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p-adic L-functions for modular forms

Shai Haran

We construct "many variabled" S-adic L-function for modular forms over
arbitrary number field k. We take for our form a weight 2 Hecke eigenform
{on GL(2), of level I't(a)) and for simplicity assume it is cuspidal at'inﬁnity.
S is é. finite set of primes away from the level of our form, and (if we want
boundedness) is such that for» € § we can choose a root pp of the p'th
Euler polynomial that is a p- unit. The S-adic L-function is given by a measure
on the Galois group of the maximal unramified-outside-S abelian extension of
k; the measure obtained by playing the modular symbol game in an adelic
setting. We prove that the S-adic L-function interpolates the critical
values of the classical zeta function of the twists of our form by finite charac-
ters of conductor supported at S5, and that it satisfies a similar functional
equation. The gist of the p-adic continuation is the proof that a certain module
in which our distribution takes its values is finitely generate‘d. and the idea is to
give this module a geometric interpretation as periods of a harmonic form
against certain cycles. From our modular form we get an 7; + r; harmonic
form on the 2r,+3r; dimensional symmetlric space

X = GL(2:k )\ GL(2ik )/ K4 Z.
where r; (resp. r3) is the number of real (resp. complex) primes of k; _/(4 the
level groups, Z.. the center at infinity. It turns out that one needs to work with
an associated [k:Q] =7, + 27, form on the 2[k:Q] dimensional symmetric space
X9 = GL(2k I\ GL(2:k )/ K o 22
where Z: consist of the real and totally positive elements in Z..: only in X®™
can one define the appropriate cycles for a fleld ¥ which is not total.ly real or

CM. See [M,S-D] for the origin of all this, where the case k =0 is treated; [M] for
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Lotaliy real &; [K] and [T] for CM fields. In order to keep everything in half their
size we assume all the places at infinity of k are complex (the necessary
adjustiments needed for a fleld £ having both real and complex places are indi-

cated at the end of the paper).

This paper has its origins in my M.L.T. thesis supervised by Barry Mazur. It
was written during my stay at the Max-Planck-Institute in Bonn, and typed at
the Hebrew University in Jerusalem. To all of them I would like to extend my

gratitude.

§1. In this section we recall the adelic definition of a modular form and fix our

notations following mainly those of [W].

Let k& denote our totally complex number fleld, [k:Q] = 2n, O the
integers of k,k, the completion of & at a place v.O,, the integers of k,,

kg =kspn xk. the adeles, and fix a character ¥:k,/k -C°, ¥y =8®7%,, by
v

Yo(z) = exp[-2mi(z+Z)] for v|=. We write k2 = &¥™ x k} where £¥" = IF kiom
u -

is the maximal compact subgroup of the inflnite ideles ks, &} = II-I k., k) the
v

positive reals inside k,, and we let z =sgn(z)|z| denote the respective
decomposition of z € k.. We fix ideles 7, - - 7, representing Cl(k), the class
group of k; 8 representing the absolute diflerent of k; a representing the
tevel of our modular form (i.e. the classical ['s(a)); f representing the con-
ductor of a grossencharacter w; usually a,f (and the r;'s) will be laken rela-
tive prime. Let G = GL(2)/k and Gy, G,,Gy = Gy X G its points with values
in k.k, kg respectively; Z,,.Z,,. ZA =Zﬂn XZ.. the centers of the above

groups, Z,ﬁ the real and totally positive elements  of 2_;
B={(r,y)d£f[:6 '-'1"];=6me‘, and B.B,, By = BpinXFa its rational points,

BY = {{zx,y) € B, with z € k2]. We define our level groups by J(,, = SU(2:k, )

for v |e, for v [ = we set
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-1
_j\/u = [[Zaz o % T,y.2.W EO.,‘ det €OJ]

and we write _/\/A =_/\/ﬁ,.><_/\/- for the associated adelic group. Let

7/= ? 'Uu the value space of our form, where 'Uv is a 3-dimensional complex
v |-

vector space with basis V,!,V2, V!, so 1V has basis V*, e = feyd, e, € {1,0,-11.

We let _K . act on the right on 1/ via the symmetric square representation M:

cy 2c, by b
c b » 2 2 =
M g = ® —Cy bu I Cy | _l bv | Cy bv
- o] v l- _ _
b2 —~26, b, T2

and we extend this action to all of _/\/AZA by trivial _/\/ﬂnZA action. We define

Wkl H(z) = ® Wolzy). Wolzo) = L Wuslm) V. with

F=10,-1

Poolz) = |z [2Ko(anz ), Wyan(x) = 15 sgm(2)]0 ] 2 2K, (4n] 2] ), where KoK,
are Hankel's functions [F].

Let F:Gy = BAZAJ(A - ’U denote our modular form, SO

0 -87!
] i =epF(g)

F(gkz) = F(g)M(k) for ke K, zeZ, and f’{g'[aa 0

ep = +1. We assume for simplicity that F is cuspidal at infinity and so has

Fourier expansion F(z,y)= ) C{¢x))W{¢z)y(ty), and we  write
tee”

Lp{w) =) C(b)w(b) for the associated L-function. We assume that F is an
b .

cigenform of all the Hecke operators T,, thus Ip{®) has an Fuler expansion
Lp(w) = u];]-Pv(N‘U_I'Q(U))_I with Euler polynomial P, (t)}=1-A,t +Nv-t2=(1—p,t) -
(1-5,t) for v}f(a)=. Note that everything is normalized so that the func-
tional equation for finite w has the form Lp{w) = (-1)" ep-0((a))-7{w)% Lp(w™),
lLe. the critical value is at "s =0"; here the Gaussian sums are deflned by

@)= I 7n@.  ne=e6)  fr  wf(f),  ad  for

V() in@=IsE T e (e ).
meQ/ D"
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§2. In this section we define the harmonic form, on the symmetri'c“ space X,
associated with our modular form, following [W], and introduce the new sym-

metric space X%,

Lel X = G\ G/ J\/A -Z_. Decomposing it into connected components we
K

get X = X, with X, =T.\ Gus K2 ... =G N [(Ti-O)J(fin(Ti-l'o)xG-']' We
i=]

have coordinates (z,y) on G_./_/\/_Z_ via the map B2 3 G_/J\/_Z.., and the

Riernannian structure is the wusual ds?®= Lz(d.r2+dyd17), so each
z

a b

7=«

and define J{vi{z.y))

€ G, acts as an isometry on BZ}; we denote this action by ye (z,y)

) sgz;(?’)(cy +d) —s,?:;(zzf;f c X2 where
sgn(y) = sgn(det()) € k¥™. We have yeo(z.y)=7(§ %) J(y:(z.y))™" from

which we derive the automorphy relalion

S 72(z,y)) = J(ruree(z.y)) - J(yelzy)).
On At we define an n-form wilh values in ?/'. the vector space dual to 'U. by

. d
B =73, B°V, where {V,] is the dual basis of {V*{, and g* = /I\ Bo¥. B =— ::" .
Fl vi=
dz, d7, .
z —:c;_ for e, = 1,0,—1 respectively.
Claim: §},(z.y) = B(z.¥) H(J(7:(z.y))). 7 € G
Using  the automorphy relation and the decomposition

G = B _K.Z . itis sufficient to consider the cases:

(i) y€ Zuwhere J(y: (z.y)) =7 M (y: (z.y)) = 1
(ii) y € B where J(y: {z.y)) = 1;

(iii) y € K. and (z.y) = (0,1) where J(y ; (1.0)) = 7.
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The cases (i) and (ii) are trivial, and (iii) is a straightforward calcula-

tion.

Claim: F(y o (.y)(r.0)) = F((z.9)(r.0) MU (rilz ¥y ) y €T,

Indeed, we have,

Py o (z.y)(r.0)) = F{y""r(z.y)(r.0) by left G-

invariance

= Fydtye(z,y ) (r:,0) (r70) 778 (74.0))

= F(y3 ye(z.y)(r:.0))  since(r'.0)77h(r0.0) € K s
= F({z.y)J{y i (z.y))7 - (r.0))

= F((z.y ) (ri.0))- M(J(x:(z.y))"

Now let D,‘(z,y) = (ryz.y ) B(z.y). Using the above two claims we observe
that D,i is I"r‘- invariant, and can be viewed as a €C-valued n-form on
A = 0N B!. (note that elliptic elements in Iy, give whole geodesics that are
singular, and );.‘ is not a manifold; strictly speaking we should view {1, as a
1",‘/ [g-invariant form on g\ B}, where 5 C I",.‘ is a subgroup of finite index hav-
ing no torsion). The properties of Hankel's functions, zKp + K'g = zKp,

K, =— K'g, imply that the 1-form

S Wy (z ), (y)BE = 2Ko(4nz)e PV T)gz
e=1,0-1

+ ;— zK,(4nz)e 2mW D) (dy +d7F)

is closed and *-closed. Hence we see that Q,.‘ is harmonic, and so we have a

cohomology class [(}] € A" (X.C) represented by the n-form ) with 0| X, =Qy,.
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Letting H = B2 \UPYk), and taking for neighborhoods of .n'Ek the sets

1 :
muttz.y)| 11— (In—y i3 +1z|8) <7} and for o the sets
v |~ v - - .

{2 U =) l;[ -;1-—- <7{, for all 7 > 0, we see that G, acts continuously on the
1w

v

. h _
Hausdorff space H, and we get the compactification X = | Xy, of X, where
i=1
X, =T.\H.

A
Let X3 = G\ G,.g/_j(,q CZr= UTr\ B, where similarly to above we put

i=]
coordinates via B,,:G./_/\/..Z.:. and note Llhat the canonical projection

Gut KoZF s Gy K2 is given by B. » BY, (z,y) » (|z|.¥). On B. we define

an R-valued n-form ®=/]\ @y, by G)U(I-y) = .1
v |-

”m'.d log(sgn(z,)); this is G-

invariant since sgn{y - {(z,y)) = sgn{y)-sgn{z), and so we have a closed n-form

_ h
® on X*™. We denote by X" = Y[ \ B.P '(k) the obvious compactification of
i=1

X9™ induced by the Seifert-fibration X*¥ - X. (this becomes an actual fibration

alter passage to subgroups [y € Iy, having no torsion).

Fixing an infinite place v |, one can look at the action of G, on B, in the

following way. Denote by j the element of the quaternions H, and identify B,
with H\ C via (z,y)»2 =z +yj. The action of y= (g’ 3) €G, on A\C

becomes the Mobius action y° 2z ={az + b)(cz + d)~.

§3. In this section we study the periods L(r,n); these are first introduced as an
adelic integral, then after Lemma 1, we i;ransform it to an archimeadian
integral, and finally after Lemma 2, we show it is given by an integral of our
harmonic form pulled back to X*" against a relative cycle going from the cusp
al inflnity to the cusp "{r,n)". Besides giving us a georuetrical intuiti‘on, we can

deduce from this interpretation the crucial resuit that the module generated



by these periods is finitely generated.

For r €k4. m €kspy,, such that |n|, <|r], for v|(a). we deflne the

"periods":

1 .
L{rm) = — Fo(8rz,—m)d
(T T]) [O :(‘j e nfa:/{, 0( X —?7) I

where Fg: G4 » € is the @lo V2-component of F.{ the subgroup of e EO' satisfy-
U |

ing e = 1 mod(ry,/mn,). {(which holds trivially when |7|y, < |r |y, i.e. for almost

all v' s), and the Haar measure d 'z =®d "z, being normalized by fd'z,, =1
d sgn(z,)nd|z|,
2nt z,

forvfe,and d 'z, = for v |ee,

Lemma 1:
(0) L(r,n) is well defined.

(1) L(r.n) depends only on the ideal ({(r)) ¥k N (=), (r) déful;[_ r.O,.

(2) L(r.n) depends only on the image 1 € k;, / (7).
(8) L(r.m) = L(rémé) for £ € k°.
(1) L{rm) =(-1)epL{arér',-n~') for n,=0, v& S; and 7, €(),

Irt, < 1,v € S.

Proof: (1} is clear, () follows since by right _/\/fm- invariance, for u € (7),
F(arz,—n) = F((8rz,-7n) (1,-87'r 'z u)) = F(8rz,—m—u); (3) follows since by left
Gy-invariance, for ¢ € k°, F(8rz,-n) = F((¢,0)(8rz,—m)) = F(8rtz,—mt). As for
(0), using (1), (2), (3) it’s easily seen that the integrand in the definition of
L(r.n) is /:—invariant so integration mod £ is ok if it converges. For conver-
gence, we first use (2) and assume 7, =0 for v outside a finite set of places S,

then using (3) we can assume 7, EO,,' and |r|, < 1 forv € S, now
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T -0 1z71p
|8z 0

-a’rf’r x 1}

dan~!
{(3rz,nm)= ] [ caTlrglrz

( wherers =7, (resp. 1), n'= 'qu’ (resp. 0) for v € S (respv ¢ S)) and so

s

dan! —arér-lz~!

FU(BTI.“?))ZFQ[GG 0 = Fo

da 0

[aar:,?r“‘z"l n"]
1

0 —a*‘] _

= (=1)"ep - Fo(darér 'z~ n71).
By using the fact that £ is cuspidal at infinity and trivial estimates on Hankel's

Ko we gel | Fo(drz,—m)] = O(|z|9) for all o €R as [z | - =, and from the above
formula also when |z] - 0; this proves convergence (that is, our condition,
Inly, < |7y for v{{a). imply that the cusp (r.n) is congruent to the cusp at

infinity). Integrating the above formula over &2 1;[0,:/£we obtain (4).
V|- .

Note that by part (3) of the lemma we can transiate any L(r,n) into some
L(87'r;,n'), and then using part ( 2) we can assume 7' = ay;, for some a €k,

finally using left Gp-invariance we obtain the archimedian integral expression:

L{rm) = L{87'ry.api) = f Fo(riz,a)d ‘z.

[Oﬂ,

We shall now deflne our relative cycles. Let z(ry.a):k - X, e(ra)(z) =
image of (z,a.) in X". Note that for e el (1—2)06(1;‘6'1). hence
(e.{1-e)a) € .. and we get z(r;.a){ex) = image of
(e.(1-e)a) o (z.a) = z(ry,a){(z), so we can view z(r;,a) as a smooth map
ki/E8 - A79™. Moreover, let 1(55 denote the obvious compactification of
k27~ (0,0)x(R/Z)2"") obtained by adding Ox(R/Z)®®™! and e=x(R/Z)*""1, so
that HEY ~[0,] x (R/Z)21. Setting 2 (r,0)[0X(R/Z)?* ] = @,
z(ry,a)[=x(R/Z)*" '] ==, we get a continuous 2n relative cycle,
z (r‘-..a) : 1((9 - )?,ff“, with 8z (7¢,a) supported on {a,=} C 6)?.?‘9""

Lemma 2: [O‘:&L(r,n) = f QP A 0

a(r;.a)
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where Dﬁf"‘ is the pull-back of Q,‘ along m: Xff" - X,

Proof: We have: f Qf{“ A B

z{r;.a)

= J ez led i) woln ) [ log(sgm (z,))]
| 394

but since all the "y-components" of z(r;,a) are constant, y, = a,, the above

simplify to

J Frzad\ T A N ZIE) (O Ly )

. EXR viw 2mi'sgn{z,)

by the above archimedian integral expression.

Corollary: The Z-module Locc generated by all the numbers

E[O':élll.('r,n);, r €kgm€kpn, Inly < |7, forv|(a), is finitely generated.

Proof: The forms Q,ff’"/\ @ are closed and so the integral in Lemma 2

depends only on the homology class of z (ry,a) in Ha, (X*",0X°7™,Z).

§4. In this section, following [M]'s and [K]'s generalization of the basic idea of

{B]. we prove "Birch’s Lemma" expressing the critical values of the L-functions

as linear combinations of our pertods.

Let o denote now a finite grossencharacter primitive of conductor (f ), and

set F§(z) = ¥ C{(¢x))w((¢z)) Wo(éz.). where Ho(z) is the ? V2 -component of
(u. v |-

#W(z). An easy calculation gives
Ns)Le(ws) = [ F&(z)|z|fd’z
k /k’

where wg(z) =ow(z)|z|§. I(s) = (an)™(2m)**[(s+1)**, and Re(s) is large.

Decomposing the above integral into ideal classes, we get
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Ms)Le(od) = 3 Iml8 - == [ Fe(rz.) - |z]2d’z..
i=1 (o] k8

An application of finite Fouricer inversion gives for ¢ € k

(@) = (@)1 X @ (=87 g
el (rN°*
where in any multiplicative context (e.g. in w({...)) we view 7 as an idele equal to

1 outside (f ), and in any additive content { e.g. in ¥(...)) we view 7 as an adele

equal to 0 outside (f ). Using this we get:

Fe(riz) =r()|f 12 ¥ w(rd™f ") Fo(rz.—07'1 ')
nelrrn’
substituting this in the above and evaluating at s = 0, we obtain:

Lp(w)=m(w)l f |%(4ﬂ)zni Y o(rdTlf7in) } J Folriz,—071f 'n)d°z.
Eloe@r ()" 04,7

Letting ¢ € &7 be such thal |£], =18/ |;! for v |(f). putting n¢ds for n, and
r.f¢. for r., then using left Gp-invariance to multiply the argument of F by

{(¢71,0), and finally substituting 7;(£0)(7)8(¢) for 7y, we have the following

Birch Lemma [B]: For finite character w, primitive of conductor (f),

Le(@) = 1) | £ 1Jam? S % elrm)i(nf m)

=g Or(rN°

85. In this section, following [M]'s adelization of [M,S-D], we construct distribu-
tions i, by specifying its values on open sets to be a certain linear combination
of our periods. The additivity of w, follows from the Hecke Relations among the

periods.

Fix S, a finite set of primes of k away from (a)e= Denote by D[’E the
Z[p,iv € S]-module generated by [O':{:’n]'L('rd,n) with 7 prime-to-S, d
supported-on-S, 1 € kg, and recall that £, , = {e ce()| [{(e=1)n|, = |d|, for
v € S, and that p, is one of the two roots of the v'th Euler polynomial; we.also

set py; = ugspuord" ¢ Whenever 7 € kg/ (d) is given by the context as n € kg/'(bd),
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(e.g. when b7! is integral), we can deflne a formal operator
/?bL(rd,n) = L(rbd,n); these are only formal conveniences and whenever we
have an expression involving /\Ob's and L(rd,n)'s we first apply the &,'s and only
thereafter can evaluate the periods. We define the operators ?/P for p € S by

7,/,,1.',(1',7;) = g/ L{rp,m+u), and extend this to all the L{rd,n)’ s by using
uel¥p

Lemma 1,{3).

Hecke Lemma: When acting on L{r,n), 7 prime-to-p, we have the following

relations:

(1) (pp +Pp) = R + Uy

(2) Pp '?)‘p = l\op—l : 7lp

Proof: (2) is clear since p, - p, =Np and /?p_17,/p also equal Np since for all

u L{r.n+w) = L{(r.m) by Lemma 1, {2). For (1) we use the fact that F is a Hecke

eigenform with eigenvalue pp + pp, and the fact that T, =Igp_, + 7//,, when act-
ing on any L{r.n) with 7 prime-to-p.

We define a OQO,_\[’.,-valued distribution u, on Os. by giving its values on
"clementary sets" as follows. We write S = Sy |J S, and denote by p's (resp.
q's) the primes in S, (resp. So); we let f =IIp* with ep >0, and let n eogl be
extended to 7€ Os by = decreeing that Mg = 0; we set

n+r° ":"'()5'-° x [{(n+p°?) ¢ 05'- Every open set is a finite union of such elemen-
P .

tary open sets.

Definilion:
LI _A-1j2 | -t on =1
po(n+f ) = 1=pg R ) (1~p; /27_,)?(1 ;R )R, Lir m).
Note that this depends only on the image of  in O§1/(1+(f }) by -Lemma

1,(2).
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lemma 3. i, is indeed a distribution,

N
e Juj) = 2 My (u;) for disjoint open sets v COS
j=1 i=

Proof: It's enough to check that

(n )y .u-r(n+2u +(Tg)f ") = ur(n+s ")

Yg mod ¢
u:lO

and to check Lhat for f divisible by allp € S, ne€ (D, andanypo€ S

(1) Y wr(mpof ) = (n+f ).
n' med fpy
n'=n modf

Letting (—1}9 denote the Mobious function we have the additive expression

urtn+f ) = et B (-1 el SN ACK)

whencver f is divisible by all places in S.

Using this expression for the left hand side of (I), then grouping terms back into

a multiplicative form, we obtain

P7 MR, =2 VR Y~ D10, )R, Lir )
and (1) follows upon invoking the Hecke Lemma to put

o Re =R 1, -1) = 1=p 'R (107, )
For (11) we choose ¢ €k°, such that (¢)s =f. and writing n' = n + fu, with
u €Opn running through a complete set of representatives of O/pg. we use

again the additive expression for the left hand side of { 1I), and we obtain

Pie L X (0WpR | L(rnrud).

u mod py d|fpg

Writing 3 as 3. + Y, , and substituting dpg for d in the second sum, then
dis .

a|spg é!fpg
Potd p0|d

using Lemma 1,(3) to divide by ¢, we get
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Pt (gt T [ppdlr e fpod TmE T U ) —p RL(T €7 fd T g +u ).
dalf u mod py .
pptd .
Using Hecke Lemma (1) and (2) for the first and second terms inside the brack-
ets respectively, then using Lemma 1.(3) to multiply back by ¢, we get the addi-

tive expression for u,.(n+f °) upon canceling terms inside the brackets.
Note thut by Lemma 1,(1) and (3), we have for e 204 L{r.,em) = L(r m),

hence u.(eu)=pu (u) for all u CO§, and we view . as a distribution on

05'-/ O', where O‘ denotes the closure of O' in O§ As such, u, takes.its values

in IB indeeq, ifu C 05 is stable under multiplication by O'. it can be written

as a disjoint union uw= U (en+f”’) and hence
OEO'/ff',, .
()= Y pentf) = [O':fj.,,]-,u.,.(n+f ) E,pg Using the corollary to
o 'Ly ,

Lemma 2, we have:

Theorem 1. u, is a distribution on O_a,:/ O’ with values in the finitely gen-

craled Z[p,'p € S]-module cfg

§6. In this seclion we average the dist.‘ributions My over all ideal classes, and use
class fleld theory to get a measure on the Galois group. The “Mellin-transform”
of Lthis measure is the S-adic L-function. We prove the interpolation propérty
relating the S-adic L-function to its classical counlerpart, and the functional

equation.

Let k(1) denote Lhe Hilbert class field of ¥, and let k{S) denote the maxi-
mal abelian extension of ¥k uaramified outside 5. By means of the Artin symbol

we have identifications:
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1Okl

OS/O vlff“—'l'c— » Gal{k(S)/ k(1))
v+5T

kisk 1T OZ S Gal(k(S)/ k)

v+S"™

v

Clik) Zkask’ l;IOJ'Ic.'. S Gat(k(1)/k)

We define a distribution on Gs = Gal(k{(S)/ k) by up = 2 8y, * iy that is for a

locally constant function g on Gy, we have

fg durp = 2 [ g rmdu (n).
i= IO/O

The distribution up is determined by its values on finite characters w, we
tet L3 o] denote the Z[w}-module generated by /'S, where Z[w] C € denotes the

subring generating by the values of w.

Theorem 2. For a finite character w : Gg - Z[w]. primitive of conductor f,

we have inside ,[’g[u]:

g;w dpp = (r(@)(@m)*p ) TINS R T (1=pT o(g))(1pg e ™! (g)) L(w)-

Proof: Using an additive expression for our measure we have

Jodue= 3 T atremey B (047K, T (040 R R, Liren)
S =

LncQr 7y’ d |nqmp d'|nq
By invoking Lemma 1,(2) we see that we may assume (d,f) =1 and take the

summation only over d |llg, then substituting 7;d'd ™! for 7, we get

2 (—1)%p; w(d) E (-1)%w™Nd") 2 Y olmn)L{rs n)
¢'Tng =laer 1)

and the expression in the theorem follows from Birch Lemma upon transform-

ing the additive )} --- ¥, - into the Euler product II{...){...).
d|ng d'|ng 7
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Assume that the 'pp’s, p € S, can be chosen to be p-units (hence S-units).
Let .:.[]5 =2 ®c[§ denote the S-adic completion of c.['g where Zg =I1Z, the
P
product taken over all ralional primes p such that there exists a prime p € §

above p. o[‘s is a finitely generated Zg-module; and so if O is any S-adically

-complete and separated flat Zg-algebra, we can associate to every continuous

function g : Gs -~ O the well define integral of g with respect to ug,

cfg d#FEO?;c[‘S-

»
In particular, for any continuous S-adic character w: Gs -*O , we can define

the S-adie L-function:

Lys(w)= [ wdupe O?Is
Cs s
Theorem 2 gives the precise sense in which the Lr s interpolates the classical

Lp.

Theorem 3: We have the functional equation

Ly s{w) = (-1)"epw(a) Lrs(w™).

Proof: By Lernma 1(4)

L(rfm) = (~1)*ep L(ar™'f . —n7").
This implies a functional equation for our measures

pr(m) = (=) epp -1, (")

from which the functional equation for Lp g{w) follows immediately.

§7. We end this paper with a few remarks.

Remark 1: Let £ =Q{p,) €T denote the subfield generated by all the p,'s,
v +ea. Assume F is a new form so that chg R F-t is a one dimensional E-vector

space. Take for S a set of finite primes away from (a) and containing all the p-



-16-

places of k,p a "good” rational prime. (i.e., such that we can find p,'s which are
p-units forv|p). Let E denote the field generated over E by all roots of unity of
order dividing Nv—1, or some power of Nu, for all ¥ € S. Choose a place p of E
above p and let E"p denote the completion of E at p. Gg is the‘Galois group of
the maximal S-ramified abelian extension of k, and for each continuouis char-
acter w: Gg » E’, we obtain for the value of the p-adic L-function at

P
DS o

o (this is the "p-component' of the above

w:ilps, (@) €

Lrs(o) €Zs®F - t).

Remark 2: If the py's were not S-adic units the up defined above would

still be a distribution but would nol be bounded. Nevertheless, it wohld have a

"moderate growth” [i.e. p u,( image of (n + /") mod O) takes values in a
fimtely generated Zg-module, and p, is a p-unit such that at worst
[pplp = INp |}’f] and hence analytic funclions {(e.g. S-adic characters) could be
integrated against it. But continuous function could not be integrated and our

S-adic L- functions might have infinitely many zeros, cf. [V].

Remark 3: The presence of real spaces v slightly complicates the situa-
tion, since for finite grossencharacter w,w, need not be trivial, w,(—1) =+ 1, and
so now we have to keep track of the "directions” at the real places. We shall
indicate the neecded modifications in the order of their appearance above. We let

vu(z) = exp[-2nz]; 7; representing the wide class group k°\k,/ I;I Os k8,
vV e

k2 = the connected component of k2; J(,, = 0(2:ky); 'U,, a 2-dimensional com-

plex vector space with basis V!, ¥}, on which J(u acts on the right via the

-1 0
Mylo 117

is given by #(z) = |z| exp(enz ) Ve % g3 = L(ay +idz). 65 = L(-ay_+idz),

e -2id 0
0 eZiﬁ ’

01
1 0

cos ¥ sin v

—sin1¥ cos P et ky -’IU"’

-

representation M,

so that the v-component of our form is: P, (z)¥,(y)By = exp(2n(lz|—iy)}]
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EJ(U there is no diflerence

-1 0
(dy + 1 sgn(z)dz). Note Lhat since [O -1
belween X and X*" from the point of view of a real place v, that is:

nf-— (}u/_,/\/UZJ - GU/J{UZU. and X" depends only on the ideal class of (r),

but Q,.‘ will depend also on sgn{r;).. ® = /\ @,, the product is taken only over
v

the complex v's. Now fix a direction d = {d, |v real], d, =+ 1. The definition of
the periods is altered by replacing k& by k3. ¥ by V' + d, V!, and requiring
the units in gt.o be positive in all the real places v: Lemma 1{1); L(r,n) depends
also on the sign of r,, L{r (~1),.n) = d,,"L{r.n) (and of course also on our choice
of d); Lemma 1(4): (-1)" is replaced by (=1)"'""2 In the definition of the cycles
replace again ko by £2, so that ](a ~[0,0] x (H/Z)U‘:m". and note again that
z{r;,a) depends only on the ideal class of (v;); Lemma 2 and its corollary
remain unchanged. The proof of Birch l.emrma nceds the obvious modification of
keeping track of Lhe directions, but its statement remains true for all finite
characters o satisfying w,(-1) =d, (where we sum over the wide ideal class
representatives 7;'s, and replace (4m)*® by (4n)["m]). From this point onwards
everything remains the same if only we replace "class-group” by "wide class-
group”, k. by k2, and we obtain a distribution gy on Gg, such that for finite

characters w: Gs » Z[w], Lps(w) = f w dup interpolates the classical Lp(w) in
Gs

the sense of Theorem 2 (replacing (4m)*" by (4—11')[‘“0]) and satisfles the func-

tional ¢quation Lpg(w) = wu{=1){(=1)"""%p w(a) Lps(w™).

Remark 4: Having started with a modular form corresponding to a har-
monic form on X we pulled it back to X® in order to construcl the p-adic L-
functions. Thus, from the "p-adic point of view", it seems more natural to start

with a modular form corresponding to a harmonic form on

A
X =y I\ M- (F\NC) I1 (C\ R). Such forms when written adeli-
i=1 v complex v real
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cally take values in Olé 1.,. For v complex IU,, is the complexification of T;(H),
vl

the tangenl space to the quaternions at j. Note that under t.h(;, action of the
maximal compact subgroup SU(2;C), T;(/1) splits as a direct sum of two irredu-
cible representations, one 3 dimensional and the other 1 dimensional. In partic-
alar, # \ € has no complex structure, invariant under the G, action, and hence
X" has no natural complex structure. It seems interesting to ‘mquire what
further structure X*™ possess (besides the Riemannian structure), and what

kind of moduli interpretation X*™ admits.
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