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ALMOST UNIVERSAL TERNARY QUADRATIC POLYNOMIALS

WITH CONDUCTOR 2

ANNA HAENSCH

Abstract. In this paper we study representations of inhomogeneous qua-

dratic polynomials. We call an integral quadratic polynomial (with positive
definite quadratic part) almost universal if it represents all but finitely many

positive integers. Using the machinary of integral lattices and the theory of

primitive spinor exceptions, we provide a characterization of almost universal
ternary quadratic polynomials with conductor 2.

1. Introduction

For a polynomial f(x1, ..., xn) with rational coefficients and an integer a, we say
that f represents a if the diophantine equation f(x1, ..., xn) = a has a solution
over the integers. A fundamental question in quadratic forms asks for an effective
determination of the set of integers represented by f . One particularly interest-
ing question asks, when is a polynomial almost universal; that is, when does a
polynomial represent all but finitely many natural numbers?

Given a quadratic map Q and Zn in the standard basis, the pair (Zn, Q) is a
Z-latice of rank n, which we denote by N . Since the representation behavior for
indefinite lattices is well understood, all lattices in this paper are assumed to be
positive definite; for the indefinite case the reader is referred to the survey paper
by Hsia [10].

A homogeneous integral quadratic polynomial can always be viewed as a qua-
dratic lattice. For rank greater than 4, Tartakowsky’s results in [16] imply that
a lattice is almost universal if it is universal over Zp for every prime p. In the
quaternary case, Bochnak and Oh [1] give an effective method to determine when a
lattice is almost universal, resolving an investigation first initiated by Ramanujan
in [14]. For the ternary case, it is a well known consequence of Hilbert Reciprocity
that a positive definite ternary Z-lattice is aniostropic at an odd number of finite
primes, and therefore is is not universal at these primes. Hence the lattice fails to
represent an entire square class in Qp/Q×p at these primes, and hence cannot be
almost universal.

Therefore, we turn out attention to inhomogeneous quadratic polynomials of the
form

f(x) = Q(x) + L(x) + c,

2010 Mathematics Subject Classification. Primary 11E12, 11E20, 11E25.
Key words and phrases. Primitive spinor exceptions, ternary quadratic forms.
This work has been partially carried out at the Max Planck Institute for Mathematics in Bonn,

Germany. I wish to thank the MPIM for its support and hospitality during my stay. In addition,
I wish to extend my sincerest thanks to Wai Kiu Chan for his patience and support in advising
the thesis from which this work originated.

1



2 ANNA HAENSCH

where Q(x) is a quadratic form, L is a linear form, and c is a constant. It is
not a surprise that we can study the arithmetic of these polynomials from the
geometric perspective of quadratic spaces and lattices. Indeed, Q can be viewed as
the quadratic map on N = (Zn, Q), and associated to Q is the symmetric bilinear
map B. Under the assumption that Q is positive definite, L(x) = 2B(ν, x) for a
unique choice of vector ν in QN which is the quadratic space underlying N . The
choices for ν and N are completely determined by the coefficients of Q and L. Since
the constant c does not contribute anything essential to the arithmetic of f , there
is no harm in assuming that it is equal to zero. Thus, an integer a is represented by
f(x) if and only if Q(ν)+a is represented by the coset ν+N . In general, there is no
local-global principle for representations of integers by cosets of quadratic lattices.
However, when n ≥ 4, Chan and Oh [3, Theorem 4.9] show how the asymptotic
local-global principles for representations with approximation property by Jöchner-
Kitaoka [12] and by Hsia-Jöchner [11] lead to an asymptotic local-global principle
for representations of integers by cosets. Therefore we restrict the discussions of
this paper to the ternary case.

Given a lattice N and a vector ν ∈ QN , we define the conductor m of ν+N as in
[8]; that is, the minimal integer for which mν ∈ N . In [8] we give a characterization
of almost universal ternary inhomogeneous quadratic polynomials where m is an
odd prime power. In this paper, we will restrict our attention to m = 2. Therefore,
we will impose the following assumption through this paper,

(I) 2ν ∈ N,
implying that [M : N ] = 2, where M := Zν + N . The main difference between
the odd case and the even case is that N2 is not necessarily diagonalizable. Con-
sequently, we will impose a few additional assumptions for our convenience; letting
Q(ν+N) and B(ν,N), respectively, denote the Z-ideals generated by Q(ν+x) and
B(ν, x) for all x ∈ N , we require that

(II) Q(ν +N) ⊆ Z and B(ν,N) ⊆ Z.
An immediate consequence of (II) is that Q(ν) ∈ Z, and so we define a positive
integer β := ord2(Q(ν)) and let 2βε := Q(ν) where ε ∈ Z×2 . It also follows from
(II) that n(ν,N) ⊆ Z, where n(ν,N) denotes the integral ideal generated by Q(x)+
2B(ν, x) for all x ∈ N . If Q(x) + 2B(ν, x) were almost universal, then the ternary
Z-lattice M would be almost universal, which cannot happen. Therefore it is logical
to impose one final restriction,

(III) n(ν,N) = 2αZ with α > 0,

and now replace f(x) with

H(x) :=
Q(x) + 2B(ν, x)

2
.

For the remainder of the document we assume that (I), (II), and (III) hold. We
will define an integer λ by

λ :=

{
1 if ord2(dN)− 3β is even

2 if ord2(dN)− 3β is odd.

Let sf(dN)′ denote the odd square-free part of dN . Now we state the main theorem,
the proof of which will be given in section 3, after establishing several technical
lemmas.
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Theorem 1. H(x) is almost universal if and only if Np represents all of Zp for
every odd prime p, and one of the following holds:

(1) α = β + 1, and
(a) B(ν,N2) = 2β−1Z2; or,
(b) B(ν,N2) ⊆ 2βZ2, and

(i) 2s(N) = n(N) = 2β+2; or,
(ii) N2 diagonalizable and ord2(dN) = 3 + 3β; or,
(iii) N2 is diagonalizable, ord2(dN) = 5 + 3β. and B(ν,N2) = 2β+1Z.

(2) α = β + 2, and
(a) B(ν,N2) = 2βZ2, and

(i) ord2(dN)− 3β is odd; or
(ii) ord2(dN)− 3β = 4; or,

(iii) sf(dN)′ is divisible by a prime p for which
(
−λ
p

)
= −1; or,

(iv) N2 has a binary Jordan component with the square free part of its
discriminant congruent to 5 mod 8; or,

(b) B(ν,N2) = 2β+1Z2, n(G2) = 2β+2Z2, where G2 is the orthogonal comple-
ment of ν in N2, and
(i) ord2(dN)− 3β is odd; or,
(ii) ord2(dN)− 3β = 6; or,

(iii) sf(dN)′ is divisible by a prime p for which
(
−λ
p

)
= −1.

(3) α = β + 3, and
(a) G2 is not diagonalizable; or,
(b) n(G2) = 2αZ2, and ord2(dN)− 3β is even, or ord2(dN) = 9 + 3β; or,
(c) n(G2) = 2α+1Z2 and ord2(dN)− 3β is odd; or,

(d) sf(dN)′ is divisible by a prime p satisfying
(
−λ
p

)
= −1; or,

(e) sf(dN)′ 6≡ Q(ν)′ mod 8; or,
(f) n(G2) = 2αZ2 and 2αQ(ν) is not represented by G2.

(4) α = β + 2 or β + 3, and 2β sf(dN)′−Q(ν)
2α is represented by H(x).

2. Preliminaries

Henceforth, the language of quadratic spaces and lattices as in [13] will be
adopted, and the notation will follow that used in [8]. Any unexplained notation
and terminology can be found there and in [13].

The subsequent discussion involves the computation of the spinor norm groups
of local integral rotations and the relative spinor norm groups of primitive rep-
resentations of integers by ternary quadratic forms. The formulae for all these
computations can be found in [5], [6], [7], and [9]. A correction of some of these
formulae can be found in [2, Footnote 1]. Following the notation set forth in [13,
§55], the symbol θ always denotes the spinor norm map. If t is an integer rep-
resented primitively by gen(K) and p is a prime, then θ∗(Kp, t) is the primitive
relative spinor norm group of the Zp-lattice Kp. If E is a quadratic extension of Q,
Np(E) denotes the group of local norms from Ep to Qp, where p is an extension of
p to E.

Lemma 2. If H(x) is almost universal, then Np represents all of Zp whenever p is
odd, and consequently,

(1) Mp
∼= 〈1,−1,−dM〉 and θ(O+(Mp)) ⊇ Z×p for all odd primes p;
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(2) Q2M = Q2N is anisotropic; and,
(3) if t is a primitive spinor exception of gen(M), then E := Q(

√
−tdM) is either

Q(
√
−1) or Q(

√
−2).

Proof. For (1) and (2), see [2, Lemma 2.1]; for (3) see [2, Lemma 2.3]. �

As an immediate consequence of Lemma 2, if H(x) is almost universal, then
β < α, or else Q2N is isotropic. Furthermore, Q(2ν) + 2B(ν, 2ν) ∈ 2β+3Z, and
consequently, β < α ≤ β + 3.

If H(x) is almost universal, then by Lemma 2, n(Np) = Zp for all odd p. Con-
sequently, if H(x) is almost universal, then n(N) ⊆ 2Z, since n(ν,N) = 2αZ for
α > 0. Furthermore, if s(N2) = Z2, then N2

∼= A ⊥ 4〈η〉 in the basis {e1, e2, e3},
where η ∈ Z×2 an A := A(2, 2) as in [13, §93B]. But then, M2

∼= A ⊥ 〈ε〉 in the basis
{e1, e2, ν} fails to represent all ε+ 4δ with δ ∈ Z×2 . Therefore, we may assume that
s(N2) ⊆ 2Z2.

Lemma 3. If Np represents all of Zp whenever p is odd, then

2β+1Z2 ⊆ B(ν,N2) ⊆ 2β−1Z2.

Proof. Suppose that Np represents all of Zp whenever p is odd, and therefore N2

is anisotropic by Lemma 2. The left-hand containment is obvious since B(ν,N2)
contains 2Q(ν) ∈ 2β+1Z×2 . For the sake of contradiction, suppose that the right-
hand containment does not hold, that is, suppose that 2β−2Z2 ⊆ B(ν,N2). Since
α > β by Lemma 2, this implies that n(N2) = 2iZ2, where i < β.

First suppose that s(N2) = n(N2). Then N2
∼= 〈2iη〉 ⊥ K2 in a basis {e1, e2, e3},

where η ∈ Z×2 , and K2 is some binary lattice. Then ν = ae2+be2+ce3
2 , where

a, b, c ∈ Z, and Q(e1) + 2B(ν, e1) = 2iη(1 + a2). But since i < β < α, this value is
never in 2αZ, regardless of the parity of a, contradicting assumption (III).

Next, we suppose that 2s(N2) = n(N2), then N2
∼= 2i−1A ⊥ 〈2jη〉 in a basis

{e1, e2, e3}, where i−1 < j. Since N2 is anisotropic we may conclude that i−1 ≡ j
mod 2, so in particular i+ 1 ≤ j. Letting ν = ae1+be2+ce3

2 with a, b, c ∈ Z, we get

Q(ν) = 2i−2(a2 + b2 + ab) + 2j−2ηc2 ∈ 2βZ×2 .

Since i−2 < β and since i−2 < j−2, we may conclude that both a and b are even,
and since j− 2 6= i we may go further to say that at least one of a or b is congruent
to 0 mod 4. Without loss of generality, we will suppose that b ≡ 0 mod 4, then
Q(e1) + 2B(ν, e1) = 2i−1[2(1 + a) + b] ∈ 2iZ×2 , contradicting (III). �

Lemma 4. Let ω = ν+x0, where x0 ∈ N , and define H ′(x) = 1
2α [Q(x) + 2B(ω, x)].

Then,

(1) if n(ν,N) = 2αZ, then n(ω,N) = 2αZ; and,
(2) if H(x) is almost universal, then H ′(x) is almost universal.

Proof. See [8, Lemma 3] �

Remark 5. The rest of this paper is to demonstrate the almost universality of H(x)
under some arithmetic conditions imposed on ν and N . In view of Lemma 4, we
can always change ν to ν + x0 with x0 ∈ N , as long as the arithmetic conditions
are unchanged.
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In view of Lemma 4 and Remark 5, once we’ve fixed a basis {e1, e2, e3} for
N2, it is always possible to write ν = ae1+be2+ce3

2 where 0 ≤ a, b, c ≤ 1. Given
our assumptions (I), (II), (III) and Lemma 2, we now establish some arithmetic
conditions on n(N), s(N) and B(ν,N2). In what follows, η, γ, µ always denote
units in Z×2 .

Lemma 6. If H(x) is almost universal and n(N2) = 2β+1Z2, then s(N2) = n(N2).

Proof. Suppose that n(N2) = 2β+1Z2, and for the sake of contradiction, we will
suppose that s(N2) = 2βZ2. Then N2

∼= 2βA ⊥ 〈2iη〉 in a basis {e1, e2, e3}, where
β < i. But since N2 must represent Q(2ν) ∈ 2β+2Z×2 , it follows that i = β + 2.
But now M2

∼= 2βA ⊥ 〈2βε〉 in a basis {e1, e2, ν}. But M2 fails to represent
all 2βε + 2β+jγ for every γ ∈ Z×2 , and j even. Therefore H(x) is not almost
universal. �

Lemma 7. If H(x) is almost universal, then B(ν,N2) = B(ω,N2) for any ω ∈ ν+N .

Proof. Suppose that H(x) is almost universal, and let ω ∈ ν +N . Combining (III)
and Lemma 4 we know that n(ν,N) = n(ω,N) = 2αZ. From Lemma 3 we know
that B(ν,N2) = 2β+iZ2, where i = −1, 0, 1. If α 6= β+1, then β+i+1 ≤ α, and thus
2B(ν,N2) = 2β+i+1Z2 implies that n(N2) = 2β+i+1Z2. Therefore n(ω,N2) = 2αZ2

implies that B(ω,N) = 2β+iZ2, and hence B(ν,N2) = B(ω,N2).
When α = β + 1 the argument follows as above when i = −1. If i = 0, then

B(ν,N2) = 2βZ2 implies that n(N2) = 2β+1Z2 or 2β+2Z2. If n(N2) = 2β+1Z2,
then it follows from Lemma 6 that s(N2) = 2β+1Z2. In this case, B(ω, x) =
B(ν, x) + B(x0, x) for x0 ∈ N implies that B(ω,N2) = 2βZ2. On the other hand,
if n(N) = 2β+2Z2, then n(ω,N2) = 2β+1Z2 implies that B(ω,N2) = 2βZ2.

If i = 1, then n(ν,N2) = 2β+1Z2 implies that n(N2) = 2β+1Z2. Therefore
B(ω,N2) ⊆ 2βZ2. But if B(ω,N2) = 2βZ2, then this would imply that B(ν, x) +
B(x0, x) ∈ 2βZ, which is impossible in view of Lemma 6. Thus B(ω,N2) = 2β+1Z2.

�

Lemma 8. If Np represents all of Zp for every odd prime p, then the following hold:

(1) If α = β + 3, then B(ν,N2) = 2β+1Z;
(2) If α = β + 2, then B(ν,N2) = 2βZ or 2β+1Z;

and in both cases n(N) = s(N).

Proof. We will suppose throughout that Np represents all of Zp for every p odd.
From Lemma 2, this implies that N2 is anisotropic. Suppose that α = β + 2 or
β + 3, and B(ν,N2) = 2β+iZ2, where i = −1, 0, 1 by Lemma 3. Under assumption
(III), we get that n(N) = 2β+i+1Z.

Suppose that n(N) = s(N). Then, N2
∼= 〈2β+i+1η〉 ⊥ K2 in a basis {e1, e2, e3},

where K2 is some binary lattice. Letting 2ν = ae1 + be2 + ce3, where 0 ≤ a, b, c ≤ 1
by Remark 5, we get Q(e1) + 2B(ν, e1) = 2β+i+1η(1 + a). But since a is either 0 or
1, we have that ord2(2β+i+1η(1 + a)) ≤ β + i+ 2. Therefore, since (III) must hold,
we conclude that when α = β + 2 then i = 0 or 1, and when α = β + 3 then i = 1.

Next, we will deal with the case where n(N) = 2s(N). In this case, N2
∼=

2β+iA ⊥ 〈2jη〉 in a basis {e1, e2, e3}, where β + i + 2 ≤ j since N2 is anisotropic.
Setting 2ν = ae1 + be2 + ce3 with 0 ≤ a, b, c ≤ 1, we get that

Q(ν) = 2β+i−1
[
(a2 + b2 + ab) + 2j−(β+i+1)ηc2

]
.
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Since Q(ν) ∈ 2βZ×2 , this implies that when i = −1, 0 then a = b = 0, and when
i = 1, then at least one of a or b must be odd, without loss of generality we will
suppose that b = 1. But now Q(e1) + 2B(ν, e1) = 2β+i(2 + 2a + b), and for any
choice of i we have ord2(2β+i(2 + 2a+ b)) ≤ β+ 1. Therefore, by assumption (III),
we conclude that α cannot be β + 2 or β + 3.

�

Remark 9. When Np represents all of Zp for every odd prime p, we notice that
when α = β + 2 and B(ν,N2) = 2βZ, then N2 must be diagonalizable, or else N2

cannot represent Q(2ν) ∈ 2β+2Z×2 .

Remark 10. When α = β + 1 then if N2 is not diagonalizable, it can easily be
shown that for any choice of basis {e1, e2, e3} for N2, we get B(ν, en) ∈ 2β+1Z
for n = 1, 2, 3. Therefore, when α = β + 1 and B(ν,N2) = 2β−1Z2, then N2 is
diagonalizable.

Lemma 11. Suppose that Q(ν) ∈ Z×2 . If α = 1 and Np represents every element in
Zp for every odd prime p, then gen(M) primitively represents every unit in Z×2 if
one of the following holds:

(1) 2s(N) = n(N) = 4Z; or,
(2) ord2(dN) = 3; or,
(3) ord2(dN) = 5 and B(ν,N2) 6= Z2.

Furthermore, if (1), (2), and (3) all fail, then H(x) is not almost universal.

Proof. Suppose that Np represents every p-adic integer for every odd prime p, then
Np ∼= 〈1,−1,−dN〉 by Lemma 2, and so every unit in Z×2 is represented primitively
by Np at every odd prime p.

If (1) holds, then we may assume that N2
∼= 2A ⊥ 2i〈η〉 in a basis {e1, e2, e3}

where i > 1. Assuming that ν = ae1+be2+ce3
2 with 0 ≤ a, b, c ≤ 1, since ε ∈ Z×2 ,

we may conclude that at least one of a, b is odd, without less of generality we will
assume that a = 1. But now M2

∼= Z2[ν, e2, e3], which contains the binary sublattice
Z2[ν, e2]. But B(ν, e2) = 1 + 2b ∈ Z×2 , and therefore Z2[ν, e2] ∼= 〈ε, ε(−1 + 4ε)〉,
which primitively represents all units in Z×2 .

If part (2) holds, then N2
∼= 〈2η, 2γ, 2µ〉 in a basis {e1, e2, e3}. Let ν =

ae1+be2+ce3
2 where 0 ≤ a, b, c ≤ 1. Then, since ε ∈ Z×2 , we may assume with-

out loss of generality that a = b = 1 and c = 0. But now M2
∼= Z2[ν, e2, e3] ∼=

〈ε, ε(−1 + 2εµ), 2µ〉, which primitively represents all units in Z×2 .
If part (3) holds, then n(N) = 2Z. If N2 is not diagonalizable, then N2

∼=
〈2η〉 ⊥ 4A or 〈25η〉 ⊥ A, both of which are isotropic. Therefore, we assume N2

∼=
〈2η, 2iγ, 2jµ〉 in a basis {e1, e2, e3} where i ≤ j. We let ν = ae1+be2+ce3

2 where
0 ≤ a, b, c ≤ 1, and since B(ν,N2) = 2Z2, it is immediate that a = 0. Therefore,
since ε ∈ Z×2 and ord2(dN) = 5, it follows that i = j = 2 and exactly one of b, c
is odd, so without loss of generality we will suppose that b = 1 and c = 0. Then,
M2
∼= Z2[ν, e1, e2] which is isometric to 〈ε, 2η, 4ν〉, which primitively represents all

units in Z×2 .
Now we will assume that parts (1), (2) and (3) all fail, and we will show that

H(x) is not almost universal. Since s(N) ⊆ 2Z and since N must represent 4ε,
if 2s(N) = n(N) then the only choice is for n(N) = 4Z. If (1), (2), and (3) all
fail, then either N2 is diagonalizable and then ord2(dN) > 5, or ord2(dN) = 5 and
B(ν,N2) = Z2; or, N2 is not diagonalizable, and then s(N2) = n(N2) = 2Z or 4Z.
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First we will suppose that ord2(dN) = 5, B(ν,N2) = Z, and N2 is diagonalizable.
Under these assumptions, the only possibility is that N2

∼= 〈2η, 2γ, 8µ〉, or else
B(ν,N2) = 2Z2. Then we may assume that ν = e1+e2+ce3

2 where 0 ≤ c ≤ 1, and
from here it is not difficult to see that H(x) only represents even integers, and hence
is not almost universal.

Suppose that N2 is diagonalizable and ord2(dN) > 5, if N2 is of the form
〈2η, 2γ, 2jµ〉 with j ≥ 4, then the argument follows as in the previous paragraph.
Therefore, we may assume that N2

∼= 〈2η, 2iγ, 2jµ〉 in a basis {e1, e2, e3}, where
3 ≤ i ≤ j. Since ε ∈ Z×2 , it follows that ν = be2+ce3

2 where 0 ≤ b, c ≤ 1, and

thus {ν, e2, e1} is a basis for M2. Therefore, M2
∼= 〈ε, ε(2iγε− (2i−1γ)2), 2η〉, which

clearly only represents units in the square classes of ε and ε+ 2η. Therefore, H(x)
cannot be almost universal.

Now suppose that N2 is not diagonalizable. Then from the failure of (1), (2),
and (3), we may conclude that N2

∼= 〈2iη〉 ⊥ 2jA, where 1 ≤ i ≤ j and i and j
have the same party by Lemma 2. If n(N) = 2Z, then i = 1, in which case j ≥ 3 is
odd and N2 fails to represent ε. Therefore we will suppose that n(N2) = 4Z. Then,
2B(ν,N2) = N(2ν,N2) ⊆ 4Z, and therefore H(x) only represents even integers. �

Lemma 12. Suppose that Q(ν) ∈ Z×2 . If α = 2, 3 and Np represents every element
in Zp, then gen(M) primitively represents ε+ 2αn for all positive n ∈ Z if and only
if one of the following holds:

(1) α = 2, and B(ν,N2) = Z2; or,
(2) α = 2, B(ν,N2) 6= Z2 and n(G2) = 4Z2, where G is the orthogonal complement

of ν in N ; or,
(3) α = 3 and B(ν,N2) 6= Z2.

Proof. Suppose that Np represents all of Zp for every odd prime p. Then, for
every odd prime p, Np ∼= 〈1,−1,−dN〉 by Lemma 2, and so ε+ 2αn is represented
primitively by Np at every odd prime p.

Suppose that α = 2 and B(ν,N2) = Z2. Then n(N) = 2Z, and by Remark 9
we may assume that N2

∼= 〈2η, 2iγ, 2jµ〉 in a basis {e1, e2, e3}, where 1 ≤ i ≤ j.
By Remark 5 we may let ν = ae1+be2+ce3

2 , with 0 ≤ a, b, c ≤ 1. Since ε ∈ Z×2 ,
either a = 1, in which case b = 1 and i = 1, or a = 0, in which case b = c = 1
and i = j = 1. But in either case, M2 contains the binary sublattice Z2[ν, e2]
which clearly represents all units congruent to ε mod 4. Therefore, M2 primitively
represents all units of the form ε + 4n; thus gen(M) primitively represents ε + 4n
for all n ≥ 1.

For parts (2) and (3) we observe that when B(ν,N2) = 2Z2, then whether α = 2
or 3, it must be the case that n(N) = 4Z. So in either case Z[2ν] ∼= 〈4ε〉 splits N2

as an orthogonal summand, and therefore, M2
∼= 〈ε〉 ⊥ G2. In either case it is a

consequence of the local square theorem that ε+ 2αn is represented primitively by
M2. Therefore, ε+ 2αn is represented primitively by gen(M) for every n ≥ 1.

Suppose that parts (1)-(3) all fail. If α = 2, then it follows from that failure of
(1) and (2) that B(ν,N2) = 2Z2 and n(G2) = 8Z2. However, in this case it is clear
that M2 will only represent units in the square class of epsilon. If α = 3, then from
the failure of (3) it follows that B(ν,N2) = Z2. However, this case cannot occur by
Lemma 8.

�
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For the following lemma, we define an integer δN by

δN :=

{
1 if ord2(dN) is even,

2 if ord2(dN) is odd.

If Np represents all of Zp for every odd prime p, then for any odd primitive spinor
exception t, E = Q(

√
−δN ), were E is as defined in Lemma 2.

Lemma 13. Suppose that Q(ν) ∈ Z×2 . Suppose that Np represents all of Zp for

every odd prime p. If sf(dN) is divisible by a primes p satisfying
(
−δN
p

)
= −1,

then gen(M) has no odd primitive spinor exceptions.

Proof. Suppose that t is an odd primitive spinor exception of gen(M). Suppose

that sf(dM) is divisible by a prime p satisfying
(
−δN
p

)
= −1. At any such prime p,

Ep/Qp is a quadratic extension and therefore we are in the setting of [7, Theorem
1]. Since p divides the square free part of the discriminant of N , ordp(dM) must
be odd. But according to [7, Theorem 1], this means that θ(O+(Mp)) 6⊆ Np(E), a
contradiction. Therefore, gen(M) has no odd primitive spinor exceptions. �

If we have a lattice K ∼= 〈1, 2iγ, 2jµ〉 with 0 < i < j and γ, µ ∈ Z×2 , and K is
not of type E as defined in [6], we will compute the spinor norm for K as follows.
Defining sublattices U and W as

U ∼= 〈1, 2iγ〉 and W ∼= 2iγ〈1, 2j−iγµ〉,

then by [5, Theorem 2.7], θ(O+(K)) = Q(P (U))Q(P (W ))Q×2
2
, where P (U) (resp.

W ) is the set of primitive anisotropic vectors in U (resp. W ) whose associated

symmetries are in O(U) (resp. O(W )). Then, Q(P (U)) = θ(O+(U))Q×2
2

and

Q(P (W )) = 2iγθ(O+(〈1, 2j−iγµ〉))Q×2
2

can be computed using [5, 1.9]. Since scal-
ing does not affect the spinor norm, it will often be easier to compute the spinor
norm of M2 scaled by ε; to that end, we define L := M ε

3. Proof of Main Theorem

For the proof of the main theorem, it will be necessary to establish the following
additional notation. We define Q̄ := 1

2β
Q, and therefore Q̄(ν) ∈ Z×2 . Furthermore,

for any x ∈ N , we have B̄(ν, x) = 1
2β
B(ν, x) and therefore B̄(ν, N̄) = 1

2β
B(ν,N),

where N̄ denotes the Z-lattice with quadratic map Q̄. Thus, if we have H(x) =
Q(x)+2B(ν,x)

2α , where n(ν,N) = 2αZ in the usual way, then

H(x) =
2βQ̄(x) + 2β+1B̄(ν, x)

2α
=
Q̄(x) + 2B̄(ν, x)

2α−β
,

where α− β = 1, 2, 3.
Since 1

2β
∈ Zp for p odd, therefore Np represents all of Zp if and only if N̄p

represents all of Zp, when p is odd. Since dN = 23βdN̄ , it follows that ord2(dN)−
3β = ord2(dN̄). Since sf(dN)′ refers only to the odd part of dN , scaling by 2β will
not change this value, and we can use sf(dN)′ and sf(dN̄)′ interchangeably. We
note that the integer λ defined in section 1 is equivalent to δN̄ .

Under this construction, we also have M̄ := 1
2β
M , which can also be obtained

by the usual method, setting M̄ = Zν+ N̄ . If we suppose that Np represents all Zp
whenever p is odd, then M̄ satisfies the hypotheses of Lemmas 2, 11 and 12. Unless
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otherwise noted, we let E denote Q(
√
−tdM), where t is some odd primitive spinor

exception of gen(M̄).

Proof of Theorem 1. We will suppose throughout that Np represents all Zp when-
ever p is odd. Suppose that α = β + 1. First we will consider the case when
B(ν,N2) = 2β−1Z2, and thus N2 is diagonalizable by Remark 10. Since n(ν,N) =
2αZ, we have s(N) = n(N) = 2β . Thus, N2

∼= 〈2βη, 2iγ, 2jµ〉 in a basis {e1, e2, e3},
where β ≤ i ≤ j. Letting ν = ae1+be2+ce3

2 with 0 ≤ a, b, c ≤ 1, it follows that
for any choice of a we must have b = 1. Therefore, {ν, e1, e3} is a basis for M .
Consider the sublattice R := Z[ν, 2e1, 2e3] of M . Then, Rp = Mp for every odd
prime p, and therefore Z×p ⊆ θ(O+(Rp)) for every odd p, by Lemma 2. Further-

more, n(R2 ∩ N2) = n(Z2[2ν, 2e1, 2e3]) = 2β+2Z, and therefore any representation
of 2βε+ 2αn by R must come from the coset ν +N .

Thus we have

R
1

2β

2
∼=

 ε ηa 2j−βµc
ηa 4η 0

2j−βµc 0 2j+2−βµ.


When a = 1, then R

1

2β

2 contains a sublattice isometric to 〈ε, ε(4ηε − 1)〉, which
clearly represents all units in Z×2 . On the other hand, when a = 0, then from the
shape of ν we know that j = β and c = 1, and therefore R2 again contains the
sublattice 〈ε, ε(4µε − 1)〉, which again represents all units in Z×2 . Therefore, we
get that Z×2 ∈ θ(O+(R2)), and hence Z×p ⊆ θ(O+(Rp)) for every prime p implying

that gen(R) has only one spinor genus. Furthermore, 2βε + 2αn is represented
primitivley by gen(R) for every choice of n. Therefore H(x) is almost universal, by
[4, Corollary].

Next, we suppose that B(ν,N2) ⊆ 2β , and hence n(N) ⊆ 2β+1Z. Therefore, any
representation of 2βε + 2αn by M is guaranteed to come from the coset ν + N .
Furthermore, Q̄(ν) ∈ Z×2 and 2βn(N̄) = n(N). If part 1(b)(i) holds, then 2s(N) =
n(N) = 2β+2Z implies that 2s(N̄) = n(N̄) = 4Z. If part 1(b)(ii) holds, then N̄2 is
diagonalizable, and ord2(dN) = 3(β + 1) implies that ord2(dN̄) = 3. Similarly, if
part 1(b)(iii) holds, then N̄2 is diagonalizable, ord2(dN̄) = 5 and B(ν, N̄2) = 2Z.
Therefore, when any of these parts hold, then gen(M̄) primitively represents all
units in Z×2 by Lemma 11. Since Z×p ⊆ θ(O+(M̄p)) for every prime p, it follows

that gen(M̄) only has one spinor genus. Therefore, ε+ 2n is represented by M̄ for
n sufficiently large by [4, corollary]. And hence, M represents 2βε + 2αn for all n
sufficiently large, and therefore H(x) is almost universal.

Suppose that α = β + 1 and parts 1(a) and 1(b) both fail. Then, it follows
immediately from Lemma 11 that H(x) is not almost universal.

For part (2), we will suppose that α = β + 2. Then B(ν,N2) ⊆ 2βZ2 by Lemma
8, and therefore n(N) ⊆ 2β+1Z. Consequently, any representation of 2βε+ 2αn by
M must be from the coset ν +N .

When B(ν,N2) = 2βZ2, then n(N) = 2β+1Z, and from Remark 9 we know
that N2, and hence N̄2, has an orthogonal decomposition. Therefore, we have
N̄2
∼= 〈2η, 2iγ, 2jµ〉 in a basis {e1, e2, e3}, where 1 ≤ i ≤ j. As discussed in

the proof of Lemma 12, we may assume that i = 1, and ν = ae1+e2+ce3
2 where

0 ≤ a, c ≤ 1. If a = 0, then Q̄(e1) + 2B̄(ν, e1) ∈ 2Z, which cannot happens since
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n(ν, N̄) = 4Z. Therefore, a = 1, and M̄2
∼= Z[ν, e2, e3]. In this basis,

M̄2
∼=

 ε γ 2j−1µc
γ 2γ 0

2j−1µc 0 2jµ,

 .
If c = 0, then ε = η+γ

2 and therefore M̄2
∼= 〈ε, εηγ, 2jµ〉 with j ≥ 1. If c = 1, then

ε = η+γ
2 + 2j−2µ, and in the basis {ν, e2, 2

j−1µe1 − ηe3},

M̄2
∼= 〈ε, εγ(η + 2j−1µ), 2jηµ(η + 2j−1µ)〉.

In any case, dM̄ = 2jηγµ.
Suppose that part (i) of 2(a) holds, then ord2(dN) − 3β is odd, and hence

ord2(dN̄) is odd. Suppose that t is an odd primitive spinor exception of gen(M̄).
Then, E = Q(

√
−2), and we are in the situation outlined in [7, Theorem 2(c)]. But

M̄2 has a binary unimodular component, so “r” there is 0, and so θ(O+(M̄2)) 6⊆
N2(E). Therefore, gen(M̄) has no odd primitive spinor exceptions. In particular,
if ord2(dN̄) is odd, then ε+ 4n is not a primitive spinor exception of gen(M̄).

Now, suppose that (i) fails, meaning that ord2(dN̄) is even and E = Q(
√
−1).

Suppose that part (ii) of 2(a) holds, and hence ord2(dN̄) = 4, and therefore j = 2.
So either ε = η+γ

2 , in which case 1 + ηγ ≡ 2 mod 4, or ε = η+γ
2 + µ and in this

case 1 + ηγ ≡ 0 mod 4. In either case, L̄2 := 1
2β
L2 contains a binary unimodular

component of the form 〈1, ξ〉, where ξ is a unit with 1 + ξ ≡ 2 mod 4. Since j = 2,
from [6, 1.2], we get Q×2 = θ(O+(M̄2)). Therefore, θ(O+(M̄2)) 6⊆ N2(E), and thus
ε+ 4n is not a primitive spinor exception of gen(M̄).

Suppose that parts (i) and (ii) of 2(a) both fail, so ord2(dN̄) ≥ 6 is even, and
now regardless of our choice for c, M̄2

∼= 〈ε, εηγ, 2jµ〉. If part (iii) of 2(a) holds,
then by Lemma 13, gen(M̄) has no odd primitive spinor exceptions.

Suppose now parts (i)-(iii) of 2(a) fail. Then N2
∼= 〈2β+1η, 2β+1γ, 2β+jµ〉, where

j > 2 is even. Suppose that part (iv) holds, that is, ηγ ≡ 5 mod 8. Then, since j is
even, the quadratic space underlying L̄2 is [1, 5, εµ]. From the failure of (iii), µ ≡ 1
mod 4, but then, ε ≡ 1 mod 4, or else M̄2 is isotropic. Therefore, computing the

spinor norm of M̄2 using [6, 1.2], we get θ(O+(M̄2)) = {1, 5, 6, 14}Q×2
2 6⊆ N2(E),

which means that ε+ 4n is not a primitive spinor exception of gen(M̄) in this case.
Now suppose that we are in part 2(b), so B(ν,N2) = 2β+1Z2 and n(G2) =

2β+2Z2, where G2 is the orthogonal complement of ν in N2. Since α = β + 2,
this implies that n(N) = 2β+2Z, and therefore, Z[2ν] ∼= 〈2β+2ε〉 splits N2 as an
orthogonal summand, and hence M2

∼= 〈2βε〉 ⊥ G2, with n(G2) = 2β+2Z2. We
immediately rule out the possibilty that G2

∼= 2β+1A, since this would mean that
M2 is isotropic, therefore M̄2

∼= 〈ε, 4γ, 2jµ〉 in a basis {e1, e2, e3}, where j ≥ 2.
Suppose that part (i) of 2(b) holds; that is, suppose that ord2(dN̄) is odd. Now

using [7, Theorem 2(b)], we have θ∗(M̄2, t) 6= N2(E), and thus ε+ 4n cannot be a
primitive spinor exception of gen(M̄).

Suppose that part (ii) of 2(b) holds; that is, ord2(dN̄) = 6, and hence M̄2
∼=

〈ε, 4γ, 4µ〉 with γµ ≡ 1 mod 4 since M̄2 is anisotropic. Therefore, we may use [6,
1.2] to show that θ(O+(M̄2)) = Q×2 . Hence, in this case θ(O+(M̄2)) 6⊆ N2(E), and
hence ε+ 4n is not a primitive spinor exception of gen(M̄).

Suppose that part (iii) or 2(b) holds; that is, suppose that sf(dN̄)′ is divisible
by a prime q ≡ 3 mod 4. Then it is immediate from Lemma 13 that gen(M̄) has
no odd primitive spinor exceptions.
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Now we will suppose that α = β + 3, and recall from Lemma 8 that this implies
B(ν,N2) = 2β+1Z2. Therefore n(N) = 2β+2Z, and as in the α = β + 2 case, we
get M̄2

∼= 〈ε〉 ⊥ Ḡ2 in the basis {ν, f1, f2}. Again, we are guaranteed that any
representation of 2βε+ 2αn by M must come from the coset ν +N .

Suppose that 3(a) holds, then Ḡ2
∼= 2iA, where i ≥ 2 is even since M̄2 is

anisotropic. But then for any ρ ∈ Z×2 there is a vector νρ ∈ 2iA such that Q(νρ) =
2i+1ρ, which implies that Z×2 ⊆ θ(O+(M̄2)). Now, Z×p ⊆ θ(O+(M̄p)) for every

prime p, and therefore gen(M̄) has no primitive spinor exceptions.
Suppose that parts 3(a) fails, and 3(b) holds. Then Ḡ2 is proper with n(Ḡ2) =

8Z2, and hence M̄2
∼= 〈ε, 8γ, 2jµ〉, in the basis {ν, f1, f2}, with j ≥ 3. If ord2(dN̄)

is even, then using [7, Theorem 2(b)] we get that θ∗(M̄2, t) 6= N2(E). In this case,
gen(M̄) has no odd primitive spinor exceptions. If ord2(dN̄) = 9, then j = 4 and
hence M̄2 is of Type E. In this case, θ(O+(M̄2)) = Q×2 , so gen(M̄) has no odd
primitive spinor exceptions.

Suppose that 3(a)-(b) fail and 3(c) holds. Then ord2(dN̄) is odd, and we are in
the setting of [7, Theorem 2(b)] and since “r” there equals 4, θ∗(M̄2, t) 6= N2(E)
for any odd t. Hence, gen(M̄) has no odd primitive spinor exceptions in this case.

If 3(a)-(c) and fail and 3(d) holds, then from Lemma 13, gen(M̄) has no odd
primitive spinor exceptions.

Suppose that 3(a)-(d) all fail, and 3(e) holds. Then, M̄2
∼= 〈ε, 2iγ, 2jµ〉 with

εγµ 6≡ ε mod 8. Consequently, (ε+ 8n)εγµ 6≡ 1 mod 8 for any positive integer n.

Therefore, Q(
√
−(ε+ 8n)dN̄) 6= Q(

√
−λ), so in this case, ε+ 8n is not a primitive

spinor exception of gen(M̄) for any positive integer n.
Suppose that 3(a)-(e) all fail, and 3(f) holds. Then, M̄2

∼= 〈ε, 8γ, 2jγ〉 with j ≥ 6
even, and ε 6≡ γ mod 8. If εγ ≡ −1, 5 mod 8 then M̄2 is anisotropic, therefore
we may suppose that εγ ≡ 3 mod 8. Now, using [5, 1.9] to compute the spinor
norm of L̄2

∼= 〈1, 24, 3 ·2j〉, we see that for any choice of j, θ(O+(M̄2)) contains −6.
Since ord2(dN̄) here is odd, −6 6∈ N2(E), so gen(M̄) has no odd primitive spinor
exceptions in this case.

Therefore, when any part of (2) or (3) holds, we have shown that ε + 2α−βn
is not a primitive spinor exception of gen(M̄) for any n. Therefore ε + 2α−βn is
represented primitively by spn(M̄), and therefore by M̄ itself for all n sufficiently
large, according to [4, corollary]. Therefore 2βε+ 2αn is represented by M itself for
all but finitely many n. But any representation of 2βε+ 2αn by M must come from
the coset ν +N , and hence ν +N represents 2βε+ 2αn for all but finitely many n.
Therefore, H(x) is almost universal.

Now we will show that when α = β+2 or α = β+3 but parts (2) and (3) fail, then
sf(dN)′ is a primitive spinor exception of gen(M̄). It follows from Lemma 2 part (1)
that sf(dN)′ is primitively represented by M̄p for every odd prime p. When α = β+2
and B(ν,N2) = 2βZ2, then from the failure of (2), M̄2

∼= 〈ε, εηγ, 2jµ〉 in a basis
{e1, e2, e3}. Therefore L̄2, which must be anisotropic, has underlying quadratic
space [1, ηγ, εµ], and thus ε sf(dN)′ ≡ 1 mod 4. When B(ν,N2) = 2β+1Z2, then
the underlying quadratic space of M̄2 is [ε, γ, µ]. Since M2 is anisotropic, therefore
γµ ≡ 1 mod 4, and hence ε ≡ 1 mod 4 by the failure of 2(b)(iii). When α = β+3,
then ε ≡ sf(dN)′ mod 8 from the failure of 3(e). Hence in all cases we have
ε ≡ sf(dN)′ mod 2α−β , and combining this with Lemma 12, we get that sf(dN)′

is represented primitively by M̄2. Therefore, sf(dN)′ is represented primitively by
gen(M̄).
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In what follows, we will let E denote Q
(√
− sf(dN)′dN

)
= Q(

√
−λ). At the

primes p where
(−λ
p

)
= 1, we have Ep = Qp, and therefore Np(E) = Q×p . But

now it follows immediately from the containments given in equation (3) of [7] that
θ(O+(M̄p)) = Np(E) = θ∗(M̄p, sf(dN)′). At the primes p for which

(−λ
p

)
= −1,

it follows easily from [7, Theorem 1] that θ(O+(M̄p)) ⊆ Np(E), and Np(E) =
θ∗(M̄p, sf(dN)′).

To compute the spinor norm and relative spinor norm of M̄2, it will be helpful
to consider separately that cases for α = β + 2, B(ν,N2) = 2βZ2 or 2β+1Z2, and
α = β + 3. Let us first consider the case when α = β + 2 and B(ν,N2) = 2βZ2.
From our previous discussion, L̄2

∼= 〈1, 1, 2jεµ〉, with j ≥ 4 even, and εµ ≡ 1
mod 4. Using [6, 1.2], since our binary component is neither even nor odd,

θ(O+(M̄2)) = {ρ ∈ Q×2 : (ρ,−1) = 1} = {1, 2, 5, 10}Q×2
2

= N2(E).

Now, using [7, Theorem 2(b)] we compute the relative spinor norm. The “K” and
“K ′” in that theorem are K ∼= 〈2−2ε, ε, 2jγ〉, and K ′ = M̄2. Since j is even, and
clearly θ(O+(K ′)) = θ(O+(M̄2)) ⊆ N2(E), parts (ii) and (iv) fail immediately.
Moreover, part (iii) fails, since j ≥ 4. Also, since sf(dN)′ is odd, it is not contained

in any Z2-ideal generated by 2j . Using [5, 1.9], we get θ(O+(K)) ⊆ {1, 5}Q×2
2 ⊆

N2(E), and therefore (i) of [7, Theorem 2(b)] fails. Therefore, θ∗(M̄2, sf(dN)′) =
N2(E) when B(ν,N2) = Z2.

Now we deal with the case where α = β + 2 and B(ν,N2) = 2β+1Z2. From
previous discussion, M̄2

∼= 〈ε, 4γ, 2jµ〉, with j ≥ 4 even, and εγµ ≡ 1 mod 4. Note
that M̄2 is anisotropic, so immediately εγ ≡ 1 mod 4. Now using [5, 1.9], we get
θ(O+(M̄2)) ⊆ N2(E). Using [7, Theorem 2(b)] we have “K” and “K ′” in that
theorem are K = M̄2 and K ′ ∼= 〈4ε, 4β, 2jγ〉. We have “r” = 2 here, which is even,
and θ(O+(K)) ⊆ N2(E), so parts (i) and (iv) fail. Furthermore, sf(dN)′ is odd,
and is therefore not contained in any Z2-ideal generated by 22 or 2j . So, we may
conclude that θ∗(M̄2, sf(dN)′) = N2(E).

Next we will deal with the case when α = β + 3, and hence M̄2
∼= 〈ε, 2iγ, 2jγ〉

with i ≤ j by the failure of 3(a) and 3(e). First we will consider the case where
i = j, so we may assume that i ≥ 4, from the failure of 3(b). Thus, using [6, 1.2],

θ(O+(M̄2)) = {ρ ∈ Q×2 : (ρ,−1) = 1} = {1, 2, 5, 10}Q×2
2
,

which is equal to N2(E). Furthermore, θ∗(M̄2, sf(dN)′) = N2(E), since i ≥ 4 and
hence parts (i)-(iv) of [7, Theorem 2(b)] immediately fail.

When i 6= j, then L̄2
∼= 〈1, 2iεγ, 2jεγ〉, where εγ ≡ 1 mod 4 when ord2(dN̄)

is even, and εγ ≡ 1, 3 mod 8 when ord2(dN̄) is odd. When i and j have the
same parity, then computing the spinor norm using [5, 1.9], with U ∼= 〈1, 2iεγ〉 and
W ∼= 2iεγ〈1, 2j−i〉, we get

Q(P (U)) ⊆ {1, 5, 2iεγ}Q×2
2

and Q(P (W )) ⊆ 2iεγ{1, 5}Q×2
2
.

Therefore, θ(O+(M̄2)) ⊆ N2(E) regardless of our choice for εγ. When i and j have
opposite parity, then using the same U and W as above, we get

Q(P (U)) ⊆ {1, 2, 3, 6}Q×2
2

and Q(P (W )) ⊆ 2iεγ{1, 2, 3}Q×2
2
,
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and again θ(O+(M̄2)) ⊆ N2(E) for any choice of εγ ≡ 1, 3 mod 8. Finally, given
the failure of part (3), it can be easily verfied that θ∗(M̄2, sf(dN)′) ⊆ N2(E) using
[7, Theorem 2].

We have shown that when parts (2) and (3) fail, then sf(dN)′ is a primitive
spinor expception of gen(M̄). Now we will show that when (1), (2), and (3) all fail,
then H(x) is almost universal if and only if (4) holds.

Suppose that (1), (2), and (3) all fail, and (4) holds. Then, 2β sf(dN)′−2βε
2α is

represented by H(x) for α = β + 2, β + 3; hence sf(dN)′ is represented by the
coset ν + N̄ , and therefore by the lattice M̄ . If ε+ 2α−βn is not a primitive spinor
exception of gen(M̄), then it is represented by M̄ for n sufficiently large, by [4,
Corollary]. Consequently, 2βε+ 2αn is represented by M for all n sufficiently large.
If ε + 2αn is a primitive spinor exception of gen(M̄), then ε + 2αn = m2 sf(dN)′

for some integer m, and therefore ε+ 2αn is represented by the lattice M̄ for all n,
implying that 2βε+ 2αn is represented by M for all n. Therefore, when (4) holds,
then H(x) is almost universal.

Now, suppose that α = β+2, β+3 and (2)-(4) all fail. Then, 2β sf(dN)′−2βε
2α is not

represented by H(x), and therefore sf(dN)′ is not represented by M̄ . Since we are
assuming that (2)-(4) all fail, we know that sf(dN)′ is a primitive spinor exception
of gen(M̄). Furthermore, from previous discussions, we know that when (2) and
(3) fail, then sf(dN)′ ≡ ε mod 2α−β . Now, as shown in [15], there exist infinitely
many primes q for which

n :=
sf(dN)′q2 − ε

2α−β

is an integer not represented by H(x). Therefore, in this case H(x) is not almost
universal. �
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