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p-adic lr(unclions (or modular forms

Shai Haran

We 'Construcl "many variabled" S·adic L-functi"on for modular farms over

arbitrary number field k. We take far aur form a weighl 2 Hecke eigenform

(on CL (2). of level fo(a.)) and for simplicity assume it is cuspidal at infinity.

S is a finite set of primes away from the level of our form. and (if we want

boundedness) is such that for p E: S we can choose a root Pp of the p 'th

Euler polynomial that is a F - unit. The S-adic L-function is given by a me~sure

on the Galois group cf the maximal unramified-outside-S abelian extension of

k; lhe measure oblained by playing the modular symbol game in an adelic

setting. We prove that the S-adic L-funclion interpolales the critieal

values cf the classical zeta funetion of the twists of aur form by finite charac-

ters of canductor supparted at S, and that it satistles a similar funetional

cquation. The gist of the p -adic continuation is the praof that a certain module

in wbich our distribution takes its values is tinilely generaled. and the idea is la

give this module a geometrie in terpretation as periods of a harmonie form

against cenain cycles. From our modular form we gel an Tl + T2 hannonie

form on lbe 2T I +3T2 dlm ensional symmetrie spaee

x =GL(2;k)\ GI.(2;kA)/ J(A ·Z.
where r 1 (resp. r2) is the number of real (resp. eomplex) primes of k; Y A lhe

Level groups, Z. the cenler at infinity. It turns out lhat one needs lo work wilh

an associated [k :0] =TI + 2T2 form on the 2{k :0] dimensional symmetrie space

xwgn =GL{2;k)\ GL (2;kA )/J(A ·Z:-
where Z~ consist of lhe real and totally positive elements in Z.; only in xsvn
can one deflne the appropriate cycLes for a fleld k which is not totally real or

CM. See [M.S-D] for the origin of all this, where lhe case k =0 is treated; [M] for
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lolaUy real k.; (KJ and [1'] for CM fields. In order Lo keep everylhing iry half lheir

~i7.e we assume all the pI aces at infinity of kare complex (the necessary

adjust.lnenls nceded for a fleid k having bolh real and complex .places are indi-

cated al the end of lhe paper).

This paper has its origins in my M.I.T. thesi~ supervised by Barry Mazur. It

was written during my stay al the Max~Planck-lnstitutcin Bonn. and typed at

the Hebrcw University in Jerusalem. 1'0 all of them 1 wauld like ta extend my

graU tude.

§1. In lhis section we reeaU the adelic definition of a modular form and fix our

notations following malnly those of [W].

Let k denote our totally complex number field. [k :Il] = 2n. 0 the

inlegers of k .kv thc cornplelion of k at a place v,Ov the intcgcrs of kv '

k A = kJin X k _ the adeles, and fix a character 1/I:kA / k -- C·. 1/1 = 01/1v. by
u

1/Iv(x) = exp[-21Ti{x+x)] forv 1 00 • Wewritek; =k:?n xk':- where kSJn = TI k~gn
vl-

is tbe maximal eampact subgroup of the infinite ideles k ~. k:' = Tl ku", k,t the
vl-

posilive reals inside k:. and we let x =sgn (x ),1 xl denole the respeclive

decornpositian of x E k;. We fix ideles r 1 ... r h representing a (k), the class

group of k: a represen ting the absolute different af k; a represenling lhe

level of our modular form (i.e. the classical f'o(a»;! representing the con-

uuctor of a ,l\rosscneharacler c.>; usually a.1 (and lhe Ti 's) will bc la.ken reIa·

live prirne. Let G = CL (2)/ k and G,;. Cu. CA = GJ1n X G. its points with values

in k .ku,kA respeclively; Zt .Zu. ZA =ZJin X Z_ tbe centers of tbe abave

groups, Z:. the real and totally positive elements of z.;
ß =Hz ,y) d~/[~ r)~ = Gm xGQ and Bt ,Bv. BA =BJin xE. its rational points.

B:' = Hx ,y) e: B_ with x e: k': I. We define our level groups by J(1/ = SU(2;k1/)

far v 100 , for v .r co we set
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..xv ={[~az a-l~]. x,y.Z,W EOv. det ED:}
and we write J(A =J(/in X J(_ for the associaled adelic group. Let

V = ® Vv lhe value space of our form, where Vv is a 3-dimensional complex
vl-

vector spaee with basis Vvl , Vvo, Vv-
I , so V has basis YV, e = tev L ev E: t 1,0, -lJ.

We let -A,/.. ael on the right on '1/ via the symmetrie square representation M:

2cv bv

ICv 12-1 bv 12

-2cv bv

and we extend thls action to a11 cf .J(...Z ... by trivial J(/inZA action. We define

Wv (xv) = L: Wv,j (xv), ri.
1=1.0,-1

wilh

are Hankel's funelions [F].

Let denote our modular form. so

{ [
0 -8-1] ]

F(gkz) = F(g )/'!(k) for k € J(A, Z E Z... , and } g' Ba 0 'jin =t:r'F(g),

t: f' =1: 1. We assume for simpLicity that F is cuspidal at infinlty and so has

Fourier expansion F(x ,y) = L: C«(x» W«(x ..)1J'«(y},
EE:.t •

and we write

LF(CJ) = L: C(b )·C'.)(b) for the assoclated L-funclion. We assume that F is an
b

eigenform of all thc Hecke operators Tp , thus 1,1"(c.>} bü~ an Fouler expansion

(I-Pvi) for v.{'(a)to:l. Note that. everylhing is normalized so that the func­

lional equalion for finite CJ has the form LF(C'.) = (-1)n'E:F'C'.)«a»'T(CJ}2·LF (C'.)-t),

Le. the critical value is at "5 = 0"; here the Gaussian sums are defined by

for v( (I). and
~ -- for

v 1(/) ~ Tv(eJ) = 1I l~' L: eJ;l(a-1/-17])1/!v(a-1/-17J)•
. 'lE(OvI U\I».
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§2. In lhis seetion we deftne the harmonie forrn, on the symrnetric' spaee X,

assoeialed with our modular form, following [WJ, and introduce the new sym-

In etri c spaee )..-"Sgn •

LeL J'( = G},; \ GA/ J(A ·2_. Decomposing it into connected components we

h.

gel )( = l)XT~ v.'1th X Ti = rT~\ G..,IJ( ..,200' f Ti = G,; n [(ri.OL)(/in(Ti-I,O)XGoo). We
i:::::l

have coordinat.es (x,y) on G../J(2 .. via the"map B:' :;: G_I J(2-. and the

struclure is the usual d,s2 =~(~2+dYdY), so each
x

7 = [; ~] E: G. acts as an isometry on B::'; we denote this action by 7 0 (x ,y)

and define [
S9n (-y)(ey +d)

J(-)'; (x ,y)) = cx
-sgn('l)~]

(cy +d) E J(2. where

sgn (I') = sgn (det(-,,)) E: k:rn. We have "I 0 (x.y) == f ,(~ 1)' J(,,! ; (x ,y »-1 from

which we derive the autoTnorphy relation

J(/I"/2:(X ,y)) =J('l1;/2 c (X.Y» . J('l2;(X ,y ».
011 n.:: we def1ne an n-form wiLh values in V', lhe vector space dual ta V. by

ß = I.: pa. V". where tV. j is the dual busis of tV" j, and p- = 1\ p:1J, p;v =_ dYtI ,
" vI- x",

dXIJ dflv
-- for slJ == 1,0,-1 respectively.
Xv

Claim: ß17(x ,y) == ß(x ,y)C M(J(')';(x. y))). 1 E G•.

Using the automorphy relation and the decomposition

G.. = B:.J(2- it is sufIicient to consider the cases:

(i) , E: z_ where J(I' ; (x ,y» == " M(J(-y ; (x ,y ») =1;

(ii) I' E: B;;, where J(')' ; (z ,y» == 1;

(iii) / E J(. and (x ,y) == (0,1) where 1(, ; (1,0» =1.
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The cases (i) and (ii) are trivial. and (iii) is a straightforward cdLcula-

Uon.

Indeed, we have,

by left ~-

invariance

=F(1;l'10(x ,y )'(T, ,0) '(ri-1,O).,.j~ '(T, ,0))

=F{'y;l'fo(x,Y)'(r"O» since(T"-I,O)')'jlh(T,,,O) €.J(/irI.

=F«x ,y )'.J(')' ; (z ,y »-1 , (Ti'O))

=F( (x ,y )'(T, ,O))'M(J(1;(X ,y ))-1

Now lel Or,(x ,y) =F(ri,z ,y) 'ß(x ,y). Using lhe above lwo claims we observe

lhal Or, is rr,- invariant, and can be viewed as a C-valued n-forrn on

":\r, = rTi \ B:'. (note lhal eLliptic elements in rr, give whole geodesics that are

singular. and x;., is nol a manifold; striclly speaking we should view Or, as a

f r (/ fo-invariant forrn on f o\ B:', where ro C rr, is a subgroup of finile index hav-

ing no torsion). The propcrties of Hankel's funclions, zJ(~ + K'o =zKo•

K 1 =- K'o. imply that the 1-form

2: WV.Q(x)1fv(Y)ß~ = xKo(4rrz)e-21rl (l/+U)ctx
"=1.0.-1

+ i- xK1(41Tx)e -2ni(y +U)(dy +dy)
2

is closed and ··closed. Hence we see that Or, is harmonie, and so we have a

cohomology class [0] E: J--rl (X,l:) represented by the n-form 0 with nJ x;., =(},.•.
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Lctting H = B: u P l(k), and taking for neighborhoods of .17 E: k the sets

~1]~uHx,y)l TI _1(!ry-V!; + Ixl~) <T~
vl"xv . ..

and for the sets

~~) U ~(z ,y) I n _1_ <TL far alt r > 0, we see lhat Gi; acls conlinuously on Lhe
vI" X u

h

Hausdortf space H, and we get the compactification J'Y. =lJ Kr{ of X, where
i=1

11.

Let xsgn = Gt \ G.4/.J(A . Z~ = Ufr{\ B_, where similarly to above we put
,=1

coordinates via E_:; G../ J(-Z:, and note Lhat lhe canonical projeclion

G...,/J(_7~ ... G_I _/(_2_ is given uy B_'" B~, (X,Y) ... (Ix l,y). On B_ we define

an [R-valucd tl-forrn e = 1\ Bv • by 8 v (x,y) = f~d log(sgn(xv »; lhis is Gt-
v]- t;.,m

tnvarianl since sgn(1 0 (x,y)) = sgn(,)'sgn(x), and so we have a closed n-form

11.
e on ;\,sgn. 1Ye denole by }(sgn =ild. f r{ \ B... UIP l(k) lhe obvious compactifieation of

A'""Sgn induced by the Seifert-fibration xsgn -- X. (this becomes an aclual libration

aft.er passage to subgroups f o c rr{ having no torsion).

Fi xing an infini te plaee v 100, one ean look at the aelion of Gu on Bv in lhe

follewing way. Denale by j lhe element of the qualernions H, and identify Bv

with H \ C via (x,y) -), z =x + yj. The action cf 'Y =(~

becomcs lhe Möbius action 7 0 z = (az + b )'(cz + d )-1.

§3. In lhis sec tien we study the periods L (r ,7]); these are first 'in troduced as an

adelic integral, then after Lemma 1, we lransforrn il lo an archimeadian

integral, and finaUy after Lemma 2, we show il is given by an integral cf our

harmonie form pulled back la ;<S9n against a relative cycle going from lhe eusp

al lntlnily ta the cusp n(r ,1])". Besidcs giving us a geonlclrical intuition, ,!~e ean

dedue;e from lhis in lerpretatian the crueial result lhat lhe module generated
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by lhese per:iods is finitely generaled.

For r E: k;, 7'} E: kItA' such t.hat 177J", < Ir I", for v I(a), we define the

"periods" :

lNhere Fe: GJl 4 C is the ~ Vvo-componenl of F,f.: the subgroup of e E: 0- salisfy­
vi'"

ing e == 1 TTwd(rv /7Jv}, (which holds triviaHy when 177lv s Ir I"" Le. for almost

d sgn (xv )/\ d 1x 1v
forv.(co,andd-xv = ---------forv[oo.

2m'x",

Lemma 1:

(0) L(r,r;) is weH defined.

(1) L(r ,77) depends only on the ideal «r» d;/k n (r), (r) ~ TI rvOv.
v+-

(2) L(r ,77) depends only on the image TJ E: kJin / (r).

(3) L (r ,1]) =L(r~,1]O for ~ E k-.

(4-) L (r ,77) =(-l)n eFL (ar§r- l
• -ry-l) for t]v = O. v ~ S; and 77", E: 0:.

Ir Iv < 1, v E S.

Proo!: (1) i5 clear, (2) follows since by right J(Jin - invariance, for J.L E: (r),

F(Brx,-r;) =F«ßrx.-ry) (1,-ß-1r-1x,u» =F(Brx,-ry-,u); (3) follows since by Ieft

G;c-invariance, far ~ E: k-, F(8rx.-7]) = F«~.O)(arx,-7]» = F(aTtx,-T]~). As for

CO), using (1), (2), (3) il's easily seen that the integrand in lhe definition of

L(r,ry) i5 G-invariant so integration TTLod t i5 o.k. if it convergcs. For conver-

gence, we first use (2) and assurne 1]11 = 0 far v outside a finite set .af places S.

then using (3) we can assurne 1]v E: 0: and IT Iv < 1 for v E: S. now
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(iJTZ. -'IJ)=[~110J-[::11-1 -~T1T-lz-l) .. [;Zl1-1 -iJ-l~-ll1L. a -ITS1TZ
( whcrc rs == r u (resp. 1), 11-1 == 7];1 (rcsp. 0) far 1) E: S (resp V Si! S)} and SO

1]-1] [0 -a-1
]] =

·1 Ga 0

= (_l}n tp . F o(OaT§T- 1x-1,t]-I).

By using the fact that F is cuspidal at infinity and trivial estimales on I-Iankel's

K a, we gel 1Fa(arx, -T]} I == o( 1x [O} for all a E: IR as !x J .... oe, and from the above

formula also when 1 x I .... 0: this proves convergence (that is, our condition,

117111 < [r1 1l far vlCa), imply that the cusp (r.t]) is congruent to the cusp at

infinity}. Inlegraling thc above rormula Dver k~ n0:/ l we obtain (4).
vi" ,

Not.e lhat by part (3) of the lemrna we can translate any L (r.1]) in to sorne

L(a-1Ti,7]'), and then using part ( 2) we can assume 7]' == C'1../'i.n far some a E k· ,

finally using left Gk -invariance we obtain the archim.edian integral expression:

L (T ,1]) = L (a-Iri •C'1..Jin) =[ ~ P1 f F o(Ti X •a..)d •x .
o ,c..J J;;/~

We shall now deflne aur relative cycles. Let Z (T, ,a.) : k: .... x:r. z (ri ,o:)(x) =
image of (x.a.) in x;r. Nate lhat for e Er;, (t-e}aE:(Tia-1). hence

(e,(l-e)a) E: rr', '
and we gel image of

(e,(l-e)a) 0 (x.o.) = z(ri'O:)(x}. so we can view z(ri.a) as a smooth map

k':/ t ... .X::n
. Moreover. let J({j denote the obvi ous compacti!1cation of

k:/t~ (O,ao)x(lR/z)2n-l oblained by adding Ox(lR/z)2n-1 and OCIx(lR/Z)2n-l. so

that J(!J ~ [0,00] x {1R/Z)2n-l. Setting

Z (Ti ,0:)[ OCIx(lR/ z)2n-lJ =00" we get a conlinuous 2n relative cycle.

z (ri ,0:) : /(IJ .... X;r, with az (Ti.a) supported on Ia.oe~ c ax:r.

Lemma 2: [(f:GJL(r ,7]) = J n:i 1\ e
• (r, .a)
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ProoC: We have: J 0:1'" /\ e
3 tri .a)

= J [F(T·d X l,o...)·(Z (Ti ,0.) -1T- ß) ]/\/\ [2~et log(sgn (Xv»]
k:/[; vl- m

but since alt the "y -components" of Z (Tl,o.) are constan t, Yv =Clv ' the above

simplify ta

J
d !x Iv d. s gn (Xv) 0 PI

FO(ri X ,a_)/\ -1--1 A /\ ( ) =[ -:c...JL(r ,r;)
J:::'/[; vi"" X v vi"" 2rri'sgn Xv

by the above archimedlan integral expression.

Corollary: The Z-module ofo c a: generated by aLt the numbers

UO":L)I/,(T,77)~,TEk;.7]Ek/ln ,l771u < Irl v forvl(a). isfinilelygenerated.

ProoC: The forms O:r 1\ e are closed and so lhe integral in Lemma 2

depends on lyon the homology class of Z (Ti ,0.) in H 2n cX'sgn ,argn ;Z).

§4. 1n this seclion, following [MJ's and [KJ's generalization of the basic idea cf

[B]. we provc "Birch's Lemma" expressing the critical values cf the L-funclicns

as linear cODlbinations of our periods.

Let CJ denole now a finite grossencharacter primitive of conduclor (/). and

set Fa (;r;) = ~ C«~x »G)«~x ». Wo(~z_), where Wo(z) is the ~ V"O -component of
(€.C" \11-

W(x). An easy calculalion gives

r(s ). LF ( (.)3) = J F~ (x) Ix Ij d •X

kÄ/ Je ..

where c..>$ (x) =c..>(x )'1 x It f(s) =(41T)-2n (21T)-2ns r(s +1)2n, and Re(s) is large.

Decomposing the above integral into ideal classes, we get
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r(S)·LF(c.>~) ::: ~ lri I~ . [~.~ J F~(TiX.)· Ix I: d,·x •.
\=1 0 .C,..J k::'/~

/\n i1pplicotion of finit.e Fourier inversion givcs for ~ E k·:

c.>«Ü) == T(c.»·1 f I~ . L: c.>(a- 1
/-

1T])1/J( -a-l/-17J~)
111::(0' (f».

where in any muttiplicative conlexl (e.g. in c.>( ...» we view 1] as an idele equal lo

1 ou lside (f), and in any additive conlenl ( e.g. in 1/1(. ..» we view TJ as an adele

eqllal La 0 outside (f). Using this we get:

F~(TiX) =i(CJ)' 1I I~ L:; CJ(ria-l/-I7])Fo(rix.-a-l/-1TJ)
'1 E (QI (J).

subslituting this in tbe abave and evaluating at s = O. we obtain:

J.JF({J):::T(eJ)I/I~(4rr)2n~ L: Co)(Ti a-1f-17]) [ ;.~ J Fa(rt,x,-a- 1j-I7'})d·x.
i=l']E(CVU»)· 0 .c.J k:'/I:

Lclling ~ E: k· be such thaL I ~ I v ::: 1 a/ 1;1 for v 1(/). pulting 7J~al for 1']'. and

x .·t~ far x •. tben using 1eft G;c -invariance to multiply the argument of Fa by

(~-I.O). and finally substituling Ti(~a)Ü'~a(ü far Ti. we have the follawi~~,

llirch Lemma [8]: For finite eharacler lJ. primitive of conduclor (J).

h
Lp(CJ) ::: 1"(eJ)'1 f I}(4rr)2n l: L: eJ(TiTJ)I,(T;,f .1])

;'=1 TJE(OI{f))·

§5. In this sectien, following [M]' s adelization of [M,S-D], we canstruct distribu-

lions J.Lr by specifying its values on open sels t.a be a certain linear cornbinaUon

or Dur periods. The addilivity cf J.J-r fellows from t.be Hecke Retations among the

periods.

Fix S, a finite sel of primes of k away from (a. )00. Denot.e by efj lhe

Z[p;I;V E: S]-medule generated by [O·:['d ."'1] . L(rd .r;) with r prime-to-S. d

supported-on-S. 1'] E: k s • and recall thal t cl .'1 = ~e E: 0·1 1(e -1)171 v s I d 1v far

v E: SL and lhat P'lI is one 0/ the two reots of the v' t.h Euter polynamial; 1Ve.~also

set Pd ::= n Pu ordv d, Whenever 'T) € ksl (d) is given by tbe conlext. as 1] E ksl'(bd),
VES
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(e.g. when b -1 is integral), -we can deflne a formal operator

I!!b L(Td ,T]) = L(rbd .1']); these are only formal conveniences and whenever we

have an expression involving Rb's and L(rd ,TJ)'s we first apply, the Rd 's and only

lhereafter can evaluate tbe periods. We define tbe operators 1Jp for p e: S by

'IJp L(r .7]) = "5: L(rp ,1]+u), and extend this to all the L(rd ,7'})' s by using
uE(1.p

Lemrna 1,(3).

Hecke Lemma: When aeting on L(r .7]), r prime-to-p, we have the following

relalions:

(1) (pp + pp) =- J~p-I + 1Jp

(2) Pp .pp =I<p-t ·1!p.

ProoC: (2) is elear sinee Pp . Pp = TtJp and Rp -t1ip also equal ~p si~ee for a11

u L(r,7)+11.) = L(r,'7) by Lemma 1, (2). For (1) we use the fact lhat Fis a Hecke

eigenform wi th eigenvalue Pp + Pp, and the fact that Tp =Rp-l + 1Jp when aet­

ing Oll any L(r.7]) with T prime-to-p.

We defirlc a () ®ef~-valucd dislribution J.Lr on 0; by giving its values on

"elcrllcntary sets" as follows. We writc S :::: So U SI' and dcnotc by p 's (resp.

q 's) the primes in SI (rcsp. So): we let I = f1p u
p with ep > O. and let T] E OSI be

cxlended to 7] E: Os by deereeing that "lq =0; we set

'1J + I- d~/OS x T1(1']+p "P) C Os. Every open set is a finite union of such elemen-
o p

tary open sets.

Definition:

Note thal this depends onLy on the irrlage of TJ in OS11 (1+(/)) by'Lemma

1,(2).
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l.emma 3. J.Lr is indeed a distribution,

N N
J.Lr( U Uj} = l.: J.Lr.(Uj} for disjoinl open sets Uj C Os.

j;l J;1

Praot: Il's enaugh la check lhat

(1) l: J1T (17 +2:U q + (TIq)/ -) =J1.r(1J+J -)
uq mod q q

uq;.!o

and to check lhat for 1 divisible by a11 pES, 1] E Os, and any Po e: S

( II) I: J1T (Tl' +p 0'f -) -= JJ.-r (r; +f -).
,,' moli JpO
,,' W1'/ modf

Lclling (-l)d denole lhc Mobious funclion we have thc additive expression

J4 (TJ+,-) =Pi l 2: (-l)d PilRjd_lL (r ,r;)
dlf

whencver! is divisible by a11 places in S.

U si ng lhis expression far the left hand side of (1), then grouping terms back inta

a mulliplieative form, we obtain

pi~qn(/~q _p;l)(}!!q_11Jq-1)n(1-p;1/~p_t),RI L(r ,17)
q p

and (I) follows upon invoking the Hecke Lemma ta pul

Pq-1(J<q -Pq-l)(J~q_tlJq -1) = (1-Pq-
1Rq_t)( I-p;l!eq).

Far (11) we choose ~ E.' k -, such Lhal (~)s =I, and writing 7)' =Tl + ~U, wilh

U E: Opo running lhrough a complele sel of representatives of 0/ Po, we use

again the additive expression for the left hand side of ( 1I), and we obtain

p;\ l.: L: (-l)dpiI/!! -tL (r 11J+U ().
P u rnod Po d I/po fpGd

Wriling 2: as 2: + L: . and subsliluting apo far d in the second sum, then
dl/po dll eil/po

Po+ei Pold

using Lemma 1,(3) to divide by {. we gel
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Pl i I: (- t)d Pd-
l 2: [p;~L(r t-1/p od -l,1J~-l+U)-p;;L(r (-lId -1.1](-1 +u )1.

d ~J u mod Po .
pol'd .

U si ng 11 ce kc Lern ma (1) and (2) for thc first and second terms inside the brack-

cls respceUvely, lhen using Lemma 1,(3) to multiply back by ~. ";"e get the addi-

tive expression for J.Lr(7]+ f .) upon canceling terms inside the brackets.

Not.e lhüt by Lemma 1,(1) and (3). \ve have for e E:O-, L(r,21J) = L(r,1]).

h enc e J.1-r (e 'u) = J.Lr (u) far all u .c: 0;, and we view J1.r as a dis tri bu Uon on

Osl Ö·. where Ö- denotes tbe closure of 0- in 0;, As such, J.Lr takes~its values

in J:~; indeed, if u cO; is stable under multiplication by 0-. it can be written

henceanduniondisjointaas u = U (21]+'-),
.e.Q-/t}J."I

11 r (u) = I: J1.r (e 7]+/ -) = [0-:G/."J 'J.Lr (1] +! -) E ef~. Using th e corollary ta
0(0-/ {.i ,'7

Lenlrna 2, wc have:

1bcorcm 1. J.Lr is a distribu tion on 0;10· wi th values in tbe fini tely gen­

ernled Z[Pp l;p E: S]-module eil

§G. In ihis seeLion we average the distributions J4. over all ideal classes. and u~e

class field lbeury to gel a measure on tbe Galois grouIJ. Tbe "Mellin-transform"

of Lh is rneasure is the S·adic L-function. We prove the interpolation properLy

retaling the S-adlc L-funcllon to ils classical counterpart. and lhe functional

equation.

Let k (1) denote lhe Hilbert class field of k. and let k (S) denote the maxi-

mal abelian exlension of k unramified outside S. By means of the Artin symbol

we have identifications:
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kÄ/ k' f1 O:k~ ~ Gal (k (5)/ k)
v+S"

a (k) ':k;/ k - TI O:'k: :; Gal (k (1)/ k)
. v+ eo

h.

We define a distribution on Gs =Gal (k (5)/ k) by J.LF =l: 6r( - J.Lr(; tha~ is for a
t=1

locally constant function 9 on Gs . we have

l'he dislribution J.LF is dclcrmined by its values on finite characters c.>. we

lel cf~[(.)] denote lhe Z[CJ]-nlodule generated by of2. where Z[CJ] Ce denotes lhe

subring generating by lhe values of CJ.

Theorem 2. For a finile characler CJ : Gs -+ Z[CJ). primitive of conductor "

wc havc inside ef][CJ]:

Proof: Using an additive expression for Dur Illeasure we have

hJCJdJ.lF" =L: 2: e-.>(riTJ)Pi 1 L: (-l)dpiIR -1 ~ (-l)rj·p;.IRd"R/L(T;.T]).
es i=l T}c(QI/)- d \nqnp d d'll'Tq

Ry invoking Lemma 1.(2) we see that we may assume (d ,/) = 1 and take the

SUffilnalion only over d 111q, then subslituling Tid 'd- l for Ti. we gel

h
pj-l 2: (-l)d p;lCJ(d.) L (-1)d'CJ-1(d. ,). L L: CJ(Ti7'])L(ril.1])

d ll'Tq d' ll'Tq i ::; I 1) e: (0' /) -

and lhe expression in lhe theorem follows from Birch Lernma upon transform-

ing the additive ~ ". E .. , iota lhe Euler praduct n(... )(... ).
d Irrq d' Irrq q
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Assumc that the 'Pp 's, P E: S, can be chosen to be p -unils (hence S-units).

Let .J:s ::: Zs O!J.J:~ denote the S-adic eompletion of ef~; whcre Zs = n Zp the
p

product laken over all rational primcs p such lhat thcre exisls a prinle pES

above p. efs is a fin itely generated Zs-module; and so if () i~ an~ S-adically

. complete and separated fial Zs-algebra. we can associate to every continuous

function 9 : Gs -+ () the weH define integral of 9 wi th respect to J.lF•

•
In particular. for any conlinuous S-adlc characler Co>: Gs ... () , we can define

the S-adic L-funelion:

Lr,s(GJ) =J GJ dJ.lr E D.p,ofs.
es s

Theorem 2 gives the precise sense in which the LF,S interpolates the classieal

Lp.

Theorem 3: We have the funclional equation

Peonf: Dy Lemma 1(4)

This implies a functional equalion for our measures

JLr(T]) = (-l)nCFJ.lr-Ia(--77-I)

[rom which the funclional equation for LF.S(GJ) follows immedialely.

§7. We end this paper with a few remarks.

Rcmark 1: Let E =lD (Pu) C [: denote tbe subfield generated by a11 the Pu '5,

V +00. Assume F is a new form so that E,et~ R;j E·t is a one dimensional E~vector

spuce. Take far S a set of finite primes away from (a) and containing aU the F-
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placcs oF k,p a "good',' rational printe. (Le., such that we can find Pu 's which are

p -u nils for v ]p). l.et Edcnote the field generated over E by alt rools of unity of

order dividing Nv -1, or some power of Wv, for alt v E: S. Choose a place p cf E

above p and let Ep denote the completion of E at p. Gs is the Galois graup of

Lhe maximal S-ramified abelian extension of k land for each continuouis char­

acter Co): Gs " 'E;, we abtain far the value cf the p -aclic L-functwn at

c.>: LF,S.p«(..)) E: Ep·t. (lhis

Lr.s«(.)) E Zs ~ E . t) .

is the "p -component" cf the above

. Hcmark 2: If the Pp 's werc not S-adic units tbe J-J-F defined above would

still bc a distribution bul would not be bounded. Nevertheless, it would have a

"nlodcralc g rowlh" [i. c. PJ JiTt. ( in1age of (7'] + J .') mod O~) lakes values in a

flnllcly generated Zs-nlodule, and Pp is a p -unil such that at warst

jpp lp ::; jl'Np I:] and hence analytic funclions (e.g. S-adic characters) could be

integralcd againsl il. But canlinuous function ceuld not be integrated and aur

S~adic L- functions might have inftnilely many zeros. cf. [V].

Ucrnark 3: The presence of real spaces 1J slighlly camplicates lbe silua-

lion, since far finite grossenchuracter c.J,c.Jv need not be tri vial, (.)v( -1) =± I, and

so naw we have lo keep lrack of the "directions" al the real places. We shall

indicalc the needed nloditleations in the order ef lhcir appearance above. We let

1&1.1 (z) ::; cxp[ -2rrx]; Ti repre sen ti ng the wide cl ass group k·' k;I Il 0: k 2.
v+-

k2 = the connecled eomponent of k;; J(v = O(2;klJ); VIJ a 2-dimensional com­

plex vector space wilh basis Vv
1

, Vu-
1

, on wbich J(v acls on the right via tbe

[
eos 11 sin,,] [8 -2,,,

representation Mv -sin'l9 cos t9 = 0
0] [-1 0] [0 1] ~

e 2i" • Mv 0 1 ::; 1 0; Wk : klJ -+ Vv

is given by Wu(z) = lxi exp(2rrlxl)~gn~;ß~ = 1...(dy+idx), ß;l = .!..(-dy :+-idx),
z x-

so lhal the v -component of our form is: W\I (x ),p\l (y )Pu = exp[21T( 1x l-iy)1
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(dy + i sgn (x)dx). Note that since [~1 ~1] E: .J(u there is no ditIerence

beLweel1 X and xsgn from lhe point of view of areal place 'u. that is:

but 0T will depend also on sgn (Ti )....; e = 1\ 01./' lhe product is laken only over
i 1./

lhe complex v's. Now fix a direction d = ~c4l v realL d1./ =± 1. Tbe definition of

th e periods is al tered by replacing k:' by k ~ I Vvo by Vv- 1 + d v V,;-I. and requ iring

the units in Gto be positive in a11 lhe real places v: Lemma 1(1): L(r .1]) depends

also on the sign of Tv. L(r'(-l)v.7]) = dv'L(T ,7]) (and of course also on our choice

of d); Lemma 1(4): (_l)n is replaced by (_1(t+T
2. In the definition of the cycles

replace again k:' by k2. so that /(/J Rl (O,~] x (1R/Z)l.t:[}l-t, and note again lhat

Z (Ti ,a) dcpends onIy on the ideal class of (Ti): Lemma 2 and its corollary

rernain unchanged. The prooE of Birch Lemrna nceds the obvious modiflcation of

keeping track of lhe direcLions, but its statement remains true for all finile

characters CJ satisfying GJv (-1) = d.v (where we sum ov-er the wide ideal class

represenlalives Ti'S. and replace (4rr)2n by (4rr)[.l:::«)J). From lhis point onwards

everylhing remains lhe sanle if only we replace "class-group" by "wid.e class-

gToup", k:' by k2. and we oblain a distribution P-F on GS I such lhal far finile

characlers GJ: Gs -4 Z[CJ], LF.S(GJ) = J CJ d.J.1..F inlerpolates the cl~ssical LF(CJ) in
Gs

lhe se nse of Theorem 2 (replacing (4rr)2n by (471')[1: ;«)]) and satisfies the fune­

lional cqualian LF,s(CJ) =c.J.( -1)( -1(1 +r 2
EF CJ(a) LF,S(GJ- 1).

Rcmark 4: Having started with a modular form eorresponding ta a har-

nlOIÜC farIn on X we pulled it back to xsgn in order to conslrucl lhe F -adic L-

funclians. Thus. from lhe "p -adle point of viewll
, it seems more natural lo staTt

with a modular form corresponding to a harmonie ~9rm on

h

J<sgt\ = U f r , \ n· (1/ \ t) n (C \ R). Such forms when written adeli-
(=1 1I compLu 1I Aal
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cally t.ake values in ~ ?Jv ' F'or v cornplex Vv is the complexification of Tj(H),
vI-

tbc tangent space to the quaternions at j. Note that under ~he action of thc

Tlt öxi nlü! corn pact subgroup SU(2;C), Tj (H) splits as a direct surn of two irredu-

cible representations, one 3 dimensional and the other 1 dimensional. In partic-

ular, H , IC has no complex structure, invariant under lhe Gv action, and hence

xsgn has no natural complex structure. lt seems interesting ta inquire what

further structure xsgn possess (besides the Riemannian structure), and what

kind of moduli interpretation xsgn adrnits.
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