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Abstract

We give two proofs of a folkore result relating numerical semigroups of
embedding dimension two and binary cyclotomic polynomials and explore
some consequences. In particular, we give a more conceptual reproof of a
result of Hong et al. (2012) on gaps between the exponents of non-zero
monomials in a binary cyclotomic polynomial.

The intent of the author with this paper is to popularise cyclotomic
polynomial work under the numerical semigroup community and vice versa.

1 Introduction

Let a1, . . . , am be positive integers, and let S = S(A) = S(a1, . . . , am) be the set
of all non-negative integer linear combinations of a1, . . . , am, that is,

S = {a1x1 + · · ·+ amxm | xi ∈ Z≥0}.

Then S is a semigroup (that is, it is closed under addition). The semigroup S
is said to be numerical if its complement Z≥0\S is finite. It is not difficult to
prove that S(a1, . . . , am) is numerical iff a1, . . . , am are relatively prime (see, e.g.,
[10, p. 2]). If S is numerical, then max{Z≥0\S} = F (S) is the Frobenius number
of S. Alternatively one can characterize F (S) as the largest integer m such
that d(m; a1, . . . , am), called the denumerant, that is the number of non-negative
integer representations of m by a1, . . . , am, equals zero. That F (S(4, 6, 9, 20)) =
11 is well-known to fans of McNuggets, as 11 is the largest number of McNuggets
that cannot be ordered and so the notion of Frobenius numbers is less abstract
than it might appear at first glance. A set of generators of a numerical semigroup
is a minimal system of generators if none of its proper subsets generates the
numerical semigroup. It is known that every numerical semigroup S has a unique
minimal system of generators and also that this minimal system of generators
is finite (see, e.g., [13, Theorem 2.7]). The cardinality of the minimal set of
generators is called the embedding dimension of the numerical semigroup S and
is denoted by e(S). The smallest member in the minimal system of generators
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is called the multiplicity of the numerical semigroup S and is denoted by m(S).
The Hilbert series of the numerical semigroup S is the formal power series

HS(x) =
∑
s∈S

xs ∈ Z[[x]].

Note that for a numerical semigroup S, PS(x) := (1−x)HS(x) is a polynomial. It
is called the semigroup polynomial. From it one can easily read off the Frobenius
number:

deg(PS(x)) = F (S) + 1. (1)

The nth cyclotomic polynomial Φn(x) is defined by

Φn(x) =
∏

1≤j≤n
(j,n)=1

(x− ζjn) =

ϕ(n)∑
k=0

an(k)xk,

with ζn a nth primitive root of unity (one can take ζn = e2πi/n). It has degree ϕ(n),
with ϕ Euler’s totient function. The polynomial Φn(x) is irreducible over the
rationals, see, e.g., Weintraub [17], and has integer coefficients. The polynomial
xn − 1 factorizes as

xn − 1 =
∏
d|n

Φd(x) (2)

over the rationals. By Möbius inversion it follows from (2) that

Φn(x) =
∏
d|n

(xd − 1)µ(n/d), (3)

where µ(n) denotes the Möbius function. From (3) one deduces that if p|n is a
prime, then

Φpn(x) = Φn(xp). (4)

A good source for further properties of cyclotomic polynomials is Thangadurai
[14].

The purpose of this paper is to popularise the following folklore result and
point out some of its consequences.

Theorem 1 Let p, q > 1 be coprime integers, then

PS(p,q)(x) = (1− x)
∑

s∈S(p,q)

xs =
(xpq − 1)(x− 1)

(xp − 1)(xq − 1)
.

In case p and q are distinct primes it follows from (3) and Theorem 1 that

PS(p,q)(x) = Φpq(x). (5)

Already Carlitz [5] in 1966 implicitly mentioned this result without proof.
The Bernoulli numbers Bn can be defined by

z

ez − 1
=
∞∑
n=0

Bn
zn

n!
, |z| < 2π. (6)
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One easily sees that B0 = 1, B1 = −1/2, B2 = 1/6, B3 = 0, B4 = −1/30 and
Bn = 0 for all odd n ≥ 3. The most basic recurrence relation is, for n ≥ 1,

n∑
j=0

(
n+ 1

j

)
Bj = 0. (7)

with B0 = 1. The Bernoulli numbers first arose in the study of power sums
Sj(n) :=

∑n−1
k=0 k

j. Indeed, one has, cf. Rademacher [9],

Sj(n) =
1

j + 1

j∑
i=0

(
j + 1

i

)
Bin

j+1−i. (8)

In Section 5 we consider an infinite family of recurrences for Bm of which the
following is typical.

Bm =
m

4m − 1
(1 + 2m−1 + 3m−1 + 5m−1 + 6m−1 + 9m−1 + 10m−1 + 13m−1 + 17m−1)

+
7m

4(1− 4m)

m−1∑
r=0

(
m

r

)(4

7

)r
(1 + 2m−r + 3m−r)Br.

The natural numbers 1, 2, 3, 5, 6, 9, 10, 13 and 17 are precisely those that are not
in the numerical semigroup S(4, 7).

Let f = c1x
e1 + · · ·+ csx

es where c1, . . . , cs 6= 0 and e1 < e2 < · · · < es. Then
the maximum gap of f , written as g(f), is defined by

g(f) = max
1≤i<s

(ei+1 − ei), g(f) = 0 when s = 1.

Hong et al. [6] studied g(Φn). They reduce the study of these gaps to the case
where n is square-free and odd and established the following result for the simplest
non-trivial case.

Theorem 2 [6]. Let 2 < p < q be arbitrary primes. Then g(Φpq) = p− 1.

In Section 6 a conceptual proof of Theorem 2 using numerical semigroups is given.

2 Inclusion-exclusion polynomials

It will turn out to be convenient to work with a generalisation of the cyclotomic
polynomials, introduced by Bachman [1]. Let ρ = {r1, r2, . . . , rs} be a set of
natural numbers satisfying ri > 1 and (ri, rj) = 1 for i 6= j, and put

n0 =
∏
i

ri, ni =
n0

ri
, nij =

n0

rirj
[i 6= j], . . .

For each such ρ we define a function Qρ by

Qρ(x) =
(xn0 − 1) ·

∏
i<j(x

nij − 1) · · ·∏
i(x

ni − 1) ·
∏

i<j<k(x
nijk − 1) · · ·

. (9)
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For example, if ρ = {p, q}, then

Q{p,q}(x) =
(xpq − 1)(x− 1)

(xp − 1)(xq − 1)
. (10)

It can be shown that Qρ(x) defines a polynomial of degree d :=
∏

i(ri − 1). We
define its coefficients aρ(k) by Qρ(x) =

∑
k≥0 aρ(k)xk. Furthermore, Qρ(x) is

selfreciprocal, that is aρ(k) = aρ(d− k) or, what amounts to the same thing,

Qρ(x) = xdQρ(
1

x
). (11)

If all elements of ρ are prime, then comparison of (9) with (3) shows that

Qρ(x) = Φr1r2···rs(x). (12)

If n is an arbitrary integer and γ(n) = p1 · · · ps its squarefree kernel, then by (4)
and (12) we have Q{p1,...,ps}(x

n/γ(n)) = Φn(x) and hence inclusion-exclusion poly-
nomials generalize cyclotomic polynomials. They can be expressed as products
of cyclotomic polynomials.

Theorem 3 [1]. Given ρ = {r1, . . . , rs} let

Dρ = {d : d|
∏
i

ri and (d, ri) > 1 for all i}.

Then we have Qρ(x) =
∏

d∈Dρ Φd(x).

Example. We have Q{4,7} = Φ28Φ14.

2.1 Binary inclusion-exclusion polynomials: a close-up

Lam and Leung [7] discuss binary cyclotomic polynomials Φpq in detail, with p
and q primes. Now let p, q > 1 be positive coprime integers. All arguments in
their paper easily generalize to this setting (instead of taking ξ to be a primitive
pqth-root of unity as they do, one has to take ζ a pqth root of unity satisfying
ζp 6= 1 and ζq 6= 1). One finds that

Q{p,q}(x) =

ρ−1∑
i=0

xip
σ−1∑
j=0

xjq − x−pq
q−1∑
i=ρ

xip
p−1∑
j=σ

xjq, (13)

where ρ and σ are the (unique) non-negative integers for which 1 + pq = ρp +
σq. On noting that upon expanding the products in identity (13), the resulting
monomials are all different, we arrive at the following result.

Lemma 1 Let p, q > 1 be coprime integers. Let ρ and σ be the (unique) non-
negative integers for which 1 + pq = ρp + σq. Let 0 ≤ m < pq. Then either
m = α1p + β1q or m = α1p + β1q − pq with 0 ≤ α1 ≤ q − 1 the unique integer
such that α1p ≡ m(mod q) and 0 ≤ β1 ≤ p − 1 the unique integer such that
β1q ≡ m(mod p). The inclusion-exclusion coefficient a{p,q}(m) equals{

1 if m = α1p+ β1q with 0 ≤ α1 ≤ ρ− 1, 0 ≤ β1 ≤ σ − 1;
−1 if m = α1p+ β1q − pq with ρ ≤ α1 ≤ q − 1, σ ≤ β1 ≤ p− 1;
0 otherwise.
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Corollary 1 The number of positive coefficients in Q{p,q}(x) equals ρσ, the num-
ber of negative ones equals ρσ − 1.

The latter corollary (in case p and q are distinct primes) is due to Carlitz [5].
Using Lemma 1 it is easy to determine the midterm coefficient of Q{p,q}(x).

This extends a result of Sister Beiter [3].

Proposition 1 We have a{p,q}((p− 1)(q − 1)/2) = (−1)ρ−1.

Proof. Left as an exercise to the interested reader, cf. Sister Beiter [3] or Lam
and Leung [7]. 2

3 Two proofs of the main (folklore) result

In terms of inclusion-exclusion polynomials we can reformulate Theorem 1 as
follows.

Theorem 4 Let p, q > 1 be coprime integers, then PS(p,q)(x) = Q{p,q}(x).

Corollary 2 We have

a{p,q}(k) =

{
1 if k ∈ S(p, q), k − 1 6∈ S(p, q);
−1 if k 6∈ S(p, q), k − 1 ∈ S(p, q);
0 otherwise.

Corollary 3 The non-zero coefficients of Q{p,q} alternate between 1 and −1.

Our first proof will make use of ‘what is probably the most versatile tool in
numerical semigroup theory’ [13, p. 8], namely Apéry sets.
First proof of Theorem 4. The Apéry set of S with respect to a nonzero m ∈ S
is defined as

Ap(S;m) = {s ∈ S : s−m 6∈ S}.

Note that
S = Ap(S;m) +mZ≥0

and that Ap(S;m) consists of a complete set of residues modulo m. Thus we
have

HS(x) =
∑

w∈Ap(S;m)

xw
∞∑
i=0

xmi =
1

1− xm
∑

w∈Ap(S;m)

xw, (14)

cf. [11, (4)]. Note that if S = 〈a1, . . . , an〉, then Ap(S; a1) ⊆ 〈a2, . . . , an〉. It
follows that Ap(S(p, q); p) consists of multiples of q. The latter set equals the
minimal set of multiples of q representing every congruence class modulo p and
hence Ap(S(p, q); p) = {0, q, . . . , (p− 1)q}. Hence

HS(p,q)(x) =
1 + xq + . . .+ x(p−1)q

1− xp
=

1− xpq

(1− xq)(1− xp)
.

Using this identity and (10) the proof is easily completed. 2
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Our second proof uses the denumerant (see [10, Chapter 4] for a survey) and
starting point is the observation that

1

(1− xp)(1− xq)
=
∑
j≥0

r(j)xj, (15)

where r(j) denotes the cardinality of the set {(a, b) : a ≥ 0, b ≥ 0, ap + bq = j}.
In the terminology of the introduction we have r(j) = d(j; p, q). Concerning r(j)
we make the following observation.

Lemma 2 Suppose that k ≥ 0, then r(k + pq) = r(k) + 1.

Proof. Put α ≡ kp−1(mod q), 0 ≤ α < q and β ≡ kq−1(mod p), 0 ≤ β < p and
k0 = αp + βq. Note that k0 < 2pq. We have k ≡ k0(mod pq). Now if k 6∈ S,
then k < k0 and k + pq = k0 ∈ S (since k0 < 2pq). It follows that if r(k) = 0,
then r(k + pq) = 1. If k ∈ S, then k = k0 + tpq for some t ≥ 0 and we have
r(k) = 1 + t, where we use that

k = (α + tq)p+ βq = (α + (t− 1)q)p+ (β + 1)p = . . . = αp+ (β + tq)p.

We see that r(k + pq) = 1 + t+ 1 = r(k) + 1. 2

Remark. It is not difficult to derive an explicit formula for r(n) (see, e.g., [2,
Section 1.3] or [8, pp. 213-214]). Let p−1, q−1 denote inverses of p modulo q,
respectively q modulo p. Then we have

r(n) =
n

pq
− {p

−1n

q
} − {q

−1n

p
}+ 1,

where {x} denote the fractional-part function. Note that Lemma 2 is a corollary
of this formula.

Second proof of Theorem 4. From Lemma 2 we infer that

(1− xpq)
∑
j≥0

r(j)xj =

pq−1∑
j=0

r(j)xj +
∞∑
j=pq

(r(j)− r(j − pq))xj

=

pq−1∑
j=0

r(j)xj +
∑
j≥pq

xj =
∑

j∈S(p,q)

xj,

where we used that r(j) ≤ 1 for j < pq and r(j) ≥ 1 for j ≥ pq. Using this
identity and (15) the proof is easily completed. 2

4 Symmetric numerical semigroups

A numerical semigroup S is said to be symmetric if

S ∪ (F (S)− S) = Z,
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where F (S)− S = {F (S)− s|s ∈ S}. Symmetric semigroups occur in the study
of monomial curves that are complete intersections, Gorenstein rings and the
classification of plane algebraic curves, see, e.g. [10, p. 142]. For example, Herzog
and Kunz showed that a Noetherian local ring of dimension one and analytically
irreducible is a Gorenstein ring if and only if its associate value semigroup is
symmetric.

We will now show that the selfreciprocity of Q{p,q}(x) implies that S(p, q) is
symmetric (a well-known result, see, e.g., [13, Corollary 4.7]).

Theorem 5 A numerical semigroup of embedding dimension 2 is symmetric.

Proof. A numerical semigroup S of embedding dimension 2 is of the form S =
S(p, q) with p, q > 1 coprime integers. Suppose that s ∈ S ∩ (F (S) − S), then
s = F (S) − s1 for some s1 ∈ S. This implies that F (S) ∈ S, a contradiction.
Thus S and F (S)− S are disjoint sets. Since every integer n ≥ F (S) + 1 is in S
and every integer n ≤ −1 is in F (S)− S, it is enough to show that

HS′(x) + xF (S)HS′(1/x) = 1 + x+ . . .+ xF (S), (16)

where
HS′(x) =

∑
0≤j≤F (S), j∈S

xj.

On noting that

HS′(x) +
xF (S)+1

1− x
= HS(x),

we obtain from Theorem 4 that

HS′(x) =
Q{p,q}(x)− xF (S)+1

1− x
. (17)

By Theorem 4, (11) and (1) we obtain that Q{p,q}(1/x)xF (S)+1 = Q{p,q}(x). From
this identity and (17) we infer that

xF (S)HS′(1/x) =
1−Q{p,q}(x)

1− x
. (18)

On adding (17) and (18), we see that (16) holds. 2

From (18) and (16) we infer that∑
0≤j≤F (S), j 6∈S

xj =
1−Q{p,q}(x)

1− x
. (19)

5 Gap distribution

The non-negative integers not in S are called the gaps of S. E.g., the gaps in
S(4, 7) are 1, 2, 3, 5, 6, 9, 10, 13 and 17, The number of gaps of S is called the genus

7



of S, and denoted by N(S). The set of gaps is denoted by G(S). From (1) and
Theorem 1 and (10) we infer the following well-known result due to Sylvester:

F (S(p, q)) = pq − p− q. (20)

For four different proofs and more background see [10, pp. 31-34], the shortest
proof of (20) and (21) the author knows of is in the book by Wilf [18, p. 88].
From equation (16) we infer that 2N(S) = F (S) + 1. Thus we obtain another
well-known result of Sylvester:

N(S(p, q)) = (p− 1)(q − 1)/2. (21)

Indeed, it is well-known that S is symmetric iff 2N(S) = F (S) + 1; cf. [10,
Lemma 7.2.3] or [13, Corollary 4.7].

Additional information on the gaps is given by the so-called Sylvester sum

σk(p, q) :=
∑

s 6∈S(p,q)

sk.

By (21) we have σ0(p, q) = (p − 1)(q − 1)/2. Next we will compute σ1(p, q),
following Brown and Shiue [4].

Theorem 6 [4]. Let p, q > 1 be coprime integers. We have

σ1(p, q) =
1

12
(p− 1)(q − 1)(2pq − p− q − 1).

Proof. Let us denote the right hand side of (19) by f(x). We have σ1(p, q) = f ′(1).
Put y = xp. On rewriting Q{p,q}(x) as

Q{p,q}(x) =

∑q−1
k=0 y

k∑q−1
k=0 x

k
,

we can write

f(x) =

∑q−1
k=0 x

k −
∑q−1

k=0 y
k

(1− x)
∑q−1

k=0 x
k

=

∑q−1
k=1

yk−xk
x−1∑q−1

k=0 x
k

=
g(x)

h(x)
,

where

g(x) =

q−1∑
k=1

yk − xk

x− 1
=

q−1∑
k=1

(xk + xk+1 + · · ·+ xpk−1), h(x) =

q−1∑
k=0

xk.

Easy calculations now yield g(1), g′(1), h(1) and h′(1). Finally, we get

σ1(p, q) = f ′(1) =
h(1)g′(1)− g(1)h′(1)

h(1)2
=

1

12
(p− 1)(q − 1)(2pq − p− q − 1),

completing the proof. 2
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Using (19) it is not difficult to give a formula for σk(p, q). On putting x = ez and
recalling the Taylor series expansion ez =

∑
k≥0 z

k/k! we obtain from (19) the
identity

∞∑
k=0

σk(p, q)
zk

k!
=

eabz − 1

(eaz − 1)(ebz − 1)
− 1

ez − 1
. (22)

We obtain from (22) on multiplying by z and using the Taylor series expansion
(6) that

∞∑
m=1

mσm−1(a, b)
zm

m!
=
∞∑
i=0

Bip
i z
i

i!

∞∑
j=0

Bjq
j z

j

j!

∞∑
k=0

akbk

k + 1

zk

k!
−
∞∑
m=0

Bm
zm

m!
.

Equating coefficients of zm then leads to the following result.

Theorem 7 [12]. For m ≥ 1 we have

mσm−1(p, q) =
1

m+ 1

m∑
i=0

m−i∑
j=0

(
m+ 1

i

)(
m+ 1− j

j

)
BiBjp

m−jqm−i −Bm.

Using this formula we find e.g. that σ2(p, q) = 1
12

(p−1)(q−1)pq(pq−p−q). The
proof we have given here of Theorem 7 is due to Rødseth [12], with the difference
that we gave a different proof of the identity (22).

By using the formula (8) for power sums we obtain from Theorem 7 the
identity

mσm−1(p, q) =
m∑
r=0

(
m

r

)
pm−r−1Bm−rq

rSr(p)−Bm,

giving rise to the following recursion formula for Bm:

Bm =
m

pm − 1
σm−1(p, q) +

qm

p(1− pm)

m−1∑
r=0

(
m

r

)(p
q

)r
BrSm−r(p).

On taking p = 4 and q = 7 we obtain the recursion for Bm stated in the intro-
duction.

Tuenter [15] established the following characterization of the gaps in S(p, q):
For every finite function f ,

∑
n6∈S

(f(n+ p)− f(n)) =

p−1∑
n=1

(f(nq)− f(n)),

where p and q are interchangeable. He shows that by choosing f appropriately
one can recover all earlier results mentioned in this section and in addition the
identity ∏

n6∈S(p,q)

(n+ p) = qp−1
∏

n6∈S(p,q)

n.

Wang and Wang [16] obtained results similar to those of Tuenter for the
alternate Sylvester sums

∑
s 6∈S(p,q)(−1)ssk.
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6 A reproof of Theorem 2

For S(4, 7) the gaps are given by 1, 2, 3, 5, 6, 9, 10, 13 and 17. One could try to
break this down in terms of blocks of consecutive gaps (‘gap blocks’): {1, 2, 3},
{5, 6}, {9, 10}, {13} and {17}. It is interesting to compare this with the distri-
bution of the ‘element blocks’, that is finite blocks of consecutive elements in S.
For S(4, 7) we get {0}, {4}, {7, 8}, {11, 12} and {14, 15, 16}. The longest gap
block we denote by g(G(S)) and the longest element block by g(S).

The following result gives some information on gap blocks and element blocks
in a numerical semigroup of embedding dimension 2. Recall that the smallest
positive integer of S is called the multiplicity and denoted by m(S).

Lemma 3
1) The longest gap block, g(G(S)), has length m(S)− 1.
2) The longest element block, g(S), has length not exceeding m(S)− 1.
3) If S is symmetric, then g(S) = m(S)− 1.

Proof. 1) Let S = {s0, s1, s2, s3, . . .} be the elements of S written in ascending
order, i.e., 0 = s0 < s1 < s2 < . . .. Since s0 = 0 and s1 = m(S) we have
g(G(S)) ≥ m(S)−1. Since all multiples of m(S) are in S, it follows that actually
g(G(S)) = m(S)− 1.
2) If g(S) ≥ m(S), it would imply that we can find k, k+ 1, . . . , k+m(S)− 1 all
in S such that furthermore k +m(S) 6∈ S, a contradiction.
3) If S is symmetric we clearly have g(S) = g(G(S)) = m(S)− 1. 2

Remark. The second observation was made by my intern Alexandru Ciolan. It
allows one to prove Theorem 10.

The next result gives an example where an existing result on cyclotomic coeffi-
cients yields information about numerical semigroups.

Theorem 8 Let p, q, ρ and σ be as in Lemma 1. Put S = S(p, q).
There are ρσ − 1 gap blocks and ρσ − 1 element blocks.

Proof. Let s be the number of gap blocks. We can write G(S) as a union of the
form

G(S) = ∪si=1{mi, . . . , pi}, with m1 < m2 < . . . < ms. (23)

By Theorem 4 we then find that

Q{p,q}(x) = 1 +
s∑
i=1

(xpi+1 − xmi). (24)

It follows that s is equal to the number of negative coefficients in Q{p,q}(x), which
by Corollary 1 equals ρσ−1. On using that S is symmetric (Theorem 5) it follows
that the number of element blocks equals the number of gap blocks. 2

Finally, we will generalize a result of Hong et al. [6].

Theorem 9 If p, q > 1 are coprime integers, then g(Q{p,q}(x)) = min{p, q} − 1.
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Proof. Using (23) we see that g(Q{p,q}(x)) equals the maximum of the longest
gap block length and the longest element block length and hence by Lemma 3
equals m(S(p, q))− 1 = min{p, q} − 1. 2

This result can be easily generalized further.

Theorem 10 We have g(PS(x)) = m(S)− 1.

Proof. Using that PS(x) = (1− x)HS(x) and Lemma 3 we infer that g(PS(x)) =
max{g(S), g(G(S))} = m(S)− 1. 2

Problem 1 Characterize the set of numerical semigroups for which

g(S) = m(S)− 1.

Examples show that this set is strictly contained in the set of all numerical semi-
groups and strictly larger than the set of symmetric numerical semigroups.

Acknowledgement. I like to thank Matthias Beck, Alexandru Ciolan, Pedro A.
Garcia-Sánchez, Nathan Kaplan, Bernd Kellner, Jorge Ramı́rez Alfonśın and Ali
Sinan Sertoz for helpful comments. Alexandru Ciolan pointed out to me that
g(S) ≤ m(S)− 1 which allows one to prove Theorem 10.
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[13] J.C. Rosales and P.A. Garćıa-Sánchez, Numerical semigroups, Developments
in Mathematics 20, Springer, New York, 2009.

[14] R. Thangadurai, On the coefficients of cyclotomic polynomials, Cyclo-
tomic fields and related topics (Pune, 1999), 311–322, Bhaskaracharya
Pratishthana, Pune, 2000.

[15] H.J.H. Tuenter, The Frobenius problem, sums of powers of integers, and
recurrences for the Bernoulli numbers, J. Number Theory 117 (2006), 376–
386.

[16] W. Wang and T. Wang, Alternate Sylvester sums on the Frobenius set,
Comput. Math. Appl. 56 (2008), 1328–1334.

[17] S.H. Weintraub, Several proofs of the irreducibility of the cyclotomic poly-
nomials, Amer. Math. Monthly 120 (2013), 537–545.

[18] H.S. Wilf, Generatingfunctionology, Academic Press, Inc., Boston, MA,
1990.

Max-Planck-Institut für Mathematik,

Vivatsgasse 7, D-53111 Bonn, Germany.

e-mail: moree@mpim-bonn.mpg.de

12


