A Characterization of Orbit

Closure and Applications

by

Fritz Grunewald

' and

Joyce O'Halloran

Fritz Grunewald Mathematisches Institut Universität Bonn Bonn

BRD

Joyce O'Halloran University of Wisconsin-Milwaukee Milwaukee WI 53201

USA

A Characterization of Orbit Closure and Applications

Fritz Grunewald

Mathematisches Institut, Universität Bonn, Bonn, BRD

Joyce O'Halloran^{*}

University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA

In their book on representation varieties, Lubotsky and Magid give a useful characterization of orbit closure in representation varieties [2, 1.24]. Here we adapt this characterization to arbitrary categories. Applying this characterization of orbit closure to the category of Lie algebras and to the category of 2-cocycles for a fixed Lie algebra, we establish the following orbit space homeomorphism.

Let \underline{G} be an n-dimensional Lie algebra over an algebraically closed field k. For each 2-cocycle B in $Z^2(\underline{G}, k^r)$, there is a central extension $\underline{G}(B)$ of \underline{G} by k^r constructed as follows. On the vector space $\underline{G} \oplus k^r$, define a Lie product [, $]_{B}$ by:

 $[x+a,y+b]_{B} = [x,y]_{G} + B(x,y), x,y \in \underline{G}, a,b \in k^{r}.$

Let $B^{\perp} = \{x \in \underline{G} \mid B(x, \underline{G}) = 0\}$. If $B^{\perp} \cap Z(\underline{G}) = 0$, then $Z(\underline{G}(B)) = k^{r}$. Let $\underline{B} = \{B \in Z^{2}(\underline{G}, k^{r}) \mid B^{\perp} \cap Z(\underline{G}) = 0\}$ and let

[&]quot;This paper was written while the second author was a guest of the Max-Planck-Institut für Mathematik.Travel for the second author was funded by the University of Wisconsin Graduate School Research Program.

 $\underline{\mathbf{L}} = \{ \underline{G} (\mathbf{B}) \mid \mathbf{B} \in \underline{\mathbf{B}} \}. \text{ Let } \mathbf{G} \text{ be the subgroup of } \mathbf{GL} (\underline{\mathbf{G}} \oplus \mathbf{k}^{\mathbf{r}}) \\ \text{consisting of elements of the form } \begin{bmatrix} \alpha & \mathbf{O} \\ \theta & \psi \end{bmatrix}, \text{ where } \alpha \in \operatorname{Aut} \underline{\mathbf{G}} \\ \text{and } \psi \in \operatorname{GL}(\mathbf{k}^{\mathbf{r}}). \text{ } \mathbf{G} \text{ acts on } \underline{\mathbf{B}} \text{ by:}$

$$(g \cdot B) (x, y) = \psi B(\alpha^{-1}x, \alpha^{-1}y) + \theta[\alpha^{-1}x, \alpha^{-1}y]_{G}$$

Skjelbred and Sund [5] established that the correspondence $B + \underline{G}$ (B) induces a bijection between the G-orbits of <u>B</u> and the isomorphism classes of <u>L</u> (see [4] also for a discussion of this result). We show that this bijection is a homeomorphism of the orbit spaces. In Section 3 we apply this result to a specific example.

We would like to thank Andy Magid for pointing out that the orbit closure characterization for representations might carry over to the setting of Lie algebras.

- 2 -

§1. A characterization of orbit closure

Let k be an algebraically closed field. We consider functors on the category of k-algebras, i.e. commutative associative k-algebras with identity. The variety morphism defined by the k-algebra homomorphism $\eta: k[Y] \neq k[X]$ is denoted $\overline{\eta}: X \neq Y$.

Let S be a functor from the category of k-algebras to the category of sets; for a k-algebra homomorphism f: $A \rightarrow B$, let f^{*}: S (A) \rightarrow S(B) be the corresponding map of sets. Assume that S satisfies the following conditions:

1) S (k) is a variety with coordinate ring S and there is an element $s_u \in S$ (S) such that for $s_A \in S(A)$, there is a homomorphism $\phi: S \neq A$ such that $s_A = \phi^*(s_u)$.

2) For $v \in S(k)$, $ev_v^*(s_u) = v$. From this it follows that for any variety morphism $\overline{\Phi}: X \to S(k)$, given by $\phi: S \to k[X]$, we have $\overline{\phi}(x) = ev_{x_{u}}^*(s_u) = (ev_x \circ \phi)^*(s_u) = ev_x^*(\phi^*s_u)$.

- 3) If A is the coordinate ring of an affine set and t and u are elements of S (A) which satisfy $\phi^{*}(t) = \phi^{*}(u)$ for all homomorphisms ϕ : A \rightarrow k, then t = u.
- 4) There is a group scheme action of G on S, where G is an affine algebraic group scheme. In particular, the following diagram commutes for all homomorphisms f: A \rightarrow B:

3

5) Let K be the quotient field of k[Z], Z an affine variety, so we have the inclusions $k \stackrel{i}{\rightarrow} k[Z] \stackrel{j}{\rightarrow} K$. Let $s_k \in S(k)$, $s_z \in S(k[Z])$, $g \in G(K)$ satisfy $g \cdot ((ji) \stackrel{*s}{s_k}) = j \stackrel{*s}{s_z}$. Then for all $x \in Z$ such that g(x) is defined and has non-zero determinant, $g(x) \cdot s_k = ev_x^*(s_z)$.

Lemma 1.1. Let $\rho: Y \rightarrow X$ be a dominant morphism from an affine set Y to a variety X, inducing the injective ring homomorphism $\rho: k[X] \rightarrow k[Y]$. Then there is a finite extension K of k(X)and a homomorphism $q: k[Y] \rightarrow K$ such that $q \rho$ is the inclusion of k[X] into K.

<u>Proof</u>: By considering ρ on irreducible components of Y, it suffices to establish the lemma for the case that Y is a variety.

By the Noether Normalization Lemma, there are algebraically independent elements x_1, \ldots, x_n in k[X] such that k[X] is an integral extension of $k[x_1, \ldots, x_n]$. Let $y_i = \rho(x_i)$ and extend the set $\{y_1, \ldots, y_n\}$ to a separating transcendence basis $\{y_1, \ldots, y_r\}$ of k(Y) in k[Y]. By the Noether Normalization Lemma, k[Y] is an integral extension of $k[y_1, \ldots, y_r]$. Let $\psi: k[y_1, \ldots, y_r] \neq k[x_1, \ldots, x_n]$ be the homomorphism defined by

 $\psi(y_i) = x_i, 1 \le i \le n$, and $\psi(y_i) = 0, i > n$.

- 4 -

The kernel of Ψ , P_O , is a prime ideal (since the image of Ψ is an integral domain). By the Going Up Theorem, there is a prime ideal P in k[Y] with

$$P \cap k[y_1, \dots, y_r] = P_0.$$

By construction, the quotient field K of k[Y]/P is a finite extension of k(X). The map q: $k[Y] \rightarrow K$ given by the quotient map $k[Y] \rightarrow k[Y]/p$ has the desired property. (For the commutative algebra theorems, see [3].)

The following characterization of orbit closure is a generalization of a theorem of Lubotsky and Magid [2, 1.24] for representation varieties.

<u>Theorem 1.2</u>. Let s_0, s_1 be elements of S(k). Then $s_0 \in \overline{O(s_1)}$ if and only if there is a discrete valuation k-algebra A with residue field k, whose quotient field K is finitely generated over k of transcendence degree one, and an element s_A of S(A) such that

 $\tau^{*}(s_{A}) = g \cdot ((\tau \eta)^{*} s_{1}) \text{ for some } g \in G (K)$ $\pi^{*}(s_{A}) = s_{O}$

where η, τ , and π are the homomorphisms shown:

$$k \xrightarrow{n} A \xrightarrow{\tau} K$$
$$\downarrow \pi$$
$$A/M = k$$

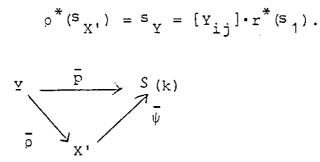
- 5 -

<u>Proof</u>: Suppose $s_0 \in \overline{O(s_1)}$. Choose an irreducible curve X in $\overline{O(s_1)}$ containing s_0 and s_1 and let X' = X \cap O(s_1). X' is an affine open subset of X. Let Y be an affine subset of G (k) whose image is Zariski dense in X' under the orbit map \overline{p} : G(k) \neq S(k) ($\overline{p}(g) = g \cdot s_1$). Let r: k \neq k[Y] be the inclusion map and let $Y_{ij} \in k[Y]$ be the matrix coordinates on G(k) restricted to Y. Then for $g \in Y$, we have

$$ev_{g}^{*}([Y_{ij}] \cdot r^{*}(s_{1})) = g \cdot s_{1}$$
 by 4)
= $ev_{g}^{*}(p^{*}(s_{1}))$ by 2)

It follows from 3) that $[Y_{ij}] \cdot r^*(s_1) = p^*(s_u)$. Let $s_1 = p^*(s_u)$.

Because the image of \overline{p} is contained in X', the diagram below commutes, where $\overline{p}(y) = \overline{p}(y)$ and $\overline{\Psi}$ is the inclusion map. If we let $s_{x'} = \psi^*(s_{y})$, then



From Lemma 1.1, we have a finite extension K of k(X') and a homomorphism q: $k[Y] \rightarrow K$ such that $q \circ \rho = e$, where e is the inclusion of k[X'] into K. From the diagram below, we have:

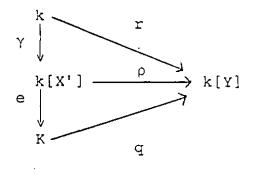
- 6 -

$$e^{*}(s_{X},) = (q\rho)^{*}(s_{X},)$$

$$= q^{*}([Y_{ij}] \cdot r^{*}s_{1})$$

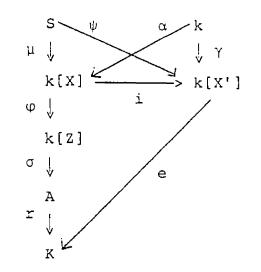
$$= (q^{*}[Y_{ij}]) \cdot ((qr)^{*}s_{1}) \quad by \ 4)$$

$$= g \cdot ((e_{Y})^{*}s_{1}) \quad where \ g = q^{*}[Y_{ij}] \in G(K).$$



Since $\overline{i}: X' \to X$ is a dominant morphism, $i: k[X] \to k[X']$ is an inclusion. Let k[Z] be the integral closure of ei(k[X])in K. Then the inclusion $\phi: k[X] \to k[Z]$ induces a surjection $\overline{\phi}: Z \to X$. (The morphism $\overline{\phi}$ is onto because k[Z] is the integral closure of k[X].) Because $\overline{\phi}$ is surjective, there is an element z_0 in Z such that $\overline{\phi}(z_0) = s_0$. Let A be the local ring of Z at z_0 , and let $\sigma: k[Z] \to A$ and $\tau: A \to K$ be the inclusion maps.

- 7 -



ļ

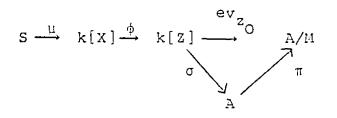
Let $s_X = \mu^*(s_u)$ and let $s_A = (\sigma\phi)^*(s_X)$. Then $s_X = i^*(s_X)$ and we have:

$$\tau^{*}(s_{A}) = (\tau \sigma \phi)^{*}(s_{X})$$

= e^{*}(i^{*}s_{X})
= e^{*}(s_{X'})
= g \cdot ((e_{Y})^{*}s_{1}) \text{ from above}

Therefore $\tau^*(s_A) = g \cdot ((\tau_n)^* s_1)$, where η is the inclusion $\sigma \phi \alpha$.

From the inclusion $\{z_0\} \subset Z$, we have the homomorphism $ev_{z_0} : k[Z] \neq A/M$ and the diagram below:



$$s_{O} = \overline{\phi}(z_{O}) = ev_{z_{O}}^{*}((\phi_{\mu})^{*}s_{\mu}) \qquad by 2)$$
$$= \pi^{*}(\sigma\phi_{\mu})^{*}s_{\mu}$$
$$= \pi^{*}s_{A}$$

9

Therefore $\pi^{*s}_{A} = {}^{s}_{O}$.

Suppose there is a discrete valuation k-algebra A with residue field k, whose quotient field K is finitely generated over k of transcedence degree one, and an element ${}^{s}_{A}$ of ${}^{S}(A)$ such that $\tau^{*}s_{A} = g \cdot ((\tau_{n})^{*}s_{1})$ for some $g \in G(K)$ and $\pi^{*}s_{A} = s_{0}$.

By property 1), there is a homomorphism $f: S \rightarrow A$ such that $f^*(s_u) = s_A^{-1}$. Choose an affine curve Z with $f(S) \subset k[Z] \subset A$ such that A is the local ring of k[Z] at z_O^{-1} . (Then k(Z) = K.)

Let $\overline{\phi}: \mathbb{Z} \rightarrow S(k)$ be the variety morphism defined by f: $S \rightarrow k[\mathbb{Z}]$, and let j: $k[\mathbb{Z}] \rightarrow A$ and $\tau: A \rightarrow K$ be the inclusion maps. From the diagram below, we have:

$$\overline{\phi}(z_0) = ev_{z_0}^* (\phi^* s_u) \qquad by 2)$$

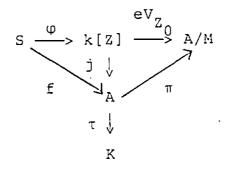
$$= \pi^* (j\phi)^* s_u$$

$$\bullet = \pi^* f s_u$$

$$= \pi^* s_A$$

$$= s_0$$

Then



Let $s_z = \phi^*(s_u)$. Then $s_A = j^*(s_z)$. By hypothesis, there is some g in G(K) such that $\tau^*s_A = g \cdot ((\tau \eta)^*s_1)$. Then

$$g \cdot (\tau_{n})^{*} s_{1} = \tau^{*} s_{A} = (\tau_{j})^{*} s_{z}.$$

Let Z' be the dense subset of Z consisting of points x such that g(x) is defined and det g(x) is not zero. Then for $x \in Z'$, we have:

$$g(x) \cdot s_{1} = ev_{x}^{*}s_{z} \qquad by 5)$$
$$= ev_{x}^{*}(\phi^{*}s_{u})$$
$$= \overline{\phi}(x) \qquad by 2)$$

Since Z' is dense in Z and $\overline{\phi}(Z') \subset O(S_1)$, it follows that s_0 is in $\overline{O(S_1)}$.

§2. Equivalence of orbit closure for 2-cocycles and Lie algebras

In the introduction, we described the construction of a central extension \underline{G} (b) of an n-dimensional Lie algebra \underline{G} by k^{r} defined by a 2-cocycle b. We also described the action of a group G on a subset \underline{B} of $z^{2}(\underline{G}, k^{r})$. For the convenience of the reader, we present here the proof of the theorem which appears in [5].

<u>Theorem 2.1</u>. The correspondence $b \rightarrow \underline{G}(b)$ induces a bijection between G-orbits of <u>B</u> and isomorphism classes of Lie algebras without direct abelian factor which are central extensions of <u>G</u> by k^{r} and have r-dimensional center.

<u>Proof</u>: From the construction of \underline{G} (b), it is easy to see that for $b \in \underline{B}$, \underline{G} (b) has no direct abelian factor and the center of G (b) has dimension r.

Suppose $b_1 = \phi \cdot b_2$ for some $\phi \in G$,

$$\phi = \begin{bmatrix} \alpha & O \\ \\ \theta & \psi \end{bmatrix}$$

Then we see that $\underline{G}(b_1)$ is isomorphic to $\underline{G}(b_2)$ via ϕ :

$$[x+a,y+c]_{\phi} \cdot \underline{G}(b_2) = \phi[\phi^{-1}(x+a),\phi^{-1}(y+c)] \underline{G}(b_1)$$

for $x,y \in \underline{G}$, $a,c \in k^r$
 $= \phi([\alpha^{-1}x,\alpha^{-1}y] \underline{G} + b_2(\alpha^{-1}x,\alpha^{-1}y))$
 $= \alpha[\alpha^{-1}x,\alpha^{-1}y] \underline{G} + \theta[\alpha^{-1}x,\alpha^{-1}y] \underline{G} + \psi b_2(\alpha^{-1}x,\alpha^{-1}y)$

$$= [x,y]_{\underline{G}} + \theta[\alpha^{-1}x,\alpha^{-1}y]_{\underline{G}} + \psi b_2(\alpha^{-1}x,\alpha^{-1}y)$$

since $\alpha \in Aut \underline{G}$

=
$$[x, y]_{\underline{G}(b_1)}$$

Suppose $\underline{G}(b_1)$ is isomorphic to $\underline{G}(b_2)$ via an isomorphism ϕ . Since b_1 and b_2 are in \underline{B} , the centers of $\underline{G}(b_1)$ and $\underline{G}(b_2)$ have dimension r, so ϕ induces

$$\bar{\phi}: \underline{G}(\mathbf{b}_1)/\mathbb{Z}(\underline{G}(\mathbf{b}_1)) + \underline{G}(\mathbf{b}_2)/\mathbb{Z}(\underline{G}\mathbf{b}_2)).$$

By the construction of $\underline{G}(b_i)$, we see that $\underline{G}(b_i)/\mathbb{Z}(\underline{G}(b_i))$ is isomorphic to \underline{G} . Thus $\overline{\phi}$ is an automorphism of \underline{G} . Fix a basis $\{e_1, \ldots, e_n\}$ for \underline{G} and a basis $\{e_{n+1}, \ldots, e_{n+r}\}$ for k^r . Then the matrix of ϕ relative to this basis is

$$\begin{bmatrix} \alpha & O \\ \theta & \psi \end{bmatrix}, \quad \alpha \in \operatorname{Aut} \underline{G}, \quad \psi \in \operatorname{GL}_{r}(k), \quad \theta \in \operatorname{Hom}(\underline{G}, k^{r}).$$

Let $[,]_i$ denote the Lie product $\underline{G}(b_i)$ on $\underline{G} \oplus k^r$. For $x, y \in \underline{G}$, we have

$$\phi[x,y]_{1} = [\phi x, \phi y]_{2}$$
$$= [\alpha x, \alpha y]_{G} + b_{2}(\alpha x, \alpha y)$$

Also we have

- 12 -

$$\phi[x,y]_{1} = \phi([x,y]_{\underline{G}} + b_{1}(x,y))$$
$$= \alpha[x,y]_{\underline{G}} + \theta[x,y]_{\underline{G}} + \psi b_{1}(x,y)$$

From these two equations, it follows that

$$b_{2}(\mathbf{x},\mathbf{y}) = \theta \left[\alpha^{-1}\mathbf{x}, \alpha^{-1}\mathbf{y} \right]_{\underline{G}} + \psi b_{1} \left(\alpha^{-1}\mathbf{x}, \alpha^{-1}\mathbf{y} \right).$$

Therefore b_1 and b_2 are in the same G-orbit.

In order to show that the bijection between orbits of 2-cocycles and isomorphism classes of Lie algebras preserves orbit closure, we introduce two functors with group scheme actions and apply Theorem 1.2.

Let \underline{G} be an n-dimensional Lie algebra over an algebraically closed field k. Define the functor $B \begin{array}{c} r \\ \underline{G} \end{array}$ from the category of k-algebras to the category of sets by

$$B_{\underline{G}}^{\mathbf{r}}(\mathbf{A}) = \{ \mathbf{b} \in \mathbb{Z}^{2} (\underline{G} \otimes_{\mathbf{k}}^{\mathbf{A}}, \mathbf{A}^{\mathbf{r}}) | \mathbf{b}^{\perp} \cap \mathbb{Z} (\underline{G} \otimes_{\mathbf{k}}^{\mathbf{A}}) = 0 \}.$$

Fix a basis $\{e_i\}_{i=1}^n$ for \underline{G} . Then a 2-cocycle b in $\mathcal{B}_{\underline{G}}^r(A)$ is given by its values on the pairs of basis elements $(e_i \otimes 1_A, e_j \otimes 1_A); b(e_i \otimes 1_A, e_j \otimes 1_A) = (a_{ij}^s)_{s=1}^r$. For a homomorphism $f: A \neq C$, let $f^*(b) = b \otimes_A C$. That is, for b in $Z^2(\underline{G} \otimes A, A^r)$ given by $([a_{ij}^s])_{=1}^r$ define $f^*(b)$ in $Z^2(\underline{G} \otimes C, C^r)$ by

$$([a_{ij}^{s} \otimes 1_{B}])_{s=1}^{r} = ([f(a_{ij}^{s})])_{s=1}^{r}.$$

Let G be the closed sub-group scheme of $G\ell_{n+r}$ given by

$$G(A) = \left\{ \begin{bmatrix} \alpha & O \\ \theta & \psi \end{bmatrix} \mid \alpha \in \operatorname{Aut}(\underline{G} \otimes A), \ \psi \in G\ell(A^{r}), \ \theta \in \operatorname{Hom}(A^{n}, A^{r}) \right\}.$$

G(A) acts on $5\frac{r}{G}(A)$ by

$$\begin{bmatrix} \alpha & 0 \\ \theta & \psi \end{bmatrix} \cdot \mathbf{b}(\mathbf{x}, \mathbf{y}) = \psi \mathbf{b}(\alpha^{-1}\mathbf{x}, \alpha^{-1}\mathbf{y}) + \theta[\alpha^{-1}\mathbf{x}, \alpha^{-1}\mathbf{y}]_{\underline{G}} .$$

It is easy to see that the functor $B_{\underline{G}}^{\mathbf{r}}$ with this action of the group scheme G satisfies the conditions listed in Section 1.

By "n-dimensional Lie algebra over A" we mean a Lie product on the free A-module on n generators $\{e_i^A\}_{i=1}^n$. Then the Lie algebra is uniquely determined by its structure constants (a_{ij}^t) relative to the generators $\{e_i^A\}_{i=1}^n (L(e_i^A, e_j^A) = \sum_{t=1}^n a_{ij}^t e_t^A)$. If f: A + B is a k-algebra homomorphism, identify e_i^B with $e_i^A \otimes_A ^1_B$.

Let L_n be the functor from the category of k-algebras to the category of sets defined by

- 14 -

 $L_n(A) = \{n-\text{dimensional Lie algebras over } A\}$.

If f: A + B is a k-algebra homomorphism, let $f^{*}(L) = L \otimes_{A} B$. If the structure constants for L relative to $\{e_{i}^{A}\}_{i=1}^{n}$ are (a_{ij}^{t}) , then, via the identification above, the structure constants for $f^{*}(L)$ relative to $\{e_{i}^{B}\}_{i=1}^{n}$ are $(f(a_{ij}^{t}))$.

 $\underline{L}_{n} = L_{n}(k) \text{ is a closed subvariety of } Hom(\Lambda^{2}k^{n},k^{n}); \text{ let}$ $L \text{ denote its coordinate ring and let } L_{u} \text{ be the element of}$ $L_{n}(L) \text{ with structure constants } (X_{ij}^{t}). \text{ As above, for each}$ $M \in L_{n}(A), \text{ there is a homomorphism } \phi: L \neq A \text{ such that } M = \phi^{*}(L_{u}).$

 $G\ell_n(A)$ acts on $L_n(A)$ by change of basis:

$$(g \cdot L)(x, y) = g(L(g^{-1}x, g^{-1}y)).$$

The functor L_n with this action of $G\ell_n$ satisfies the conditions listed in Section 1.

Let $\{e_i\}_{i=1}^n$ be a basis for \underline{G} and let $\{e_i\}_{i=n+1}^{n+r}$ be a basis for k^r . For any k-algebra A, let $e_i^A = e_i \otimes_k 1_A$ be generators for the free A-modules $\underline{G}_A = \underline{G} \otimes_k A$ and $A^r = k^r \otimes_k A$. The A-module \underline{G}_A has the Lie product given by \underline{G} . For $b_A \in \underline{\delta}_{\underline{G}}^r(A)$, let $\underline{G}_A(b_A)$ be the Lie product [,] b_A on $A^{n+r} = \underline{G}_A \oplus A^r$ defined by

$$[e_{i}^{A}, e_{j}^{A}]_{b_{A}} = [e_{i}^{A}, e_{j}^{A}] + b_{A}(e_{i}^{A}, e_{j}^{A}) \quad \text{if } 1 \leq i, j \leq n$$

- 15 -

$$[e_{i}^{A}, e_{j}^{A}]_{b_{A}} = 0$$
 otherwise.

For a k-algebra homomorphism f: $A \rightarrow C$, it is easy to see that

$$f^{*}(\underline{\mathcal{G}}_{A}(\mathbf{b}_{A})) = \underline{\mathcal{G}}_{A}(\mathbf{b}_{A}) \otimes_{A} C = \underline{\mathcal{G}}_{C}(f^{*}(\mathbf{b}_{A})).$$

As we have seen in Theorem 2.1, the correspondence from $\underline{B}_{\underline{G}}^{r}$ to \underline{L}_{n+r} given by $b \neq \underline{G}$ (b) induces a bijection between orbits in $\underline{B}_{\underline{G}}^{r}$ and isomorphism classes of central extensions of \underline{G} by k^{r} with no direct abelian factor and r-dimensional center. Using Theorem 1.2, we show that orbit closure is preserved under this correspondence.

<u>Theorem 2.2</u>. For b_0 and b_1 in $\underline{B}_{\underline{G}}^r$, $b_0 \in O(b_1)$ if and only if $\underline{G}(b_0) \in O(\underline{G}(b_1))$.

<u>Proof</u>: If $b_0 \in O(b_1)$, then from Theorem 1.2, we know that there is a discrete valuation k-algebra A with residue field k and quotient field K and an element b_A of B_G^r (A) such that

$$b_A \otimes A/M = b_O$$
 and $b_A \otimes K = g \cdot (b_1 \otimes K)$ for some $g \in G(K)$.

From the remarks above, we have

$$\underline{G}_{A}(\mathbf{b}_{A}) \otimes_{A} \mathbf{K} = \underline{G}_{K}(\mathbf{b}_{A} \otimes_{A} \mathbf{K}) = \underline{G}_{K}(\mathbf{g} \cdot (\mathbf{b}_{1} \otimes_{K} \mathbf{K})).$$

If $g = \begin{bmatrix} \alpha & 0 \\ \theta & \psi \end{bmatrix}$, then $g \cdot \underline{G}_{K}(b_{1} \otimes k^{K})$ has Lie product

$$g\left(\left[g^{-1}\left(x+s\right),g^{-1}\left(y+t\right)\right]\right) \underbrace{\mathcal{G}_{K}\left(b_{1}\otimes_{k}K\right)}_{\mathcal{G}_{K}\left(s,x\right)} \text{ for } x,y \in \underline{\mathcal{G}_{K}}; \ s,t \in K^{r}$$

$$= g\left(\left[\alpha^{-1}x,\alpha^{-1}y\right]\right]_{\mathcal{G}_{K}} + \left(b_{1}\otimes_{k}K\right)\left(\alpha^{-1}x,\alpha^{-1}y\right)\right)$$

$$= \left[x,y\right]_{\mathcal{G}_{K}} + \theta\left[\alpha^{-1}x,\alpha^{-1}y\right]_{\mathcal{G}_{K}} + \psi\left(b_{1}\otimes_{k}K\right)\left(\alpha^{-1}x,\alpha^{-1}y\right)$$

$$= \left[x+s,y+t\right]_{\mathcal{G}_{K}}\left(g\cdot\left(b_{1}\otimes_{k}K\right)\right)$$

$$= \left[x+s,y+t\right]_{\mathcal{G}_{K}}\left(g\cdot\left(b_{1}\otimes_{k}K\right)\right)$$

Therefore $\underline{G}_{A}(\mathbf{b}_{A}) \otimes_{A} \mathbf{K} = \mathbf{g} \cdot (\underline{G}_{1}) \otimes_{\mathbf{k}} \mathbf{K})$.

Because $b_0 = b_A \otimes {}_A A/M$, we have

$$\underline{G}(\mathbf{b}_{O}) = \underline{G}(\mathbf{b}_{A} \otimes A/M) = \underline{G}_{A}(\mathbf{b}_{A}) \otimes A/M$$

It follows from Theorem 1.2 that $\underline{G}(b_0) \in O(\underline{G}(b_1))$.

Suppose that $\underline{G}(b_0) = O(\underline{G}(b_1))$. By Theorem 1.2, there is a discrete valuation k-algebra A with residue field k and quotient field K and $L \in L_p(A)$ such that

 $L \otimes_{A} K \approx \underline{G} (b_1) \otimes_{K} K$ and $L \otimes_{A} A/M = \underline{G} (b_0)$.

Let $\phi: L \otimes_A K + \underline{G}(b_1) \otimes_K K$ be the isomorphism and let $\{x_i\}_{i=1}^{n+r}$ be a basis for L. Let M be the A-submodule of $\underline{G}(b_1) \otimes K$ generated by $\{\phi x_i\}_{i=1}^{n+r}$. Because ϕ is an isomorphism of Lie algebras, we have

$$[\phi_{x_{i}}, \phi_{x_{j}}] = \phi[x_{i}, x_{j}] = \phi(\sum_{s} c_{ij}^{s} x_{s}) = \sum_{s} c_{ij}^{s} \phi(x_{s}),$$

where $c_{ij}^{S} \in A$. Thus M is a Lie algebra over A which is isomorphic to L. Since K is the quotient field of A, there is an element a in A such that $\{a\phi(x_i)\}_{i=1}^{n+r}$ is a basis for $\underline{G}_A(b_1 \otimes_K A) \otimes_A \mathbf{1}_K$. Therefore $\underline{G}_A(b_1 \otimes_K A) \otimes_A \mathbf{1}_A \subset M$. But $\dim_A M = \dim_A \underline{G}_A(b_1 \otimes_K A)$, so $M = \underline{G}_A(b_1 \otimes_K A) \otimes_A \mathbf{1}_K$. It follows that ϕ induces an isomorphism between L and $\underline{G}_A(b_1 \otimes_K A)$.

Because L is isomorphic to $\underline{G}_{A}(b_{1}\otimes_{k}A)$, the dimension of Z(L) is r. Let $\underline{G}_{A}^{L} = L/Z(L)$ and define b': $\underline{G}_{A}^{L} \times \underline{G}_{A}^{L} \rightarrow A^{r}$ as follows. Let L' be a subspace of L complementary to Z(L) and let π : L' \oplus Z(L) \rightarrow Z(L) be the projection. For x,y \in L, define b' by

$$b'(\bar{x},\bar{y}) = \pi[x,y]_{\tau}.$$

Then $L = \underbrace{G}_{A}^{L}(b')$.

Because ϕ is a Lie algebra isomorphism from $\underline{G}_{A}^{L}(b')$ to $\underline{G}_{A}(b_{1} \otimes_{k} A), \phi(\mathbb{Z}(\underline{G}_{A}^{L}(b')) = \mathbb{Z}(\underline{G}_{A}(b_{1} \otimes_{k} A))$ and so ϕ induces an isomorphism $\overline{\phi}: \underline{G}_{A} \neq \underline{G}_{A}$. Identify \underline{G}_{A}^{L} with \underline{G}_{A} via $\overline{\phi}$, so that b: $\underline{G}_{A} \times \underline{G}_{A} \neq A^{r}$ is given by

$$b(x,y) = b'(\overline{\phi}^{-1}x,\overline{\phi}^{-1}y) \text{ and } L = \underline{G}_{A}(b).$$

Then $\underline{G}_{A}(b)$ is isomorphic to $\underline{G}_{A}(b_{1} \otimes k^{A})$. Since ϕ preserves the center, the matrix of ϕ is of the form

- 18 -

$$\phi = \begin{bmatrix} \alpha & O \\ \\ \theta & \psi \end{bmatrix}$$

19 -

relative to a basis $\{e_{i}^{A}\}_{i=1}^{n+r}$ where $\{e_{i}^{A}\}_{i=1}^{n}$ is a basis for \underline{G}_{A} and $\{e_{i}^{A}\}_{i=n+1}^{n+r}$ is a basis for A^{r} . For $x, y \in \underline{G}_{A}$, we have

$$\phi([x,y]_{\underline{G}}(b)) = [\phi_x,\phi_y]_{\underline{G}}(b_1 \otimes k^A)$$

So $\alpha[x,y]_{\underline{G}_{A}} + (\phi[x,y]_{\underline{G}_{A}} + \psi b(x,y)) = [\alpha x, \alpha y]_{\underline{G}_{A}} + (b_{1} \otimes_{k} A) (\alpha x, \alpha y)$.

It follows that $\alpha[x,y] = [\alpha x, \alpha y] = [\alpha x, \alpha y] = G_A$ for all $x, y \in G_A$, i.e. $\alpha \in Aut \xrightarrow{G}_A$, and $b_1 \xrightarrow{\otimes}_k A = \phi \cdot b$. Therefore

> $b \otimes_{A}^{K} = \phi^{-1} \cdot (b_{1} \otimes_{K}^{K}), \text{ considering } \phi^{-1} \text{ as an element}$ of $Gl_{n+r}^{(K)}$.

Because $\underline{G}(b_0) = L \otimes_A A/M$, we have

 $\underline{G}(b_0) = L \otimes_A A/M = \underline{G}_A(b) \otimes_A A/M = \underline{G}(b \otimes_A A/M).$

Therefore $b_0 = b \otimes_A A/M$.

It follows from Theorem 1.2 that $b_0 \in O(b_1)$.

§3. An application of the orbit closure characterization for 2-cocycles and Lie algebras

By comparing invariants like the dimensions of the upper and lower central series, one can often establish that a Lie algebra L is not in the closure of the orbit of a Lie algebra M (see [1] for examples). One case where this method fails is the case of the two central extensions of $\underline{G} = \underline{G}_3 \times \underline{G}_1$ by k^2 whose structure is given in Table I. (\underline{G}_3 is the non-abelian 3-dimensional nilpotent Lie algebra and \underline{G}_1 is the 1-dimensional abelian Lie algebra.) In this case $L = \underline{G}(B_0)$ and $M = \underline{G}(B_1)$ where B_0 and B_1 are given in Table II.

Proposition 3.1. L is not in the closure of the orbit of M.

<u>Proof</u>: By Theorem 2.1, L is in the closure of the orbit of M if and only if B_0 is in the closure of the orbit of B_1 .

Suppose B_0 is in the closure of the orbit of B_1 . Then by Theorem 1.2, there is a coordinate ring k[2] for some affine set Z, an element g in G(k(Z)), and an element $x \in Z$ such that B_0 is the evaluation of $g \cdot B_1$ at x.

The element g is of the form

$$\begin{bmatrix} \alpha & 0 \\ \theta & \psi \end{bmatrix} \quad \text{where } \alpha^{-1} = \begin{bmatrix} a & b & 0 & s \\ c & d & 0 & t \\ e & f & w & u \\ g & h & 0 & v \end{bmatrix} \quad \text{and } \psi = \begin{bmatrix} p & y \\ q & z \end{bmatrix}$$

We have:

 $g \cdot B_1(e_1, e_3) = \psi(cwx_1) = pcwx_1 + qcwx_2$ $g \cdot B_1(e_2, e_3) = \psi(dwx_1) = pdwx_1 + qdwx_2$

If $g \cdot B_1$ evaluated at x is B_0 , then we have:

1 = p(x)c(x)w(x) = q(x)d(x)w(x)0 = p(x)d(x)w(x)

It follows that 0 = p(x)d(x)w(x) = d(x)/c(x), so d(x) = 0; but this contradicts the statement 1 = q(x)d(x)w(x).

Therefore L is not in the closure of the orbit of M.

21 -

```
Table <sup>I</sup>
```

 $L(e_{1},e_{2}) = e_{4}$ $M(e_1, e_2) = e_4$ $L(e_{1},e_{3}) = e_{5}$ $M(e_{1}, e_{4}) = e_{5}$ $L(e_{2},e_{4}) = e_{5}$ $M(e_{2}, e_{4}) = e_{6}$ $L(e_{2},e_{3}) = e_{6}$ $L(e_i,e_j) = 0$ $M(e_{i},e_{j}) = 0$ other i < j other i ≤ j

 $G_3(e_1,e_2) = e_3$ $G_{3}(e_{i},e_{j}) = 0$ other i <u><</u> j

Table II

 $B_0(e_1,e_3) = x_1$ $B_0(e_2,e_3) = x_2$ $B_0(e_2,e_4) = x_1$ $B_{0}(e_{i},e_{j}) = 0$ other i <u><</u> j

 $B_1(e_1, e_4) = x_1$ $B_1(e_2,e_3) = x_1$ $B_1(e_2, e_4) = x_2$ $B_{1}(e_{i},e_{j}) = 0$ other i <u><</u> j

- $M(e_2, e_3) = e_5$

References

- [1] F. Grunewald and J. O'Halloran, Varieties of nilpotentLie algebras of dimension less than six, J. Algebra, to appear.
- [2] A. Lubotsky and A. Magid, Varieties of representations of finitely generated groups, Memoirs of the AMS, No. 336, AMS, Providence, Rhode Island, 1985.
- [3] M.F. Atiyah and I.G. Macdonald, Introduction to Commutative Algebra, Addison Wesley Publ. Comp., 1969.
- [4] L.J. Santharoubane, Infinite families of nilpotent Lie algebras, J. Math. Soc. Japan 35, No. 3 (1983), 515 - 519.
- [5] T. Skelbred and T. Sund, On the classification of nilpotent Lie algebras, Preprint no. 8, Matematik Institutt Universitet i Oslo, Norway, 1977.