A Characterization of Orbit Closure and Applications by

Fritz Grunewald and

Joyce O'Halloran

Fritz Grunewald Mathematisches Institut Universität Bonn
Bonn
BRD

Joyce O'Halloran
University of Wisconsin-MiIwaukee
Milwaukee
WI 53201
USA

A Characterization of Orbit Closure and Applications

Fritz Grunewald
Mathematisches Institut, Universität Bonn, Bonn, BRD

Joyce O'Halloran*
University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA

In their book on representation varieties, Lubotsky and Magid give a useful characterization of orbit closure in representation varieties [2, 1.24]. Here we adapt this characterization to arbitrary categories. Applying this characterization of orbit closure to the category of Lie algebras and to the category of 2 -cocycles for a fixed Lie algebra, we establish the following orbit space homeomorphism.

Let G be an n-dimensional Lie algebra over an algebraically closed field k. For each 2-cocycle B in $Z^{2}\left(\underline{G}, k^{r}\right)$, there is a central extension $\underline{G}(B)$ of \underline{G} by k^{r} constructed as follows. On the vector space $\underline{G} \oplus k^{r}$, define a Lie product $[,]_{B}$ by:

$$
[x+a, y+b]_{B}=[x, y]_{\underline{G}}+B(x, y), x, y \in \underline{G}, a, b \in k^{r} .
$$

Let $B^{\perp}=\{x \in \underline{G} \mid B(X, \underline{G})=0\}$. If $B^{\perp} \cap Z(\underline{G})=0$, then $Z(\underline{G}(B))=k^{r}$. Let $\underline{B}=\left\{B \in Z^{2}\left(\underline{G}, k^{r}\right) \mid B^{1} \cap Z(\underline{G})=0\right\}$ and let

[^0]$\underline{I}=\{\underline{G}(B) \mid B \in \underline{B}\}$. Let G be the subgroup of $\operatorname{GL}\left(\underline{G} \oplus k^{r}\right)$ consisting of elements of the form $\left[\begin{array}{ll}\alpha & 0 \\ \theta & \psi\end{array}\right]$, where $a \in$ Aut \underline{G} and $\psi \in G L\left(k^{r}\right)$. G acts on B by:

$$
(g \cdot B)(x, y)=\psi B\left(\alpha^{-1} x, \alpha^{-1} y\right)+\theta\left[\alpha^{-1} x, \alpha^{-1} y\right]_{\underline{G}}
$$

Skjelbred and Sund [5] established that the correspondence $B \rightarrow G(B)$ induces a bijection between the G-orbits of B and the isomorphism classes of \underline{L} (see [4] also for a discussion of this result). We show that this bijection is a homeomorphism of the orbit:spaces. In Section 3 we apply this result to a specific example.

We would like to thank Andy Magid for pointing out that the orbit closure characterization for representations might carry over to the setting of Lie algebras.
§1. A characterization of orbit closure

Let k be an algebraically closed field. We consider functors on the category of k-algebras, i.e. commutative associative k-algebras with identity. The variety morphism defined by the k-algebra homomorphism $\eta: k[y] \rightarrow k[X]$ is denoted $\bar{\eta}: X \rightarrow Y$.

Let S be a functor from the category of k-algebras to the category of sets; for a k-algebra homomorphism $f: A \rightarrow B$, let $f^{*}: S(A) \rightarrow S(B)$ be the corresponding map of sets. Assume that S satisfies the following conditions:

1) $S(k)$ is a variety with coordinate ring S and there is an element $s_{u} \in S(S)$ such that for $s_{A} \in S(A)$, there is a homomorphism $\phi: S \rightarrow A$ such that $s_{A}=\phi^{*}\left(s_{u}\right)$.
2) For $v \in S(k), \quad \operatorname{ev}_{V}^{*}\left(s_{u}\right)=v$.

From this it follows that for any variety morphism $\bar{\phi}: X \rightarrow S(k)$, given by $\phi: s \rightarrow k[x]$, we have $\bar{\phi}(x)=\operatorname{ev}_{\phi(x)}{ }^{*}\left(s_{u}\right)=\left(e v_{x} \circ \phi\right)^{*}\left(s_{u}\right)=$ $\operatorname{ev}_{\mathrm{x}}^{*}\left(\phi^{*} \mathrm{~S}_{\mathrm{u}}\right)$.
3) If A is the coordinate ring of an affine set and t and u are elements of $S(A)$ which satisfy $\phi^{*}(t)=\phi^{*}(u)$ for all homomorphisms $\phi: A \rightarrow k$, then $t=u$.
4) There is a group scheme action of G on S, where G is an affine algebraic group scheme. In particular, the following diagram commutes for all homomorphisms $f: A \rightarrow B$:

5) Let K be the quotient field of $k[z], Z$ an affine variety, so we have the inclusions $k \xrightarrow{i} k[z] \dot{\dagger} k$. Let $s_{k} \in S(k)$, $S_{z} \in S(k[z]), g \in G(K) \quad$ satisfy $g \cdot\left((j i){ }^{*} S_{k}\right)=j{ }^{*} S_{z}$. Then for all $x \in Z$ such that $g(x)$ is defined and has non-zero determinant, $g(x) \cdot s_{k}=\operatorname{ev}{ }_{X}^{*}\left(s_{z}\right)$.

Lemma 1.1. Let $\bar{\rho}: Y \rightarrow X$ be a dominant morphism from an affine set Y to a variety $X, ~ i n d u c i n g$ the injective ring homomorphism $\rho: k[X] \rightarrow k[Y]$. Then there is a finite extension k of $k(X)$ and a homomorphism $\underline{G}: k[Y] \rightarrow K$ such that $q \rho$ is the incIusion of $k[X]$ into K.

Proof: By considering $\bar{\rho}$ on irreducible components of Y, it suffices to establish the lemma for the case that Y is a variety.

By the Noether Normalization Lemma, there are algebraically independent elements x_{1}, \ldots, x_{n} in $k[X]$ such that $k[X]$ is an integral extension of $k\left[x_{1}, \ldots, x_{n}\right]$. Let $y_{i}=\rho\left(x_{i}\right)$ and extend the set $\left\{y_{1}, \ldots, y_{n}\right\}$ to a separating transcendence basis $\left\{Y_{1}, \ldots, Y_{I}\right\}$ of $k(Y)$ in $k[Y]$. By the Noether Normalization Lemma, $k[Y]$ is an integral extension of $k\left[y_{1}, \ldots, y_{r}\right]$: Let $\downarrow: k\left[y_{1}, \ldots, y_{r}\right] \rightarrow k\left[x_{1}, \ldots, x_{n}\right]$ be the homomorphism defined by

$$
\psi\left(y_{i}\right)=x_{i}, 1 \leq i \leq n, \quad \text { and } \psi\left(y_{i}\right)=0, i>n
$$

The kernel of ψ, P_{0}, is a prime ideal (since the image of ψ is an integral domain). By the Going Up Theorem, there is a prime ideal P in $k[y]$ with

$$
P \cap k\left[y_{1}, \ldots, y_{r}\right]=P_{0} .
$$

By construction, the quotient field K of $k[y] / P$ is a finite extension of $k(X)$. The map $q: k[Y] \rightarrow K$ given by the quotient map $k[y] \rightarrow k[Y] / p$ has the desired property. (For the commutative algebra theorems, see [3].)

The following characterization of orbit closure is a generalization of a theorem of Lubotsky and Magid [2, 1.24] for representation varieties.

Theorem 1.2. Let s_{0}, s_{1} be elements of $S(k)$. Then $s_{o} \in \overline{0\left(s_{1}\right)}$ if and only if there is a discrete valuation k-algebra A with residue field k, whose quotient field K is finitely generated over k of transcendence degree one, and an element s_{A} of S (A) such that

$$
\begin{aligned}
& \tau^{*}\left(s_{A}\right)=g \cdot\left((\tau \eta)^{*} s_{1}\right) \text { for some } g \in G(K) \\
& \pi^{*}\left(s_{A}\right)=s_{0}
\end{aligned}
$$

where η, τ, and π are the homomorphisms shown:

$$
\begin{aligned}
& \mathrm{k} \xrightarrow{\Pi} \underset{ }{\mathrm{~A}} \stackrel{\tau}{\downarrow} \xrightarrow{\downarrow} \quad \mathrm{~K} \\
& \mathrm{~A} / \mathrm{M}=\mathrm{k}
\end{aligned}
$$

Proof: Suppose $s_{O} \in \overline{O\left(s_{1}\right)}$. Choose an irreducible curve X in $\overline{O\left(s_{1}\right)}$ containing s_{o} and s_{1} and let $X^{\prime}=X \cap O\left(s_{1}\right)$. X^{\prime} is an affine open subset of X. Let Y be an affine subset of $G(k)$ whose image is Zariski dense in X^{\prime} under the orbit map $\overline{\mathrm{p}}: G(\mathrm{k}) \rightarrow \mathrm{S}(\mathrm{k})\left(\overline{\mathrm{p}}(\mathrm{g})=\mathrm{g} \cdot \mathrm{S}_{1}\right)$. Let $\mathrm{r}: \mathrm{k} \rightarrow \mathrm{k}[\mathrm{Y}]$ be the inclusion map and let $Y_{i j} \in K[Y]$ be the matrix coordinates on $G(k)$ restricted to Y. Then for $g \in Y$, we have

$$
\begin{aligned}
\operatorname{ev}_{g}^{*}\left(\left[Y_{i j}\right] \cdot r^{*}\left(s_{1}\right)\right) & =g \cdot s_{1} & \text { by 4) } \\
& =\operatorname{ev}_{g}^{*}\left(p^{*}\left(s_{u}\right)\right) & \text { by } 2)
\end{aligned}
$$

It foilows from 3) that $\left[Y_{i j}\right] \cdot r^{*}\left(s_{1}\right)=p^{*}\left(s_{u}\right)$. Let $s_{Y}=p^{*}\left(s_{u}\right)$.
Because the image of \bar{D} is contained in X ', the diagram below commutes, where $\bar{\rho}(y)=\bar{p}(y)$ and $\bar{\psi}$ is the inclusion map. If we let $S_{X}{ }^{\prime}=\psi^{*}\left(s_{u}\right)$, then

$$
O^{*}\left(s_{X^{\prime}}\right)=s_{Y}=\left[Y_{i j}\right] \cdot r^{*}\left(s_{1}\right) .
$$

From Lemma 1.1, we have a finite extension k of $k\left(X^{\prime}\right)$ and a homomorphism $q: k[y] \rightarrow k$ such that $q \circ p=e$, where e is the inclusion of $k\left[X^{\prime}\right]$ into k. From the diagram below, we have:

$$
\begin{aligned}
e^{*}\left(s_{X},\right) & =(q \rho)^{*}\left(s_{X},\right) \\
& =q^{*}\left(\left[Y_{i j}\right] \cdot r^{*} s_{1}\right) \\
& \left.=\left(q^{*}\left[Y_{i j}\right]\right) \cdot\left((q r)^{*} s_{1}\right) \quad \text { by } 4\right) \\
& =g \cdot\left((e y)^{*} s_{1}\right) \text { where } g=q^{*}\left[Y_{i j}\right] \in G(K) .
\end{aligned}
$$

Since $\bar{i}: X^{\prime} \rightarrow X$ is a dominant morphism, $i: k[X] \rightarrow k\left[X^{\prime}\right]$ is an inclusion. Let $k[z]$ be the integral closure of ei(k[X]) in K. Then the inclusion $\phi: k[X] \rightarrow k[Z]$ induces a surjection $\bar{\phi}: Z \rightarrow X$. (The morphism $\bar{\phi}$ is onto because $k[z]$ is the integral closure of $k[X]$.$) Because \bar{\phi}$ is surjective, there is an element z_{0} in Z such that $\bar{\phi}\left(z_{0}\right)=s_{0}$. Let A be the local ring of Z at z_{O}, and let $\sigma: k[z] \rightarrow A$ and $\tau: A \rightarrow K$ be the inclusion maps.

Let $s_{X}=\mu^{*}\left(s_{u}\right)$ and let $s_{A}=(\sigma \phi)^{*}\left(s_{X}\right)$. Then $s_{X},=i^{*}\left(s_{X}\right)$ and we have:

$$
\begin{aligned}
\tau^{*}\left(s_{A}\right) & =(\tau \sigma \phi)^{*}\left(s_{X}\right) \\
& =e^{*}\left(i^{*} s_{X}\right) \\
& =e^{*}\left(s_{X^{\prime}}\right) \\
& =g \cdot\left((e \gamma)^{*} s_{1}\right) \text { from above. }
\end{aligned}
$$

Therefore $\tau^{*}\left(S_{A}\right)=g \cdot\left((\tau \eta)^{*} S_{1}\right)$, where η is the inclusion $\sigma \phi \alpha$.

From the inclusion $\left\{z_{0}\right\} \subset z$, we have the homomorphism $\mathrm{ev}_{z_{\mathrm{O}}}: \mathrm{k}[z] \rightarrow \mathrm{A} / \mathrm{M}$ and the diagram below:

Then

$$
\begin{aligned}
\mathrm{s}_{\mathrm{O}} & =\bar{\phi}\left(\mathrm{z}_{\mathrm{O}}\right)=\mathrm{ev}_{\mathrm{z}_{\mathrm{O}}}^{*}\left((\phi \mu){ }^{*} \mathrm{~s}_{\mathrm{u}}\right) \quad \text { by 2) } \\
& =\pi^{*}(\sigma \phi \mu){ }^{*} \mathrm{~s}_{\mathrm{u}} \\
& =\pi^{*} \mathrm{~s}_{\mathrm{A}}
\end{aligned}
$$

Therefore $\pi^{*} S_{A}=S_{O}$.
Suppose there is a discrete valuation k-algebra A with residue field k, whose quotient field k is finitely generated over k of transcedence degree one, and an element S_{A} of $S(A)$ such that $\tau{ }^{*} s_{A}=g \cdot\left((\tau \eta){ }^{*} s_{1}\right)$ for some $g \in G(K)$ and $\pi{ }^{*} s_{A}=s_{O}$.

By property 1), there is a homomorphism $f: S \rightarrow A$ such that $f^{*}\left(s_{u}\right)=s_{A}$. Choose an affine curve Z with $f(S) \subset k[z] \subset A$ such that A is the local ring of $k[z]$ at z_{O}. (Then $\left.k(Z)=K.\right)$

Let $\bar{\phi}: Z \rightarrow S(k)$ be the variety morphism defined by $\mathrm{f}: \mathrm{S} \rightarrow \mathrm{k}[\mathrm{z}]$, and let $\mathrm{j}: \mathrm{k}[z] \rightarrow \mathrm{A}$ and $\tau: A \rightarrow K$ be the inclusion maps. From the diagram below, we have:

$$
\begin{aligned}
\bar{\phi}\left(z_{0}\right) & =e v_{z_{O}}^{*}\left(\phi^{*} s_{\mathrm{u}}\right) \quad \text { by 2) } \\
& =\pi^{*}(j \phi){ }^{*} \mathrm{~s}_{\mathrm{u}} \\
& =\pi^{*}{ }_{\mathrm{f}} \mathrm{~s}_{\mathrm{u}} \\
& =\pi^{*} \mathrm{~s}_{\mathrm{A}} \\
& =s_{0}
\end{aligned}
$$

Let $s_{z}=\phi^{*}\left(s_{u}\right)$. Then $s_{A}=j^{*}\left(s_{z}\right)$. By hypothesis, there is some g in $G(K)$ such that $\tau^{*} S_{A}=g \cdot\left((\tau \eta)^{*} S_{f}\right)$. Then

$$
g \cdot(\tau \eta)^{*} S_{1}=\tau^{*} S_{A}=(\tau j)^{*} S_{z} .
$$

Let z^{\prime} be the dense subset of z consisting of points x such that $g(x)$ is defined and get $g(x)$ is not zero. Then for $x \in Z^{\prime}$, we have:

$$
\begin{array}{rlrl}
g(x) \cdot s_{1} & =e v_{x}^{*} s_{z} & & \text { by 5) } \\
& =e v_{x}^{*}\left(\phi^{*} s_{u}\right) & \\
& =\bar{\phi}(x) & & \text { by } 2)
\end{array}
$$

Since Z^{\prime} is dense in Z and $\bar{\phi}\left(Z^{\prime}\right) \subset O\left(S_{1}\right)$, it follows that s_{o} is in $O\left(s_{1}\right)$.
§2. Equivalence of orbit closure for 2-cocycles and Lie algebras In the introduction, we described the construction of a central extension $\underline{G}(b)$ of an n-dimensional Lie algebra \underline{G} by k^{r} defined by a 2-cocycle b. We also described the action of a group G on a subset \underline{B} of $Z^{2}\left(\underline{G}, k^{r}\right)$. For the convenience of the reader, we present here the proof of the theorem which appears in [5].

Theorem 2.1. The correspondence $b \rightarrow G(b)$ induces a bijection between G-orbits of B and isomorphism classes of Lie algebras without direct abelian factor which are central extensions of \underline{G} by k^{r} and have r-dimensional center.

Proof: From the construction of $\underline{G}(b)$, it is easy to see that for $b \in \underline{B}, \underline{G}(b)$ has no direct abelian factor and the center of $\underline{G}(b)$ has dimension r.

Suppose $b_{1}=\phi \cdot b_{2}$ for some $\phi \in G$,

$$
\phi=\left[\begin{array}{ll}
\alpha & 0 \\
\theta & \psi
\end{array}\right]
$$

Then we see that $\underline{G}\left(b_{1}\right)$ is isomorphic to $\underline{G}\left(b_{2}\right)$ via $\phi:$

$$
\begin{aligned}
& {[x+a, y+c]_{\phi \cdot G\left(b_{2}\right)} }=\phi\left[\phi^{-1}(x+a), \phi^{-1}(y \div c)\right]_{\underline{G}\left(b_{1}\right)} \\
& \text { for } x, y \in \underline{G}, a, c \in k^{r} \\
&=\phi\left(\left[\alpha^{-1} x, \alpha^{-1} y\right]_{\underline{G}}+b_{2}\left(\alpha^{-1} x, \alpha^{-1} y\right)\right) \\
&=\alpha\left[\alpha^{-1} x, \alpha^{-1} y\right]_{\underline{G}}+\theta\left[a^{-1} x, \alpha^{-1} y\right]_{\underline{G}}+\psi b_{2}\left(\alpha^{-1} x, \alpha^{-1} y\right)
\end{aligned}
$$

$$
\begin{aligned}
& -12- \\
& =[x, y]_{\underline{G}}+9\left[\alpha^{-1} x, \alpha^{-1} y_{\underline{G}]_{\underline{G}}}+\psi b_{2}\left(\alpha^{-1} x, \alpha^{-1} \underline{y}\right)\right. \\
& =[x, y]_{\underline{G}\left(b_{1}\right)}
\end{aligned}
$$

Suppose $\underline{G}\left(b_{1}\right)$ is isomorphic to $\underline{G}\left(b_{2}\right)$ via an isomorphism ϕ. Since b_{1} and b_{2} are in \underline{B}, the centers of $\underline{G}\left(b_{1}\right)$ and G $\left(b_{2}\right)$ have dimension r, so ϕ induces

$$
\left.\bar{\phi}: \underline{G}\left(b_{1}\right) / Z\left(\underline{G}\left(b_{1}\right)\right)+\underline{G}\left(b_{2}\right) / Z\left(\underline{G} b_{2}\right)\right) .
$$

By the construction of $\underline{G}\left(b_{i}\right)$, we see that $\underline{G}\left(b_{i}\right) / Z\left(\underline{G}\left(b_{i}\right)\right)$ is isomorphic to \underline{G}. Thus $\bar{\phi}$ is an automorphism of \underline{G}. Fix a basis $\left\{e_{1}, \ldots, e_{n}\right\}$ for \underline{G} and a basis $\left\{e_{n+1}, \ldots, e_{n+r}\right\}$ for k^{r}. Then the matrix of ϕ relative to this basis is

$$
\left[\begin{array}{ll}
\alpha & 0 \\
\theta & \psi
\end{array}\right], \quad \alpha \in \operatorname{Aut} \underline{G}, \psi \in G L_{r}(k), \quad \theta \in \operatorname{Hom}\left(\underline{G}, k^{r}\right)
$$

Let [,] denote the Lie product $\underline{G}\left(b_{i}\right)$ on $\underline{G} \oplus k^{r}$. For $x, y \in \underline{G}$, we have

$$
\begin{aligned}
\phi[x, y]_{1} & =[\phi x, \phi y]_{2} \\
& =[\alpha x, \alpha \underline{y}]_{\underline{G}}+b_{2}(\alpha x, \alpha y)
\end{aligned}
$$

Also we have

$$
\begin{aligned}
\phi[x, y]_{1} & =\phi\left([x, y]_{\underline{G}}+b_{1}(x, y)\right) \\
& =\alpha[x, y]_{\underline{G}}+\theta[x, y]_{\underline{G}}+\psi b_{1}(x, y)
\end{aligned}
$$

From these two equations, it follows that

$$
b_{2}(x, y)=\theta\left[\alpha^{-1} x, \alpha^{-1} y\right]_{\underline{G}}+\psi b_{1}\left(\alpha^{-1} x, \alpha^{-1} y\right)
$$

Therefore b_{1} and b_{2} are in the same G-orbit.

In order to show that the bijection between orbits of 2-cocycles and isomorphism classes of. Lie algebras preserves orbit closure, we introduce two functor with group scheme actions and apply Theorem 1.2.

Let \underline{G} be an n-dimensional Lie algebra over an algebraically closed field k. Define the functor $B \underset{\underline{G}}{\underline{r}}$ from the category of k-algebras to the category of sets by

$$
B_{\underline{G}}^{r}(A)=\left\{b \in z^{2}\left(\underline{G} \odot k^{A,} A^{r}\right) \mid b^{\perp} \cap z\left(\underline{G} \otimes k^{A}\right)=0\right\} .
$$

Fix a basis $\left\{e_{i}\right\}_{i=1}^{n}$ for \underline{G}. Then a 2-cocycle b in $\underline{B}_{\underline{G}}^{r}(A)$ is given by its values on the pairs of basis elements $\left(e_{i} \otimes 1_{A}, e_{j} \otimes 1_{A}\right) ; b\left(e_{i} \otimes 1_{A} e_{j} \otimes 1_{A}\right)=\left(a_{i j}\right)_{s=1}^{r}$. For a homomorphism $f: A \rightarrow C$, let $f^{*}(b)=b \otimes A^{C}$. That is, for b in $Z^{2}\left(\underline{G} \odot A, A^{5}\right)$ given by $\left(\left[a_{i j}^{s}\right]\right)^{r}=1$ define $f^{*}(b)$ in $z^{2}\left(\underline{G} \otimes c, C^{r}\right)$ by

$$
\left(\left[a_{i j}^{S} \odot A_{B}^{1}\right]\right)_{S=1}^{r}=\left(\left[f\left(a_{i j}^{S}\right)\right]\right)_{S=1}^{r}
$$

$\underline{B}_{\underline{G}}^{r}=E_{\underline{G}}^{r}(k)$ is a closed subvariety of $\operatorname{Hom}\left(\Lambda^{2} \underline{G}, k^{r}\right)$; let B denote its coordinate ring and let $\left\{X_{i j}^{s}\right\}_{1 \leq i, j \leq n, 1 \leq s \leq r}$ be the matrix coordinates. Let b_{u} in $E_{\underline{G}}^{r}(B)$ be the 2-cocycle given by $\left(\left[X_{i j}^{S}\right]\right)_{S=1}^{r}$. If A is a k-algebra and b in $B_{\underline{G}}^{r}(A)$ is given by $\left(\left[a_{i j}^{s}\right]\right)_{S=1}^{r}$, define $\phi: B \rightarrow A$ by $\phi\left(X_{i j}^{S}\right)=a_{i j}^{S}$. Then $b=\phi^{*}\left(b_{u}\right)$.

Let G be the closed sub-group scheme of $G \ell_{n+r}$ given by

$$
G(A)=\left\{\left.\left[\begin{array}{ll}
\alpha & 0 \\
\theta & \psi
\end{array}\right] \quad \right\rvert\, \alpha \in \operatorname{Aut}(\underline{G} \otimes A), \psi \in G \ell\left(A^{r}\right), \theta \in \operatorname{Hom}\left(A^{n}, A^{r}\right)\right\} .
$$

$G(A)$ acts on $B \frac{r}{\underline{G}}(A)$ by

$$
\left[\begin{array}{ll}
\alpha & 0 \\
\theta & \psi
\end{array}\right] \cdot b(x, y)=\psi b\left(\alpha^{-1} x, \alpha^{-1} y\right)+\theta\left[\alpha^{-1} x, \alpha^{-1} y\right]_{\underline{G}} .
$$

It is easy to see that the functor $B_{\underline{G}}^{r}$ with this action of the group scheme G satisfies the conditions listed in section 1 .

By "n-dimensional Lie algebra over A" we mean a Lie product on the free A-module on n generators $\left\{e_{i}^{A}\right\} \quad n=1$. Then the Lie algebra is uniquely determined by its structure constants ($a_{i j}^{t}$) relative to the generators $\left\{e_{i}^{A}\right\}{ }_{i=1}^{n}\left(L\left(e_{i}^{A}, e_{j}^{A}\right)=\sum_{t=1}^{n} a_{i j}^{t} e_{t}^{A}\right)$. If $f: A \rightarrow B$ is a k-algebra homomorphism, identify e_{i}^{B} with $e_{i}^{A} \otimes A_{B}$.

Let L_{n} be the functor from the category of k-algebras to the category of sets defined by
$L_{n}(A)=\{n$-dimensional. Lie algebras over $A\}$.

If $f: A \rightarrow B$ is a k-algebra homomorphism, let $f^{*}(L)=L \otimes A_{A}$. If the structure constants for L relative to $\left\{e_{i}^{A_{i}}\right\}_{i=1}^{n}$ are ($a_{i j}^{t}$), then, via the identification above, the structure constants for $f^{*}(I)$ relative to $\left\{e_{i}^{B}\right\}_{i=1}^{n}$ are $\left(f\left(a_{i j}^{t}\right)\right)$.
$L_{n}=L_{n}(k)$ is a closed subvariety of $\operatorname{Hom}\left(\Lambda^{2} k^{n}, k^{n}\right)$; let
L denote its coordinate ring and let L_{u} be the element of $L_{n}(I)$ with structure constants $\left(X_{i j}^{t}\right)$. As above, for each $M \in L_{n}(A)$, there is a homomorphism $\phi: L \rightarrow A$ such that $M=\phi^{*}\left(L_{u}\right)$.
$G \ell_{n}(A)$ acts on $L_{n}(A)$ by change of basis:

$$
(g \cdot L)(x, y)=g\left(L\left(g^{-1} x, g^{-1} y\right)\right)
$$

The functor L_{n} with this action of $G l_{n}$ satisfies the conditions listed in section 1.

Let $\left\{e_{i}\right\}_{i=1}^{n}$ be a basis for \underline{G} and let $\left\{e_{i}\right\}_{i=n+1}^{n+r}$ be a basis for k^{r}. For any k-algebra A, let $e_{i}^{A}=e_{i}{ }^{\otimes} k^{1} A$ be generators for the free A-modules $\quad \underline{G}_{A}=\underline{G} \Theta_{k}^{A}$ and $A^{r}=k^{r} \otimes_{k}^{A}$. The A-module G A has the lie product given by \underline{G}. For $b_{A} \in E_{\underline{G}}^{r}(A)$, let $\underline{G}_{A}\left(b_{A}\right)$ be the Lie product [, $]_{b_{A}}$ on $A^{n+r}=$ $G_{A}^{A} \oplus A^{r}$ defined by

$$
\left[e_{i}^{A}, e_{j}^{A}\right]_{b_{A}}=\left[e_{i}^{A}, e_{j}^{A}\right]_{\underline{G}_{A}}+b_{A}\left(e_{i}^{A}, e_{j}^{A}\right) \text { if } 1 \leq i, j \leq n
$$

$$
\left[e_{i}^{A}, e_{j}^{A}\right]_{b_{A}}=0 \quad \text { otherwise }
$$

For a k-algebra homomorphism $£: A \rightarrow C$, it is easy to see that

$$
\underline{f}^{*}\left(\underline{G}_{A}\left(b_{A}\right)\right)=\underline{G}_{A}\left(b_{A}\right) \otimes{ }_{A} c=\underline{G}_{C}\left(f^{*}\left(b_{A}\right)\right)
$$

As we have seen in Theorem 2.1, the correspondence from $\underline{B}_{\underline{G}}^{\underline{G}}$ to \underline{E}_{n+r} given by $b \rightarrow \underline{G}(b)$ induces a bijection between orbits in $\underline{B}_{\underline{G}}^{\underline{G}}$. and isomorphism classes of central extensions of G by k^{r} with no direct abelian factor and r-dimensional center. Using Theorem 1.2, we show that orbit closure is preserved under this correspondence.

Theorem 2.2.
For b_{o} and b_{1} in $\underline{B}^{r} \underline{G}, b_{0} \in \overline{O\left(b_{1}\right)}$ if and only if $\underline{G}\left(b_{0}\right) \in \overline{O\left(\underline{G}\left(b_{1}\right)\right)}$.

Proof: If $b_{o} \in \overline{O\left(b_{1}\right)}$, then from Theorem 1.2, we know that there is a discrete valuation k-algebra A with residue field k and quotient field K and an element b_{A} of $B_{\underline{G}}^{r}(A)$ such that

$$
b_{A}^{\otimes} A / M=b_{O} \text { and } b_{A}^{\ominus} A=g \cdot\left(b_{1} \otimes_{k} K\right) \text { for some } g \in G(K)
$$

From the remarks above, we have

$$
\underline{G}_{A}\left(b_{A}\right) \otimes_{A} K=\underline{G}_{K}\left(b_{A} \otimes_{A} K\right)=\underline{G}_{K}\left(g \cdot\left(b_{1} \otimes_{k} K\right)\right)
$$

If $g=\left[\begin{array}{ll}\alpha & 0 \\ \theta & \psi\end{array}\right]$, then $g \cdot \underline{G}_{K}\left(b_{1} \otimes_{k} K\right)$ has Lie product

$$
\begin{aligned}
& g\left(\left[g^{-1}(x+s), g^{-1}(y+t)\right]_{G_{K}}\left(b_{1} \otimes_{k} K\right) \text { for } x, y \in \underline{G} ; s, t \in K^{r}\right. \\
= & g\left(\left[\alpha^{-1} x, \alpha^{-1} y\right]_{K}+\left(b_{1} \otimes_{k} K\right)\left(\alpha^{-1} x, \alpha^{-1} y\right)\right) \\
= & {[x, y]_{\underline{G}}+\theta\left[\alpha^{-1} x, \alpha^{-1} y_{\underline{Y}} \underline{G}_{K}+\psi\left(b_{1} \otimes_{k} K\right)\left(\alpha^{-1} x, \alpha^{-1} y\right)\right.} \\
= & {[x+s, y+t]_{G_{K}}\left(g \cdot\left(b_{1} \otimes_{k} K\right)\right) }
\end{aligned}
$$

Therefore $\underline{G}_{A}\left(b_{A}\right) \otimes_{A} K=g \cdot\left(\underline{G}\left(b_{1}\right) \otimes_{k} K\right)$.
Because $b_{O}=b_{A}{ }_{A}^{A / M}$, we have

$$
\underline{G}\left(b_{O}\right)=\underline{G}\left(b_{A}{ }_{A}^{A / M}\right)=\underline{G}_{A}\left(b_{A}\right) \otimes A A
$$

It follows from Theorem 1.2 that $G\left(b_{0}\right) \in \overline{O\left(\underline{G}\left(b_{1}\right)\right)}$.
Suppose that $\left.\underline{G}\left(b_{0}\right) \quad \overline{O\left(\underline{G} b_{1}\right)}\right)$. By Theorem 1.2 ; there is a discrete valuation k-algebra A with residue field k and quotient field K and $L \in L_{n}(A)$ such that

$$
L \otimes_{A} K \approx \underline{G}\left(b_{1}\right) \otimes_{k}^{K} \text { and } L \otimes_{A} A / M=\underline{G}\left(b_{0}\right)
$$

Let $\phi: I \Theta_{A} K \rightarrow \underline{G}\left(b_{1}\right) \theta_{k} K$ be the isomorphism and let $\left\{x_{i}\right\} \begin{aligned} & n+r \\ & i=1\end{aligned}$ be a basis for I. Let M be the A-submodule of G $\left(b_{1}\right) \otimes K$ generated by $\left\{\phi x_{i}\right\}_{i=1}^{n+r}$. Because ϕ is an isomorphism of Lie algebras, we have

$$
\left[\phi x_{i}, \phi x_{j}\right]=\phi\left[x_{i}, x_{j}\right]=\phi\left(\sum_{s} c_{i j}^{s} x\right)=\sum_{s} c_{i j}^{S} \phi\left(x_{s}\right),
$$

where $c_{i j}^{s} \in A$. Thus M is a Lie algebra over A which is isomorphic to I. Since K is the quotient field of A, there is an element a in A such that $\left\{a \phi\left(x_{i}\right)\right\}_{i=1}^{n+r}$ is a basis for $\underline{G}_{A}\left(b_{1} \otimes_{k} A\right) \otimes_{A}{ }^{1} K$. Therefore $\underline{G}_{A}\left(b_{1} \otimes_{k} A\right) \theta_{A}{ }_{A} \subset M$. But $\operatorname{dim}_{A} M=\operatorname{dim}_{A} \underline{G}_{A}\left(b_{1}{ }^{8} K^{A}\right)$, so $M=G_{A}\left(b_{1} \otimes_{k}{ }^{A}\right) \otimes A^{1}{ }_{K}$. It follows that ϕ induces an isomorphism between L and $G\left(b_{1} \otimes k^{A}\right)$.

Because L is isomorphic to $G_{A}\left(b_{1}^{\otimes} k^{A}\right)$, the dimension of $Z(L)$ is r. Let $\underline{G} \underset{A}{L}=L / Z(L)$ and define $b^{\prime}: \underline{G}{\underset{A}{L}}_{L}^{G}{ }_{A}^{L} \rightarrow A^{r}$ as follows. Let L be a subspace of L complementary to $Z(L)$ and let $\pi: L ' \notin(L) \rightarrow Z(L)$ be the projection. For $x, y \in L$, define b by

$$
b^{\prime}(\bar{x}, \bar{y})=\pi[x, y]_{L} .
$$

Then $L=G \underset{A}{L}\left(b^{\prime}\right)$.
Because ϕ is a Lie algebra isomorphism from $G_{A}^{L}\left(b^{\prime}\right)$ to $\underline{G}_{A}\left(b_{1} \otimes k^{A}\right), \phi\left(Z\left(\underline{G}_{A}^{L}\left(b^{\prime}\right)\right)=Z\left(\underline{G}_{A}\left(b_{1} \theta_{k} A\right)\right)\right.$ and so ϕ induces an isomorphism $\bar{\phi}: \underline{G}_{A}^{L}{\underset{A}{A}}^{A}$. Identify \underline{G}_{A}^{L} with \underline{G}_{A} via $\bar{\phi}$, so that $b: \underline{G}_{A} \times \underline{G}_{A} \rightarrow A^{r}$ is given by

$$
b(x, y)=b^{\prime}\left(\bar{\phi}^{-1} x, \bar{\phi}^{-1} y\right) \text { and } I=\underline{G}_{A}(b) \text {. }
$$

Then $\underline{G}_{A}(b)$ is isomorphic to $\underline{G}_{A}\left(b_{1} \odot k^{A}\right)$. Since ϕ preserves the center, the matrix of ϕ is of the form

$$
\phi=\left[\begin{array}{ll}
\alpha & 0 \\
\theta & \psi
\end{array}\right]
$$

relative to a basis $\left\{e_{i}^{A}\right\}_{i=1}^{n+r}$ where $\left\{e_{i}^{A}\right\}_{i=1}^{n}$ is a basis for \underline{G}_{A} and $\left\{e_{i}^{A}\right\}_{i=n+1}^{n+r}$ is a basis for A^{r}. For $x, y \in \underline{G}_{A}$, we have

$$
\phi\left([x, y]_{\underline{G}_{A}}(b)\right)=[\phi x, \phi y]_{\underline{G}_{A}}\left(b \mathcal{D}_{1} \otimes{ }_{k} A\right)
$$

So $\alpha[x, y]_{\underline{G}_{A}}+\left(\phi[x, y]_{\underline{G}_{A}}+\psi b(x, y)\right)=[\alpha x, \alpha y]_{\underline{G}_{A}}+\left(b_{1} \theta_{k}^{A}\right)(\alpha x, \alpha y)$.

It follows that $\alpha[x, y]_{\underline{G}_{A}}=[\alpha x, \alpha y]_{\underline{G}_{A}}$ for all $x, y \in \underline{G}_{A}$. i.e. $\alpha \in$ fut $\underline{G}_{A^{\prime}}$ and $b_{1} \otimes_{k} A=\phi \cdot b$. Therefore

$$
\begin{array}{cl}
b \otimes_{A}^{K}=\phi^{-1} \cdot\left(b_{1} \otimes k^{K}\right), & \text { considering } \phi^{-1} \text { as an element } \\
& \text { of } G 1_{n+r}(K) .
\end{array}
$$

Because $\underline{G}\left(b_{O}\right)=L \otimes_{A} A / M$, we have

$$
\underline{G}\left(b_{O}\right)=L \otimes_{A} A / M=\underline{G}_{A}(b) \otimes_{A} A / M=\underline{G}\left(b \otimes_{A} A / M\right) .
$$

Therefore $b_{D}=b \otimes_{A} A / M$.
It follows from Theorem 1.2 that $b_{0} \in \overline{O\left(b_{1}\right)}$.
§3. An application of the orbit closure characterization for 2-cocycles and Lie algebras

By comparing invariants like the dimensions of the upper and lower central series, one can often establish that a Lie algebra L is not in the closure of the orbit of a Lie algebra M (see [1] for examples). One case where this method fails is the case of the two central extensions of $\underline{G}=\underline{G}_{3} \times \underline{G}_{1}$ by k^{2} whose structure is given in Table I. $\quad G_{3}$ is the non-abelian 3-dimensional nilpotent Iie algebra and G_{1} is the 1 -dimensional abelian Lie algebra.) In this case $L=G\left(B_{0}\right)$ and $M=\underline{G}\left(B_{1}\right)$ where B_{0} and B_{1} are given in Table II.

Proposition 3.1. L is not in the closure of the orbit of M.

Proof: By Theorem 2.1, L is in the closure of the orbit of M if and only if B_{0} is in the closure of the orbit of B_{1}.

Suppose B_{0} is in the closure of the orbit of B_{1}. Then by Theorem 1.2, there is a coordinate ring k[z] for some affine set Z, an element g in $G(k(Z))$, and an element $x \in Z$ such that B_{0} is the evaluation of $g \cdot B_{1}$ at x.

$$
\left[\begin{array}{ll}
\alpha & 0 \\
\theta & \psi
\end{array}\right] \text {. where } \alpha^{-1}=\left[\begin{array}{llll}
a & b & 0 & s \\
c & d & 0 & t \\
e & f & w & u \\
g & h & 0 & v
\end{array}\right] \text { and } \psi=\left[\begin{array}{ll}
p & y \\
q & z
\end{array}\right]
$$

We have:

$$
\begin{aligned}
& g \cdot B_{1}\left(e_{1}, e_{3}\right)=\psi\left(c w x_{1}\right)=p c w x_{1}+q c w x_{2} \\
& g \cdot B_{1}\left(e_{2}, e_{3}\right)=\psi\left(d w x_{1}\right)=p d w x_{1}+q d w x_{2}
\end{aligned}
$$

If $g \cdot B_{1}$ evaluated at x is B_{o}, then we have:

$$
\begin{aligned}
& 1=p(x) c(x) w(x)=q(x) d(x) w(x) \\
& 0=p(x) d(x) w(x)
\end{aligned}
$$

It follows that $0=p(x) d(x) w(x)=d(x) / c(x)$, so $d(x)=0$; but this contradicts the statement $1=q(x) d(x) w(x)$.

Therefore L is not in the closure of the orbit of M.

Table I

$L\left(e_{1}, e_{2}\right)=e_{4}$
$M\left(e_{1}, e_{2}\right)=e_{4}$
$G_{3}\left(e_{1}, e_{2}\right)=e_{3}$
$M\left(e_{1}, e_{4}\right)=e_{5}$
$M\left(e_{2}, e_{4}\right)=e_{6}$
$M\left(e_{2}, e_{3}\right)=e_{5}$
$M\left(e_{i}, e_{j}\right)=0$
other $i \leq j$

Table II
$B_{0}\left(e_{1}, e_{3}\right)=x_{1}$
$B_{0}\left(e_{2}, e_{3}\right)=x_{2}$
$\mathrm{B}_{0}\left(\mathrm{e}_{2}, \mathrm{e}_{4}\right)=\mathrm{x}_{1}$
$B_{0}\left(e_{i}, e_{j}\right)=0$
other $i \leq j$

$$
\begin{aligned}
& B_{1}\left(e_{1}, e_{4}\right)=x_{1} \\
& B_{1}\left(e_{2}, e_{3}\right)=x_{1} \\
& B_{1}\left(e_{2}, e_{4}\right)=x_{2} \\
& B_{1}\left(e_{i}, e_{j}\right)=0 \\
& \text { other } i \leq j
\end{aligned}
$$

References

[1] F. Grunewald and J. O'Halloran, Varieties of nilpotent Lie algebras of dimension less than six, J. Algebra, to appear.
[2] A. Lubotsky and A. Magid, Varieties of representations of finitely generated groups, Memoirs of the AMS, No. 336, AMS, Providence, Rhode Island, 1985.
[3] M.F. Atiyah and I.G. Macdonald, Introduction to Commutative Algebra, Addison Wesley Publ. Comp., 1969.
[4] L.J. Santharoubane, Infinite families of nilpotent Lie algebras, J. Math. Soc. Japan 35, No. 3 (1983), 515 - 519.
[5] T. Skelbred and T. Sund, On the classification of nilpotent Lie algebras, Preprint no. 8, Matematik Institutt Universitet i Oslo, Norway, 1977.

[^0]: *This paper was written while the second author was a guest of the Max-Planck-Institut fur Mathematik. Travel for the second author was funded by the University of Wisconsin Graduate School Research Program.

