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B.2 Normierte und euklidische Vektorraume, metrische Raume, Konvergenz81

B.2 Normierte und euklidische Vektorraume, metrische

6.

Raume, Konvergenz

Es bezeichne (X,[-|) einen normierten Vektorraum. Zeigen Sie, daB die
beiden folgenden Aussagen adquivalent sind:
(a)  Es gibt ein positiv definites SLalarprodukt (, ) auf X, sodaB
2| = +/(z,z) fiir alle z € X.
(b)  Die Norm | | erfillt die Parallelogrammregel, d.h. es ist

|z +y° + |z — yl* = 2lz|” + 2ly|” fiir alle 7,y € X.

Fir eine reelle Zahl p > 1 und einen Vektor z = (£1,...,Zn) € R® setzen

o (o)

(i) Beweisen Sie die Héldersche Ungleichung : es gilt
z-y<lzl, - lyl,

fﬁr alle z,y € R™ und alle positiven reellen Zahlen p, ¢ mit f; + = 1 =
(Hinweis: beweisen Sle zunichst die fiir alle a,d > 0 geltende
Unglelchung ab < "‘—' + 3 £ und wenden Sie diese a.uf die einzelnen

Summanden der Summe E EFLETL an.)

(ii)  Zeigen Sie, daB z Hp eine Norm auf dem R™ definiert. (Hinweis
zur Dreiecksungleichung: schreiben Sie 3 (zi + wi)? = 3 zi(zi +
%P~ '+ 3 yi(zi + yi)P ! und wenden sie auf die Summmen auf der
rechten Seite jeweils die Holdersche Ungleichung an.)

(1) Zeigen Sie in den Bezeichnungen der vorstehenden Aufgabe, dafi
durch
el = Jim I2],

eine Norm auf dem R™ definiert wird. Berechnen Sie den Grenzwert
["loo
(i)  Skizzieren Sie die Einheitskreise {z €R? |z, = 1}.

B.3 Stetigkeit

9.

10.

Sei A Teilmenge eines metrischen Raumes X mit der Eigenschaft, da8 jede
stetige Funktion f: A — R beschrinkt ist. Zeigen Sie, daB A dann eine
abgeschlossene Teilmenge von X ist.

Sei n > 2; finden Sie eine Funktion f:R™ — R, die im Punkt 0 unstetig ist,
sodal aber die Einschrankung f|T fir jede Gerade T durch 0 im Punkt 0
stetig ist.



The boundary of the Eisenstein symbol

by

Norbert Schappacher! & Anthony J. Scholl®

In the paper [Beilinson 1986), Beilinson defined the “Eisenstein symbol”, a universal
construction of elements in higher K-theory (motivic cohomology) of self products of ellip-
tic curves. This generalised a construction by Bloch of elements in K of an elliptic curve
[Bloch 1980]. A refinement of Beilinson’s Eisenstein symbol was given in [Deninger 1989).

The purpose of the present paper is to calculate the boundary of the Eisenstein symbol
at a place of bad reduction of the elliptic curve.

In the case of an elliptic curve over a number field, this gives a criterion for the
‘integrality’ of Eisenstein symbol elements, and thus generalises a formula found by Bloch
and Grayson [1986]. In the case of the universal elliptic curve, we obtain the boundary of
the Eisenstein symbol at the cusps. (In characteristic zero an equivalent result was proved
in [Beilinson 1986 by an analytic method.)

In our presentation the formula involves Bernoulli polynomials. These arise essentially
on account of their well-known distribution property — cf. 2.6 (i) below.

_ We now give a precise summary of our main result. Let E/F be an elliptic curve over
-~ afield, and P C E a finite subgroup scheme of E defined over F. For any integer n > 1,
consider the Eisenstein symbol map, following the definition of [Deninger 1989, §8] :

Ep: QP — HAM(E™Q(n+1))

sgn*

Here the following notations are used.

— Q[P]° is the Q-vector space of Gal(F/F)-invariant functions 3 : P(F)— Q satisfying
Y. B(z)=0 (which we identify with divisors on E in the obvious way).
IGP(?)

— Hi (-,Q@))= Kg)_,-(—) is motivic cohomology — ¢f. [Beilinson 1985, 2.2], [Schnei-
der 1988, §3], [Deninger, Scholl, §1].

— for a group scheme A, we identify A™ with the kernel of the sum-mapping & : A1 —
A. This gives an action of the symmetric group Sp41 on A”.

— subscript ‘sgn’ denotes the image under the projector [Igg, = Zn_-lH)_' > sgn(e).o.

Uesn-'-l

Now suppose F' admits a non trivial discrete valuation v, and let O and k, be the valuation
ring and residue field of v, respectively. We shall assume that k is perfect. Let E/» be
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a minimal regular model of E, and E/; its special fibre at v. We make the following
additional assumptions :

i) E/g is a Néron N-gon (untwisted), for some N > 1.

i1) P extends to a finite flat subgroup scheme P/o of the Néron model of E over O. (For
example, one could take P to be the N-torsion points of E, with N as in 1.)

Write E for the connected component of the Néron model of F over O, and fix an isomor-
phism E/x 2 G,, /. This induces an orientation on E/y, i.e., a bijection between Z/NZ
and the set of components of E;;. The component corresponding to v € Z/NZ will be de-
noted C,. If B € Q[P]® and v € Z/NZ then we write dg(v) for the degree of the restriction
of the flat extension of 8 to the component C,.

The boundary map
" HRA+1(Ena Q(n+1))sgn — Hiy (E?st(n))Sgn

arises from the localisation sequence of the pair (E}‘O,E}’k). The target space is a one-

dimensional Q-vector space generated by @7 =Tl (yoU- - -Uyﬂ), where yo = (y1 - ya) "},
and for 1 <i<n, y; is a coordinate on the :** copy of Gk (¢f. 1.5 below).

The main result of this paper is :

Theorem.

"o ER(B)=Chn( Y do(v)Busal(())) 20,
vE€Z/NZ

where C} y is an explicit nonzero constant, Bx(X) is the m-th Bernoulli polynomial, and
0 <({z) <1 is the representative of z € Q/Z.

The case n =1 was found by Bloch and Grayson by a somewhat different method. The
reader will find applications in their paper, and in the case n =2 in [Mestre, Schappacher
1990, §§3.4, 3.5] — cf. section 6 below. In these applications F = Q and the theorem
is used to describe the obstruction to the Eisenstein symbols belonging to the ‘integral’
motivic cohomology Haf'(E™, Q(n+1))z.

The formula of the theorem was discovered by the second author while studying the
work of Beilinson on modular curves [Beilinson 1986]. There £} (which Beilinson denotes
&Y4) is constructed for the universal elliptic curve over the field of modular functions.
Beilinson’s main result concerning the symbol (Theorem 3.1.7 of loc. cit.) is equivalent to
7.4 below, but his proof is analytic, in contrast to our algebraic approach.

Acknowledgement. This paper was completed while both authors enjoyed the hospitality of the Institute for

Advanced Study, Princeton.



1. The basic formula
We continue to use (and expand upon) the notation of the introduction.

1.1 The Eisenstein symbol. We recall the construction of the Eisenstein symbol map,
following [Deninger 1989, §8]. For an integer n>1, let p;: E® = E (1 <i <n) denote the
n

projections, and py = — Y pi. Write U = E — P, and define
=1

vr= () pV).

0<i<n

If we need to emphasize the dependence on P we write Up, etc.

Fori=0,...,n, let 8; € Q[P]°, and choose functions f; € O(U)* ® Q with divisors ;.
We use the “symbol” notation {—,...,—} for the cup product

U: @' Hju (=, Q1)) — Hiu (-, Q)
Then there is a well-defined map

n @n+1 n n "
(1.1.1) op: Q[P)° — Huf (U™, Q(n+1))in
given by
ﬂ0®®ﬁn = Ilpno HSgn {Pafoa---,P:fn}~
Here IIpn = —= T is the projector onto the space of P(F)"-invariants. With
#P(Pn Lo x P
xEP(F)"

the special choices

(1.1.2) Br=-=Ba=ap= ) (0)-(a),

z€P(F)

it is the first step of the construction of the Eisenstein symbol map €5, and other choices
of fi,...fn do not give rise to new elements of motivic cohomology. However we will
not make this substitution at once, in order to preserve the symmetry for the subsequent
calculation. Note that we are taking the invariants under translations by P(F), rather
than the coinvariants considered in [Deninger 1989, in order to calculate explicitly.

The second step in the construction—only needed when n > 2—is the decomposition
of the target space of 1.1.1 into eigenspaces under the L~!-multiplication. This will be
discussed in section 4.

1.2 Varying P. Let P < Q be (a closed immersion of)} two finite subgroup schemes of E
defined over F'. Then there are commutative diagrams :

n =¥ n n' n
QI =5 HyF(UZ,Q(n+1))3,

(1'2'1) IJ' Tres
Q[PI® ! Zh HiP\(Up,Q(n+1)E

3



and
QI — HM'(UEQ(r+1)E,
(122) Tj: T(Q:P)" Xres
Q[P]® — HIF'(UR,Q(n+1) sf:;
where 71 is extension by zero, and the unlabelled horizontal arrows are the maps

B - 05(B@af") and fr—r OB(B®aP™) respectively.

Now let L > 1 be an integer, and write P = [xL]"Y(P) C E, U = E — P, etc.

7: P — P for the projection. Multiplication by L induces a Galois covering
[xL]: oM —um™.
By Galois descent, this gives a homomorphism
[XZ]" - B3 (U™, Qe+ 1)) — HEF' (O™, Qe+ 1),
and we have two further commutative diagrams:
~  @n4+l1 ©Of n ~ ' 5
Q[PI° — HR(U™,Q(n+ 1)),
(1.2.3) [ES Joear
n ep n n n
QIPPE™ =5 HEF UM, Qn+ 1)
and
QPP — HF'U™,Q(n+1),
(1.2.4) I+ Toear
QPI” — HIF'(U™,Q(n+1)),

with the unlabelled maps in (1.2.4) being
B @%(ﬁ@a%”) and B O}(B®a%").

Write

All of this is straightforward to prove by direct calculation from the formulae in [Deninger

1989, proof of 8.2].

1.3 Base change. Let F'/F be a finite extension, v’ a discrete valuation of F', and v the
restriction of v’ to F. Assume that the residue field extension k'/k is separable. Then the

following square is commutative:

HE (B, Qnt1) 25 Hi (B, Q(n)

TTESFI'[F Tg(v‘/v)xresu/k

Hy (B, Qn+1)) 25 HR(ER, QM)



Here resp: /p, resis /. are the restriction homomorphisms, and e(v'/v) is the ramification
index. (Recall that we are assuming k to be perfect.)

In view of 1.2.1 and 1.3, we may now restrict to the following situation.

1.4 Assumptions.

— Ey is an untwisted Néron N-gon with N > 3; '

— P=unyxZ/NZC E(F)is alevel N structure on E;

— P4 gives the standard level N structure on (E/;)*™°°* =G,, x Z/NZ.

1.5 Write Uy = E — P, and U; for the complement of the zero section in E /0. Consider
the Galois covering™*:

UNp = P ((Gm —pN) xZ/NZ)

which by Galois descent gives an isomorphism

(1.5.1) [XNJ* : Hiq (U, Q(x)) ™ Hag(UR i, Q)™

In the next section we shall prove the following basic formula for the composite of O} with
the boundary map in motivic cohomology

o8 HM(UN/F$ Q(*))sgn H.—I(UN/J:)Q(* ))sgn

" n+l < ¢d C eqn
1.6 Proposition. Op(®fi) = iN2n+1 ( ) Z 0 ) q+2( ) [xN] (I’q-
q=0 1#{EL

The meanings of the symbols are :

— di(v)=dg,(v) =C€E# Bi((¢,v)) for v€ Z/NZ;

— di(¢)= 3 (¢di(v) is the Fourier transform of d;;
vEZ[NZ

— &7 is the element of H3, (U} Tk Q(n))sgn given as follows : let y =t~ be the inverse of
the natural coordinate on Gy,, and let y; = p¥(y), for the n+1 projections po,...,pn:

* If char(k) divides N then [x V] is the composite of a Galois covering and a power of the
Frobenius mapping. As the Frobenius induces an automorphism on motivic cohomology,
[xN]* is an isomorphism in this case also.



G2, — Gp,. Let S;41 be the symmetric group permuting the coordinates yq,... ,yn.
Then

‘1’;'=Hsgn{y1,---,yq,l—yq+1,--.,1—yn}-

1.7 Remark. Note in passing that for the special functions f;, : = 1,...,n with divisors
div f; = a as in 1.1.2, we have that d;(v) = N?6,0— N, so that here we find for ¢ # 1 that

di(¢)=N2.
We will see in section 4 that the proposition actually implies the theorem.

2. The calculation

2.1 We begin with some geometry on the arithmetic surface E;p. For the moment, we
need only assume that E/; is an untwisted Néron N-gon with N > 3, and that P is a finite
subscheme of E whose flat extension P/o is contained in the smooth part of E,n. We
normalise the orientation of the special fibre E/x =U,ez/nzC, and the coordinate ¢, on
C, such that t, =0, co are the points of intersection of C, with C,_1, C,41 respectively.
(There is no ambiguity as N > 3.)

Let f € O*(U)®Q, and let a(v) be the order of f along the v*" component C,, of E/;.
Choose once and for all a uniformiser 7 of the valuation v, and let ¢{*) =7 ~¢(") f ¢ F(E)*.
Since ordg, (1) =1, the function ¢g{*) is regular outside of P and the C, with p# v; so its
restriction to C, is an element of k(C,)® Q which we also denote ¢(*). Let D,y be the
flat extension of div f to E/p, and d(v) =deg (DjoNCy) (cf. introduction).
Proposition 2.2.

(i) divg® =(D;oNC.)—b(v —1).(0)+b(v).(c0), where b(v) = a(v+1) - a(v);

(i1) d(v)=b{r—1)—b(v).
Proof. (ii) follows from (i) as deg(divg{*)) =0. The only remaining non-trivial assertions
are the claimed multiplicities at t, =0, co. To verify these, represent the completed local

ring at 0 as R = O[[u,v]]/(uv — ), where u = 0, v = 0 are local equations for C,, C,_,
respectively. Then the image of f in the field of quotients of R is of the form:

f = (unit) x wtWyelv—1) (unit) x (¥, —b(r—1)
= (unit) x w2~ Dyb(¥=1)

Therefore the order of ¢(*) at ¢, =0 is —b(v — 1), and the order of GW-1 at t,_; =co is
b(v—1).

2.3 Now we continue under the assumptions of 1.4. Then ¢(*) € O*(G,, — pun)® Q, and

we write N i)
v v tY — 1)
@)= T] ¢¥(ct)=(eonst) VT

(€M N

= (const. )yVo (1 —yN)4)

6



where y =1/t.

2.4 We apply the above with f= f;, 0 <1 <n, with the obvious additional subscripts. To
calculate the boundary of ©% we need the following compatibility of the cup-product and
the boundary map (see {Loday 1976, 2.3] and [Grayson 1976]).

Let X/O be smooth, and 0 HJM(XF,Q(j))—vH"“ (X#,Q(5 —1)) the boundary
map of the locahsa,tmn sequence. For§ € H}((X,Q(j)), write {F, & for its images
in Hi(Xr,Q()), Hi (X%, Q(7)). Then for every €,

+(rUép) =€

(the sign depending only on (i,7)).
In particular, up to sign and torsion, the boundary maps in Milnor and Quillen K-theory

agree. This gives (up to sign) the following formula for the restriction of d{p fo,...,p% fu}
to the component Cp, x...xC):

n

3 ar(we) {65 (), 9% (), -, 98 ()}

r=0

Here and elsewhere vo = — Y1 v;. Applying the projector Il pn—defined in 1.1.1—we
obtain

N-2n Z z ar(vr) {vao)(yo),:..,var)(yr),...,Gg,l’n)(yn)}a

ve(Z/NZyn r=0

where v = (v1,...,vn). Applying the inverse of the isomorphism (1.5.1) we write this as
the following element of Hy (U} /L,Q(n)):

N7 ST S a () {ue P (L= )t (1) gl ) (1) (o)),

VE(Z/NZ)n r=0

We can expand this in terms of a sum over the symmetric group S,,+1 = Symm{0,1,...,n}:

NS S b ven) bag(rea)

o]
veE Nz 1=0 oisap (VT (n—q)lg!

X do(q+l)(Va(q+])) T on(van){ya] yor oy Yoqy 1 —Yo(g+1)r > 1- yan}
and applying the projector Ilgg, we obtain the following expression.

(2.2.1) N"“Z e q)'q' Z Z a00(v0)bo1 (1) -bog(vy)

q=0 VE(Z/NZ)" 0E€ESn41

X dg(g4+1)(V(g+1)) " don(vn)B].

7



2.3 This last expression will be more palpable once it is rewritten in terms of Fourier

transforms. Recall that we are taking ¢(¢()= ¥ (“¢(v). I ¢(v) = (v +a) — ¢(v),
vEZ/NZ

then we have ¢(¢)=({~* — 1)1/3(() In particular, by 2.1 :
di(Q)= (¢~ 1hi(¢) = —¢7 (¢~ 1)%ai(¢).

Furthermore d;(1) = #;(1) = 0. Therefore fixing ¢, 0 < ¢ < n, we have the following
identities, valid for any ¢ € S,41:

g~ GdofQ)dnl(€) _ 1 b (). ;
P =7, 2 GOk b0 deten (@) denll)

= D a0(0)bor (1) bog(¥g) do(grn)(V(gt1) - don(vn).
Ve(Z/NZ)™

Consequently, expression 2.2.1 becomes (up to sign)

n

—1-2n n+1)! dﬂ n
N Z( + S (do(C)- (C)'

ll +2
= (n- q)q A (S 1)9

This proves proposition 1.6.

2.5 Fourier transforms of Bernoulli polynomials. Recall the definition of the Bernoulli

polynomials By :
etX oo tk
— =Y By(X) o
k=0

Thus, for example,

Bo(X)=1, By(X)=X -, Bg(X):Xz—X—l—é
t 3 3 2 1 7 4 3 2 1

Define, for ¢ € pp, ﬁk'N(C) = 3 Bi({%))¢*. Then it follows from the definition

UGZ/NZ

of the B that

o0 . tk

Bin(()o = YNy =

kzzﬂ L' v=0 (Ceth )
Substitute u = €'/ and define

~ A d k=1 1

L arl—k _ a .
Bi(():=N"""Bg n(() =k (u du) Caol lu=1

From this it is elementary to deduce the following proposition the first part of which is a
. convenient reformulation of the distribution property of the Bernoulli polynomials.

8



2.6 Proposition. (i) For every integer L> 1,

Y Bi(n)=L* Bu(0).

nk=¢

(if) For all k > j > 2, there exist rational numbers a;; independent of N such that
akx=(—1)*"1/k! and

¢ S
=5 a4 B5(0).
((—1)F ; 1ik J(
For instance, one has
- 1 - -
s B0 e B0+ Ba(O)
gy == Ba0) = Bal0)— g Bu(©)

3. The case n=1 over a number fleld

We are now already in a position to verify the theorem in the case n =1 [Bloch, Grayson
1986]. In fact we will prove a more general result. We first describe the situation in terms
of K-theory to make apparent the relation with loc. cit.

Let E be an elliptic curve over a number field F. Consider the localisation sequence:

0 — HL(E;[Q@)) - HL(F(J‘T‘),Q@)) L e FO"
K>(E)®Q K2(F(E)®Q

Here |E| is the set of closed points of E, and the sequence is exact on the left as I, of a
number field is torsion. The boundary map 7 is the “tame symbol”.

Let f;,9; € F(E)* be a finite collection of rational functions on E such that Y {f;,g;} €
J
ker7. Then Y {f;,g;} defines an element of H3,(E/r,Q(2))=K2(E/r)®Q.
J

Now let v be a finite place of F', with residue field k, at which E has split multiplicative
reduction with special fibre a Néron N-gon. We intend to calculate its image under the
boundary map

8: K2(E)@Q — KL (En)® Q.

First note :—

K{(E)®Q= Hy(E/r Q1) = Q.

9



In fact, since k is finite, the localisation sequence gives a short exact sequence

0 - Ki(E)9Q — K(EF™MeQ — Ki(Er%eQ

I ||
et < Q[z/NZ

with 6(t,)=(v)—(v—1). Then the restriction

Ky (E°°") @ Q — Ky(E/r) ©Q = Hpy(Bi, Q(1)) = H(G )" ® Q- o

induces an isomorphism on the image of K{(E/)®Q.
For the calculation we only need the following hypothesis on f;, f}:

The closure of the support of the divisors of f;, f; is contained in the smooth
part of Eyp.

Then, since k is finite, the reduction modulo v of this support is contained in gy X Z/NZ
for some M; so by passing to a ramified extension F'/F and using 1.3 we may, and do,
assume M = N. The first part of the calculation of §2 then gives (up to sign) :

(U= T b it et S 0o

1£CERy

where d;(v), d(v) are the degrees of the restriction to C, of the closures of the divisors
of f;, f;. Using the examples following 2.6 and the relation

3

NI =

B=y 3 sw(o){1-vn) =5 {12} =1 {n}=

TESn 41 Yo

(cf. 5.2 below) we obtain a formula involving only B3 and ®!. (It is no accident that B,
drops out in this way — see section 4 below.) Using Bg ({5# )) —B3((%)) and the fact
that [x N]*®] = N&{, this gives :

3.2 Proposition. Z{fJ’f D=t L Z Zd (1) (v — 1) Ba( )) - @1,
3N

pvEZINZ ]

In the special case where all f] have the standard divisor this proposition simplifies
in view of 1.7 and due to the fact that ) d;(4)=0

3.3 Corollary. Let 3. {f;,g} €kerT with divg= 3_ (0)—(z). Then
T€EP

o3 _{159)) i— > i) Bs((5)) @

uEZ/NZ ]

10



3.4 We should remark that if v is a place of F' at which the reduction of E is not split
multiplicative, then K{(E;x)® Q = 0. Thus the restriction to the case where E/; is an
untwisted Néron polygon does not miss any interesting cases.

3.5 Now let O momentarily denote the (global) ring of integers of F'. We have the exact
sequence

8=]1 8,
(torsion) — K2(E/0) — K2(E/F) -L“I-’ UK;(E/kU )—

The fact noted in 3.4, that the target of 8, is torsion unless v is a place of split multiplica-
tive reduction for F is in accordance with relative versions of Beilinson’s conjectures—cf.

[Deligne 1985|, [Ramakrishnan 1989)]. In fact, we have
dimq K1 (E/i,)® Q =ords=o Ly(E,s)

where the L-function of E/F is written L(E/F,s) = [[ Lv(E,s)™. But even if the re-

duction at v is split multiplicative, the tame symbol may nonetheless be trivial on the
elements of K2(E,p) we considered here. In fact, if E/;, is a Néron polygon with one or
two sides, then for rational functions f;, f; with reduced divisors supported in E?‘l‘:‘oo‘l‘, we

always have 93 {fj, fi}) =0 because Bs(1—z)=—Bs(z).

3.6 Remark. When the divisors of f;, f; are supported in torsion points, proposition
3.2 implies the formula of [Bloch, Grayson 1986, p.88]—cf. [Mestre, Schappacher 1990,
1.5.1]. But there are also examples of elements } .{f;,f;} € ker7 when the support
of the divisors of f;, f; contains points of infinite order. The first such example, on a
curve with complex multiplication, was found by R. Ross (1990 Rutgers Thesis). Recently
Jan Nekovaf, modifying successfully an earlier attempt by one of the authors (NS), wrote
down a one-parameter family of elliptic curves on which non-trivial such elements can be
constructed. Some curves in this family have places v with non-trivial K{(E/x, )®Q. They
provide concrete applications of the general statement 3.2. But we do not go into this here.

11



4. The weight decomposition.

4.1 The remaining step in the construction of the Eisenstein symbol is the “weight decom-
position” of H$, (U N/F}Q(*))sg: under the “L™!"-multiplication. Recall [Deninger 1989,

§8] that if L>1, and P =[xL]™'P as in 1.2 above, the endomorphism £ is defined by the
commutativity of the diagram:

Ha (U™, Qe )en & Hy (0™, Qe)EL —» Hi (0™, QM)
(4.1.1) L[xu

L
Hj (Lfn’icz(*))sgn

where j* is induced by the inclusion j : U™ < U™. On the image of H5(E™, Q(*))sgn
(which is invariant under P"), £ coincides with [xL]*~!, and is simply multiplication by
L=,

4.2 Theorem. [Beilinson 1986], [Deninger 1989]. H;\,{(U"',Q(*))si; decomposes into
eigenspaces on which £ acts as multiplication by L%, 0 <1 < n —1; and the inclu-
sion U™ — E® mduces an isomorphism of H3,(E™, Q(*))sgn with the L™"-eigenspace of

H3, (U™, Q(*))sga-

The definition of the Eisenstein symbol is now as follows: let a =3 - p(0)—(x). Then
ER(B) is the projection of OF(B®a®") into the L™" eigenspace, viewed as an element of
HYFY(E™, Q(n+1)) under the isomorphism of theorem 4.2.

Let us give a slightly different proof of theorem 4.2. Recall that
U™ ={(z1,...,zn) €E" Ifor all 0<i<n, z; ¢ P},
where g = —z1 —...—zn. We define, for 0 < ¢ <n,
Y= {(z1,...,z2)€EE" | at least ¢ ofl the z;’s are in P};
Y= {(z1,...,z2) €E" |exact1y g of the z;’s are in P}.
Then U =Yy, E" U™ =Y} and

(4.2.1) Y Sy £0,. . n} x P. ¥

Moreover we have a decomposition E* =[] Y" of E™ into locally closed subsets which
0<g<n
are invariant under the action of Sp41 - P". This group acts transitively on the set of

components of Y;* with isotropy subgroup (Sn+1-¢ XSq)-P"~1. Notice that the subgroup
S, acts trivially on the component

{(:E],...,.’B")EEn |.’1:0,...,35n_q_1 ¢P, In—q:‘--—_—mn—_—o}
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from which it follows that if ¢ > 2 then

H (Y7, Q(x)en =0.

Then by the long exact sequences of motivic cohomology, we deduce that

Hi(E™ Q())sgn = Hi(E", Q(¥)om = Hay (Y5 UY, Q(+)) .

Moreover, by 4.2.1,

* ° n ~ ° n— n—1
Hi (7, QU)o 5 Haf(UCD,Q(a)En"
We therefore have a long exact sequence:

Hi2 (U0, Q(x = 1) < H3 (E™, Q(:)
(422) —H 3 (U™, QU ))en  — H (UMY, Qx—1))E " —

n+41 sgn,,

By 4.2.1 the localisation sequence is compatible with the family of endomorphisms which
are £ on the middle two terms and L~2L on the outside ones. By simultaneous induction
it follows that:

(4.2.3) The boundary maps é are zero.
(4.2.4) The eigenvalues of £ on HM(U"’,Q( NE ,, are L% for 0 <:<n-—1, and the

corresponding eigenspaces are isomorphic to H 37 (E™™%, Q(* —1))

gn,,

sgn, |+1

4.3 One would like a similar statement with E replaced by G,, and P by uy. The exact
sequence analogous to 4.2.2 still holds. For us the only case of interest is ® =* =n. Then
6 vanishes, since the space

HRA(G:; [k Q(n))sgn

is one-dimensional, spanned by the symbol {yi1,...,ys}. Hence it will certainly injec-
t into H2(K(G), Q(n))sgn = KM(k(y1,...,yn)) ® Q. Therefore the long exact se-
quence splits into short exact sequences, and by a similar induction argument we see
that H3 ((Gm — ;4;\1)"’,Q('n))38,1 has dimension n, spanned by ®7,...,8%. (In particular,
there is a non trivial relation between ®f,...,®2 — cf. section 5.) However there is no
canonical decomposition as it is easy to see that the analogue of £ acts by the scalar L™",
for every L> 1.

4.4 In order to decompose OF according to the weights of £, we must therefore calculate
EP explicitly. Write Qp for the composite

Qp=[xL]"oL:Hi (U™, Q(x) = Hy (T™,Q(+)).

13



By 4.2 we have

n—1 n—1

(4.4.1) ER(B) = [H(L‘" - O (L—L‘““)] cOL(B®a®).

=1 =1

Write PUl = L=7P. We can rewrite the above expression as

n-—1

O (Qp[a_ll—L‘”“[xL]*)] 0OL(ARa®™).

=1

(4.4.2) [ﬁ(L‘"—L'"“)“ [(xL"1* o

Note that we may even extend the range of ¢ to, say, i = n, making the operator explicitly
kill off one more eigenspace which we already know by 4.2 to be zero. We will do this
in the computation because it will painlessly suppress the ®3-component in 1.6. (If we
did not do 1, this component would have to be shown to cancel out because of relation

5.2—cf. the alternative proof we gave for proposition 3.2 which of course represents the
simplest case.)

4.5 Let us analyse formula 4.4.1 with a view to computing 0" o€} via 1.6. As indicated

we modify 4.4.1 by letting 7 run from 1 to n. This also replaces [xL™!]* ' by [xLn)*?
in 4.4.2.

4.5.1 Expand
Q (Qp[.'-q —L—”"—i[xL]*) = Z (._1)|I| OAIsi=Z(_1)|]| Al
=1 1c{t,..,n} i=1 T
where |I| denotes the cardinality of I, and for each I C {1,...,n} and ¢ € {1,...,n}, we

define
Ar:= QP[-‘—{] ifi g1
LiZ L[« L]* ifiel.

For fixed I, we shall now compute
(4.5.2) [XL"N]* 108" 0 Aro O} (f@a®).
By 1.2.2 we find that

Qpi-1100pu-1(BQa®™) =03, (7180 j1a®")

and

[XL]" 0 Ohi-n(B®a®") = 0% (r*fR1"a®").

Thus, writing
n il
)

=1 T

14



1.6 allows us—neglecting signs—to transform 4.5.2 into

n

n+1 ny .. n —n—i.
(4.5.3) Lr(LnN)2nt] Z (q) &g Z (n—1)3t2 ,\,,gd,\w HL

q=0 1#£9€Hk N €1

Here the first factor of L™ in the denominator comes from 1.3. In fact, in order to apply
1.6 relative to the group of L™ N-torsion we have to extend the base field to an extension
with ramification index L™.

The following lemma is straightforward. (Notice however that we are using the no-
tation jr and 7* in two different meanings : on functions cf., these operators refer to the
groups ptn, &1, n; on divisors the notation is relative to py XZ/NZ pry xZ/LNZ. In each
case, j is inclusion and 7 the natural projection.)

4.5.4 Lemma. For any v € Q[P]°, we have
djy=7"dy  dgey=L*j'd,.

This transforms 4.5.3 into

n+1 > (n ;3 2—i
459 e L ()% L GO Y ok

g=0 1#CEL N i€l gL M =¢
where I ={1,...,n} —I. — Now apply 2.6 and get
n+1 q+2
n n n4+2—i—j
(4.5.6) Ln(LnN)zntl Z ( ) o, Z (dﬁd )(©) ZaJp'H'ZBJ(C) L HL * .
q=0 1#(EHN €]

But observe that

|I| n+2— l-—J___ n+2-i—j . lfQSan-}-l
>, (unILE H(l L )= {1‘[ ' (1—L) ifj=nt2

IC{1,..,n} i€l

Thus taking the sum over all I C {1,...,n} in 4.5.6 and inserting this into 4.4.1, all powers
of L duly cancel, and we obtain :

n n n+1 7 Jnn *
o) =trgyymm X (dadaBusa)(Q) XNI'E,
) 1#CEPhy

Since [xN]*®] = N" ®7, the theorem now follows from 1.7 by a trivial computation. The
constant comes out to be Cp y =+N"(n+1)/(n+2)! in the case 1.4.
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5. A linear relation.

As observed in 4.3 above, there is a non-trivial relation between the elements ®§ for
0 < ¢ £n. We include it here even though the proof of the theorem we chose to present
does not rely on it—cf. the remark at the end of 4.4 above.

The relation is derived from the following identity in Milnor K-theory.

5.1 Lemma. In Milnor K-theory tensored with Z[1/2], we have

{1_313;2..-3:," :1:1(1—:1:2) .'L‘m...l(l-—mm)}zo
1—-124 Ylezp T 1=z ’

Proof. By induction: assume true for m, and replace z, by zmzmy1. Then we get:

0= { l—zyz2 - zm z1(1—23) Tm-2(1—Zm-1) Tm-1(1 —$m$n1+1)}

1yt )

1—:171 ’ 1—.'121 1—1,-,1..2 1—$m_1
_{l—ccla:g-ua:m z1(1 —z2) Tm-2(1—Zm-1) l—a:m:cm.,.l}
1—x4 P le-zy 7 l=zp_s | 1=z,

{1—-:1:1.1:2---3,,. z1(1—z2) Tm—2(l—ZTm-1) mm_l(l—:cm)}
1—121 ’ 1—:131 e ].—l‘m_z ’ 1—Im._1

Now take the product with

_mm(l "‘mm+l) —1— 1 TmEm41
l—zn, 1—z,,
to obtain the desired formula.
Apply this now with m=n and y; =z;. We get
{yﬂ(l—yl) yl(l——yz) yk(l—yk+1) yn-—l(l_yn)}zo
I 1w 0 1om 7 1oy :
Expand this using bilinearity. If the (k + 1)°* choice is yx or (1 —yx)~!, then for the
resulting term to be non-zero the k'® choice must be yx—1 or (1—yx—_1)™!, and we obtain:

n

Yo Y1 Yp—1

Z{l_yoal_y],-.-,l_Py ],1—yp+1,...,1—yn}=0_
P—

p=0
Now apply IIsgn. Using the permutation (012...p) the result can be written as

n
0=Z(—1)P{ oo Y ,1*y,,+1,...,1—y,,}

-y 71—y,

P=0 sgn
n p
=ZZ(—1)‘I Z {l—yl,...,y,-l,...,y,'q,...,l—yp+1,...,l—yn}sgn.
p=04¢=0 0<i) < <ig<p
Here the k" entry is yx for k =11,...,1;, and 1 —yj for the remaining (n —¢) values of k.

We conclude:

5.2 Proposition. Xn:(-m (i (p))@; =0.

=0 P=q 1
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6. The number field case

Let F' be a number field, O its ring of integers, and let v denote finite places of F'. The
subspace H}(E}p,Q(*))z of “integral” elements of H},(E}r,Q(*)) is defined to be the
image of

Hi((Ejp, Q(+) — H(EJr, Q)

where E‘-;’;;) — (E;0)" is a desingularisation of the n-fold power of a global regular minimal

model of E. (See 6.6 below.) By the long exact sequence for the pair ET,’;C;,E;‘F this space
of integral elements H3 ' (E7;, Q(n+1))z equals the kernel of the boundary map

H Y (B, Q(n+1) — | | Hif?,)(Ejo, Q(n+1)).

all v

where subscript (v) denotes cohomology with support in the fibre at v.

6.1 Now let v be a place of F satisfying the assumptions 1.4. Write ¢ the projector onto
the subspace on which the group uf -8, - P" acts as follows : every u, acts by —1, §,, acts
via the sign-character sgn,,, and P" acts trivially. We then have a commutative diagram :

HY N EP, Qn+1))(e) — HiE (Elg,Qn+1))(e)
N IR
HUFY(EN,Qn+1)  —  HA(ER,,Q(r)

where the isomorphism is between one-dimensional Q-vector spaces. For this isomorphism
see [Scholl 1990], proof of 3.1.0(iii); the proof given there applies equally well in the present
situation.

6.2 In general, given any finite place v of F, there exists a finite extension F'/F such
that, above v, E,p has either good reduction or situation 6.1 applies. And in the good

reduction case one has that H}, (.é?ku,Q(n)) =0 : see [Soulé 1984, Thm. 3.(iii}].

6.3 Lemma. Let F'/F be a finite extension. Then
corespi p H 3 (Er, Q(*))z = H3(EJr, Q(*))z-

This is proved by a slight variation of [Beilinson 1985, 2.4.2] — c¢f. [Schneider 1988,
p.13].
6.4 Finally, if v is a place where E has either additive and potentially multiplicative or

o
non split multiplicative reduction, then the target space HJ}, (E;‘ku,Q(n)) is zero if and
only if n is odd. This is seen from the Galois action on the generator t; U---Ut, of the
corresponding motivic cohomology over a suitable extension field.

We conclude :
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6.5 Proposition. HL'*'I(E;‘F, Q(n+1))z is the kernel of the boundary maps
Hf (Efp, Qn+1)) — | [HM(ES,, Q(n)),

the product being over all (finite) places of F' where E has split multiplicative reduction, if
n 1s odd; and over all (finite) places of F' where E has potentially multiplicative reduction,
if n is even.

Our theorem then allows to calculate explicitly the integrality obstruction for elements
of HL+1(E;‘F,Q(H +1)). This justifies in particular the computations of this obstruction
performed in [Mestre, Schappacher 1990].

6.6 Some words regarding the desingularisation Eﬁ; are in order. (Note that in §2.2 of

[Mestre, Schappacher 1990}, EE, is incorrectly defined as the normalisation.)

If E has semistable reduction, then the singularities of E,0™ are products of ordinary
double points, and can be explicitly resolved [Deligne 1968, Lemme 5.4}, {Scholl 1990, §2].
In general, the existence of a desingularisation seems open.

If one does not want to assume the existence of E’;’Tc;, one may choose F' as in 6.2 and

take the left hand side of 6.3 as the definition of HJ'M(E;‘F,Q(*))Z.

7. The modular case

7.0 In this section we show how our theorem gives a different proof of one of the main results
of [Beilinson, 1986]—Theorem 7.4 below. (In [Deninger, Scholl], this paper is summarised

in a language closer to ours.)

7.1 Let N be an integer > 3, and let My be the modular curve of level N, and Fn
its function field. We consider E/Fy, the universal elliptic curve with level N structure
«: E[N] = (Z/NZ)?. Taking P = (Z/NZ)? (which we identify with the N-torsion
subgroup of E via a) we obtain the Eisenstein symbol map, which we write

EX 1 QUZ/NZYP — HiF(E", Q(n+1).

7.2 Write Mg for the cusps of My. Then as is well known, by regarding the cusps as
giving level N structures on the standard Néron N-gon, one has an identification of the
set of closed points:

M| GLy(Z/N2)/(; )

where 1€ GLy(Z/NZ) corresponds to the level N structure

GnwXxZ/NZDpuny xZ/NZ =5 (Z/NZY?
(CR:0) = (a,b)
defined over Q((n).
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7.3 The main theorem enables us to calculate the effect of the boundary map
0: Hyf ' (B™,Q(n+1))sgn — Hi(Gim x MF, Q(n))sgn — Q[IMF]

on the image of the Eisenstein symbol. Notice that the first arrow depends on the choice of
orientation of the special fibre of the Néron model of E, so that as written the composite
map is not canonical. To make it canonical we replace the target by the space V{=)",
where

vE={f:GL(2/N2)~ Q| f(9(} 1))=F@)=%f(-9)}.

Then our theorem shows at once that the composite Jo £}, is a nonzero multiple of the
GL(Z/NZ)-equivariant map w¥ : Q[(Z/NZ)*]° — V()" given by the formula:

(7.3.1) @kA9)= Y ¢g-2)Basal{3)):

z€(Z/NZ)?
Observe that this formula makes sense for any N > 2.

7.4 Theorem. [Beilinson 1986, §3] The boundary map 8: Hxt ' (E™,Q(n+1))sgn — y)”
is an isomorphism on the image of the Eisenstein symbol.

This is an immediate consequence of (7.3.1) and the properties of the “horospherical
isomorphism” (see the paragraph after 3.1.6 in [Beilinson, 1986]). Since we were unable to
find a suitable reference for these properties, we give here a direct proof. It is in two steps.

7.5 Step I For every N >2 and every n > 1 the map w} is surjective.
Clearly one is free to tensor with C. We first show that any function supported on
(3 :) is contained in the image. The subspace of V* ® C composed of such functions

has for a basis the set of functions
fa b 0 if c#0
I (c d) = {x(d) if ¢ =0
where x : (Z/NZ)* — C* runs over Dirichlet characters with x(—1)=+1.

Define '
ble)= 3 Xy

ye(2/NZ)*
Then

- TIWET £ :
Nx(d) > x(w)™e /NB,,+2((W)) ifc=0
W a b — z€Z/NZ
N¥YX"\e d we(Z/NZ)*
0 if c#£0.
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Writing the values of the Bernoulli polynomial in terms of Dirichlet L-series and using the
character orthogonality relations, the last expression becomes

(751) ~roNen Y Tl o)

D|{D‘§

Here M is the conductor of y, for each D|% we have written y p for the character modulo
DM associated to x, and 7(xp) denotes the Gauss sum

Z XD(:C)_I e?m‘r/DM.
+€(Z/DMZ)*

Rewriting 7.5.1 in terms of the primitive character y; modulo M, we finally obtain

n o _ —(nt+2)Ne(N) P2 —x1(p)~!
“ROx= " () 11 (p"“(p—l)

) (x1)L(x1,—1—n) fy.
pIN
(PiM)zl

As x(—1)=(-1)", the L-value is nonzero, as are the remaining factors. We therefore have
found a nonzero multiple of f, in the image of wj.

Now as a representation of GLy(Z/NZ), V* is generated by the functions f,. This
shows the surjectivity of wh;.

It follows that for every n > 1 the map
(@3 W) QUZINZYP — V* oV
is surjective. Therefore the theorem will be_ a consequence of the next assertion.
7.6 Step II If N >3 and n>1 then
dim Im(€Y) +dim Im(ERT) <dimVF +dimV ™.

To prove this we consider (for the moment arbitrary) functions ¢:Z? — Q, and make
the convention that ¢(z) =0 whenever z € Q*—Z2. For a squarefree integer D =p; ---p;x > 1

define
(Apg)(e)= > (-1)" P E"$(z/E)

E\D

where x(E) is the number of prime divisors of E. Now,
(7.6.1) Ap=A»Ap 0...04,,.

The operators Ap have the properties:
(1) Ap is injective for every D > 1;
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(ii) If (D,D')=1 then InApNImAp =ImApp:.
The first one of these follows from the elementary identity

(7.6.2) $(z)= Y E"(Ap¢)(=/E).

E|Deo

To prove (ii), suppose that Ap¢=Ap/¢’. Then setting

y= ) E"¢(s/E)

E|De

and using (7.6.2) one sees that Apy =¢' and also Apyp =¢.

7.7 Now if D|N then Ap induces an injective map

Ao QUZ/ 2P — QUB/NZYP
and from (1.2) and (7.6.1)
EnoAp =0 provided D> 1.
We have £ (¢(—2)) =(—1)"EX($(z)). Moreover, let A}, y denote the composite of Ap,n

with the projection onto the subspace of ¢ € Q[(Z/NZ)?]° satisfying ¢(—z) =(—1)"¢(z).
Then dimIm A}, y depends only on N, D and the parity of n; and

dimImA} y+dimIm ARy =(N/D)* -1
for D > 1. The usual inclusion-exclusion argument then yields

dimIm(ER )+ dimIm(EFT)

om0~ 3(3)' 1)+ 5 () 1)

pIN PN

=N2H(1—-;7)

PIN

=#GLy(2/NZ)/(, |)=dimV*+dimV~.
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