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AN INFINITE DIMENSIONAL POINT OF VIEW ON TEICHMULLER THIEORY
(THE MOMENT MAP, BERS IMBEDDING AND WEIL-PETERSSON METRIC)

T. RATIU and A. TODOROV

#0. "BALKAN POIN'T OF VIEW” ON TEICHMULLER THEQRY (INTTRODUCTION.)

The main object of this article is
DIrrHSY/PSU, =T
This can be interpreted as all possible ”C™” complex structures on the unit disc.
It is very natural to cxpect that the TEICHMULLER SPACES Jp for compact
Ricmann surfaces of genus ¢>2 can be imbedded in ﬁi, where T is the space of
quasi-symmetric homeomorphisms of the circle. TThe definilion of & quasi-symmelric

homeomorphism of R' is the following one:

DEFINITION.

An increasing homoemorphism h:R ~R with h{c)=co is said to be k-quasisymmetric if

1 _ h(x+t}—hix)
k Shoo —hla— 0K

for all Xx€R and all t>0. A function is guasisymmetric if it is k-quasisymmetric for

some k.

We recall the definition of the TEICHMUILER SPACES ’J’p_ for compacl Riemann

surfaces.

DEFINITION.

l.et T be a compacl Riemann surface of genus g>2 and let
l(l‘):={all possible complex structures on l‘}

Then the TEICHMULLER SPACE of Joll) is defined in the following way:
‘J'g(l‘):=~l( )/ Diff )
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where

})if‘fo(vl‘):={all diffcomorphisms of T isotopic to the idcnlity}
and Difl,(T") acts on {(I) by pulling back the complex structures on T.

‘This imbedding is given in the following way: cach clement of g€X (") can be
represented by a quasiconformal map g of the unil disk in C. By a VTHEOREM of
TEICHMULLER there exixsls a unigue cxtremal guasiconformal map ¢(g) in the class
of cquivelences introduced by TEICHMULLER. Lot e recall this class of
cquivelences; we call two tripples (I™e,4) and (T™w,01) equivalent if (@ 1w =T is
homotlopic to a conformal map, where ¢:17—1" and #:I""-.1° are guesiconformal maps.
This wunique “extremal” quasiconformal map h(g) can be prolonged to a map
é{g):D—D, where D is ihe closure of D. The restriction of &{(g) on $' is a

qusisymmetric homeomorphism of S!. This is the imbedding of T (1) in T.
3]

The main THEOREMS in TEICHMULLER THEORY, basically duc to AHLFORS and
BERS, are that TEICHMULLER SPACE of 9,(T) for g>2 is a domain in R% 6 4nd
morcover is a STEIN manifold. Loater different proofs of these two THEQREMS,
using the WEIL-PETERSSON metric were given by A. Fischer and A. Tromba, A.
Tromba, J. Jost, S. Wolpert and M. Wolf.

One should also mention the deep work of ROYDIEN. He proved that the
TEICHMULLER METRIC is cxactly the KOBAYASHI METRIC. From here he derived
that the group of the aulomorphisms of the TEICHMUULLER SPACE of Jpll) for

g >2 is exvctly the mapping class group, i.c. DIt (ry/Dire ().
0

Excellent books on TEICHMUILLER THEORY are (011, 110}, 1121, 117) and [19].
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DESCRIPTION OF THE RESULTS OF THIS ARTICLE.

In #1 using KIRILLOV'S classification of coadjoint orbits of BOT'I'-VIRASORO
group, we see that Diff(8')/P’SU,, is isomorphic to one of these orbils. Namely we

remind the following THIZORIIM:

THEOREM 1.1. (KIRILLOV |161).

The corresponding central cxtension of S, in Vir is the coadjoint isotropy of

)
po(2(dt)®",—])6\’ir* for any pyo€ER

Thus
Diff(SH/PSU,

is diffcomorphic to the coadjoint orbit of Vir in vir™ through the point
~
a0, 1.

Let us remind that Vir is a central extension of Dif’f'+(S’) via the so called
BOTT-VIRASSORO cocycle with R/Z. Vir* is the dual of the lLie algebra Vir of the
VIRASSORO LIE GROUP. This Liec algebra is just the central extension of the LIE
ALGEBRA Veci(ShH of DIiffH(SH via the GELFAND-FUCHS cocyecle: Nomely

Celfand, 1. and FFuks, D. in [11} have shown that

2%

ef X2, v 2 )= xwvrnat
50" 53U
o)

is a two cycle which is uniquely defined up to a constant multliple up to the
addition of a coboundary, i.c. H*(Vect(S"),R} is one dimensional. Therefore there is a
unique central extension of Vect(S') by R which we shall denote by

Vir=Vect(S)®R

and whose bracketl operation is given by:

ool — [ Zole(x2 v 3))
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o =Y =X \’);t,,)' Jx (WY (di)
o
V

for a,bER, Xat YatE ectl(Sh).

In #2 we remind how one can construct a map from all elements ¢ €QSDIff T (S) to
a pair of unigque univalent functions (f’¢>.g¢) respectlively inside the unit disk and
outside the unit disk in € such that:

a g¢(:o)=oo and geoloo)=1
bl g¢ ¢ Iql ]

‘This map is due to SULLIVAN and KIRILLOV. Using this map we define Lhe BERS
IMBEDDING; ¢—»S(f¢), where

179%! )2
¢¢2 fo

STE Y e NI
oy

From this we define the topology on fAI, namely this is the induced topology on T

from the L™ norm on the guadratic differentials, namely

IS g)ll=sup IS(T ) (2)IN4 = V2 -
zeb

In #3 we remind how KIRILLOV constructed @n inlegrable complex structure on
l’)iff+(Sl)/]PSU1,1. We call this complex strucrture the KIRILLOV complex structure.
Combining this complex struclure with KIRILLOV-KONSTANT-SAURIAU form, wec get
a unique left invariant KAHLER METRIC on Difr(SH/PSU, ;. This metric we call
THE WEIL-PETERSSON MIII'RIC. We have thie following formulas for the WEIL-
PIETIEIRSSON metric:
THEOREM 3.
A)Lceot v and w be tc\’\:r’o lelt invariant vector fields on Dif‘f""(Sl)/lPSU,.; of type (1,0),
v-ZZ'ann and w=2wnl,n where Ln=exp(7rni)é-’-£,

n= n=2

THEN the WEIL-PETERSSON metric is given by

OO
<v,w>=% E vuWg (n°—n), where ¢ >0
Cu=2
paped



B) Let Hl(Sl):={all vector ficlds v on S' of type (1,0) v is at loast C?‘*e}, then H,{(SY
is a complete HILBERYT SPACE with respect Lo the metric defined in AD.

Thig metric was studied by NAG and VERJOVSKY in {20]. They proved that it is
defined just on vector fields on S' which are C?*°. Since the imbedding of the
TEICHMULLER SPACFE for genus g>1 gives only guasisymmetric homecomorphisms,
the WEIL-PETTERSSON metric defined as above cannot be defined on the
TEICHMULLER SPACE for penus g>1. NAG and VERIQVSKY found a beautifull
way to rcgularized the above defined metric on Iy, So we will explain how they do

this.

Review of the results of NAG and VEERJOVSKI (Sece [20].)

First we will recall that the tangent space of T can be identified with the space
of all BELTRAMI differentials with finite L°° norm. Let 1.°°(D) be this space, i.e.the
space of all BELTRAMI differentials with finite L™ norm on D. Let vEL®(D) Then

. . . . ~1 . .
the corresponding "quasisymmetric” vector field on 8° is given by

vlie!Ha
ot

3wl
v(t)Z=2 2
ot ielt
where wiv) is the solution of the BELTRAMI equation
and wlv] is the first variational term in the solution of the BELTRAMI equation, i.c.

Wi (2)=z-Htwlvl(z)+o(t), t -0

THEOREM 1. (NAG and VERJOVSKI) (Sce [20].)

et £ and UELS(D) represent two tangent vectors at the origin of i, then the

WEIL-PETERSSON metric is given formally as:

oo | L4260 e Age) (az ATR-
gli,v) 312Ijxjj(l _7@4(d§ AdC) (dzAdz)
D

- BL—?‘;Q]U — 12 u(z)v(dz Adz
D
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THEOREM 2. (NAG and VERJOVSKI) (Sec [20).)

Let I'=D/G be o compsct RIEEMANN surface of genus g>1. Let 1/OEL°°(G)/N(G) be
any tangent vector with unit length with respect Lo the WEIL-PETIIRSSON metric
on I, then we have for any two veclors 4 and © as in THEOREM 1 the WEIL-
PETERSSON metric on 1 is given by

. gr(»uiv)
(2, v)=lim ————
gt r-1" 6r(Zavg)

where

__ia u(z)f)TQ TSN o ATD
grlu,v) 3WQH xJ(—-——l _Zi)A(dK/\dS') (dzAdz)
Dr D

and Dp={1cClIti<r}.

In #4 we prove the following THEQORIIM, using the idea of NAG and VERJOVSKI
how Lo regularized the WEIL-PIZTERSSON metric on g.

THEOREM 4.

A) Suppose that u(z) is a holomorphic function in D and

J—_J(u —1z) " pi*Ndz Adz) <oo

1

D
Let

1 vy o [dZAd7) ia 12021 ¢) .y —

= | L iyt 2047 e O a¢ ATD) (dz ATz

bri,u) m” (=) oy 37:2” xj(l_zg)“( FAdS) (dzdz)
Dy Dp D

Suppose that iim1 g, p)=o0
r—1-
If we define
gr(ﬂb_li)

(L, )=lim 2=z
(x) glu i e
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where B
cyr%” (,d—i%% and Dp={tECHtI<r)
Dr
THEN
elu,1) exists and
gliL,1) >0
B) Let H,(8") be the space of all all vector fields on S' such that they fulfill the

conditions 1), 2) and 3) stated bellow

o0
205 ot
1 Vat RULST)
n=2
in other words vé% is of type (1,0} with respect to the KIRILLOV’S COMPLEX
STRUCTURE on ¥
2) v is at most C?
0
3) If we define fy(z)~ E cnz” in D then we require that pl(ly,fy) >0
n=2

THEN le(Sl) is a complete HILBERT SPACE with respect to the metric glv,v) as
defined in AD.

C) The restriction of glu,u) defined on H(8') as in A) on the imbedded
TEICHMULLER SPACIEE Xy is just the WEIL-PETERSSON METRIC.

DEZFINITION.
The metric g(u,v) defined by THEOREM 4 we will call the WEIL-PETERSSON

METRIC on quasisymmetric vector field that are at most C°.

This is another way to prove that the above defined CANONICAL METRIC is
not only defincd on diffeomorphisms of S!' of C*'¢ but on all QSDiff+(S'), i.e. on all
guasisymmetric homeomorphisms of St
REMARK.

The tangent space of all “qusisymmetric” vector fields on S' we can split into an
orthogonal sum of two HILBERT SPACES, namely H,($)4+H,{(S"), where H,{(S) consists

of all vector fields on $' which are at lcast C*% and the metric on H,(S') is defined
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as in THEOREM 3, while the metric on H,(S") is defined as in THEOREM 4, i.c.
alu,u) Tor pEHUSH.

In #5 we show how io find a potential of this metric on %. This potential is
defined by the following procedure: We can interpret Diff(S")/IPSU, ; as all possible
complex structures on D={tl t€C and MIF<1}. So cach point t of Diff(SI)/IPSU,',
defines an elliptic operator ét which acts on the space of all quadratic diffcrentials
on S'. Then using QUILLEN’S construction we get the so called determinant line
bundle det(d). This line bundle has a natural section det(_ét). Next we define the so
called QUILLEN’S metric on det(d) in Lthe foliowing way:

I]det(ﬁlﬁ)ll?‘:mexpf_ ()}

g’
B4

where L\q):-—é;gé, 5;‘ ig the conjugate of 5¢ with respect to the metric g(t) and

IROED T
A¢> Z i

where N, are the eigen values of Acb‘
"Almost” copying the proof of a THEOREM ol QUILLEN in [18] we prove that:

THEOREM 5.
A) 93loglexp(—¢’ E(O)))== B‘é]ogndc@tHQ is just the WEIL-PETRSSON METRIC on .

This turns oul to be part of the more general principle, which was observed
also by FUIIK] and SCHUMACHER. Namely, let %b—"U be the KURANISHI lamily of
KAHLER manifolds with a fixed class of polarization LEHPYX,R). Suppose that for
cach t€U we can find a KAHLER metric g, depending C™ on t and such that the
cohomology class [Img l=L. Then we can definc the WEIL-PETERSSON metric in the
following way: We know from KURANISHI theory that the ZARISKI tangenl space
T;umml(xt,@t), where lHl(Xt,G)t) is thc space of harmonic (0,1) forms with
coefficientls in the tangent space. Let ¢ and cC—]H‘(Xt,@t); then

) ot o D _ V=B B
¢I|_]-Tz¢7}.dé @'a;a UI‘J—ZUBC‘A ®842‘1_/

Then we define the WEIL-PETERSSGN metric in the lollowing way:

; A
Y ok g, 0" ol

<¢,0>"J %

Xy
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We can interpret ‘Ul as the space that parametrizes the operalors ét‘ let 5’{5t=v_t,
where 5?‘ is the conjugate of 51 with respect to the metric g(t), then the following
THEOREM is true:

THEOREM 5.1.
Sélog(cxp(——,\*’vt(())))= ddloglldetd, lly is just the WEIL-PETRSSON METRIC on U.

The WUEIL-PETERSSON metric on DiI'l"'+'(§~‘.l)/lf-"o‘Ul.l was studied also by some
phisists in {5), [6], {7} and [8].

We should mention alse that we define u determinant holomorphic function on .
It is closely connected with 7 function defined by G. WILSON and G. SIEGAL in
their beautliful paper [211.

f‘rom the above THEOREM it is not difficult to show that the WEIL-PETERSSON
melric has a nepative curvature operator. Zven more there are strong indications
that the global potensial of the WEIL-PETERSSON metric is the RUELLE’S zeta
functions at s-—% for each ¢€I. The curvature computations will be considered in a

futurc paper.
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#1. COADJOINT ORBITS OF THE BOTT-VIRASORO GROUP (SEE [16) and [22]).

l.,et § be a lie and Q*be its dual. G* is a POISSON manifold relative to the LIE-
POISSON structure given by:

PR Iy s}
{r’h}(M) <M’|:5,u’6,uJ>

where Fh:G* -R, MC—ZG*, <, >:GxG* R is a weakly non-degeneratle pairing and

8 4nd Gh ce
5o an I 51§
arc the functional derivatives of [ and ¢ respectlively, computed at 4 via the
formula:

Df([t)u:*(u,§w£>

Ou
for any vEGY here D denotes the usual Frechet derivative of functions on GF.
The symplectic leaves of Lhis linear POISSON manifold are the coadjoint orbits of
the underlying LIE group G of §. They are endowed therefore with & symplectic
structure we called the orbit symplectic structure or the KIRILLOV-KONSTANT-
SOURIAU symplectiic structure:

woiu)((adE);L*,(adn)ﬂ.*)= — <1A,[£ ,nﬁ|>

where p£cOCG*, O is a coadjoint orbit, £N7€G, and (ad£)u ™, (adT/)u*E'l"AUO are

arbitrary tangent vectors 1o the orbit O at yu.

In this papcr we shall be concerned wilth a very particular example of a
coadjoint orbit, defined by a central extonsion. lel us denote by G:=Diff T (8! tho
oricnted preserving diffeomorphisms of the circle relative to the length form
dteQYSY). The lie algobra Dift“"'(Sl) consists of Vect(8!), the space of vector fields
on S!, endowed with minus the usual Lie bracket on vector ficlds. Relative to the

L% pairing, the "dual” of Vect(S') consists of quadratic differentials

p()ay) @2
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<p(t)(dt)®2,x(t)%>=--,§4 p(1X(t)dL
o
The geometric interpretation of quadratic differentials ss dual to Vect(S!) is the
following: They are one-form densities on S'. We denote, as usual, by Vect(SH* the
dual of Vect(S') relative to <, >.
selfand, 1. and Fuks, D. in {11} have shown that
2
o[x2,v 2] 2wJ X (LY (1)dt
o
is a two cycie which is uniquely defined up te a constant multiple up to the
addition of a coboundary, i.e. H*(Vect(S'),R) is one dimensional. Therefore there is a
unigue central extension of Vect(S') by R which we shall denote by
vir=Vect(S)Y@®R

and whose bracket operation is given by:

g - [cGanrZolox2.v2))

2%

- 0

-(—xy —xvid, 2—J X (Y (0dt)
o

for a,bER, \(33- Ygic\’cct(sl).
Correspondingly, there exixts a central extension Vir of DIiff(SY) by S$' whose
defining two-cocycle B was determined by Bott [4]:
27
l : ‘_ ¥ ’
B(T!,tzﬁ)“,}:‘_—rj |_!n(77 ) _Id(hw" )]
o
Again, B is uniquely detcrmined up Lo a constant and the addition of a coboundary.
The group operation in Vir is given by
(M, 1 )e,8)=(1 -0, 14+s+B(1,6)mod 27))

Vir is called the BOTT-VIRASORO group. The coadjoint actions of Lie group and

Lic algebra are given by

pagel?2



Ak @) 2= 73a0 B2 —rsr),m)

* &2 _,_,_a°X 5.9
() ad()(—a— a)_l(p(dt) ,T)—(Tﬁ—(p-é—ﬁﬁ-p)x,ﬂ)
o
where
( ) ¢$¢n_%(¢u)2
S(g)= —_
(¢")?

is the Schwartzian derivative of ¢. Using these [ormulas it is easy to see that
PSU, , is not the isotropy group in DIfF(SY) of any element in Vect(SH*. However,

we have the following:

THEOREM 1.1. (KIRILLOV [16]).

The corresponding central extension of PSU, ; in Vir is the coadjoint isotropy of

po(2d B2, —1)eVir* for any poER

Thus
Diff(SY/PSU,

is diffeomorphic to the coadjoint orbit of Vir in vir® through the point
20 ®? 1),

Let us close this section with a few words about the manifold structure of
Dif‘f‘+(Sl)/IPSU1,,. Endow Difft(S") with H°-topology for s>%‘ so that all clementis of
l.)iff+(Sl) arc at least C! according to SOBOLEV’S IMBEDDING THEOREM. Then, it
can be shown that Dil‘f"'*'(Sl)/IPSU]’l carries Lhe corresponding quotlient structure. To
understand this better, it is convinient to proceed in a slightly different fashion.
Denote by Rot(S!) the orintation preserving of S'. Then, as shown by KIRILLOV,
DiffY(S')/Rot(S') is a contrectible space. Since Dil‘f'i'(S‘)/lPSU:,1 fibres over
DIffT(SY/Rot(SY) with fibre the POINCARE disk D, it lollows that the manifold

structure of Dit"F""(Sl)/[PSU].1 is that of a product of DiffT(S))/Rot(S!) with D.
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THEOREM 1.2.

DirrH(s))/RoUSH) - Dirr*(S")/PSU, , is & fibre bundle of H*-manifolds for s>%, whose
fibre is the POINCARIS disk.

REMARK.

The expression occuring in (x) is the second POISSON structure for the KdV
equation, or equivalently, the operator appearing in the squared eigenfunction

rclation of the HILL operator.
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#2. THE CHOICE OF TOPOLOGY OF I AND BERS IMBEDDING.

DEFINITION 5.1.

l.et us denote by QSDif‘f"'(Si) the group of quasisymmetric homoemorphisms of the

circle Sl

LEMMA 2.2.(KIRILLOV (Sec [15]).

Let ¢GQSDiF[‘+(SI), i.e. ¢ is a quasisymmetric homoemorphism of S', then ¢ defines a

pair of wunivalent functlions (f,g), where { is defined in in D+:={t€—0:l itl<1}, g is

defined in D7:={t€CI| Li>1} and (f,g) have the following properties:
A) gloo)=oc and g'{e0)=1 and so g is uniquely defined

By t.r o

N

C) f is uniquely defined

Proof: Lel

T |
DYULD=CPy

be the glucing of the two disc via ¢ along the boundary S!'. So we get that

+ ol
D U¢D G:]PGS
is the S% j.e. the two-dimensional sphere. Since ¢ is a quasisymmetric

homcomorphism of S' it follows from & THEEOREM of AHLIFORS and BIEURING that ¢
can be prolonged to a quasiconformal map of D). (See [11.) So from here and according
to a THEOREM of BERS and AHLIFORS, there exists a unique complex structure on
D+U¢D‘--ﬂ:]}’é which coincides with standard ones on both DV and D-. (Sce f1].) Since
all compex structures on 5% are equivalent, there exists a holomorphic map

1

cop! epl
l*.lLE¢. ClI

such that F(ee)=eo, F’'(ec)=1. Recalling the definition of tl:IF’f?5 we sce that the
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definition of F is equivelent to the definition of ¢ pair of Tunctions (f,g) defined on
D and D respectively. From THE RIEMANN MAPPING THEOREM we got that g is
uniqucly defined. So A). B) and C) follow automatically.

Q...

COR. 2.2.1.
f(¢) can be prolonged continuously to a quasiconformal function f(qﬁ) outside

D, i.c  {(¢) is defined in D-.

Proof: From the THEOREM of AMLFORS and BEURLING ¢ can be prolonged to a
tiuasiconf‘ormﬂl map #:D" . (See {11.) Clearly, f(@)=p(d(#)) is a quasiconformal map
with the requiered propertics.

Q.E.D.

REMARK 2.3.
Up to now we have construcled an injective map, namely Lo cach
S EQSDIFF(SH —(f,g)
where (f,g) arc dcfined by LEMMA 2.1., and f is an univalent Tunction in the closed
disk D uniquely dofined by ¢€QSDIff*(SY). Next to f we assign its Schwarcian

derivative, i.c we get a map

(2.3.1.) B: ¢ () S(f(¢))
where
fa{-na_%(r”)Q
e —o
S(r) )

The main properties of the Schwarcian derivative S(f) arc:

d27 2 .
(2.3.2.) S(r-g)~{St0-e ) 5] +ste)
(2.3.3.) S(h)=0 iff h is a Mobius transformation

So {rom (2.3.2) and (2.3.3.) it follows that we can interpret
BQSDIfFH(S))=F :=QSDifFH(S')/PSU, ; and for ¢€X and S((#)), dofined as in LEMMA
2.2.,, as a quadratic differential on D. This is BLRS IMBEDDING.
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LEMMA 2.4. (BERS IMBEDDING.) (Scc [3].)

The map (2.3.1.) gives an imbedding of QSDiff“'l'(Sl)/]PSUI,1 into the space of
univalent holomorphic functions in D such that the NEHARI norm
IS(F(N) iy s=sup IS (B)ZDI —1217) <2.

zeD
PROOI’: In [1] i1 is proved that il f is & univalent function in D and
IS(EM 5y =sup ISP — 1217 <2.
z€D

then f can be continued to a quasiconformal map outside ). So from this result and
(2.2.3.) and (2.2.4), it follows that T C.A(2), where .A(2) is the ball in the Banach
space B of radius 2, where B” is the space of all holomorphic functions in I with
finite NEHARI norm
If lipys=sup iF()I0 —1217) <oo
zeD
Iiven more il was proved that q is exactly the interior of %% LEMMA 2.4. follows
from here and LEMMA 2.2.
Q.E.D.

REMARK .
It is casy to see that T contains F'I(Dr) for every r<2, wherec F maps the space of

holomorphic functions f such that

2o 1 Lt — 1B TFldv ATS
I 27rij(l lZzI*)* Tldz Adz) <o
D
to € and it is defined in the following manner: F(f)={(0), Dr={1€C| ti<r}.

2.5. DEFINITION.

We will give a definition of left invariani vector fields on . First we will recall

that the tangenl space of T can be identified with the space of all BELTRAMI
differentials with finite L norm. let L®(D) be this space, i.e.the space of all
BELTRAMI differentials with finite L norm on D. Let vEL™D) Then the

corresponding "quasisymmetric” vector field on S’ is given hy
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wivle'Ya
ot

3
vit)== :
at ielt
where wlvl is the solution of the BELTRAMI equation
W;"UWZ
and wiv] is Lhe first variational term in the solution of the BELTRAMI equation, i.e.

wi(2)=2 +twlul(z)+o{l), t =0

2.6. DEFINITION.

From now on ¥ we will intoduce the topology induced by the L= NEHAR! norm on

the space of holomorphic functions on D, namely

I Hly=sup 21 —121) <oo
zeD

We neoed to use the BERS IMBEDDING | i.e. FCWDY and then the L NEMARI
NORM induces a BANACH MANIFOLD SSTRUCTURE on 5::=QSDiff‘+(S])/]I’SU1,1.

pagel8



#3. KIRILLOV COMPLEX STRUCTURE AND THE KAHLER METRIC ON .

We know that if M is a rcal even dimensional manifold, then there are two

equivalent definitions of complex structures on M, namely:

DEFINITON 3.1.A.
There exists TEINM,Hom(T*M, T*M)) such that {°=-—id plus the integrability

condition.

DEFINITON 3.1.B.

There exists a global splitting of the complexified colangent bundle

T*M ®@n01,0®00.1
such that Q=% plus the integrability condition.
In order to define the compiex structure on Diff(S")/PSU,, we will use DEFINITION
3.1.B.. Let Vect(SH®C be all complex valued vector fields on S'. I is easy to see

thal

Vect(SHQT =

. ;
E aplp
.n--w -

where

27ingd
l.n-'C e

ot

The Lie algebra of PSU; , is naturally a subalgebra in Vect(SHQE spanned by

{L oy}

Thus the complexified cotangent space at id(mod]l*’SU]_l) in Dif‘f‘"(Sl)/]PSUL1 can be

identified with ‘
{3 oa)

n-1,0,1
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DEFINITON 3.2.

1,0 .=§ :
Lot S)ld(mod ]PSUl_l]. anl‘n
n>1

Clearly we defined a left invariant complex structure on E. Then it is very easy to

check that we have the following; Let u and VEQI'U, then

fu,vieq'®

This is just the integrabilily condition.

DEFINI'TON 3.3.

et v and w be two left invariant vector fields on Diff+(Sl), then the metric defined

in the following way:
<v,w>=w(v,Iw)

where @ is the KIRILLOV-KONSTANT-SAURIAU form on the coadjoinl orbit of
BOTT-VIRASORO group that passes through Un(Z(dL)®2
fI-Diff"'(Sl)/IPSU,_, by the results of #1 and | is Lthe KIRILLOV complex structure
operator on T. We will call this metric the WEIL-PETERSSON metric.

,~1) and so is isomorphic to

# 3.4.

THIZOREM 3.
AXlet v and w be two lelt inverianl vector fields on Dif]“-l‘(Sl)/IF’SUl,1 of type (1,0},

i.e.

OO (o]
- E VnI.n and W= E WnLn
n=2

n=2
where l.n=exp('}rni)§? THEN the WEIL-PETERSSON motric defined in #3.3. is given
by

o0
<v,w>=l—c§ E vawn (n°—n), where ¢>0
=2
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B) let H‘(Sl):—{al] vactor fields v on S! of type (1,0)} v is at least c?‘ﬁ}, then H,(ShH
is a complete HILBERT SPACE with respect to the metric defined in AJ.

REMARK.
Let us remind that the WEIL-PETRSSON METRIC defined in 3.3. is obtained in the
following manner:

<v,w>=w(u,lw)
where w is the KIRILLOV'S form. Moreover clearly the WEIL-PETRSSON metric is a
KAHLER metric.

PROOF OF A:
Part A of this THEORIM follows from the deflinition of the VIRASORQ) algebra, i.c.:

l:l‘m’l‘"_-l=(r" _")Lln-f-n‘*'%}(m3 —mdm,n

and more precisely from the way we defined the KIRILLOV-KONSTANT-SAURIAU
form w on the coadjoint orbit of THE BOTT-VIRASORO group through (2(d1.)®2,-1)
which is isomorphic to Dif‘f"'-(Sl)/lI"SUl,1

2x

w(Ln,Lm)—zb(dt)@L[[jl,m,l,n:|]=g(m3qm)am,_,ﬁJ 2bexp(27i(n+m))dt

o '
From the fact that m and n arc different from 1,0,-1 we get that the above formula
is just

(3.4.1.) w(l.n,l,m)-g(m:" —m¥8m,-n
From (3.4.1.) the definition of KIRILLOV’S complex structure on T we getl that

(o )
(3.4.2.) w(u,lv)-g E (m°-m)umvm

m=2
So (3.4.2.) shows that w(u,lv) is a metric on Dif‘f+(Sl)/lPSU1,1. The fact that the this

metric is a KAHLER metric follows from the fact that w is a closed form on %. So

part A of THEOREM 3 is proved.

page2l



PROOF QOF PART 8 of THEOREM 3:
Before we prove PART B of THEOREM 3, fet us recall the following facts:

Fact 1.

First we will recall that the tangent space of K can be identified with the space of
all BELTRAMI differentials with finite L™ norm. Let L°(D) be this space, i.c.the
space of all BELTRAMI differentials with finite L°° norm on D. Let v€L™(D) Then
the corresponding "quasisymmetric” vector field on S’ is given by

vulte'Ya

a3 W
(%) v(t)o= :
ot ie't ot

where wlv] is the solution of the BELTRAMI equation
and wlv] is the first variational term in the solution of the BELTRAMI equalion, i.e.

Wi ,(2)=z +twivl{z)+o(t), t -0

FACT 2. (See (20].).

Let 2€L°P(D) be a BELTRAMI difforential and it corresponds to a vector field v(t),(—%
on S and it is C%'% as (%), The FOURIER coefficients of v(t) are given by

vk=%lu(z) z%2dxdy for k2
P
and v, =V for k<-2.

PROOF: It follows directly from the definition of FOURIER cocfficients. (See [20].)

Q.E.D.
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FACT 3.(NAG and VERJOVSKY in [20].)

Let v(z) and u(z)EL®(D) be a BELTRAMI differentials and the corresponding
vector fields v(t)gaz and w(t)% on S by (%) are of type C*'€,

THEN the following formula is true:

o0 X0
mem(m3 —m)= _£§JXJM(Z)m(sz_2§m-2(mS —m)dfdn -dxdy=
4 D D L

PROOY OF FACT 3:

The formula

.
E VnWm(m® —m)=
2

[o. o]

1 - m-2zm-2,

1 § z O _m)dedn-dxdy =

WQJX w1z (KX 4 2o (Y —m)dEdn -dxdy
DD <

NEVG)
' ==2d€d77-dxd
[“Ll—zg)‘* - dxdy
b i

follows from the fact that

o/

oo 5 ,
(m®—m)y™ “=—L _ for lyl<l

as can be easily proved by differentiating

o0
D oyl —y)!
0

three times. So from here FACT 3 will follow il we prove the following formula:
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z)($) 1
(k) ij(l ng)—AdEdTJ-dxdy p—
DD D

1 — 123 D) -dzAdz
I( g )u(/)u(/)(1~—1zlz)?

PROOF OF (#*):

This formula follows from the fact that

Ca
(1 —z¢)*

is the BERGAMAN kernal function for the quadratic differentials in D. For this

fact see [19]. So from here (xx) follows immediately. See [20]. So FACT 3 is proved.

Q.E.D.

Let L%(D) denote the HILBERT space of complex Tunctlions on ID for which

jli‘l?’dy. <
D

where
du=m—(1 —lzI®)%dz Ad2
21

In {14] it is proved that the subspace of all holomorphic functions with (inite L°

norm of the type, i.c.

Ill‘i?du, <o
D

form a closed HILBER'T subspace. So THEOREM 3 is proved.
Q.E.D.

So we will end this paragraph with the following PROPOSITION:
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PROPOSITION 3.6.

For cach genus g>2 the TEICHMULLER SPACE Kg(T‘) of the compact RIEMANN
surface |’ of genus g can be imbedded in QS])iff+(Sl).

PROOF:

Let fy,..,l55.3 be a basis in I-lO(I‘,(Q’]r)
holomorphic quadratic differentials on I'. Let T'=D/G, where CCPSU; ;. We can lift

&2

),.i.c. for cach j, f; is a globally defined

cach f; to a automorphic holomorphic form of weght two in D with respect to G. We
will denote by

s

£ i' f‘;.
Clearly uiGHI(.F,@), te. i is a BELT'TRAMI differential on }* and il,uillco=1. Now we
can identified Ty(I") with the subset ¥y in H'(I",0), where

3g-3 3g-3
‘J'g:—{ :: Tiuil E I’ri|<1 and TiEC}
1=1 i=1
Let
3g-3
T= TiuiE‘.I'g
i=1

be a BELTRAMI differential on " and ||7]leo<<l. We can Jift 7 to 7 in D and solve
the equation

éz¢:T32$

From the THIEOREM of AHLFORS and BIIRS we can find a solution of the above
equation ¢4, which gives a quasiconformal map of D. By a standard facts from the
quasiconformal maps, il foitows that ¢ can be prolonged to a map of D. The
restriction of o, to aD=S! will be a gusisymmectric homeomorphism of S’, which we

will denote by ¢. (See [1].) This is the desired imbedding.

Q.E.D.
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#4. THE REGULARIZATION OF THE WEN-PETRSSON METRIC.

THIEOREM 4.

A) Suppose thal u(z) is a holomorphic function in D and

% [((1 —1z®MuP) dz Adz) <oo
D
Let

1 NV IO (dZ AE) ia ﬂ(d),ll(() Tr =

L= 1 =1zl )————5=——= | | x| ———==(d§ Ad$)-(dzAdz

i) m” (1 —12) e )(I-Iziz)z 3#“ k](l_2§)4( §Adg)-(dzAdz)
Dy De D

Suppose that lim  gp(u,u)=c0

r—o]-
If we define
(%) glu,/)=lim E;’i"u)
r—4- r
where B
D
THEN
gli,u) exists and
2(12,1£) >0

B8) Let H,(S') be the space of all all vector ficlds on S' such that they fulfill the

conditions 1), 2) and 3) stated bellow

o0

J_ into
1) Y tne AT

n=2

in other words VE}% is of type (1,0) with rospect to the KIRILL.OV'S COMPLEX

STRUCTURE on T
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2) v is at most C?

(o)
3) If we define Ty(z)= E cpz? in D and suppose that g(fy,0y)>0

n=2
THEN HZ(SI) is 3 complete MILBERT SPACI. with respect to the metric g(v,v) as
defined in AJ.

C) The restriction of glu,u) defined on Ho(SY) as in A) on the imbedded
TEICHMULLER SPACE Eg is just the WEIL-PETERSSON METRIC.

PROOF OF PART A of THEOREM 4.:
The proof consists of several steps
PROPOSITION A.

Suppose that u belongs to L*(D), i.e. # is holomorphic quadratic differential in D,

i.c. we can view u#(z) as a holomorphic function in D and

%J(l —z™Mu(dz Adz) <o
D
THEN
o)

() gl )=lim == exists
r—1- Pr

_1 || dzAdz i , 1l ey o (dzAdZ)
(P E” O PR Dp:={teClii<r} and grlg,w) m.” (€1 —121%) uU)r—*] Ty

Dy Dr

Proof of PROPOSITION A:

First we will introduce some notations. el us dencte by f'u:—(ﬁl —1215*121%. From

;}i {(1 — 2P dz Adz) <oo
D

we getl that

(4.1.) ] lfu(dz NTz) <o

i
D
Q.LZ.D.
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PROPOSITION 4.2.

Let )
T oty p1)= [fu(dz/\‘ai)
D,
then T
by S
T, pe)= (——-] ' )adr, where r&[0,11CR
J —r
Q

where &6, is a bounded function in |0,l]CR and « iis a real number such that
0<o. <1, i.e. o is the same as in Lhe assumptions of the THEOREM 4.
PROOF;

From the definition of f#-(l —1z1%?

lu®, where u(z) is a complex-analytic function in
D we get that we have for ,; the following formula:
{*) fum(l——lzlg)z( E anz™) E anz")
n>0 n>0

From the definition of 7.(u,u) and (%} we pet
(%) Tr(u,u)=7-r‘—l.[J (1—Izl2)2(§ :anzn)(E anz"NdzAdz)

.Dr n>0 n>0
i

If we make change of the coordinates in () z=Re'® we will get after clementary

calculations that r
=.-.L o

(k) T {i2,14) WiJl £ (R)AR

0
where FM(R) is a real analytic function of R. Now our PROPOSITION follows
immediately from (*%x) and the fact that liml’rr(,rt,u) exists .

T —
Notice that o is determined in the following way:

a) 0o &R b lim() —R)*F ,(R)=c and 340

Q.E.D.

The end of the proof of PROPOSITION A.

From the definition of P, i.e.

][ 48w emscenuco

Dy
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after making the change of the coordinates 2.-Rcl¢ we get that
r
¢ dR
(A) el
T la—RY
0

.. . i
Again if we make the chauge of the coordinates z=Re

¢ and using PROPSITION 4.1.

we will get that

.
G P 171 e 9, (R)
) {4 )-l.[ N P T I M-
Brifh T (1 —1zi)® § la —ryztoe
Dy 0
where ¢,(R) is a bounded function on [0,1]CR and 0<a<1. from (B3) and the fact

that ¢,,(R) is a bounded function we get that

r
J‘ &, AR)
(1 —R)yere
JL' !
© lim _ gff_{,r“‘) ° . e >0
J__QR____Q
(1 —R)

W]

exists and ¢>0.
So PROPOSITION A is proved. This proves PART A of THEOREM 4.
Q.ED.

PROOF OF PART B OF THIZOREM 4.
Let 3L(D) denotes all holomorphic functions { in D such that g{f,f) <o, let {f.} be a

sequence in I6{D) which converges to an clement FEL*(D), where LAD) is the space
of all complex valued functions in D such that g(f,[)<es. Then lrom the definition

of g(f,f), i.e.

1 M 2 dg/\d_f

w0 ] (0 —=iIMr =2

2 J ¢ {a-—1517)?
lii gL(—riQ-’ lim Dy —
Ferlm Pr r—l1- ]_[ d¢ Adg
AR (=101

Dy
we get that for each U<r<l and "sufficiently” close 1o 1
nl_i}{lo”rn“r“ Wil

where
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1 4y 102 df/\anﬁt
= 1 —IKMHIf I ——
2xi J( s (1—1¢1%)?

2 gr(f,f) Dr
”f“T" (:P - —
r 1§ _dEAdS
27“[ (1—1r)*

The proof is based on the following PROPOSITION B;:
PROPOSITION B,.

L.et A be a compact subset of D, THEN there exists a number NA(r) such that
ITEZINSN , (OIF e

for all z€A and all holomorphic functions in D such that g(f,f)<oc, where g is

defined in THIZOREM 4 part A and ACDyp, where Dpi={z€C|lzl<r<1}.

REMARK.
Since A is a compact subset in D then from the definition of compaciness, namely

that A is s closed and bounded subset in D it follows that such Dy exists.

PROOF OF PROPOSITION B,:

Repeat the arguments in [14} of PROPOSITION 3.1. on page 364,
Q.10

PROPOSITION B,.

From Proposition B, follows PART B of THEOREM 4.
PROOF of B,:

Let A be a compact subset of D and let ACDy. Then by PROPOSITION Bywe get
that

(B,1) I£(C) —TmlEN KN A (Pl — Tl

for all ¢€A. It (ollows that there exists a funclion h on D such that f,—h
uniformly on cach compact subset A of D.. Hence h is holomorphic on Dp. From
here we get that h is defined in D. By (B;l} we have for €A CDy.

(13,2) IFa($) — O <N (DT, —h
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Given A, there exists an integer K such that the right-hand side of (B,2) is <1 for
n>K and such that ]IlelrgllfH,H. Then we must prove thal g(h,h)<eo. For the
proof of this fact we will remind the DEFINITION of g(h,h), i.e.
g(h,h)i=  lim  gelhhdi=  tim ()
r—1- r—t-
From this definition and the easy ineguality
bl <Ify —hilp+ Ty lle <c+ITfir (¢ is a positive constant for )

we get that h is a holomorphic function on cach Dy and so in D. Finally since on

each compact subset ACD we have

1 2 dzAdz
I I~ N r (Z)“—‘r(z) ,.,=O
1n 27“]1 n | (—“—“—l 2Py

A

and

] > dz Adz
lim—=| T y(z) —h{L)|"= -
274’ n | (1 12122
A
So it follows that f=h ulmost everywhere.

Q.E.D.

PROOF OFF PART C OFF THEOREM 4.:
T'he proof is based on the following PROPOSITION:
PROPOSITION C.
Let I'=D/G and let ¢ and ¥ be two holomorphic quadratic differential on T,

then
W.P.<¢,p>=lim Broo.o
r-1- Pr
where ¢ and iB are holomorphic Fforms of weipht two with respect to G on 1D and
W.P.<¢, > is the WEIL-PETERSSON inner product on I'=D/G.
FROOIF of PROPOSITION C OF THEOREM 4 (NAG and VERJQVSKY) (See 120]:

It is ecasy to sec that if & and ﬁ) are holomorphic forms of weight two with respect

to G on D, then

£r(8.0)-N(W.P.(¢,1))
where Np=number of copies (liles) of D/C in Dr. No compacl subset of D can meet
inTinitely many copies (liles). This is proved in [9]. So Np is a finite number. On the

other hand we have that
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! dzAdz .
Pp=—|| —== and Dp={tcC|iti<r
r ?“” (1 —HzlP) rim{tebiit<n)
Dr
is equal to Nplarca of DrMNUg) with respect to the POINCARE metric, where Ug s
the fundamcntial domain of G. From herec everything follows directly.

Q.E.D.
So THEORIEEM 4 is proved.

Q.E.D.
CORR.

QsDiff*(sY)/PSU, , is a KAHLER MANIFOLD.
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#5. THE DETERMINANT LINE BUNDLE AND THE QUILLEN METRIC.

5.0. Some Deflinitions and Notations.

We can interpret QSDifl""(Sl)/[F’SU,_l as all "Possible quasiconformal compiex
structures” on the unil disk, so QSDif!""(Sl)/IPSUl‘1 parametrizes different §¢ for
¢€QSDiff’+(S’)/1I’SU,_,. Now we will define precisely §¢

S.1. THE DEFINITION of é¢.

A) We know from LEMMA 2.2, that to each
¢ €QsSDirrt(sy/IPSu,

there corresponds a unigque pair of univalent holomorphic functions (f(¢),e(¢))

defined respectlively in D and outside D, where
gld)oo)=c0 and pld)(cc)=1

and

r(¢) .(g(¢)")|g1=¢

Let T(¢) be the BELTRAMI diffcrential defined in the unit disk in the following

manner:
T(8):=-(1 —12")*S(I{8))

where S(f(¢)) is the SCHARTZIAN derivative of f(@). Now we define 5¢ in the
foliowing manner:

é¢"éz —T(¢)az

REMARK.
We will pive another definition ol 5¢, which we will use later. This Deinition is
based on KADAIRA-SPENCIER-KURANISHI THEOREY.
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DEFINITION 8 OF éé.

et ¢€QSDiff+(S'). From the definition of QSDiIT’*(Sl) it follows that ¢ can be
prolonged to a quasiconformal map of D. let us denote this map by w(¢). We may
suppose that w(g) satisfies the equation
§¢(W(¢)3-5Z(w(¢))—T(é)az(w(é))ﬂ()
(For thwe proof of this fact sec {1].)
Let l¢ be the puliback of the standard complex structure [, of D by w(g), i. e.
15=¢™ ;)

We know from KODAIRA-SPENCER-KURANISHI DEFORMATION THEORY theat
I¢ defines a map
(g0 'l
Notice that
0 }
sy ermHom 0" =rmeea™)
so T(¢) is a BELTRAMI DIFFERENTIAL.

REMARK 1.

From now on wec will use the second DEFINITION. Notlice that 7(¢) when

restricted to $' is given by

_T(eXehp
T(¢)|Sl Tﬁ

REMARK 2.

In order to justify the DEFINITION of §¢ we will recall BERS THEORY of

simulatanious uniformization for RIEMANN surfaces. A nice exposition of this
THEORY, onc can find in the beautiful paper by PH. A. GRIFFITHS and the review
paper by L. 1. BERS. (Seell3} and [03])
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5.2. BERS THEORY. (Sce i3] & [131.)

Let I be a RIEMANN surface of genus g>>1 and let Ry be a fixed quadratic

differential on T'. lLet us consider the 2™ order differential equation on I

2
(5.2.1.) :—“+R0u=0

2
X

Next we will show how to associate an imbedding ;Lozf'--ﬁ:ﬂ)’, where T is the

universal covering of I'.

5.2.2. CONSTRUCTION OF puq.(Sce [131).

We choose a point zoGI" and consider a basis u,, g4, for the solution of
(5.2.1.) which may be assumed to exists in a neighborhood of zy. By the principle of
analytic continuation, we may extend the domain of definition of u, and i, to obtain
single-valued functions i, 4, on the universal covering I of T, Furthermore, if we
let 7, (I') operate as a group of covering transformations on I~', then we will find a

transformation rule:
ﬁ.(“{~z)=a7ﬂ1(z)+b7ﬁp(z)
ﬁ:(7-z)=c7[t1(z)+d7ﬂ2(z)

for YE®,(I) and all z€T, and where the transformation matrix

o b
Ma=l 17 lesLe,o)

because the FUCKSIAN differential equation (5.2.1.) has no term involving 3—'5 in it.
Let
£y
Lo==
lo T

then uozf‘—-C}PI gives an imbedding. The equation (5.2.1.) gives a monodromy
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representation
(5.2.2.1.) 8o:7,(T)--SL(2,E)
which defines:
(5.2.2.2) oY Z2)=6(Nitolz) for 7ET.
Conversely, suppose we are given an etale map:
/LQ:f‘mCP“

which have the properties (5.2.2.1.) and (5.2.2.2.). We¢ may think g as being

meromorphic function on f’, and we consider the Schwarzian derivative:
#’53 u’)
O
Ko “Hq

From the standrd properties of the Schwarzian derivative we get that S(,uQ)-nQ is a
quadratic differential on T. JFrom (5.2.2.2.) we deduce that “Q satisfies the
differential equation:

d%u
Q -
dx? +QﬂQ 0

So the following PROPOPOSITION holds:

PROPOSITIN 5.2.2.3. (Sce [3].)

There is one to one map between the maps ,u:f‘—-ClP" such that g4 is an imbedding

and have properties (5.2.2.1.) and (5.2.2.2.) and all cquations of the type

du
Qe -
e +Q,1LQ—0

where Q is a holomorphic quadratic differential on " with NEHARI norm ||Qll <6.
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REMARK 1.

Suppose that the NEHARI NORM of Q ||Qfl<2, then the map i~:1 —CP! can

Q

be prolonged to qusiconformal function h(,LLQ) such that

5Z(h(uQ))-= —( —Izlz)QS(uQ—) Bz(h(uQ))

we suppose that I'=D. See (1].

REMARK Ii.
It is easy to sec that ——('I—Izl?‘)?'S(,uQ) is defined in D. Using the ususl

change of coorfinates z—'% we will get that il is deflined outside D.

REMARK 5.2.3. (See [3].)
Notice that all holomorphic quadratic diferentials on I' with NEHARI norm
less then 2 can be identified with the TEICHMULLER SPACE fIg(l‘). This can be

done in the following manncr: Let I'=H/G, where [ is the upper-half plane and lel

*=H*/G*be the conjugate curve of T. Here H¥ is the lower-half plane. Consider

all pairs (C,h) where
h ™ -C

is a quasiconformal homeomorphism from the RIEMANN surface I'* to the RIEMANN

surface C. Introduce the equivalence relation
(C,,h,)=(C,,h,)

whenever h,-hj! is homotopic to a conformal mapping of C, onto C,. We denote by
Zg(]‘) the set of all such equibalence classes of pairs {C,h) and this is the usual
definition of the TEICHMULLER space. Let us denote by Tp{I) the set of all
quadratic holomorphic with NEHARI norm less then 2. Let QE‘Ig(I‘) and choose a

quasiconformal extension UQ of the univalent holomorphic mapping

. ™ - 31
uQ.J CI
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Notice that we have the lollowing commutative diagramm

M *—u -
UQ. H D-(Q)
i !
e I1* /G D e
hQ. I"™=H"/G D (Q)/GQ (’Q
vields a point (CQ,hQ) in Ig(]‘). So we potl a map
1T 5 (F) =L (T)

BERS proved in [2] that « is an isomorphisms of sets.

REMARK 5.2.4.
Notice that if ¢(_—'.QSDiff'(Sl)/lPSU]., is obtained from hQ, then uQ is just {(¢) of
LEMMA 2.2.

5.3. SOME NOTATIONS AND THE DOMAIN OF THE ACTION OF §¢.

5.3.1. 1If cti\EQSDil"f"'(Sl)/IPSULl and ¢ is of class C*™ then 5¢ acls on C=(S'), i.e. on all
C~ vector fliclds on S' in the obvious ways, namely let v be a vector field in D
such that when restricted to S' is v and both ¥V and v are of type C®.Then 5¢v is

just the restriction of 5¢\7 on S'.
We will recall the DEFINI'TION of the tangent space of
T:=QSDiff (S PSU, |

The tangent space can be identified with the space of all BELTRAMI differentials
with finite L™ norm. Let L®(D) be this space, i.e. this is the space of all
BELTRAMI differentials with finite L™ norm on D. Let vEL(D) Then the
corresponding “quasisymmetric” vector field on $' is given by

_wivle!Ya

3
( 5.3.1.1.) V(l)é‘{ —l—clt—m
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wherc w[v] is the solution of the BELTRAMI equation

WS=UWy,

and wlv] is the first variational term in the solution of the BELTRAMI equation, i.e.
wy(@)=z Htwlul(z)+o(t), t -0

5.3.1.A. Definition.

[n THEOREM 4 we proved that if v(t)éa—t is & vector ficld on S' at least of class
C2'¢, then we can define a structure of HILBERT SPACE on all those vector ficlds,

namely
<v(L),w(t)>~—§ m(m 1}V ;W
m=2
where
v{t)= =E Ve I{% and w(t)— E wme'n-"'la
m=2 m=2

We denoted this space by H,(SY).

5.3.1.8. Definition.

Next suppose that

w(t) Zwmcwmlat

m=2

' A . . a .
is & "quasisymmetric” vector ficld on S' and w(l)i is at most of class C% THEN we

defined on this space aHILBER'T SPACE STRUCTURL in the following manner:

Suppose that

O
rw(z):=Zwmz"‘

m=2
Clearly fw('/.) is a holomorphic function in D
o~
(= > Yme™™
m=2

From the definition of a “quasisymmetric” vector field on S' we pet that f‘w(z) must

have a finite NEHARI NORM, namely
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sup (1 —tz|2)?|rw(z)| <o
z&D

(For the proof of this lact see [19].)

So from here we get that

( 5.3.1.2) I(l — 1P (dz Adz) <o
D

then we proved in #4 that

2 2(dz Adz)
H (1 b P20

Dr

- ” dzAdZ
(1 —1iz1%?
DT'

g(f 0 )= lim < o0
[

and g(fw,fw)?éU.

So p.(l'w,f‘w) defines a HILBERT STRUCTURE on all vector fields of type (1,0) on S!

which are at most C”. This was proved in THEOREM 4. Wc will denote this

HILBERT SPACIE of vector fields on S! by H,(ShH.

5.3.1L.C. Definition.

So we can identified the space of real left invariant vector fields on S' with the
direct sum of the HILBERT SPACES H,(S)@HL(S?). (Here we denote by H,(S!) and by
H,(S") the direct sum of the holomorphic and antiholomorphic vector fields on SY)

This HILBERT SPACE we will denote by J6%(SY).
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PROPOSITION 5.3.2.
IFor each ¢-EQSDiff+(Sl)/IPSUl‘1 §¢ defines an elliptic operetor on HA(SY).

PROOQI:
First we will suppose that §¢ is a well defined linear operator on J6%S!) and under

this assumption wec will prove that it is an eclleiptic operator.

Proof of the fact that —8—¢, is an clliptic operator:

Notice that if Wy is quasiconformal solution solution of

§¢w¢=()
then Wy defines a new complex structure on D. 'his new complex slructure is just
the pull back ol the standard complex structure on D. With respect to this new
complex slructure 5¢ is just the usual 3 operator. Its symbol is just if. So E_3¢ is
elliptic operator. .

Q.E.D.

Definition of the action of 5¢:

First we will definc how 9 acts on all the “quasisymmetric” vector fields on S'.

This action is given in the following way:

Let f(?.)(dz)®2 be an antiholomorphic quadratic diffecrentiei on D and let

2y T T T e
W= 128 s ©2
dz&Xdz

be the BELTRAMI DIFFERENTIAL obtained from f(:f.)(dz)®2 then
» 2 T
(%) D=0 5r(yan) &2
dzQdz

Next we must show that from (%) il follows that the restriction of & on S! is

defined correctly on J6%S'). This follows from the fact that 9 is a closed operator
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and now we can invoke closed graph THEOREM. (See [23]1.) Notice that 3 is defined
on both H,(8") and H,(S?). This is so since in H,(S") all C* vector ficlds are an
everywhwerc dense subset and C® vector ficlds arc an everywhere dense subsct in
Ho(SY. Here we define H,(SY) and H,(S8") here as real vector ficlds, i.c. both of them

are sum of holomorphic and anti-holomorphic vector fields on S'.

So up to now we have defined only the action of 3 on HAS!). Remember that we can
view M%(SY) as left invariant vector fields on QSDIff*(S')/PSU, ,. In the same manner
we can define the action of 3 on JE(S").
From the DEFINITION of 3,

0g=0—T($)d
it foilows that we must consider two different casces namely, when 7(¢) is of at least
of class C2'% and 7(p) is at most of class C%. In the first case §¢ is defined on ]‘]I(Sl)
and is just zero on Ho(S"). In the second case 5¢ is defined on Hy(S") and is zero on
11,(S"). In the first case wc must use the lact that all vectr Ticlds of class C*¢ are
everywhere dense subset in H,(S") and in the sccond case thatl all vector ficids of
type C? are dense in Hy(S"). Then in both cascs 5¢ is a close operator so applying
CLOSED GRAPH THEOREM, we get that 3, is defined on J6%(S").

Q.E.D.

REMARK.

From now on we will consider the action of 5¢ on IA(SYH vector{Ficlds on Sk
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5.4. THE DETERMINANT LINE BUNDLE,

5.4.1. Definition.
Let

+ . _Akx N

A¢. 8¢8¢’ and f_\¢. 3¢8¢
where 5; is the conjugate of 5¢ with respect to the metric g(u,r) defined in
THEOREM 4. Both operators A; and Aa are positive and so all their eigenvalues

are >0.

5.4.2. Definition.

Let {f?{} be an orthonormal basis of eigen sections of A;, i.ce.
ATET=N,

and {f3} be an orthonormal basis of eigen scctions of Dy e
L\&(fﬁ}w\n

5.4.3. REMARK.

Let ‘8‘¢f:, then

A;,('é¢f::)=("a"¢((5;§¢)(r;))=§¢(>\nf;“,)—xn(%r:,'J
so the operators /;\.; and /_\;5 have the same eigen values and
)J_

{rﬁ}—{5¢r§}6(kcr5¢

Therefore, to every eigensection f}',' of A; with eigenvalue \y >0, there corresponds

an cigensection f&:§¢f: with eipen value Ag.
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5.4.3. REMARK.
For a>0, let U, be the set of points in QSDif’f‘"’(Sl)/lPSULl where @ is not an

cigenvalue of A;. This is an open set. Clearly since the operators 5¢ depends
holomorphically on ¢EOSDiff+(Sl)/[PSU1_|, the number of eipen balues of A; less
then a is constant in U,. Notle thatl it is important that a>0, because the spectrum

is bounded below by zero.

5.4.4. The construction of the determinant linc bundle.

+
Let (EE)" be the subspace of 16(S') spanned by all cigensections of Ag with cigen

values less then a. The determinants of thesc spaces will be picced together over
QSL)it"i‘"’(S')/PSUm in order to construct the determinant line bundle. The

trivialization of the determinant line bundle over U, will be
Uax((det(E))a) @(det(F}))*)

and the fibre over ¢CQSDIfF(SYY/PSU, , is ((dct(f‘;;)n)®(det(E;),)*).

Similarly, one considers U, for b>a>0. We know that every line bundle is

defined by a cocycle {o,,}, where

(o €] [(UaNU,0%)
a<b

and

Tca=0 p,Ope fOr c>b>a.

Definition of o,.

Let

w5 i1,k

be the maximal number of orthonormal eigensections of the operator A\; with eigen
values in the interval (a,b), where a and b are positive real numbers. Let

;81 0k0)
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be the maximal number of orthonormal cigensections of Lhe operator Aa} wilh eigen

values in the interval (a,b), where a and bc arc positive rcal numbers. We know that
- + -

from REMARK 5.4.3. that the number of w]_(;,b) is equal to the number of ¥, g;’b)

and we¢ have the following:

k
= , +{a,b) (a,b) -(a,b) .
3¢($i’¢ J= E o e wj,qb and i=1,...,k

J=1

- - ~ ’ . . (a)b)
Since the operstor a¢ depends on ¢ holomorphically we obtain that dct(aijcb)
depends on ¢ holomorphically. So let us define

cra_b:=det(o.gi’£))

Clearly {o0,,} fulfills the cocycle condition. This will define the determinant line
bundle. We will denote this line bundle by det(d).

5.5. Definition of thc_ QUILLEN metric.

Let {'éé} be the sel of & operators parametrized holomorphically by
QSDiff"'(Sl)/]I"SUl,l. Then the determinant line bundle det(d) has a canonical section

over Ua, namely

(§¢w1A...A.5¢wk)

~ )
et o T A AD)

where #€Ua. and ©,(¢),...,0{(#) is the maximal number of cigensectlions for A; that
corresponds to the non-zero cigenvalues <a. Now we arc ready to define
Jldetéwl!é:—cxt)( ——(’&+(0))
where ¢
o0
’ = -8 . : , c oA AT .
S.Q,*T(S)_ E ?\i and )\i are cigen values of L\Q5 and Re(s)>1.
@ joel
Sometimes we will denote '('A"”(S) by ¢(s).
REMARK. ?
Let B be the space of all 'é¢=-§ —7(#)3 for ¢CF. Then 1|§¢||2-—-<7(¢),7(¢)>, where < , >
is the scalar product on 163SD:=H,(SH+H,(S") defined as above.
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5.6. FORMULATION OF QUILLEN’S THEOREM
THEOREM 5. (QUILLEN) (See [18].)

A Bélog(exp(—f;A+(0)))- aglongetgtﬂQ is just the WEIL-PETRSSON METRIC an T.
L
PRQOF:
It suffices to check that the curvature form of ithe QUILLEN metric coinsides

with the WEIL-PETERSSON metric over one-parameter family 3 of invertible

plw) R
operators depending on i holomorphically on the complex variable u€C and ¢(u)ET..

We may suppose that d:(,u)-/LcSEfC. THE curvature form is given by:

aaloglldetauliQ _(§A+(O))du/\du

We reccall that

¢(s):=¢" E(s) -Ir((A )"5) and AZ:—?SZ@M

So easy computations show that we have:

— s Tl AN -s Tr ALY S8 )

st 'mf‘a‘l(a(’é MSlat
] IR A
0

Let us dcnote by

o +
(5.6.0.) w(s):-[ 'rr(c'tm‘*")agj((é%@ S lat
0
Let
(5.6.1.) Y(s)=1(0)+0(s)

then we nced to compute P(0) in {5.6.1.) in terms of the parametrix of the invertible
operator 5¢ Co(7,2) and its SCHWARTZ kernal ((z,7’). Namely we will prove the
following LEMMA:
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LEMMA 5.6.2.
For ¥(0) defined as in (5.6.1.) we have:
- o5
p(0): <‘]'(8;4(al/-¢)>

where J:i=lim ,(G(z.z’)—Go(z.z’), and <, > is the scalar product on J6%(SH.
Z—Z

PROOF;
From the definition of the function ¥(z) we get that:
-uAah) _
: e . M-l O s-1
{5.6.0.) Pis): J'I‘r(«, 3 ((au(aud,)))t dt
0

so from this expression we gel that

5.6.2.1 0):= lim T AW 3 9
(5.6.2.1.) ¥l ).—tl_r.n0 r(e aj,,((@(cw)))i

QUILLEN in [18] proved the following THEQREM:

THEOREM (QUILLEN) (See H18]).

One has +
L(Alj') L.
Glz>=J{z)

lim <zfe
t -0

aniformly in z, and consequently for any BE®R

"(AZLL) -1
lim Tr(e @ )(B)=<1,B>
L—0
where B is the gpace of operalors {§¢1¢€i} acling on The HILBERT SPACE I64ShH
with inner product <§¢,5w>n<7(05),7'(w)>, where <, > is the scalar product in S,
Remember that 7(¢) was defined via BERS IMBEDDING.
This THEOREM follows from the continuity of G—Gg along the diagonal and the
formula
YA,

lim <zjc Gole>=0

t-0
which is derived by calculating the asymptlotic expansion of the heat kernal. For

more details sec [138].
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From this THEOREM of QUILLEN it follows that

(5.6.2.2.) lim 1" _tm‘bq-l(( O F  W=<I, (25
O 2.l ""-'.n(] r(e 7 aTt(,U¢ )=< ,(B_,U- u¢)>

From (5.6.2.1.) and (5.6.2.2.) LEMMA 5.6.2.Tollows.
Q.E.D.

5.6.3. The end of the proof of the THIOREM 5.

Up to now we have proved that
.9 ()= 33
(5.6.3.1.) A =5 <26, >+ 06s)

So we getl that

v B (M=
(5.6.3.2) aMg((), 0
and ‘
— B e (0)=<] O3
(5.6.3.2.) Emg (0) <.1,a“(aw)>

So in order to finish thc proof of the THEOREM we need to compute ] and also
_8 ==J. Notice that
ou

o = _ ‘
(5.6.3.3.) 51—1(8“(!)}77(:3)
This follows directly [rom the definition of 5#‘:5' i.e._éﬂ:=5z~—u'r(c$)az. where
£€C and ¢Ei.
On the other hand from (5.6.3.2.) wc gct that

(5.6.3.4.) OO B ey

dudu O

So we need to prove

LEMMA 5.6.3.5. E—%(J)= (¢)
i
PROOF:
We necd to computle explicetely the operator ). For this rcason let us remind

yvou the definition of J:
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Ji=lim (G(z,2}—Gplz,2")
YA

whare G(2,2") is the SCHWARZ kernal of §¢ and Clv,7") ix the parametrix of §¢. So

we nced to find cxplicil formulas for G(z,2") and Gnlz,2").

5.6.3.5.1. Explicit computation of Ga{z,2") and G{z,z").
REMARK.

Let w(z,Z) be 8 quasiconformal solution of the BELTARMI equation:
Bw=T(8)3,
i.e. w is real analylic homeomorphisin of 1 which is quesiconformal, Clearly that if
we make change of the coordinates z-—w(x,Z) we will get & new complex structure on
D, where all holomorphic Tunctions to this new complex slructure are power series
in w. Clearly thatl

B, — (9, =3y

After this remark it is easy to compute the parametrix. and the SCHWARZ
kernal of By,. Remember that w depends on /£ in a complex analytic manner, i.e. Wy

is a solulion of the cquation
87008, =By,

(IFor the proof of this sece [11.)

Computation of the SCHWARZ kernal G.

The operalor §7-—T(u)¢82=}’§wu has a Tundamental solution

) . [IN} . o0
IM;D.T(D,Q )= I°(1D, 000
given in coordinate w, by the formula:
w11 dg AL
Iu¢w. 5 E___——wu AIE)
D
So from here we oblain thal SCHWARZ kernal G(W}L,“'u) of -Z_}w“ is given by:
de’
(0 G(E},,,EM)-E—,—fT
et
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Computation of the parametrix G, of 5“’#'

We will construct the parametix of 5“.“ in the following way. l.el V be the
unique connecctlion on the tangent bundle of D, i.e. en the trivial bundle, compatible
with the pull back of the Eucleadian metric via w, compatible with this metric and
the operator 5“,“. Let F(£,,£),) be the paralicl transport with respect to V along the

geodesic from g, to E}r Let r?(fmfh) be the distance between w,, and w;u. Put

(A) GO(E["E;L):‘:SE}LlOg(rz(Elt’E:ul))c’F(Eﬂ’E;l-)
where
B F(€ 1ok ) )l +(6 7,087, +(E , —€7)dE )+

So we get from (A) and (B)

) 1 1 3 Y e e Nde ¢
(m GO(E’“‘,EH)=2—TRE——E:&—)(EM —Eu,)dE‘u-i-(Eu —E#)d5ﬂ+

Computation of J and of %J(z).

From the definition of J:

Ji=lim (G(z,2") —Golz,z")
77

and from (A) and (I3) we get that

(i) J(2)=dE)=~(8,£ )+ uT(8)8,€),)dz
From (IlI) we get that _
av) B 1(2)=0 and 2 N(z)=T(@)
ou D
From )
(5.6.3.4)) --a'(—_(B—J=<T(¢),T(¢)>
QLI

This proves QUILLEN’S THEOREM.
Q.LE.D.
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FINAL REMARK.

Just in the same manner one can prove more general principle, which was
observed also by FUIJIKI and SCHUMACHER. Namely, let b be the KURANISHI
family of KAHLER manifolds with a fixed class of polarization [LEH"(Xg,R).
Suppose that for each €U we can find a KAVILER metric By depending C® on L and
such that the cohomolopy class llmgtfl=L. Then we can define the WEIL-PETERSSON
melric in the fTollowing way: We know from KURANISHI thecory that the ZARISKI
tangent space 'I't‘U.mlH’(Xt,@t), where Hi‘(Xt,@t) is the space of harmonic (0,1) forms
with coeflicienis in the tangent space. Let ¢ and UEIH‘(Xt,@t); then

o y=Fh 5]
¢1URZ¢EC}Z ®a_:—5:

- VB @ 8.
oy ZchA ®az”

Then we define the WEIL-PETERSSON metric in the following way:

<hioo [ 8% o 5,20 volgv)

B
}\t
We can interpret ‘b as the space that paramelirizes the operators 51. where 51,
acts on the following spaces:

0,1

= rex v ol 0,1
By T2 ®O) ~T(X,Q" @O BN

N )
Let
=
019¢=Vy
where 51': is the conjugate of 5,_ wilth respect Lo the metric g(i).
Then the following THIEOREM is {ruc:
THEOREM (QUILLEN).

dloglexp(—¢y (0))= 8dloglidetd, lig is just the WEIL-PETRSSON METRIC on U.
t

REEMARK. This THEOREM was also proved by FFUJIKI and SCHUMACHER.
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