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Abstract

Split group codes are a class of group algebra codes over an abelian group. They

were introduced by Ding, Kohel and Ling in [3] as a generalization of the cyclic duadic

codes. For a prime power q and an abelian group G of order n such that gcd(n, q) = 1,

consider the group algebra Fq2 [G
∗] of Fq2 over the dual group G∗ of G. We prove that

every ideal code in Fq2 [G
∗] whose extended code is Hermitian self-dual is a split group

code. We characterize the orders of finite abelian groups G for which an ideal code of

Fq2 [G
∗] whose extension is Hermitian self-dual exists and derive asymptotic estimates

for the number of non-isomorphic abelian groups with this property.
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1 Introduction

Binary duadic codes were first introduced in 1984 by Leon, Masley and Pless [11] as a

generalization of quadratic residue codes. Smid [28] generalized these results further by

defining duadic codes over arbitrary finite fields in terms of a splitting of the length of the

code. The Q-codes of Pless [20] are then duadic codes over F4 in this setting.

Quadratic residue codes have also been generalized in a different direction (i.e., see [29]).

In this approach, quadratic residue codes are defined as ideals of abelian group algebras,

which is a generalization of cyclic codes. Rushanan [24] proceeded to define duadic codes in

this setting.
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In [3], Ding, Kohel and Ling defined split group codes as ideals of abelian group algebras.

Their construction makes use of a splitting of the abelian group. Under this definition, split

group codes are seen as a generalization of duadic codes.

In this paper, we consider the finite field F = Fq2 and an abelian group G of order n such

that gcd(n, q) = 1. Following the treatment in [3], we work with the dual group G∗ of G and

consider the group algebra F [G∗]. We prove that every ideal code in F [G∗] whose extension

by a suitable parity-check is Hermitian self-dual is a split group code (Corollary 3.7). We

then give sufficient and necessary conditions on the order of the group G for the existence

of Hermitian self-dual extended ideal codes (Theorem 3.11). We conclude the paper by

deriving asymptotic estimates on HSD(x), the number of non-isomorphic abelian groups of

order less than x for which a Hermitian self-dual extended ideal code exists (Theorem 4.3).

2 Preliminaries

All of the results in this section are taken from [3]. In general, these results work for any

finite field but since we will be dealing with Hermitian duality, we restrict our study to finite

fields of square order.

Let R be a finite commutative ring with unity. Let G be its underlying finite abelian

group written additively. Denote the order and exponent of G by n and m, respectively.

Let q be a power of a prime p1 such that gcd(n, q) = 1 or equivalently, gcd(m, q) = 1. Let

F = Fq2. Let K be the smallest extension of F containing all the m-th roots of unity.

Let G∗ be the set of all characters of G into K. The groups G and G∗ are isomorphic. Let

K [G∗] be the group algebra of K over G∗. The elements of K [G∗] are the sums
∑

ψ∈G∗ aψψ

where the aψ’s are elements of K. An ideal I of K [G∗] is called an ideal code.

The dimension of the commutative group algebra K [G∗] over K is n. This group algebra

K [G∗] contains a subgroup isomorphic to G∗. For any character ψ in G∗, we also denote by

ψ the corresponding element in K [G∗].

If x ∈ G and f =
∑

ψ∈G∗ aψψ ∈ K [G∗], define f(x) =
∑

ψ∈G∗ aψψ(x). Thus we can view

the elements of K [G∗] as functions from G to K.

2.1 Ideal codes and Idempotent Generators

An element e of a ring is called an idempotent if e2 = e. An idempotent is called primitive

if for every other idempotent f , either ef = e or ef = 0.

Proposition 2.1 ([3].) The primitive idempotents of K [G∗] are the elements

ex =
1

n

∑

ψ∈G∗

ψ(x)−1ψ,

for each element x of G.
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Proposition 2.2 ([3].) The ring K [G∗] decomposes as a direct sum ⊕x∈GKex. If f ∈
K [G∗], then f has the form

f =
∑

x∈G

f(x)ex.

Every idempotent e in K [G∗] can be uniquely written in the form

e =
∑

x∈X

ex,

for some non-empty subset X of G.

Let X be a non-empty subset of G and define the ideal

IX = {f ∈ K [G∗] | f(x) = 0 for all x ∈ X}.

Corollary 2.3 ([3].) For every ideal I in K [G∗], there is a unique proper subset X of G

such that I = IX and I is generated by the idempotent e =
∑

x/∈X ex.

2.2 Split Group Codes

Let s be an element of R. Consider the endomorphism of G given by τs : x −→ sx. This

induces a map µs on G∗ given by µs(ψ) = ψ ◦ τs for each element ψ of G∗. This extends to

a map on K [G∗], also denoted by µs, defined by µs(f) = f ◦ τs for all f ∈ K [G∗]. That is,

for f ∈ K [G∗], µs(f)(x) = f(sx) for every x ∈ G.

A splitting of G over Z is a triple (Z,X0, X1) which gives a partition G = Z ∪X0 ∪X1

such that there exists an invertible element s of R with τs(X0) = X1 and τs(X1) = X0.

Under these conditions, s is said to split the triple (Z,X0, X1). In addition, an invertible

element r of R is said to stabilize the splitting if τr(X0) = X0 and τr(X1) = X1.

Given a splitting (Z,X0, X1), let C0(K) be the ideal IX0
over K and let C1(K) be the ideal

IX1
over K. The ideal C0(K) is defined as the split group code associated to the splitting,

and the ideal C1(K) is called the conjugate split group code. The following notations are used

to denote some special subcodes: CZ
0 (K) = IZ∪X0

, CZ
1 (K) = IZ∪X1

and CZ(K) = IX0∪X1
.

Let s be an invertible element of R. The element s is said to split the group code C0(K)

if µs(C0(K)) = C1(K) and µs(C1(K)) = C0(K), while s is said to stabilize the code C0(K)

if µs(C0(K)) = C0(K) and µs(C1(K)) = C1(K).

Proposition 2.4 ([3].) Let s be a unit in R. A split group code C0(K) is split or stabilized

by s if and only if s splits or stabilizes (Z,X0, X1), respectively.

Theorem 2.5 ([3].) Let (Z,X0, X1) be a splitting. Let C0(K) be the split group code asso-

ciated to this splitting. Then the following hold:
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1. The codes C0(K) and C1(K) are generated by the idempotents

e =
∑

x/∈X0

ex and f =
∑

x/∈X1

ex.

The codes CZ
0 (K), CZ

1 (K) and CZ(K) are generated by

∑

x∈X1

ex,
∑

x∈X0

ex, and
∑

z∈Z

ez.

2. If the splitting is given by s, then µs induces an equivalence of C0(K) with its conjugate

C1(K), and of the subcode CZ
0 (K) with CZ

1 (K).

3. K [G∗] decomposes as a direct sum CZ(K) ⊕ CZ
0 (K) ⊕ CZ

1 (K).

Corollary 2.6 ([3].) The codes C0(K) and C1(K) have dimension (n+|Z|)/2. The subcodes

CZ
0 (K) and CZ

1 (K) have dimension (n− |Z|)/2. The subcode CZ(K) has dimension |Z|.

2.3 Split Group Codes Over Fq2

In the previous section, the split group codes are defined over the field K which is assumed

to contain all the m-th roots of unity. In this paper, we want our split group codes to be

defined over the subfield F = Fq2 without requiring Fq2 to contain any m-th roots of unity.

In this section, we present sufficient and necessary conditions given in [3] for split group

codes to be defined over a subfield of K.

Let V = V (K) be a vector subspace of Kn = K [G∗]. Define V (F ) = V (K)∩F n. Clearly,

dimF (V (F )) ≤ dimK(V (K)). If equality holds then we say that V is defined over the field

F .

If the vector subspace C0(K) of Kn = K [G∗] is defined over F , we simply write C0 for

the subcode C0(F ) = C0(K) ∩ F n in F n = F [G∗]. In this case, we call C0 the split group

code over F . Similarly, we write C1, C
Z
0 , CZ

1 and CZ for the other codes defined over F .

Note that (m, q) = 1 by assumption, so the integer −q as an element of the finite ring R

is invertible and τq2 is a well-defined automorphism of G. The action of the group generated

by τq2 on the elements of G partitions G into disjoint orbits. These 〈τq2〉-orbits play the

same role as the cyclotomic cosets for the cyclic codes.

Proposition 2.7 ([3].) The idempotents of F [G∗] are those e in K [G∗] of the form

e =
∑

x∈Y

ex,

where Y is a union of 〈τq2〉-orbits in G. An idempotent e in F [G∗] is primitive if and only

if Y = 〈τq2〉x for some x ∈ G.
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Corollary 2.8 ([3].) Let {e1, e2, . . . , er} be the set of all primitive idempotents of F [G∗].

Then every nonzero ideal I of F [G∗] is generated by e =
∑

i∈T ei where T is a non-empty

subset of {1, 2, . . . , r}.

Theorem 2.9 ([3].) Let I be an ideal in K [G∗]. Then the following conditions are equiva-

lent.

1. The ideal I is defined over F .

2. The set X = {x ∈ G | f(x) = 0 for all f ∈ I} is a union of 〈τq2〉-orbits.

3. The idempotent generator of I lies in F [G∗].

Corollary 2.10 ([3].) If C0(K) is defined over F then so is C1(K). Moreover F [G∗] has

the decomposition

F [G∗] = CZ(F ) ⊕ CZ
0 (F ) ⊕ CZ

1 (F ).

If s gives the splitting, then µs gives an equivalence of C0 and C1 and of CZ
0 and CZ

1 .

Theorem 2.11 ([3].) Let C be a code in K [G∗]. The block length, dimension, and minimum

distance are well-defined invariants of C, independent of the field over which C is defined.

3 Hermitian Duality and Extended Ideal Codes in F [G∗]

In this section, we present results concerning the Hermitian orthogonality of ideal codes in

F [G∗]. We prove that every Hermitian self-orthogonal ideal code in F [G∗] is a subcode

of a split group code for some splitting of G given by −q. We then proceed to define an

extension of ideal codes and determine conditions for the extended code to be Hermitian

self-dual. We also give necessary and sufficient conditions on the order of the abelian group

G for the existence of Hermitian self-dual extended ideal codes.

3.1 Hermitian Orthogonality of Ideal Codes in F [G∗]

Let f =
∑

ψ∈G∗ aψψ and g =
∑

ψ∈G∗ bψψ be elements of F [G∗]. The Hermitian inner product

between f and g is defined as 〈f, g〉H =
∑

ψ∈G∗ aψb
q
ψ.

Let C be a code in F [G∗]. The Hermitian dual of C is the ideal C⊥H = {f ∈
F [G∗] | 〈f, g〉H = 0 for all g ∈ C}. The code C is said to be Hermitian self-orthogonal if

C ⊆ C⊥H and is Hermitian self-dual if C = C⊥H .

Theorem 3.5 states the main result of this section. It is a generalization of Proposition

4.4 in [2] to split group codes. We first prove some basic results concerning the Hermitian

duals of split group codes.
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Proposition 3.1 Let f =
∑

ψ∈G∗ aψψ and g =
∑

ψ∈G∗ bψψ be elements of F [G∗]. Then the

Hermitian inner product of f and g is

〈f, g〉H =
1

n

∑

x∈G

f(x)g(−q−1x)q

Proof. Note that µ−q−1(g)(x) = g(−q−1x) =
∑

ψ∈G∗ bψψ(−q−1x) =
∑

ψ∈G∗ bψψ(q−1x)−1.

Thus (µ−q−1(g)(x))q =
∑

ψ∈G∗ b
q
ψψ(q−1x)−q =

∑
ψ∈G∗ b

q
ψψ(x)−1, or equivalently, (µ−q−1(g))q =∑

ψ∈G∗ b
q
ψψ

−1.

Define f ∗ g = f(µ−q−1(g))q. Then the coefficient of the trivial character of f ∗ g is∑
ψ∈G∗ aψb

q
ψ, which is 〈f, g〉H. Expanding f ∗ g in terms of its idempotent decomposition,

we get

f ∗ g =
∑

x∈G

(f(µ−q−1(g))q)(x)ex

=
∑

x∈G

f(x)(µ−q−1(g)(x))qex

=
∑

x∈G

f(x)(g(−q−1x))qex

=
1

n

∑

ψ∈G∗

∑

x∈G

f(x)(g(−q−1x))qψ−1(x)ψ.

Using this expansion, the coefficient of the trivial character of f∗g is 1
n

∑
x∈G f(x)(g(−q−1x))q.

The result follows. 2

Proposition 3.2 Let C be an ideal in K [G∗] which is defined over F . Suppose C = IX for

some non-empty subset X of G. Then C⊥H = IX′ where X ′ = G \ τ−q(X).

Proof. From Theorem 2.9, X is a union of 〈τq2〉-orbits. Let X ′ = G\τ−q(X). Let f ∈ IX′ and

g ∈ C = IX . By Proposition 3.1, 〈f, g〉H = 1
n

∑
x∈G f(x)(g(−q−1x))q. Since X and τ−q(X)

are unions of 〈τq2〉-orbits and clearly x and q2x belong to the same τq2-orbit, it follows

that −q−1x ∈ X if and only if (−q)2(−q−1)x ∈ X if and only if −qx ∈ X if and only if

(−q)(−q)x ∈ τ−q(X) if and only if x ∈ τ−q(X). Thus g(−q−1x) = 0 for all x ∈ τ−q(X). Since

f ∈ IX′ , f(x) = 0 for every x ∈ X ′ = G \ τ−q(X). Therefore
∑

x∈G f(x)(g(−q−1x))q = 0,

implying that 〈f, g〉H = 0. Thus IX′ ⊆ C⊥H . Comparing dimensions, we get C⊥H = IX′ .

2

Remark. We note that for any subset X of G which is a union of 〈τq2〉-orbits of G, we have

τ−q−1(X) = τ(−q)2(τ−q−1(X)) = τ−q(X).

Proposition 3.3 Let (Z,X0, X1) be a splitting of G over Z where Z, X0 and X1 are unions

of 〈τq2〉-orbits. The ring element −q splits or stabilizes C0 if and only if −q−1 splits or

stabilizes C0, respectively.
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Proof. Using Proposition 2.4, we need only show that −q splits or stabilizes (Z,X0, X1)

if and only if −q−1 splits or stabilizes (Z,X0, X1), respectively. From the remark above,

τ−q−1(X0) = τ−q(X0) and τ−q−1(X1) = τ−q(X1). The result follows. 2

Proposition 3.4 Let (Z,X0, X1) be a splitting of G over Z. Assume that Z, X0 and X1

are unions of 〈τq2〉-orbits. Suppose Z is stabilized by τ−q. Then C⊥H

Z = CZ
0 ⊕ CZ

1 . If −q
splits C0, then C⊥H

0 = CZ
0 . If −q stabilizes C0, then C⊥H

0 = CZ
1 .

Proof. Note that τ−q−1(Z) = τ(−q)2(τ−q−1(Z)) = τ−q(Z) and by assumption, τ−q(Z) = Z.

Let f ∈ CZ = IX0∪X1
and let g ∈ CZ

0 ⊕ CZ
1 . Then

〈f, g〉H =
1

n

∑

x∈G

f(x)(g(−q−1x))q = 0,

since f(x) = 0 for all x ∈ X0 ∪X1 and g(−q−1x) = 0 for all x ∈ Z. Thus CZ
0 ⊕ CZ

1 ⊆ C⊥H

Z .

Comparing dimensions, we have C⊥H

Z = CZ
0 ⊕ CZ

1 .

Suppose −q splits C0. Let f ∈ C0 and g ∈ CZ
1 . Note that τ−q−1(Z) = Z. By assumption,

τ−q(X1) = X0, or equivalently, τ−q−1(X1) = X0. Clearly f(x) = 0 for all x ∈ X0 and

g(−q−1x) = 0 for all x ∈ Z ∪X1. Thus

〈f, g〉H =
1

n

∑

x∈G

f(x)(g(−q−1x))q = 0,

implying that CZ
0 ⊆ C⊥H

0 . Comparing dimensions, we have C⊥H

0 = CZ
0 .

Suppose −q stabilizes C0. Then τ−q−1(X1) = τ−q(X1) = X1. Let f ∈ C0 and g ∈ CZ
1 .

Clearly f(x) = 0 for all x ∈ X0 and g(−q−1x) = 0 for all x ∈ Z ∪X1. Thus

〈f, g〉H =
1

n

∑

x∈G

f(x)(g(−q−1x))q = 0,

implying that CZ
1 ⊆ C⊥H

0 . Comparing dimensions, we have C⊥H

1 = CZ
0 . 2

We now prove the main result of this section.

Theorem 3.5 Let C = IX be an ideal in F [G∗]. Then C is Hermitian self-orthogonal if

and only if C = CZ
0 for some splitting (Z,X0, X1) of G which is split by −q (that is, C is a

subcode of a split group code which is split by −q).

Proof.

(⇐=) Suppose (Z,X0, X1) is a splitting of G which is split by −q. Let C = CZ
0 . By

Proposition 3.4, C⊥H = (CZ
0 )⊥H = C0 ⊇ CZ

0 = C.

(=⇒) Let C⊥H = IX′ . By Proposition 3.2, X ′ = G \ τ−q(X). By assumption, C ⊆ C⊥H .

Thus X ′ ⊆ X, or G \ τ−q(X) ⊆ X. Note that both X and X ′ are unions of 〈τq2〉-orbits.
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Write X = Z ∪ X0 with τ−q(Z) = Z and Z ∩ X0 = ∅. Since τ−q either fixes a 〈τq2〉-orbit

or it sends it to another 〈τq2〉-orbit, we are actually choosing Z as the union of 〈τq2〉-orbits

contained in X which are fixed by τ−q and X0 as the complement of Z in X, so that clearly

τ−q(X0) ∩X0 = ∅.
We first show that neither Z nor X0 is empty. If 0 /∈ X then 0 /∈ τ−q(X), which implies

that 0 ∈ G \ τ−qX. But G \ τ−q(X) ⊆ X, implying that 0 ∈ X, a contradiction. Thus

0 ∈ X, and so by our choice of partition of X, 0 ∈ Z proving that Z 6= ∅. If X0 = ∅ then

X = Z and τ−q(X) = X. Thus X ′ = G \ τ−q(X) = G \X which implies that X ′ ∩X = ∅, a

contradiction since X ′ ⊆ X. Thus X0 6= ∅.
Note that X ′ = G\τ−q(X) = G\Z∪τ−q(X0). Since X0∩Z = X0∩τ−q(X0) = ∅, we have

X0 ⊆ X ′. Consider τ−q(X
′) = G\X. Since X ′ ⊆ X, it follows that τ−q(X

′)∩X ′ = ∅ and τ−q
does not fix any 〈τq2〉-orbit contained in X ′, implying that X ′ ⊆ X0. Hence X ′ = X0. Let

X1 = τ−q(X
′). Then (Z,X0, X1) gives a splitting of G such that τ−q(Z) = Z, τ−q(X0) = X1

and τ−q(X1) = X0 and C = IX = IZ∪X0
= CZ

0 . 2

3.2 Extensions of Ideal Codes in F [G∗]

Using the terminology of split group codes, duadic codes are easily seen to be split group

codes for splittings of G over Z = {0} where G is cyclic (see Example III.1 of [3]). In [2],

we defined an extension for an odd-like duadic code and gave a sufficient condition for the

extended code to be Hermitian self-dual. In this section, we consider split group codes for

the abelian group G with splittings over Z = {0} and derive analogous results regarding

Hermitian self-duality of the extended split group codes.

Let the order n of the abelian group G be odd. Consider the equation

1

n
+ γq+1 = 0, (1)

which is solvable in Fq2 . Let γ be a solution to (1). For each f ∈ F [G∗], define f̃ =

(f,−γf(0)) ∈ F [G∗] × F . If C is a code in F [G∗] then the extended code C̃ is defined as

the subspace

C̃ = {f̃ = (f,−γf(0)) | f ∈ C} ⊆ F [G∗] × F.

Proposition 3.6 Let (Z = {0}, X0, X1) be a splitting of G where Z, X0 and X1 are unions

of 〈τq2〉-orbits. Let C0 be the corresponding split group code defined over F = Fq2 .

1. The extended codes C̃0 and C̃1 are equivalent.

2. If −q splits C0, then C̃0

⊥H

= C̃0 and C̃1

⊥H

= C̃1.

3. If −q stabilizes C0, then C̃0

⊥H

= C̃1 and C̃1

⊥H

= C̃0.
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Proof. The equivalence of C̃0 and C̃1 is an immediate consequence of Theorem 2.5.

Suppose −q splits C0. Let f , g be elements of C0. From Proposition 3.3, −q−1 also splits

C0. Thus µ−q−1(g) ∈ C1. Note that −q−1x ∈ X0 ⇐⇒ x ∈ τ−q−1(X0) = X1. It follows that

f(x) = 0 for all x ∈ X0 and g(−q−1x) = 0 for all x ∈ X1. Hence using Proposition 3.1, we

get

〈f, g〉H =
1

n
f(0)g(0)q = −γq+1f(0)g(0)q.

Thus 〈f̃ , g̃〉H = 0 and C̃0

⊥H

= C̃0. By a similar argument, it can be shown that C̃1

⊥H

= C̃1.

Suppose −q stabilizes C0. Let f ∈ C0 and let g ∈ C1. The element −q−1 also stabilizes

C0 and µ−q−1(g) ∈ C0. Again, −q−1x ∈ X1 ⇐⇒ x ∈ τ−q−1(X1) = X1. So f(x) = 0 for all

x ∈ X0 and g(−q−1x) = 0 for all x ∈ X1. Thus

〈f, g〉H =
1

n
f(0)g(0)q = −γq+1f(0)g(0)q,

and so 〈f̃ , g̃〉H = 0 and C̃0

⊥H

= C̃1. Similarly, C̃1

⊥H

= C̃0. 2

Corollary 3.7 Let C = IX be a group code defined over F . The extended code C̃⊥H is

Hermitian self-dual if and only if C is a split group code for some splitting (Z = {0}, X0, X1)

of G by −q.

Proof.

(⇐=) This follows directly from the previous theorem.

(=⇒) Since C̃⊥H is Hermitian self-dual, the dimension of C is n+1
2

and so C cannot be

Hermitian self-orthogonal. This fact combined with the assumption that C̃⊥H is Hermitian

self-dual implies that 0 /∈ X. Let Ce = IX∪{0}. This subcode Ce is Hermitian self-orthogonal

and has dimension n−1
2

. By Theorem 3.5, Ce is a subcode of a split group code which is split

by −q, that is, Ce = CZ
0 for some splitting (Z,X0, X1) of G by −q. Since dim Ce = n−1

2
and

dim CZ
0 = n−|Z|

2
, it follows that Z = {0}. Hence X = X0 and C is a split group code of G

which is split by −q. 2

3.3 Existence of Hermitian Self-dual Extended Ideal Codes

In view of Theorem 3.5 and Corollary 3.7, it is natural to ask under what conditions we

obtain splittings over Z = {0} of an abelian group G by −q. Such conditions would guaran-

tee existence of Hermitian self-orthogonal codes and Hermitian self-dual extended codes in

F [G∗]. We remark that the results in this section are generalizations of results on extended

duadic codes in [2].

Define ordr(q) to be the smallest positive integer t such that qt ≡ 1 (mod r). If l is a

positive odd integer relatively prime to q then l is said to be split by −q over Fq2 if and

only if the set X = {1, 2, . . . , l} has a partition X = X0 ∪X1 such that (−q)X0 = X1 and

(−q)X1 = X0, where the multiplication is read modulo l.
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Proposition 3.8 ([2].) Let l be a positive odd integer which is relatively prime to q. The

integer l has a splitting by −q if and only if ordr(q) 6≡ 2 (mod 4) for every prime r dividing

l.

Theorem 3.9 Let G be an abelian group of order n. The group G has a splitting over

Z = {0} given by −q if and only if ordr(q) 6≡ 2 (mod 4) for every prime r dividing n.

Proof. The abelian group G is isomorphic to a unique product of cyclic groups of the form

Zm1
× Zm2

× . . .× Zms
,

where mi divides mi+1 for i = 1, 2, . . . , s− 1, and ms = m where m denotes the exponent of

G.

If each summand Zmi
has a splitting over Z = {0} given by −q then G also has a splitting

over Z = {0} given by −q. Indeed if ({0}, X (i)
0 , X

(i)
1 ) is a splitting by −q of Zmi

for each

i = 1, 2, . . . , s then letting

Xt = X
(1)
t × Zm2

× Zm3
× · · · × Zms

∪ {0} ×X
(2)
t × Zm3

× · · · × Zms

∪ {0} × {0} ×X
(3)
t × Zm4

× · · · × Zms

...

∪ {0} × {0} × {0} × · · · × {0} ×X
(s)
t

for t = 0, 1, ({0}, X0, X1) gives a splitting of G by −q. Conversely, suppose that G has a

splitting over Z = {0} given by −q. Let Zi = {0} × {0} × . . .× Zmi
× {0} × . . . {0} be the

subgroup of G isomorphic to Zmi
. If (Z = {0}, X0, X1) gives a splitting for G by −q, then

(Z = {0},Zi ∩ X0,Zi ∩ X1) gives a splitting for Zi given by −q. Hence using Proposition

3.8, G has a splitting over Z = {0} given by −q if and only if each summand Zmi
has a

splitting over Z = {0} given by −q if and only if mi is split by −q for all i = 1, 2, . . . , m if

and only if ordr(q) 6≡ 2 (mod 4) for every prime r dividing mi for all i = 1, 2, . . . , s if and

only if ordr(q) 6≡ 2 (mod 4) for every prime r dividing m. But the primes dividing m are

precisely the primes dividing n. Thus G has a splitting over Z = {0} given by −q if and

only if ordr(q) 6≡ 2 (mod 4) for every prime r dividing n. 2

Example: Let G = Z3 × Z9 and F42 = F16. Note that ord3(4) = 1 and by Theorem 3.9

the abelian group G has a partition which is split by −4. The cyclic groups Z3 and Z9

have splittings by the multiplier µ−4 given by ({0}, A1, A2) and ({0}, B1 ∪ B3, B2 ∪ B6),

respectively, where Ai is the 16-cyclotomic coset modulo 3 containing i and Bj is the 16-

cyclotomic coset modulo 9 which contains j. Define C(i,j) as the orbit of τ16 in G containing

(i, j). Letting X0 = C(1,0) ∪ C(1,1) ∪ C(1,2) ∪ C(1,3) ∪ C(1,6) ∪ C(0,1) ∪ C(0,3) and X1 = C(2,0) ∪
C(2,1)∪C(2,2)∪C(2,3)∪C(2,6)∪C(0,2)∪C(0,6), the set ({(0, 0)}, X0, X1) gives a splitting of G by

10



−4. Notice that this partition can be obtained from the splittings of Z3 and Z9 as described

in the proof. 2

We remark that ordr(q) 6≡ 2 (mod 4) means that either ordr(q) is odd or ordr(q) is doubly

even. It can easily be verified that ordr(q) is doubly even if and only if ordr(q
2) is even.

Thus Theorem 3.9 can be restated as:

Theorem 3.10 Let G be an abelian group of order n. The group G has a splitting over

Z = {0} given by −q if and only if for every prime r dividing n, either ordr(q) is odd or

ordr(q
2) is even.

Thus we get the following condition for the existence of extended ideal codes of F [G∗] which

are Hermitian self-dual.

Theorem 3.11 Let G be an abelian group of order n. An ideal code of F [G∗] whose exten-

sion is Hermitian self-dual exists if and only if for every prime r dividing n, either ordr(q)

is odd or ordr(q
2) is even.

Proof. This is a direct consequence of Corollary 3.7 and Theorem 3.10. 2

We note that the same result as the preceding theorem was obtained by Mart́ınez-Pérez and

Willems in [14] for ideal codes in a group algebra over any finite group.

4 Counting Hermitian self-dual extended abelian group

codes

Theorem 3.11 raises the question of counting the number of non-isomorphic abelian groups

of order ≤ x for which an ideal code of F [G∗] whose extension is Hermitian self-dual exists.

An estimate for this quantity is provided by Theorem 4.3.

Let q = pt1 be a prime power and let Pq be the set of primes r 6= p1 for which ordr(q)

is odd or ordr(q
2) is even. Let Pq(x) be the associated counting function. The primes r

not counted, that is the primes r such that ordr(q) ≡ 2(mod 4) or the prime r = p1 can be

shown, see [2], to have a natural density δ(q) that is given by the following formula (with λ

the exponent of 2 in the factorisation of t):

δ(q) = δ(pt1) =





7/24 if p1 = 2 and λ = 0;

1/3 if p1 = 2 and λ = 1;

2−λ−1/3 if p1 = 2 and λ ≥ 2;

2−λ/3 if p1 6= 2.

It can be proved, see [2, Lemma A.3], that

Pq(x) = (1 − δ(q))Li(x) +Oq

(
x(log log x)4

log3 x

)
, (2)

11



where the subscript q indicates that the implied constant may depend on q and Li(x) =∫ x

2
dt/ log t denotes the logarithmic integral.

Let Gq be the subsemigroup of the natural numbers generated by the primes in Pq. Let

HSD(x) count the number of non-isomorphic abelian groups of order n with (n, q) = 1 and

n ≤ x for which an ideal code of F [G∗] whose extension is Hermitian self-dual exists. Then

by Theorem 3.11 we have that

HSD(x) =
∑

n≤x, n∈Gq

a(n),

where a(n) denotes the number of non-isomorphic abelian groups having n elements.

Thus we are naturally led to study the behaviour of a(n) on subsemigroups G of the

natural numbers. For our purposes it is enough to restrict to subsemigroups G that are

generated by a set P of primes satisfying

P(x) = τLi(x) + EP(x), (3)

where 0 < τ < 1 and the error term EP(x) is small enough.

Although the literature on a(n) is quite extensive, the latter problem does not seem

to have been studied before. Before delving into it, we recall some relevant facts on the

behaviour of a(n).

4.1 Counting non-isomorphic abelian groups

It is easy to see that a(n) is a multiplicative function with the property that a(pk) = P (k)

for every prime p and every integer k ≥ 1, where P (k) denotes the number of unrestricted

partitions of k. Thus a(pk) does not depend on p but only on k, so that a(n) is a “prime

independent” multiplicative function.

An analytic approach to a(n) is based on the fact that the Dirichlet series associated

with this function may be written as products of the Riemann zeta function, which is defined

for <(s) > 1 as ζ(s) =
∑∞

n=1 n
−s =

∏
p (1 − p−s)

−1
and otherwise by analytic continuation.

Using the well-known identity

∞∑

k=0

P (k)xk =
∞∏

m=1

1

1 − xm
, |x| < 1,

one finds that, for <(s) > 1,

∞∑

k=0

a(pk)

pks
=

∞∑

k=0

P (k)

pks
=

∞∏

m=1

1

1 − 1
pms

,

and thus, using the multiplicativity of a(n),

∞∑

n=1

a(n)

ns
=

∏

p

∞∑

k=0

a(pk)

pks
=

∏

p

∞∏

m=1

1

1 − 1
pms

=

∞∏

m=1

ζ(ms).

12



Using the standard results from tauberian theory, one obtains

∑

n≤x

a(n) ∼ x
∞∏

m=2

ζ(m), x→ ∞,

from this. By much more refined methods, it can be shown that

∑

n≤x

a(n) =
3∑

m=1

cmx
1/m + E(x), cm =

∞∏

k=1
k 6=m

ζ

(
k

m

)
,

where the estimates for the error term E(x) have a long history of improvements, with the

best result to date being due to Robert and Sargos [25], who proved that |E(x)| � x1/4+ε.

Furthermore one has, see [4, p. 274], c1 = 2.2948565916 · · · , c2 = −14.6475663016 · · · and

c3 = 118.6924619727 · · · .
Thus on average a(n) is constant (namely about 2.29). Individual values, however, might

get large. In this direction Krätzel [10] proved that

lim
n→∞

sup log(a(n))
log logn

log n
=

log 5

4
, (4)

which implies that a(n) � nε for every ε > 0.

Ivić [9] has pointed out that C(x), the number of distinct values assumed by a(n) for

n ≤ x, satisfies the bound

C(x) ≤ exp((1 + o(1))2π
√

log x/3 log log x). (5)

The reason for this (see [9, pp. 130-131]) is that there are

exp((1 + o(1))2π
√

log x/3 log log x)

integers n ≤ x of the form

n = 2a23a3 · · · pap , a2 ≥ a3 ≥ · · · ≥ ap ≥ 1, (6)

which is a classical result of Hardy and Ramanujan [23, pp. 245-261]. Suppose that a(n) is

counted by C(x), and let

n = pb11,1 · · · pbk1,k, b1 ≥ b2 ≥ · · · ≥ bk ≥ 1,

be the canonical decomposition of n. Then if m = 2b13b2 · · · pbkk , we have m ≤ n and

a(m) = P (b1) · · ·P (bk) = a(n). Therefore C(x) does not exceed the number of n ≤ x having

the form (6) and hence inequality (5) holds.

Note that if f is any prime independent function, then the number of distinct values

assumed by it for n ≤ x satisfies the same upperbound as in (5).
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4.2 Summing a(n) over G
Let χG be the characteristic function of G, i.e.,

χG(n) =

{
1 if n is in G;

0 otherwise.

We consider ∑

n≤x, n∈G

a(n) =
∑

n≤x

χG(n)a(n).

Note that χG(n)a(n) is multiplicative in n.

Theorem 4.1 If (3) is satisfied with EP(x) = O(x log−1−γ x) and 0 < γ < 1, then

∑

n≤x, n∈G

a(n) = xb0 logτ−1 x+OG(x logτ−1−γ/2 x).

If (3) is satisfied with EP(x) = O(x log−2−γ x) and γ > 0. Then

∑

n≤x, n∈G

a(n) = x
∑

0≤ν<γ

bν logτ−1−ν x+OG(x logτ−1−γ+ε x), (7)

where b0, b1, . . . are constants possibly depending on G and

b0 =
1

Γ(τ)
lim
s↓1

(s− 1)τ
∑

n∈G

a(n)

ns
> 0.

The proof uses the following lemma, which except for the formula for b0 is taken from [17].

The formula for b0 is well-known.

Lemma 4.2 [17]. Let f : N≥0 → R≥0 be a multiplicative function satisfying

0 ≤ f(pr) ≤ c1c
r
2, c1 ≥ 1, 1 ≤ c2 < 2, (8)

and ∑

p≤x

f(p) = τLi(x) +O(x log−2−γ x), (9)

where τ > 0 and γ > 0 are fixed, then, for ε > 0,

∑

n≤x

f(n) = x
∑

0≤ν<γ

bν logτ−1−ν x +O(x logτ−1−γ+ε x),

where b0 = 1
Γ(τ)

lims↓1(s− 1)τ
∑∞

n=1 f(n)n−s.
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Proof of Theorem 4.1. The first assertion has been proved by Odoni [19] using a tauberian

remainder theorem due to Subhankulov. 2

In order to prove the second assertion we apply Lemma 4.2 with f(n) = a(n)χG(n). The

fact that condition (8) is satisfied follows from the classical result of Hardy and Ramanujan

(see [23, p. 240]), that a(pr) = P (r) = (1 + o(1))(4
√

3r)−1eπ
√

2r/3 as r tends to infinity.

However, the much more easily proved upperbound P (r) ≤ 5r/4, see [10], is already sufficient

in order to show that (8) is satisfied. The assumption on EP(x) ensures that condition (9)

is satisfied. On invoking Lemma 4.2 the proof is then completed.

For our problem at hand we the find the following estimate:

Theorem 4.3 Let HSD(x) count the number of non-isomorphic abelian groups of order n

with (n, q) = 1 and n ≤ x for which an ideal code of F [G∗] whose extension is Hermitian

self-dual exists. Then

HSD(x) = b0
x

logδ(q) x
+Oε,q

(
x

logδ(q)+1−ε x

)
,

where

b0 =
1

Γ(1 − δ(q))
lim
s↓1

(s− 1)1−δ(q)
∑

n∈G

a(n)

ns
.

4.3 The connection with free arithmetical semigroups

A much weaker form of Theorem 4.3 is obtained as a straightforward consequence of Bredikhin’s

Theorem, which is a basic result in the theory of free arithmetical semigroups.

Let G be a commutative semigroup with identity element 1, relative to a multplication

operation denoted by juxtaposition. Suppose that G has a finite or countably infinite subset

P of generators and that G is free. This means that every element n in G has a unique

factorisation of the form n = ωa11 · ωa22 · · ·ωar
r , where the ωr are distinct elements of P , the

ai are possible integers, and uniqueness is up to order of factors. A free semigroup will be

called a free arithmetical semigroup if in addition there exists a homomorphism of G into

some multiplicative semigroup G consisting of real numbers such that for every x > 0, G

contains only finitely many elements n with |n| ≤ x, where |n| denotes the image (or norm)

of the element n of G under the homomorphism |.|. (In the older literature the generators

of G are called Beurling’s generalized primes.) Bredikhin’s theorem, for a proof see e.g. [22,

pp. 92-99], then reads as follows:

Theorem 4.4 (Bredikhin.) If G is a free arithmetical semigroup such that

∑

|ω|≤x, ω∈G

1 = τ
x

log x
+O

(
x

log1+γ x

)
, (10)
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where τ > 0 and γ > 0 are fixed, then

∑

|n|≤x

n∈G

1 = CGx logτ−1 x +O(x logτ−1 x(log log x)−γ1),

where γ1 = min(1, γ) and CG = Γ(τ)−1 lims↓1(s− 1)τ
∑

n∈G |n|−s.

Now consider the free arithmetical semigroup G of all non-isomorphic finite abelian

groups with as composition the usual direct product operation and as norm function |A| =

card(A). By the fundamental theorem on finite abelian groups, G is a free arithmetical

semigroup having C(p), C(p2), C(p3), · · · as generators, where p runs over all the primes

and C(n) is the cyclic group of order n. Since the number of cyclic groups of prime power

order whose norm is not prime having norm ≤ x is O(
√
x log x), by the prime number

theorem in the form π(x) = x/ log x + O(x/ log2 x), (10) is satisfied with τ = 1 and γ = 1.

It then follows from Bredikhin’s theorem that

∑

|n|≤x

n∈G

1 =
∑

n≤x

a(n) = x

∞∏

m=2

ζ(m) +O

(
x

log log x

)
,

where we have used the observations that
∑

n∈G |n|−s =
∑

n a(n)n−s =
∏∞

m=1 ζ(ms) and

lims↓1(s− 1)ζ(s) = 1.

Now let Gq be the free arithmetical semigroup generated by all cyclic groups of the

form C(p), C(p2), C(p3), . . ., with ordp(q) is odd or ordp(q
2) is even. Then similarly using

Bredikhin’s theorem we obtain the result in Theorem 4.3 with the much weaker error term

Oq(x log−δ(q) x(log log x)−1).

4.4 The maximal order of a(n) on G
In this section we indicate what Krätzel’s result (4) looks like when one considers the maximal

order of a(n) on the subsemigroup G.

Theorem 4.5 Let A = A(n) be the smallest integer such that

∑

p∈P , p≤A

log p ≥ (log n)/4.

Then as n tends to infinity and runs through the elements of G, the estimate

log a(n) ≤ P(A) log 5 +O(P(Aθ) logA),

holds with θ = log(121)/ log(125) < 0.994, and there are infinitely many integers n, n ∈ G,

for which one has log a(n) = P(A) log 5.
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Proof. Completely similar to that of the (only) theorem in Schwarz and Wirsing [26], who

proved this result in case P is the full set of primes. In their proof one merely intersects

every range of primes that occurs with P. 2

Remark. The implicit constant in the order term can taken to be

2π2

3 log 5 · log 2
= 5.898 · · ·

Theorem 4.6 If P(x) ∼ τx/ log x as x tends to infinity, then

lim
n→∞

sup
n∈G

log(a(n))
log logn

log n
=

log 5

4
.

Proof. By a standard argument in elementary number theory it follows that if P(x) ∼
τx/ log x, then

∑
p∈P , p≤x log p ∼ τx, A(n) ∼ (log n)/(4τ) and P(A) ∼ logn/(4 log log n).

On invoking Theorem 4.5 the result then follows. 2

Remark. Let p1, p2, · · · denote the consecutive primes in P. Let nr =
∏r

i=1 p
4
i . Suppose that

P(x) ∼ τx/ log x as x tends to infinity. We leave it as an exercise to the reader to show that

lim
r→∞

log(a(nr))
log log nr

log nr
=

log 5

4
.

Remark. It is rather surprising that in Theorem 4.6 the estimate does not depend on τ . A

similar situation arises if one compares the maximal order of log d(n) with that of log r(n),

where d(n) denotes the number of divisors of n and r(n) the number of way n can be written

as a sum of two squares. Jacobi proved that r(n) = 4{d1(n)−d3(n)}, where d1(n) and d3(n)

denote the number of the divisor of n of the form 4k+1 and 4k+3, respectively. Thus r(n)

counts (crudely) the divisors of n made up of prime ≡ 1(mod 4). These primes have density

1/2 amongst all primes, but nevertheless the maximal orders of log d(n) and log r(n) are the

same. Namely, we have

lim
n→∞

sup log(d(n))
log logn

log n
= log 2, lim

n→∞
sup log(r(n))

log log n

logn
= log 2.

For further details see e.g. Nicolas [18]. The maximal order for log d(n) was first determined

by S. Wigert in 1907. Hardy and Wright [5, Theorem 338] erroneously give (log 2)/2 instead

of log 2 in the result for log r(n).

4.5 Counting distinct values assumed by a(n) on G
Let CG(x) denote the number of distinct values assumed by a(n) with n ∈ G and n ≤ x.

Theorem 4.7 Let p0 be the smallest prime in P. Suppose that there are positive constants

c3 and c4 such that, for x ≥ p0,

c3x <
∑

p∈P , p≤x

log p < c4x,
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then

logCG(x) ∼ logC(x) ∼ (1 + o(1))2π
√

log x/3 log log x,

as x tends to infinity.

Proof. Very similar to that given in [23, pp. 245-261]. Instead of defining ln to be the product

of the first n consecutive primes, we define it to be the product of the first n consecutive

primes in P. Then instead of (3.23) we find φ(s) > c1
∫ ∞

p0
e−c1sxdx/ log x+O(1) and instead

of (3.24) we find φ(s) < c2
∫ ∞

p0
e−c2sxdx/ log x+O(1). This, through Lemma 3.4, then leads

to the same asymptotic for φ(s) as in the paper of Hardy and Ramanujan. This then results

in the same asymptotic for CG(x) as that for C(x). 2

Acknowledgements. The first author gratefully acknowledges financial support from the

University of the Philippines and from the Philippine Council for Advanced Science and

Technology Research and Development through the Department of Science and Technology.

The second author would like to thank Alexander Ivić for pointing out reference [25] to
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