many arithmetic progressions of rational numbers.

Let py(¢p) resp. A1(p) denote the largest pole of D(s, ) resp. I(s, ).

(iii) There exists A > 0 so that for each 7 > 0, and 0y < 02 < p;{(p) there exists
C = C(r,01,073) such that

ID(s, )| < C(1 4 [t[Alr(P=4)

if o € [0y,03] and [t| > 1.
(iv) For any polynomial B(s), and 0, < o, there exists C > 0 such that

IB(3)I(s,¢)| < C, for all & € [01,0,] and {t| > 1.
A tauberian argument, due to Landau [La-2], uses (i-iii) of (2.1) to prove:
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COROLLARY 2.2. Let p1(p) > p2() > -+ > pe(p) > p1(9) ~ % = pea(ip) -+ be the first
£+ 1 poles of D(s,). Then there exist nonzero polynomials A;(p,u),...,Adp,u) € R[y]
such that

' I
Np(t, @) =Y %) A(p, logt) + 0.t (D~*+¢)  ast — oo,

=]

Remark 2.3. An estimate for the smallest possible A has been given in two cases. In
[Sa-2], Sargos showed that if P has positive coefficients then one can choose A = degP.
Moreover, this is an optimal (i.e. the smallest}) estimate when taken over all polynomials
with positive coefficients. If P is hypoelliptic, then [Li-4] showed that one can choose
A = ndegP. However, this is not an optimal estimate, as Sargos’ example indicates. It is
not clear what is an optimal estimate for A if the degree of P is at least two. |}

A standard argument (cf. [Ig]) uses (i), (ii), (iv) of (2.1) to give a complete asymptotic
expansion for Vp(t, ) :

COROLLARY 2.4. Let Aj(p) > A2(p) > --- be the poles of I(s,p). Then there exist
nonzero polynomials By (y,u), B2(p,u),..., € Rlu] such that

Ve(t, @) = Z t}() Bi(p,logt) ast — co.

=1
One next observes the following identities. For b sufficiently large,

1 . ds
(2.5) Ne(t,p) = o— /a:b t* D(s,)—

1 R ds
Vp(t,¢) = %/_bt I(s,0)—-

Theorem B now follows by combining (2.5), (iii), (iv) of (2.1), a standard application of
residue theory, and the following:

THEOREM B*.
() p1(#) = Mi(e).
Let p(¢) denote the common first pole of D(s, ), I(s, ).

(i) D(s, p) — I(s,) is analytic at s = p(y).
Theorem B*, in turn, follows immediately from the proof of Theorem 4.1.

Remark 2.6. Indeed, Theorem B* implies that the principal parts of D(s,¢), I(s,)
agree at the first pole s = p(y). The polynomials A;(y,u), Bi(y,u), appearing in the
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statement of Theorem B, are uniquely determined by the principal parts. Thus, Theorem
B* implies A;(p,u) = Bi(p,u). 1

Of course, Theorem A will also follow from Theorem B*. However, one can give an
elementary argument that uses only (2.2), (2.4) when ¢ = 1.

PROOF OF THEOREM A: Let € > 0 and ¢p the hypoellipticity exponent of (1.3). Define
the sets

U(t) = {z € [1,00)" : P(z) <t + 1P},
L(t) = {z €[1,00)" : [|2]| 2 ¢ - % and P(z) <t —t' 7P},
€(t) = {z € [1,00)" : ||| <t - % and P(z) <t — t1=°r} |
c= U cm,

me
I|mn|t>¢*
P(m)<1t

where
C(m)={z:|z; —m;| < 1/2, for eachi}.

The following is easily verified.

(2.7.1) vol(L(t)) + vol(£c(t)) = vol ({z € [1,00)" : P(z) S t —t'7*"}),

and

(2.7.2) vol(£Le(t)) < vol({z € [1,00)" : |lz]| Lt —1/2}) < C(t* —1/2)" for some C > 0.
In (2.4), when ¢ =1, drop the “p” as an argument of the exponents A; and polynomials

Bi(u). Then, setting § = A; — Az, one has

Vol (1)) = Y (¢ + <P YN B, (log (¢ + 117

=1

= (t + tl_ch)f\x B, ([Og (t + pl—ecp )) + O,;((t + tl—ecp)»\l—ﬂ+n)

(2.8.1) = t* By(logt) + Ox(t™ 77 ) + O, (t1 77+%)
and similarly
(282) Vol(L.(£)) = ¥ By(logt) + OL(4 =57 +5) 4 O (t4=F++),

Property (1.2) of hypoellipticity implies, by means of the Taylor expansion of P around
each point m, used in the definition of C,(t), that for all ¢ sufficiently large,

(2.9) Le(t) C Ce(t) C U(2).
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Moreover,
vol(Ce(t)) = Np(t) — ve(t),
where 1
ve(t) = #{m € [1,00)" AN": |m| <t - 3 and P(m) <t}.
Clearly,
ve(t) = O(t").
Thus, combining this estimate with (2.7)-(2.9) implies

NP(t) =Vp(t)+ O(t") + Ox(i'\l_“""'") + O”(t'\l-ﬂ'l'x) .

Choosing € so that en < A; — ecp then proves Theorem A. |

Section 3. Sketch of analytic continuation of D(s,y)

For the benefit of the reader a brief sketch is now given of the analytic continuation of
D(s, ) that uses the Euler-Maclaurin summation formula. More details may be found
by consulting [Li-4, Ma, Lnd]. The key point is that hypoellipticity of P, allows this
summation method to be used to give an analytic continuation to the entire s plane. For
certain purposes, such as proving Theorem 4.1, this seems to give a simpler type of integral

representation of the series than that provided by Cauchy residues, as has been used in
[L-1,3,5].

To begin, one must introduce some convenient notations.

Notation (3.1).
(1) For any £€ N and C = (Cy,...,C¢) € (Z})" set

DZ(P)/P* = f[Df‘ (P)/P.

=1

The reader should note that implicit in this notation is the fact that the exponent of P
equals the number of n—tuples comprising the components of C.

(2) For each positive integer k set

Ti ={I =(i1,...,in) : i; < k for all j}
I;::{I:(il,...,‘in):ij Skfora.ll] and 13=kf0rsornej}

(8) For any I € I, and £ € N, define

M(I) = {(B,C) €2} x 23! : if C = (Cy,...,Ct), then |Ci| > 1 for each
t©, and B+ C,+...+Cr =1},
and  M(I) = UM, (I).
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It is convenient below to use the notation C € M(I). This means that Cy +---+Cy =1
when C = (C},...,Cy).

(4) Fori=10,1,2,...,set [-s]; = (—s)(—s—1)---(~s —1). (]

A simple calculation, left to the reader, shows

LEMMA 3.2. For each positive integer k, index I € I, and pair (B,C) € M(I) there exist
integers np o such that

el o
DE(P) 1
Dlle/P)= % nme )l D) Po
(B,C)eM(I) t=1

Using cp, cr from (1.2), ap from (1.4), and Lemma 3.2, one next sees that the conditions
satisfied by P and ¢ = Q/T imply

PROPOSITION 3.3. Set N = ndegQ — ar. Then
(a) For each compact subset K of the halfplane 0 > (N + 2)/ap,

I3l = Ox(llel™), = € [1,00)".
(b) For each index I and each compact subset K of the halfplane ¢ > (N +2 —cp|I|)/ap
IDX(E) = Ox(llz]| ™), = € [1,00)".

PROOF: The straightforward verification is given in [Li-4].

The Euler-Maclaurin summation formula constructs for each k = 1,2, ..., numbers c,(k),
i=0,1,...,k—1, and a periodic C*™ function o4(u), where u denotes a coordinate on R
so that if f(u + iv) is any holomorphic function satisfying the property
(3.4) u_li:fwf(")(u) =0, foreachi =0,1,...,
then

oo oo k-1 oo
3 1) = / Fw)du + 3 eilk) D) + ] ox() () du.

v=1 i=0
The precise values of the ¢;(k) and expressions of oy are not needed for this paper. The
reader can work out their values by consulting [Lnd, pgs. 75-83).

Set, for each ¥k =1,2,... and 1 =0,1,...,k ~1
h () = ci(k)
B (u) = ox(w).
Proposition 3.3 implies that (3.4) is satisfied in the interval [1, c0) of the z; coordinate
plane, for each 1, for any function of the form DI(¢/P?), whenever o is sufficiently large.

One can therefore first set k¥ = 1 and iterate the Euler-Maclaurin summation formula
n-times to show

12



THEOREM 3.5. If 6 > (N+2)/ap, and I = (iy,...,i,), then

D(s, ) = Z Z / WD (e1) - WP() DI(L ) do

=0 1,=0

(1 ) (1) ¥
= I(s, ) + Z f hi (1) -+ b (2n) D3 (555 ) dz. @
'lt t"l‘l_o
I#0
Moreover, it is clear by Proposition 3.3 that for each I # (0,...,0),

(36) / h( )("‘ ) hgi)(x,.)Di(%) dz 1s analytic if o > Nt+2-cp )
[1,00)

ap
One can then repeat this procedure k£ > 1 times. In this way one proves

THEOREM 3.7. If o > (N + 2)/ap then

1) D=3 o> [ W) e Dl s

1,=0 tn=>0

Thus, there exist constants c(I) for each I #(0,...,0) € I} so that

I#(0,...,0)€T; [1,00)"
> / B (1) W (n)DI(E; ) do.
Ie1)

As in (3.6) one observes that for any I € T}/
(3.8) / (k)(a: ) (k)(:c,,)DI( =)dz is analytic if o >
(1,00)"

Shown in [Li-4] was the

N+2—kep
ap '

THEOREM 3.9. For each I € I} the function
s — Dl(p/P*)dz
[1;00)"

admits an analytic continuation to C as a meromorphic function with polar locus contained
in finitely many arithmetic progressions of rational numbers.

Thus, (3.8), (3.9) imply
(3.10)  Any pole of D(s,¢) in the strip
N+2—'k6p ((J'S N+2—*(k-'1)CP
ap ap
must be a pole of the analytic continuation o_ffl1 oo)n DI(p/P*)dz for some I€I.. 1
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Notation. Given I € T} for some k and any (B, C) € M(I) one sets
DeP 1

I = DB - —d.

(s,B,C,¢) /[m)n (P) —pr psds- W

Remark 3.11. It is useful to write the integrand of this function as

DJ(¢) DZP ¢
@ pt po’

since (1.2) allows one to interpret the factor of ¢/ P* as a function that vanishes at infinity
in {1,00)". B

Section 4. Proof of first main result

From the description of the analytic continuation of D(s, ) sketched in Section 3, it is
clear that Theorem B* is a corollary of the following theorem. Using the notations from
Section 3 this is

THEOREM 4.1. Assume P,Q,T are polynomials hypoelliptic on {1,00)". Set ¢ = Q/T.
Let k,£ be positive integers. Assume I € T, and (B,C) € M,(I). Then the first pole of
I(s, B, C, ) is strictly smaller than the first pole of I(s, ).

Preliminary remarks. Since the analysis needed to prove Theorem 4.1 is carried out at
infinity, it is first necessary to define the following objects.
Definitions/Notations.

1) The chart at infinity in (P!R)" will be denoted (R, (wy,...,w,)). The hyperplane
at infinity {w, - -+ w, = 0} is denoted Ho. The notations 1/w resp. dw are used to denote
the point (1/wy,...,1/wy,) resp. the differential dw, - - - dw,.

2) Define the polynomials G(w), ¥;,%2 by these conditions.

(4.2) .
1 w l...wnn )
R(w) =def P(l/w) = G(:-U],...,wn), wls---7wn1-G)
'l’l(w)

Q(w) =def (P(]./‘UJ) ng(wl"'wn"j’b'ﬂbl):l

wn' " ha(w) |
3) For £ € N and (B, C) € 2% x Z}!, define the rational function np,c(w)

DEDEP) )

nB,c(w) =

14



Since T is hypoelliptic and assumed to be positive (for simplicity) on (1, 00)", n5,c and ¢
are defined on (0,1]". This suffices for the proof of (4.1). |

By the assumptions of hypoellipticity for P,Q,T one concludes from (1.2) the existence
of ¢,C" > 0 such that for all w € (0,1]" and any np ¢ defined as in (4.1), one has

InB.c(wy,...,wn)| < C'lwy - wa| .

Thus, one concludes for each p € 9[0,1]" N Ho,

(4.3) lim - 75,0(w) =0.
we(0,1]"

Note. It will be convenient in the following to fix a particular pair B,C and drop the
subscript B, C from 5 whenever there is no possibility of confusion. i

The proof of (4.1) is based upon analyzing the integrands in the statement of the theorem,
using a resolution of singularities “at infinity”.

There exist a nonsingular real algebraic manifold ¥ and projective morphism 7 : ¥ —
(R™, (wy,...,wy)) such that the following properties are satisfied.
(44)

1) There exists a divisor D C Y so that # : Y — D — R" is an isomorphism onto its
image;
ii) D is a normally crossing divisor. That is, D = UD, where each D, is smooth and
at each point p € D the set of divisors containing p are mutually transverse;
1) The divisor equal to the zero and polar locus defined by

[H(wi—l)-Hw.'-R-@-n]ow
i=1

i=1

has support in D (so that it too is locally normal crossing);
iv) (0,1)*N=x(D)=0.
Thus, (0,1)" is disjoint from the locus of blowing up determined by =.

Next, one takes an open polydisc U containing [0,1]" in the chart at infinity and sets
X =="1(U)
D=DnX
B=7-1(0,1)"NnX.

An elementary observation is the

LEMMA 4.5.

i) 0B C D.
ii) BND = 8B.
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PrOOF: (i) follows from (4.4)(iii). To verfy (ii), one notes that (4.4)(i,iv) imply
7~1(0,1)*ND =0.

Moreover, since 7 is continuous, 77(0, 1) is open in X and equals int(B). Thus, BND =
BN D =3B by (i). 1

A second elementary result will also be needed below. For each point ¢ € B there
exists an open neighborhood i, and coordinates (zi,..., z,), defined in U, and centered
at ¢, such that

(4.6) U,ND CUl, {z =0}
A “sign distribution” is a function
e: {1,...,n} = {+,-}.
To each sign distribution one defines an open subset of any U, by setting
Oc={z€U,:¢€(t)z; >0, foreach i =1,...,n}.

One notes that the only geometric property of interest possessed by these sets is their
disjointness from D.

LEMMA 4.7. For each ¢ € OB there exists a set £, of sign distributions such that

Ueee, Oc = int(B) N, .

PROOF: By (4.4)(i) and (4.5)(i), it is clear that
int(B) NU, C UO..

Suppose for some € that int(B)NU, N O,, # 8. Further, suppose that O, € int(B)NY,.
Then, Lemma (4.5) and (4.6) imply that
O, N(int(B)NU) # 0  and O, N(B NU,) #9
but O, N(OBNU,) = 0.

Since O, is connected this decomposition of O, into two disjoint open subsets cannot
occur. Thus, O, C int(B) NU,. This implies Lemma (4.7). 1

To each irreducible component D, of D one defines the following orders.
(4.8)
M, =ordp, Rom =gt oran(w{"‘ cee w,ﬂ"“) or—ordp Gom
Mg =ordp,® o7 =4, ordp,t; o —ordp, (w™ - wy")ow —ordp Yo,
Ko =ordp nom,

Ya = ordp, Jac(7) —ordp, (wf e wﬁ) om,

16



where Jac{n) denotes the jacobian of 7.

To each D, for which M, # 0 define the ratios

_ _(1 +mMqy + 7&)
P(Dﬂ) - Ma

_ —(1 + Mo + Ka ‘l"fa)
:B(Da) - Ma *

If M, = 0 one sets p(D,) = B(Da) = —00. The p(Dy) resp. (D) are possible values for
the first pole of I(s, ) resp. I(s,B,C,y).

Define

(49) p("r) = 3UP0{P(DQ)}, ﬂ(ﬂ') = supo{ﬁ(Da)}'

Then any pole of I(s, ) is at most p{7) and any pole of I(s, B, C, ) is at most §(m). The
key step in the proof of Theorem 4.1 is therefore the proof of the inequality

(4.10) p(m) > B(r).
This will follow immediately from

LEMMA 4.11. Suppose q is a point in 0B such that 7(q) € Ho,. Let D, be any component
of D containing q. Then x4 > 0.

PROOF: Assume there exists a point ¢ € B with n(gq) € Hy for which k4 < 0 for
some divisor Dy containing ¢. Let U, denote a neighborhood of the point so that (4.6)
holds. Assume that coordinates are chosen so that the divisor D, satisfies the property
Do N U, = {21 = 0}. There exists at least one sign distribution € so that O, C int(B)NY,.
Given any point p = (p;,p') € O, the path u(t) = (1 —t)p +¢(0,p"),t € [0,1) is entirely
contained in O,. By definition, one has that

ordi(nomopu)= Ky .

Thus, ko < 0 implies
}in%qoarro,u(t) #0.

On the other hand, O, C int(B)NUY, implies that for all t > 0, mo u(t) € (0,1)". Moreover,
ast — 0, m o u(t) approaches a point in Ho,. Thus, by (4.3) the limit of n along the path
mo u(t) must equal 0. So, the point ¢ with the above properties must not exist. This proves
the Lemma. J§

An entirely similar argument that uses (1.4), as expressed in the (wq,...,w,) coordi-
nates, shows

17



LEMMA 4.12. Suppose q is a point of 0B such that n(q) € Hy,. Let D, be any component
of D containing q. Then M, > 0. Moreover, if ¢ € 0B is such that n(q) ¢ Ho then
M, =0 for any component D, containing q.

Remark 4.13. Geometrically, Lemma 4.12 says that the strict transform of GG is a com-
ponent of D that is disjoint from B in X. That is, the polar divisor of R o wl x cannot

intersect B. An entirely similar conclusion holds for the polar locus of 4p| x- This property
is important in describing the polar part of I(s,¢) at s = p(x), as seen in (4.16)ff. 1

Supplied with these preliminary observations, one can proceed to the

PROOF OF THEOREM 4.1: In light of (4.10), it evidently suffices to show, p(¢) = p(7),
(cf. Theorem 2.1), that is,

(4.14) p(m) 1s the first pole of I(s, ).

It is clear that one can assume that the sign of ¢ is constant outside a compact subset of
[1,00)". For simplicity, one may therefore assume that ¢ is positive on all but a compact
subset of [1,00)".

One has for o > 1,

dw
I(s,p =/ R®
() {o,1)" wi--wh
. . dw
=def 1-1_[% [6,1]“ R'® w¥'”w3‘

= [ (Roxy(@omin*(Zrmy),
B 1 w

n

where |7*(dw/w? - -- w?)| denotes a density on X.

Since 7 is proper and B is a closed subset of the compact set #~![0,1]", B is also
compact. For each ¢ € B there exists an open neigborhood U, so that (4.6) holds iff
q € dB. The open cover {U,} of B admits a finite open subcover {U/;}]L,, where U; is

centered at ¢;. One now takes a finite partition of unity {v.} subordinate to the cover
{U;}. Thus, for o > 1

(4.15) f (Rom)* (o) |1'r*( o ) = Z Z/ (Row)* (®om) v, |7r“( w2 ).
One next fixes an arbitrary U;. One chooses the coordinates centered at ¢; so that

UinD =i, {z; = 0}.
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|

Assume that {e1,...,€p(;)} are the sign distributions so that O, C int(B) N U,k =
1,..., R(3). Define for each j =1,...,r

M;(i) = ordp;, (Rom)
m;(i) = ordp; (® o)
7.i(i) = ordDj |1r'(dw/wf cre w?a)l )

and for eachi =1,...,N

. _ - —(1+mj(i)+'yj(i)) _
v(i, p(m)) = #{7 : 70) =p(m)}.

Define
J(p(m)) = {i : v(3,p(x)) 2 1}.

By definition, J(p(7)) # 0. In this regard, one should also note that r = 0 is possible.
This occurs iff ¢; € int(B). In this case, each M;(:) =0 and i ¢ J(p(7)).

The Gelfand-Shapiro-Shilov regularization method [G-S] applies to the integral over each
open set O,,,k=1,...,R(:) and ¢ = 1,..., N, and thereby gives an analytic continuation
to each summand on the right side of (4.15). In particular, if i € J(p(7)) then the principal
part at s = p(m) of p

w

(ROW)’(@OW)UCIW*(W

)

consists of at most v(1, p(7)) nonzero terms. The main point is to show that the term of
order equal to v(i, p(7)) must be positive.

Uu;,nB

Note. When one i is fixed, 1 and p(7) are subsequently dropped as the arguments for
v. 1

After reindexing, if necessary, one may assume that

{5 SO0 ) = (12, ) € (1),
One sets z’' = (zy41,...,2n).

Then the contribution from U; to the term of order v in the principal part has the form

R(3)
@10 TN [ ) @) 0 0 vl () b
¢ k=1 YN
where the following properties are satisfied:

(1) ¢v1y.--5Cn > =1, (cf. [Va-2] where this property was first used for a related
problem);
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(2) g1(2') is the restriction to N, D; NU; of the quotient of the strict transforms of

=1

w{w‘ -.-wM» and G;

(3) ga(2') 1s the restriction to NY_; D; NU; of the quotient of the strict transforms of
P and Wit oWt - gy

(4) g3(2') is the restriction to N¥_; D; NU; of the strict transform of

|Jac(m)}/(w? - - w2)om.
From Lemma 4.12 and the assumed positivity of P,y over [1,00)" (cf. section 1), one
concludes that ¢g1(z"), g2(2'), g3(z') are finite and positive over the domain of integration in
(4.16). Moreover, since {v.} forms a partition of unity, one concludes that the double sum
in (4.16) must be positive.

Thus, p(7) must be a pole of I(s, ). Furthermore, any rational number larger than p(7)
could not be a pole of I(s, ) since it would be larger than any candidate pole p, used to
define p(r). This proves (4.14) and therefore completes the proof of Theorem 4.1. 1

Remark 4.17. At this point, it is also useful to discuss briefly the work of Sargos. In
[Sa-1] the questions addressed in this section were considered for polynomials satisfying a
nondegeneracy condition on {1, 00)". This is formulated in terms of the Newton polyhedron
of P at infinity. Recall that if S denotes the support of P then the Newton polyhedron at
infinity is the boundary of the convex hull of | J;c5 (I —R%). Given P, its polyhedron ',
and the set of vertices V of ', one first defines the polynomial Pr., by

Proo(z1,y...,2n) = Z zit . gin

(¥1,-.,in)EV

P is said to be nondegenerate with respect to ', if there exists C > 0 such that
|P(z1,...,2n)| > CProo(21,...,2,) forall (z1,...,2,) € [1,00)".

Evidently, this condition, which generalizes the property that P has positive coefficients,
is considerably weaker than ellipticity.

No elementary argument appears to be available to establish (0.3) when ¢ = 1 and P
is nondegenerate. Indeed, it is not in general true that Np(t,1) and Vp(t,1) agree up to

a strictly lower order in t. For example, if a # b are positive integers, then the polynomial

P = z¢ 2} is nondegenerate but Np(t,1) and Vp(¢,1) do not have the same dominant term

as t — oo, as a simple calculation will verify.

The first result in [ibid] determines the precise rate of growth of Np(t,1),Ve(t, 1), as-
suming nondegeneracy over [1,00)". Sargos showed:

THEOREM 1. There are numbers py,v, expressible in terms of the polyhedron of P at
infinity, and positive numbers A, B such that

Np(t,1) = AtPlog”t (1 4 O(1/logt)),
and Vp(t,1) = Bt?log”t(1 + O(1/logt)).
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The constants A, B are given by explicit expressions. Moreover, the values of py and v
are expressed in terms of 'y, in a manner analogous to that obtained in [Va-2, Vas].

The second major result of [ibid] showed:

THEOREM 2. Assume that the diagonal intersects the Newton polyhedron at infinity of
P(zy,...,z,) in compact faces only. Further, assume that P is nondegenerate with respect
to this polyhedron. Then there exists 8§ > 0 so that

Np(t,1) — Vp(t,1) = O(t*~f).

An extension of (0.3), involving weights determined by polynomials with positive coef-
ficients, follows from the arguments given in [ibid]. Presumably, if ¢ is a rational function
whose numerator and denominator are nondegenerate with respect to their polyhedra at
infinity, Theorem 2 continues to hold. However, it is not yet known if one can give an
“elementary” proof of this theorem, analogous to that given in Section 2, when ¢ = 1.
These would also be interesting questions to answer.

The precise relation between the nondegeneracy condition used in [Sa-1] and hypoellip-
ticity is not yet completely understood. It would be interesting to characterize precisely
the nondegenerate polynomials which must also be hypoelliptic on [1, c0)", or on [a,o0)”
for some a € (0,1). To this end, it is useful to observe that Hormander [H6, ch. 11] found
a class of polynomials that were hypoelliptic on [1, 00)", degenerate with respect to their
polyhedra at infinity, and for which the diagonal intersected each polyhedron in exactly
one compact face. i

Section 5. Distribution of eigenvalues for hypoelliptic PsDO’s

Let p(z,£) denote the symbol of a pseudo differential operator P on R". Let P denote
a self-adjoint extension to the Hilbert space L%([1,00)"). Assume that the spectrum of P
is discrete. Denote the eigenvalues as A; < A; < .... A standard problem is to understand
the behavior as t — oo of the spectral function

N(t) = E 1.
A<t

This question has been studied by numerous authors under varying assumptions on p(z, £).
Of interest here is the behavior of N(t) when p(z, ¢) is hypoelliptic on {1, 00)*". Robert [R]
and Smagin [Sm] (among others, cf. their articles’ bibliographies) have shown the following
result. In the notation of the Introduction,

THEOREM. 1
N(t) ~ (52)" Vld)-

Theorem A shows that the asymptotic of N(t) is determined by a discrete version of
Vp(2). That is, one sees immediately, again in the notation of the Introduction,
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THEOREM 5.1. 1
N(t) ~ (Z—W)" Ny(t) ast— oo.

Theorem 5.1 appears to be of interest because each N,(t) can be calculated in polynomial
time as a function of ¢. That is, Proposition 1.3 implies that any lattice point m € N2 for
which |p(m)| € ¢t must be contained inside the part of the hyperboloid given by

(5.2) {1+ y2n < t/°} N [1,00)%",

where o denotes an exponent for p(z,£) so that (1.4) holds. Since the number of lattice
points satisfying (5.2) is O(¢*"/), the complexity of determining N,(t) is clearly poly-
nomial in ¢. One can therefore determine a reasonable approximation to N(t) for any
sufficiently large t in polynomial time by calculating N,(t), rather than the analytically
more difficult function V,(¢). The same properties hold if one replaces [1,00)?" by R?" and
insists that p(z, £) be hypoelliptic on RZ",

A second interesting feature of Theorem 5.1 can be seen by comparing it with the
results of Bochner [Bo], who studied N(¢) for a constant coefficient operator P(D) on the
n dimensional torus. He essentially showed that if the symbol p(¢) was hypoelliptic on R™,
then the Dirichlet series .

2 p(m)*

{m€Z:p(m)#£0)
determined the spectral function for P. The reason for this was that the sdentity N(t) =

Np(t) follows easily from an explicit description of the eigenfunctions of P(D). As a result,
the eigenvalues of P(D) are easily seen to be the values of p at the lattice points m.

Thus, Theorem 5.1 shows that a Dirichlet series of the form

E cne 29 where 0 <y < 12 < ...,
n
exists in general so that
N(t) ~ z Cr -
<t

In particular, this occurs even though the actual eigenvalues are notknown to be expressible
algebraically in terms of the values of p at any set of lattice points contained in [1,00)%".
This intriguing property does not seem to have been observed earlier.

Section 6. Cohomological snvariance of the main term in Np(t,¢)

Suppose that 1,2 are two polynomials that are positive outside a compact subset of
[1,00)". By Theorem 2.1 (cf. [Li-3,4]), there exist nonzero real polynomials A;(u), A2(u)
and rational numbers p(¢, ), p(¢2) such that for some 7 > 0

Np(t, 1) = tP¥) 4, (logt) + O(t#e)T)
Np(t, ;) = t?4°? Ay(logt) + O(t#(#9)-T),
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Denote the dominant term in Np(t,¢) by Np(t, ) below.

A natural question asks:
What conditions upon ¢;, 2 can be imposed that insures

Np(t, 1) = Np(t,p2) ?

In [Li-2] a cohomological criterion was found that answered this question under condi-
tions a bit more restrictive than were really necessary, in light of Theorem B of this paper.
It will suffice here to state the extension of [Li-2, Theorem 4] that can now be made. To do
8o, first recall the standard constructions of the cohomology fiber bundle for a polynomial
mapping on C™ and the section induced by the Leray residue operation.

According to Verdier [Ve]), for any polynomial mapping P : C® — C, there is a finite
set Zp C C such that P : C* — P71(Xp) — C — Zp is a locally trivial fibration. Set
C* = C — Zp, and define P* = P|P_,(c_). For t € C* set X; = P~1(t). Let H*~! denote
the flat vector bundle on C* with fiber at ¢ equal to the finite dimensional vector space
H™1(X,,C). Let H*"! = H*"1 ® O¢- be the sheaf of germs of analytic sections of H* 1.
Any rational differential n-form w determines an analytic section of H"™!, defined as

o(w):t — [w/dP|x,]
where w/dP |x, = Res (w/(P —t))|x,

THEOREM 6.1. Assume the following hypotheses.
(1) P is a tame polynomial (cf. [Br]).
(2) P,p1,p2 are hypoelliptic polynomials on [1,00)".
(3) For allt ¢ Zp one has

o(p1dz)(t) = o(pa2dz)(t),

where @dz is the (n,0) form determined by .
Then Np(t, (Pl) = ﬁP(ta ‘PQ)

In this sense one can say that the dominant term is a “cohomological invariant”. That
such a result might be possible arose from studying the work of Cassou-Nogues [Ca-N].
On the other hand, one is still quite far from achieving a result with the precision found

in [ibid], which was obtained under the assumption that P was a polynomial of the type
studied by Dwork.

Section 7. The case of k > 1 polynomials - proof of second main result

The proof of Theorem B* via Theorem 4.1 extends easily to a several variable setting.
The main result of this section is Theorem B; which is an immediate corollary of Theorem
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7.8. Theorem Bj appears to be of particular interest because it is an essential ingredient,
needed in an eventual sharpening of the results described in [Li-5]. This is discussed at
the end of the section.

Let P,...,P; € R[z,,...,z,]| be hypoelliptic on [1,00)". Let ¢ be a hypoelliptic frac-
tion, in the sense of Section 1. One assumes, for simplicity, that each P; > 0 and ¢ > 0
on [1,00)". Denote the best constants c¢,a so that (1.2), (1.5) hold for each P; by ¢;, a;.
Define, for 6 > 0,

k
Q(8) = {s: Za,-a,- > 6, and o; > 0, for each i}.

=1

One also defines

2 Pr(m)- P (m)

An elementary argument shows
PROPOSITION 7.1. There exists § > 0 so that D(s, ) is absolutely convergent in Q(§).

In [Li-5] an analytic continuation of D(s, ¢) to C¥ was given, using a summatory formula
(or integral representation) based upon an iteration of Cauchy residue theory, and a set
of k functional equations in sy, ..., 8, deduced from the work of Sabbah [Sb]. In this way,
one showed

THEOREM 7.2. There exist b; € Z,'j_,z' =1,....,.M,B1,...,8m € I such that the polar
divisor of D(8,) is contained in

oo M
UU{S:b;-B=ﬁ.‘—e}.

e=0 =1

One denotes the polar divisor of D(s, ¢) by Polp.

On the other hand, as observed in [Li-4], as well as Section 4 of this paper, a somewhat
sharper set of results can be deduced for hypoelliptic polynomials if one uses the Euler-
Maclaurin formula. A similar sharpening is also possible in the several variable setting.

Define
_ A 4
I(ss(P) - /[;10c0n Plal .. P:: dI .

To proceed as in Section 3, one must first give the natural extension of Lemma 3.2. Of
course, the notations from Section 3 are adopted here.

For J € 17, set
PI) = {(Joy-- o, i) €@ To 4+ T =J ).
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LEMMA 7.3. For each index J € I} and element J = (J,,...,Jx) € P(J), there exist
integers a(J) such that

DJ(P,I__ )= D, ald): D-’°(=,o)HDJ(P,.)

JeP(J)) i=1

.0} I DS(P;
= E (‘P)H{ Z: Z [=silo Pe°(+1)} P .?.p:k

JeP(J) i=1 | CeM(J;) v=0

The hypoellipticity of each P; and ¢ shows clearly that

PROPOSITION 7.4. For each J, the function

J P ——————————————
i (P"' Byt

)dz
is analytic if s € (9).
The arguments of [Li-4] extend easily to show

THEOREM 7.5. For each J, the function defined in (7.4) admits an analytic continuation to
C* as a meromorphic function. Further, there exist b;(J) € 25 i=1,...,M(J),A(]),...,Bmun(J)
Z such that its polar divisor is contained in

oo M(J)

U U {s:0i(7) -5 =8:(J) ~ e}

e=0 =1

Notation. One denotes the polar divisor of I(8,¢) by Polr. 1
For given r € N set

I(r)={I=(i1,...,1n) 1 3; € {0,r],5 =1,...,n}.
In the notation of (3.1) (with k£ = r), one sees the

THEOREM 7.6.
(1) If s € Q(6) and r > 1 then
D(s,p)= Y h{(z1) - B (2,) DL( )dz .

ﬁ
rez(r) /L,oo)" Pt Py
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(2) There exist constants o(I) for each I # (0,...,0) € I, so that

D(s,¢)=I(s,0)+ Y,  oI) DI(W) dz
I#(0,...,0)€T: (1,000
+ ¥ / W (1) K (20) DY ) do

IGIM

(3) Set ¢ = min{cy,...,ci}. Forany I € I/

f h(r)(z )-- h(r)(mn)DI(W)d:r is analytic if Za;a; >é—cr.
[1,00)" ) i

Notation. For any Jo,/h,...,Jx € I3 and (Cy,...,Ci) € M(J)) x ... x M(Jy), set
C =(Jo,Cu,...,Ck). Define

Dle(p) D (P) DF*(Px) 4
I(s,C, =/ z S TR — —dz.
( (P) [1,00)" 1 2 Pll Pt Pll”'Pkb .

To any meromorphic function on C* analytic on a domain like (6) and with polar divisor
pol contained in a union of hyperplanes as described in (7.2), (7.4), one can associate a

Newton polyhedron of pol, denoted I'(pol). This is an unbounded subset of R* and defined
as follows.

Definition 7.7. Suppose

oo M
polc |J (D s =59 —¢}.

e=0i=1

Assume each hyperplane {0} .5 = ()},i =1,..., M, is a component of pol. Set

M
H=oeR :).0> 8D 5,... 00 >0}
i=1

and F(po) =0H. 1

Denote the Newton polyhedra of Polp resp. Pol; by I'p resp. T';y. For simplicity these
polyhedra will be called the Newton polyhedra of D resp. I.

The main result of this section is

THEOREM Bj. Assume each P; is hypoelliptic on [1,00)", and  is a hypoelliptic fraction.
Then

(1) Ty =Tp.
Denote the common polyhedron in (1) by T.
(2) D(s,p)~ I(s,) is analytic at each point of I' + iR¥.

26



Remark. One should interpret Theorem Bj as the several variable analogue of Theorem
B* of Section 3. In particular, one should think of I' as the analogue of the “largest
pole” for a series in one variable (with real poles). The reader should also note that if

{607 .o = B} contains a face of T, then the only t € R¥ for which (2) is a nontrivial
assertion are those that satisfy the equation b¢') -t =0. J

Theorem B will follow directly from Theorem 7.6 and the following result.

THEOREM 7.8. For any C # (0,...,0) the Newton polyhedron of I(8,C, ) is strictly
below T'y.

Remark. By the phrase “strictly below” is meant that the Newton polyhedron of I(s,C, ¢)
is contained in I'; — (¢,00)¥, for some € > 0.

Proor: One can give a similar proof to that of Theorem 4.1. A sketch of the proof should
therefore suffice here. The notation of (4.4) will be used below. In the following, an
arbitrarily given C = (Jp,Cq,...,Ci) # (0,...,0) is fixed throughout the discussion.

As in (4.2), define each R; by

for each ¢ .

Ri(w) =des F;f%]l?)

In addition, define the rational function ®¢ as

Di(p) DS\(P)  DSH(Py)
De(wy, ..., wn) =4. = T 1/w).
cln, .. we) =aey PELE Do e (1)

One constructs a nonsingular real algebraic manifold Y and proper birational map = :
Y — (R*,(wy,...,w,)) such that properties (4.4)(i,ii,iv) are satisfied. On the other hand,
one modifies (4.4)(iii) so that the divisor determined by

n n k
[H(w:'—l)‘]:[ wl'-IIR,”@c]OTr

i=1 i=1 i=1
has support in the normally crossing divisor D. Restricting D to a divisor D over a polydisc

U, as in the proof of (4.1), and setting D = U,D, to denote its decomposition into
irreducible components, one next defines the multiplicities

M,(i)=ordp, Riow
na(c) = OrdDa q)c on
Yo = ordp, Jac(m) — ordp, (w}---wl)om.

Additionally, for each component D, define the linear form and hyperplane

k
Lo(o) = Z Mo(1)oi + Ya,

=1

H(Dq)={o: Lalo)y=~1}.
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Define

g =n{a:La(a) > -1 and o; 2 0 for each i},

G(C) =)o : La(0) + £a(C) > —1 and o; > 0 for each i}.

Define the polyhedra R )
I'r=06 and T{(C)=0G(C).

I'; satisfies an important (and evident) “convexity” property that is used below:

(7.9) Assume that the plane H(D,) is disjoint from I';. Then Lo(6) > —1 whenever
o c f[.

The hypoellipticity condition satisfied by each P; implies by (1.2):

(7.10.1) If q is a point of OB such that n(q) € He and D, is any component of D
containing q, then kq(C) > 0.

(7.10.2) Assume q is a point of @B such that 7(q) € Hy,. Let D, be any component of D
containing g. Then, M,(i) > 0 for each i. In addition, if ¢ € 8B is such that w(q) ¢ Hoo,
then M, (i) = 0 for each i and any component D, containing q.

It is clear that (7.10.1) implies:

I'(C) must lie below T'; in the sense of the above Remark.

To complete the proof of Theorem 7.8, it suffices to show that I'; = I';. This is done
by a straightforward adaptation of the analysis used to prove Theorem 4.1. In particular,
one reduces to the local situation, as described in (4.16). The fact that I'; is the convex
envelope of G, which implies (7.9), is now used to insure that the four properties formulated
below (4.16) are satisfied in this new setting. In particular, the exponents (,4,,...,(a,
appearing in (4.16), are now understood to be functions of 8 = o + it. (7.9) implies that
for any 8 € I'; + iR* one must have Re((,4,),...,Re((n) > —1. The rest of the argument
is entirely similar to that in the proof of Theorem 4.1. Details are left to the reader. |

There is an important application of Theorem Bj. To formulate this, some preliminary
remarks are needed.

Definition 7.11. A component L of Polp satisfying the property that L N R* contains
a face of dimension k — 1 of I is called an initial component of Polp. A divisor D, in a
resolution of singularities, as constructed in the proof of Theorem 7.8, is called an extremal
divisor if the plane H(D,) is an initial component of Polp. Define

L=L- U (LNnLY. 1
{L'#L:L' a component of Polp}
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Definition 7.12. A vertex of the polyhedron I is called an initial vertex of Polp. More
generally, set

P’JD=POIDU{.91---.9;==0}.

The intersection of any k normally crossing components of Polp is called a vertex of Polp.
A distinguished vertex of Polp is any vertex contained in an initial component of Polp.

/-/—' I'{Pol)

initial verticoes

distinguishad -
voerticus

Notation. Define the differential forms

wp(t,s) = tHD(s,¢)M,
81" 8k
dsy---d
wit,s) = € 1(s,0) =~
‘ 818k

Let v be a vertex of Polp. Let ¢g(v) equal the number of components of Polp containing
v. Let £(v) = {Li,..., Ly} be the set of components.

In a neighborhood of v there exist meromorphic functions ®; ; which are polar along
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L;UL; for each 1 # 5 € {1,...,9(v)} such that

q(v)
wp = t* Z ®; jdsy - dsg.
i#)
Then, sufficiently near v one defines the residue form along the component L. by the

formula
q(v)

Ri.(wp) = Z Resy, (t*®, ;dsy - --dsg) .
J#e
Here, Resy, is meant the standard (k — 1,0) Leray residue form along the nonsingular
variety L..

Note. For simplicity in the following discussion, one now sets k = 2. When k£ > 2 one
needs to iterate the discussion & — 2 additional times. This is left to the reader. §

As emphasized in [Li-5], the precise description of the polar locus of the Ry(wp) (see
below for the definition) is needed to determine asymptotics of certain simultaneous lattice
point problems (cf. below).

Assume that v is an initial vertex. Let L. € L(v). By definition, v is a pole of the
residue (1,0} form Ry (wp) if the iterated residue

Res Ry, (wp) =aes Y Resy; (Resy t*®, ;dsidsy) # 0.
je
One also observes that the iterated residue with L; in this sum is, up to a sign, the
coefficient of the term L;' L' in the Laurent expansion of t*®, ;.

Theorem Bj evidently implies the set of ®; ;, used for D(s,¢), can be taken to be the
same as those for I(s,) when v is an initial vertex. Thus, one concludes

THEOREM 7.13. For any initial vertex v and component L, of Polp containing v, one has

Res Ry (wp) = ResyRp,(wr).

Theorem 7.13 is now seen to be helpful in detecting if an initial vertex is indeed a pole of
the residue form taken along an initial component of Polp that contains this vertex. The
reason for this is that the methods of Gelfand-Shapiro-Shilov, used to determine precisely
poles of generalized functions P} for a polynomial P, can now also be applied to describe
with some precision the polar locus of such residue forms.

The observations above lead to a simple to state geometric criterion that locates precisely
a pole of Rp(wy) on the polygon I'. This is formulated in terms of the geometry of the
divisors D,, appearing in a resolution of singularities, = : Y — R™, that proves Theorem
7.8. Although this is, by no means, the most general version of the criterion, it will suffice,
with some minor modifications, for [Li-6].
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THEOREM 7.14. Let L be an initial component of Poly (or equivalently of Polp) and D,
an extremal divisor such that H(D,) = L NRZ?. Let v be an initial vertex contained in
L. Assume that ¢(v) = 2. Then Res,R(wr) # 0 if there exists an exceptional divisor
Dg C Y such that

(7.14.1) DsnD,NB#0
(7.14.2)
H(Dg) is the other initial component of Pol; containing v .

Remark. It is clear that (7.14.2) must be true by hypothesis. The substance of the
theorem lies in the validity of the geometric property (7.14.1), from which the analytical
information is deduced.

PROOF OF 7.14: This will follow from the regularization of the integral which represents
the local contribution to wy in each open set U; N B, defined in (4.16). One first chooses
and fixes one such pair of divisors Dg, Dy satisfying the conditions in (7.14).

In the following, the notation, employed in the proof of (7.8), will be used. (7.14.1)
implies there exist open sets U;(a, B),1 € {i1,...,1,}, (the set of indices apparently depend
upon a, #) which intersect D, N Dg, such that in each connected component of (U;(a, 5} —
D) N B, there are local coordinates (zy,...,z,) so that the integrand

w*(p/Pi* - P dzy -+ don)| 40y D)

has the form

a L a+b L
(7'15) z‘,;:(.) ' H zkf:i:(-) : inavﬁ(s’ z) .
=1 k=a+1

In this expression, one has grouped with the first product any z; whose exponent is one
less than a nonzero multiple of L(s) + 1. Similarly, in the second product, any z; appears
whose exponent is one less than a nonzero multiple of Lg(s)+ 1. Notation has been abused,
for simplicity, by identifying the exponents by L,(s), Lg(8). This however will not affect
in any significant manner the arguments below.

The choice of signs in (7.15) is made so that the product is positive on each connected
component of (U;(e,B) — D) N B. This is because one assumes, as indicated above, that
each P; and ¢ are positive outside a compact subset of (1, 00)". Moreover, one has chosen,
for simplicity, the indices so that {z; = 0} = D, NUi(a, B), {2s41 =0} = DgnUi(a, B).
In addition, §; 4,4 is an n— form which satisfies these properties for each t, a, §:

(1) it is real analytic in z whenever z € (U;(a,8) — D) N B;

(2) it is locally integrable if o is contained in an open neighborhood of I' N L;

(3) one has for each i € {iy,...,%,)

(7.16) E /_ Q,‘,a”@(v‘, 2’) dza+b+1 e dZn >0.
N{z1==2,45=0}

C.
a component of
(Ui(a,B)~D)NB

31



One calls the integral of 7*(¢ /Py --- P* dzy - - d"’;")l(u-(a 8)-D)nB’ taken over the sum
of the connected components of (U;(a, 8) — D) N B, the local contribution to w; from
ui(a’ :6)

Adapting the method of regularization of Gelfand-Shilov-Shapiro, one now analytically
continues

(7.17) Z Z /u 0/ P P2 doy - - dey).

i=n ( .-(a,ﬂ)-—D)nB

a.t. Da,Dp satiafy
7.14.1,7.14.2

Evidently, this is done by regularizing each summand in the local contribution to w; from
Ui(a, B) for each i,a,B. Tt is then straightforward to verify that the following crucial
properties hold.

There exists a sufficiently small neighborhood W of v and an analytic function A,(s)
on W satisfying
Ay(v)>0

_ A (8)
il = (La +1)° (Lg + 1)

for some positive integers a, b.

An elementary verification will now show that the positivity of A,(v) implies that
Res, Rp(wr) # 0.

This completes the proof of Theorem 7.14. |§

Remark 7.18. There is a different method of understanding the residue forms Rp(w;)
that allows one to weaken the condition (7.14.2), given a divisor Dy satisfying (7.14.1), to:

(#) H(Dg) NH(Da) = {v}.

The reason for this is that the sum in (7.17) also determines an integral representation
of R(wr) when s is contained in any open neighborhood V of a point in I' N L that is
disjoint from all other components of Pol;. Now, fix one triple of i, a, § indexing the sum
in (7.17). Let (z1,...,2,) be the coordinates on U;(«a, B), used in (7.15).

The main observation to make is that inside V one has the following property. The
convexity of I' implies that the real part of the exponent of each coordinate z;,7 > a+1is
strictly larger than —1 whenever s € V. This implies that if C is any connected component
of (Ui(a, 8) — D) N D then the integral

/ ]'[ 28 Qi a(s, 2) dzass -+ dzn
{z,_O}nC g=1 Lny
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converges absolutely and represents an analytic function of a global parameter (say s; or
s;) on L.

Let d2' = dza41 -+ dz,. Now consider the following sum:

b

Lp(l)
Z -"zle Z /ﬁ.‘.l{z--ﬂ}ﬁF oty Rien(s2)de LoV

s.t. Da,Dp satis{y a component of
7.14.1 and # (Ui (o, 8)-D)NB

If s denotes a global parameter on L, then up to the factor t* this triple sum equals the
factor of ds for R(wr), when 8 is restricted to VN L. So, one has an integral representation
of the residue form inside some open subset of L. Evidently, each summand can then be
analytically continued to the entire s plane as a meromorphic function, using exactly
the same regularization procedure of [G-S]. In a neighborhood of v it follows that the
representation of Rp(wy), given earlier in the section, must agree with that obtained by
the process just described. One then observes that if (#) holds, there is at least one term
in the triple sum which must have a pole at the value s = sy, corresponding to the point
v. By (7.16) the residue at s, must also be positive. Summing over all such terms that
can contribute to the pole at s, one sees that the (1,0) form Rp(wy) also has a pole at
Sy [ |

Concluding Remarks.

(1) To understand what is the relation of Theorem 7.14 to asymptotics of (weighted)
lattice point counts, the following precis may be helpful. The reader can also consult [Li-5]
for further details.

One can formulate a (simplified) “simultaneous” lattice point problem, whose asymptotic
behavior can be precisely determined whenever the criteria in (7.14) are satisfied. Again,
for simplicity only, k = 2 is assumed. Let a = (a;,a3) € (0,00)?%, and ¢ > 0. Define

NP(t,a,tp) = Z t,o(m)

{meEN":P;(m)<t%i i=1,2}

Evidently, one can interpret the family of counts Np(t,a,) as a natural generalization
of Np(t,p) when given 2 polynomials. Thus, the analysis of the asymptotic behavior of
Np(t,a, ) is an interesting problem to understand. Proceeding classically, one can now
see why the polygon I' should be defined so as to lie in [0, 00)2.

One starts with the following integral formula for Np(t,a, ). Assume that b is a suf-
ficiently large positive number. Then, a 2—fold iteration of Perron’s formula [Ti, ch. 9]
shows:

1 . d31d32
— £2% D(s, .
(2m2)? ,/al=a,=b (&%) 3182
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(7.19) Ne(t,a,¢) =




Thus, wp is an evident (2,0) form to introduce for purposes of studying Np(t,a,¢). The
polygon I is evidently the polygon of the polar divisor of the meromorphic function ap-
pearing in wp.

[Li-5] gave a general description of an upper bound for any Np(t,a,¢) in terms of
the geometry of the initial components of Polp. In order to sharpen such estimates, in
particular, to determine a precise asymptotic for Np(t,a, ), it is clear from the analysis
in [ibid] that one needs to answer the following:

Question. For each initial component L, what is the polar locus of Ry {(wp)?

The point of Theorem 7.14 is that it enables one to exploit geometric propertities implicit
in the problem. [Li-6] will indicate one way of successfully doing so. Surely there are other
ways, as indicated in the Introduction, that remain to be worked out.

(2) The relation between the number of lattice points in and volume of an expanding
family (depending upon one or several parameters) of semialgebraic sets was (implicitly)
the subject of a paper of Davenport [Dav-2], who actually worked in a considerably more
general setting. It seems likely that if the semialgebraic sets in question are determined by
the intersection of proper polynomial mappings on R" then his analysis should apply and
result in a pair of inequalities for the difference between the number of lattice points and
the volume. However, this begs the question of how one actually determines the asymptotic
behavior of the volume of the region.

Moreover, the proof of Theorem A can easily be seen to extend to analyze the difference
of the number of lattice points in and volume of a family of intersections

{Pr<ti}n...Nn{P, <t} aseacht; — oo,

when each P; is hypoelliptic—once one has the asymptotics of the volume of these sets.

Neither method however extends to deal with the case of weights determined by ree-
sonable classes of rational functions, which a general theory of multivariable asymptotic
expansions should certainly be capable of incorporating. For this, ideas from the analytic
theory of singularities appear essential.
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