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Groups acting on necklaces and sandpile
groups

S. Duzhin D. Pasechnik ∗

Abstract

We introduce a group naturally acting on aperiodic necklaces of
length n with two colours using the 1–1 correspondences between ape-
riodic necklaces and irreducible polynomials over the field F2 of two
elements. We notice that this group is isomorphic to the quotient
group of non-degenerate circulant matrices of size n over that field
modulo a natural cyclic subgroup. Our groups turn out to be isomor-
phic to the sandpile groups for a special sequence of directed graphs.

1 Introduction

This work originated in the research of the first author related to the Drinfeld
associator [DD]. It is well-known (see, e.g. [CDM]) that the logarithm of the
classical associator ΦKZ is an element of the completed free Lie algebra on two
generators with coefficients in the algebra Z of multiple zeta values [Hoff].
The free Lie algebra has a basis whose elements are labelled by aperiodic
necklaces [Reu]. However, the explicit expansion of log ΦKZ over this basis
shown in [DD] displays a highly chaotic behaviour. Therefore, a natural idea
arises to introduce some structure in the set of necklaces. In this paper, we
introduce a group acting on the set of aperiodic necklaces of fixed length in
the hope that the orbits of this group may shed some light on the structure
of the embarrassing expression given in [DD].

In the spirit proclaimed by V. I. Arnold in [Arn], this paper does not
contain any proofs, only constructions, problems, motivations, examples and

∗Supported by Singapore MOE Tier 2 Grant MOE2011-T2-1-090, the first author also
by grant NSh-4850.2012.1.
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statement of results proven elsewhere. It may be considered as an informal
introduction to the paper [CHP].

2 General setting

In the most general setting, the approach we follow here consists in the
following.

Suppose we have two sets A and B and a family of bijections ϕi : A→ B.
This data can be used to define two groups: GA, acting on the set A, and GB,
acting on the set B. Indeed, let GA be the group generated by all bijections
ϕij = ϕ−1

i ◦ ϕj and GB the group generated by all ϕ′ij = ϕi ◦ ϕ−1
j .

The following lemma is immediate.

Lemma 1. The groups GA and GB are isomorphic, an isomorphism being
given by the assignment g 7→ ϕi ◦ g ◦ ϕ−1

i for any fixed i. In particular, the
actions of these groups on the sets A and B are equivalent, any bijection ϕi
maps the orbits of the group GA onto the orbits of the group GB, and this
map on the set of orbits does not depend on the choice of a particular i.

3 History

The story began when the first author obtained the results of Section 6 (and
also Section 11 which is, however, irrelevant to the main topic of this paper).
This was done experimentally, by computer. The second author found the
sequence of orders of the groups RG2

n in Sloane’s encyclopaedia [Slo] under
A027362 and conjectured that the groups are isomorphic to the sandpile
groups of generalized de Bruijn graphs. This conjecture was checked by
computer up to order 16 by the present authors and then proved by S.H.Chan
in his Bachelor’s thesis [Ch].1 Finally, this theorem was generalized and
extended in the paper [CHP].

4 Groups acting on necklaces

A p-coloured necklace of length n is a sequence of n objects of p different
kinds (called beads) considered up to cyclic shifts. Necklaces may be periodic

1Actually, the correct proof appeared only in the updated version of the thesis paper.
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(admitting a non-trivial shift that does not change it) or aperiodic. If the
colours are linearly ordered, then the lexicographically minimal of all cyclic
shifts of an aperiodic necklace is called a Lyndon word. We will always
suppose that p is prime and use the elements of a prime finite field Fp as
the colours of beads. We will refer to such necklaces and Lyndon words as
arithmetical.

The main case which is most interesting from the point of view of Section
1 is p = 2.

Example: There are exactly 6 aperiodic 2-coloured necklaces of length 5
given by Lyndon words 00001, 00011, 00111, 01111, 00101, 01011.

Denote the set of aperiodic necklaces with parameters n and p by Np
n.

There is a formula for the cardinality of this set in terms of the Möbius
function:

|Np
n| =

1

n

∑
d|n

µ(d)pn/d.

It is remarkable that this number is equal to the number of irreducible poly-
nomials over the field Fp of degree n, or, which is the same, to the number
of orbits of maximal length n of the action of the Galois group Gal(Fpn/Fp).
2 Denote the set of irreducible polynomials by Ipn. There are two known
explicit constructions of a 1–1 correspondence

ϕ : Np
n → Ipn

One of them (mentioned in Reutenauer [Reu] who ascribes it to E. Witt
[W]) depends on the choice of a normal polynomial of degree n over Fp.
Another one belongs to Golomb [Gol] and depends on the choice of a primitive
polynomial of degree n over Fp. According to Section 2, either set of bijections
generates a group of transformations on the set of aperiodic necklaces. We
will call the first one the Reutenauer group and denote it by RGp

n, and the
second, the Golomb group and denote it by GGp

n.

5 Galois group and irreducible polynomials

It is well known that the Galois group Gal(Fpn : Fp) is a cyclic group of order
n generated by the Frobenius automorphism σ(x) = xp. Each orbit of this

2This is why we consider only the necklaces with a prime number of colors. Generalizing
the theory for pk instead of p is an interesting open problem.
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group coincides with the set of roots of an irreducible polynomial over Fp
of degree which divides n. The orbits of maximum length n correspond to
irreducible polynomials of degree exactly n. The union of all such orbits is
equal to the complement in Fpn of all its proper subfields. A polynomial is
called normal, if the set of its roots constitutes a basis of the vector space
Fpn over Fp; it is called primitive, if one (and hence any) of its roots is a
generator of the multiplicative group F∗pn .

Here is an example. Consider the extension F16 : F2 of degree 4 as the
quotient ring F2[X]/(X4 +X + 1). Denoting the class of X in this quotient
by α, we can see that α is a generator of F16, and the following table lists
the orbits of the Galois group Gal(F16 : F2), the corresponding irreducible
polynomials and, for the polynomials of maximum degree, indicates their
nature:

orbit polynomial normal? primitive?
{0} x
{1} x+ 1

{α5, α10} x2 + x+ 1
{α, α2, α4, α8} x4 + x+ 1 no yes
{α3, α6, α12, α9} x4 + x3 + x2 + x+ 1 yes no
{α7, α14, α13, α11} x4 + x3 + 1 yes yes

6 Reutenauer’s construction

By definition, a normal basis is an orbit of the Galois group which con-
stitutes a basis of Fpn as a vector space over Fp. Given a normal ba-
sis A = {α, αp, ap2 , . . . } and a necklace ν0, ν1, . . . , νn−1, we set up a sum
ν0α + ν1α

p + · · ·+ νn−1α
pn−1

. Cyclical shifts on the sequence ν0, ν1, . . . lead
to the change of the resulting element of the big field Fpn within the same
orbit of the Galois group, so that the minimal polynomial of that element
remains the same.

We have therefore two finite sets of equal cardinality, Np
n and Ipn, equipped

with a family of 1–1 maps ϕA : Np
n → Ipn. It turns out that the group

generated by this set according to the construction of Section 2, coincides
in this case simply with the set of all maps ϕ−1

A ◦ ϕB of the set of necklaces
into itself. It forms an abelian group, earlier denoted by RGp

n, whose order
is equal to the number of normal bases (in the case p = 2 known as Sloane’s
sequence A027362 [Slo]).
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Here is the table of automorphism groups of necklaces for p = 2 and
n ≤ 15 (Mn stands for the number of normal bases, that is, the order of the
group, and the next column lists the lengths of the orbits of RG2

n on the
corresponding set of necklaces). To explain the meaning of the last column,
let us first notice that to every polynomial P over a finite field, one can assign
an integer d(P ) equal to the dimension (over the ground field) of the subspace
spanned by the roots of P . Now, consider the orbits in the set of irreducible
polynomials corresponding to the orbits in the set of necklaces. It turns out
that d(P ) is constant over each orbit. For example, the biggest (“main”)
orbit consists of normal polynomials for which d(P ) = n, the degree of the
extension. The last column contains the lists of dimensions corresponding to
the orbits listed in the previous column.

n |N2
n| Mn group orbits d(P )

2 1 1 Z1 1 [2]
3 2 1 Z1 2 · 1 [3, 2]
4 3 2 Z2 2 + 1 [4, 3]
5 6 3 Z3 2 · 3 [5, 4]
6 9 4 Z2

2 4 + 2 · 2 + 1 [6, 5, 4, 4]
7 18 7 Z7 2 · 7 + 4 · 1 [7, 6, 4, 4, 3, 3]
8 30 16 Z2

2 ⊕ Z4 16 + 8 + 4 + 2 [8, 7, 6, 5]
9 56 21 Z21 2 · 21 + 2 · 7 [9, 8, 7, 6]

10 99 48 Z3
2 ⊕ Z6 48 + 2 · 24 + 3 [10, 9, 8, 6]

11 186 93 Z93 2 · 93 [11, 10]
12 335 128 Z3

2 ⊕ Z2
4 128 + 64 + 2 · 32 + 3 · 16 [12, 11, 10, 10, 9, 9,

+2 · 8 + 3 · 4 + 2 + 1 8, 8, 8, 7, 7, 6, 6, 5]
13 630 315 Z315 2 · 315 [13, 12]
14 1161 448 Z5

2 ⊕ Z14 448 + 2 · 224 + 2 · 56 [14, 13, 12, 11, 11, 10, 10,
+4 · 28 + 2 · 8 + 7 9, 9, 8, 8, 8, 7, 7, 6, 6, 5, 5]
+4 · 4 + 2 · 1

15 2182 675 Z3 ⊕ Z2
15 2 · 675 + 2 · 225 [15, 14, 12, 13, 11, 11, 11,

+6 · 45 + 6 · 15 10, 10, 10, 9, 9, 9, 8, 8, 8,
+6 · 3 + 4 · 1 7, 7, 7, 6, 6, 6, 5, 5, 4, 4]
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7 Orbits of the Reutenauer group

It is very interesting to study the orbits of the group RGp
n acting on the set

of aperiodic necklaces Np
n. So far, we only have some empirical results in the

case p = 2.
For example,

• If n = 4, the orbits are O1 = {0001, 0111} and O2 = {0011}. The
action of the group RG2

4 = Z2 on each orbit is evident.

• If n = 5, we haveO1 = {00001, 00111, 01011} andO2 = {00011, 01111, 00101}.
The action of the group is cyclic on each orbit.

• If n = 6, thenO1 = {000001, 011111, 001011, 001101}, O2 = {000011, 010111},
O3 = {000101, 001111} and O4 = {000111}. Here, the automorphism
group acts as Z2 ⊕ Z2 on O1, as Z2 on O2 and O3, and trivially on the
last orbit.

Returning to ideas of Section 1, we tried to evaluate various symmetric
functions of the coefficients in the Drinfeld associator over the orbits in these
cases, but could not arrive to any sensible conjecture.

It is also worthwhile no notice that there is an interesting operator on the
set of necklaces, which sometimes turns an aperiodic necklace into a periodic
one, but in general it takes the whole orbits in the above lists into whole
orbits. We call it the averaging operator; by definition, it acts as follows:
{νi} 7→ {νi + νi+1}. For the above examples, we have

• n = 4: O1 −→ O2 −→ ∅.

• n = 5: O1 −→ O2 −→ O2.

• n = 6: O1 −→ O2 −→ O3 −→ O3, O4 −→ ∅.

(Here, going to ∅ means that the necklace becomes periodic.)
We noticed that in all examples with n ≤ 15, there is a main orbit, that

is, an orbit of maximal length equal to the order of the group RG2
n which

acts on this orbit simply transitively. Iterated averaging operators applied
to the main orbit give the majority of orbits; some smallest orbits may go to
∅.

Remark that here we spoke about the orbits of arithmetical groups in the
sense of Section 4. From the point of view of studying the Drinfeld associator,
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however, it makes little sense to distinguish between symbols 0 and 1: it is
more reasonable to extend our groups RG2

n by the operator that flips 0’s and
1’s in each necklace. The orbits of such extended groups consist of either
one or two orbits of the initial groups; it should be interesting to have their
explicit description and try to study, for example, the sums of coefficients in
the logarithm of the associator over these extended orbits.

8 Sandpile groups

Let Γ be a finite directed multigraph: it is defined by a finite set of vertices V
and, for each pair of vertices v, w ∈ V , a non-negative integer e(v, w), called
the number of arrows from v to w. The total number of arrows going out
of v is referred to as the outdegree of v and denoted by outdeg(v); likewise,
the indegree of v is the number of arrows going into v, denoted by indeg(v).
(Computing these quantities, we do not take the loops, if any, into consider-
ation.) We will assume that the graph Γ is strongly connected, that is, there
is a directed path from any vertex v to any other vertex w. We will also
suppose that our graph is Eulerian, that is, for every vertex v ∈ V we have
indeg(v) = outdeg(v). Under these assumptions, with the given graph Γ one
can associate a certain finite abelian group S(Γ), called the sandpile group
of Γ (see [Lev, LP]). The group S(Γ) is defined uniquely up to isomorphism,
and the simplest way to define it is through the Laplacian matrix of Γ.

Let V = {v1, . . . , vn}. The Laplacian matrix L = (lij) of size n × n is
defined by its entries as

lii = − indeg(vi), lij = e(vi, vj), if i 6= j.

Let Λ ⊂ Zn be the lattice spanned by the rows of L. Evidently, Λ is a
sublattice of Zn

0 = {(a1, . . . , an) | a1 + · · ·+ an = 0}. Then we set

S(Γ) = Zn
0/Λ.

It is known that the group S(Γ) can also be defined as follows. Delete any
row and any column from matrix L and call the resulting (n− 1)× (n− 1)
matrix L′. Let Λ′ be the sublattice of Zn−1 spanned by the rows of L′. Then
S(Γ) ∼= Zn−1/L′. On a practical side, to compute the sandpile group, it is
enough to reduce the Laplacian matrix by integral elementary operations on
rows and columns to its Smith normal form, which is a diagonal matrix with
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integers (d1, ..., dn−1, 0) on the diagonal, such that di|di+1 for any i; then the
group is ⊕n−1

i=1 Zdi
. In general, we call it the Smith group of an integer matrix.

In the next section we will define a series of Eulerian directed multigraphs
Γpn labelled by a prime number p and a natural number n and explain the
main idea of the proof that, for p = 2, their sandpile groups are isomorphic
to the automorphism groups of necklaces defined above.

9 Generalized de Bruijn graphs

Let Γpn be the graph with vertex set V = Zn, the residues modulo n, and p
directed edges from every vertex i to each of pi, pi+ 1, . . . , pi+ p− 1. The
outdegree of each vertex is thus equal to p. It is an easy exercise to check
that the indegree of every vertex is also p and that the graph is strongly
connected. Therefore, the sandpile group S(Γpn) is defined.

We call these graphs generalized de Bruijn graphs, because the well-known
de Bruijn graphs appear as a particular case Γ2

2k , see, e.g., [AdB].
The structure of the group S(Γ2

n) for an arbitrary n is completely deter-
mined by the following two lemmas (Lemma 2 and Lemma 3), the first of
which treats the case of odd n and the second shows how to pass from any
n to 2n. Before stating the lemmas, let us explain how one could actually
arrive at the first, more difficult, one. Until the end of this section, we fix
p = 2 and omit the superscripts 2 from various notations.

Suppose that n is odd. Ideologically, the problem is quite simple: is
suffices to find the Smith normal form of the integer matrix An explicitly
defined by An[0, 0] = An[n− 1, n− 1] = −1, An[0, 1] = An[n− 1, n− 2] = 1,
An[i, i] = −2 for 0 < i < n − 1 and An[i, 2i] = An[i, 2i + 1] = 1 for i ∈ Zn,
i 6= 0, i 6= n − 1. The problem is purely technical, but rather difficult: to
understand this, it is enough to look at the table of first 15 values of the
sequence S(Γn) which coincides with the table of Section 6 and is quite non-
trivial. The key difficulty is that, as a rule, there are three non-zero elements
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in each column and each row of this matrix, e.g.

A9 =



−1 1 0 0 0 0 0 0 0
0 −2 1 1 0 0 0 0 0
0 0 −2 0 1 1 0 0 0
0 0 0 −2 0 0 1 1 0
1 0 0 0 −2 0 0 0 1
0 1 1 0 0 −2 0 0 0
0 0 0 1 1 0 −2 0 0
0 0 0 0 0 1 1 −2 0
0 0 0 0 0 0 0 1 −1


It would be much easier to treat a matrix where there are only two non-zero
elements in each row and column. This goal is almost achieved through a
trick invented by S.H.Chan in his Bachelor’s paper [Ch].

Let us consider the operator given by the Laplace matrix of Γn in the basis
e0−e1, . . . , en−2−en−1, en−1, that is, consider the matrix A′n = C−1

n ·An ·Cn,
where Cn is a lower triangular matrix of size n with 1’s on the main diagonal
and −1’s on the adjacent diagonal. Multiplying a matrix by either Cn or C−1

n

is equivalent to elementary operations on its rows and columns, hence the
Smith normal forms of matrices An and A′n are the same. For the previous
example we will obtain

A′9 =



0 0 0 0 0 0 0 0 0
1 −2 1 0 0 0 0 0 0
1 0 −2 0 1 0 0 0 0
1 0 0 −2 0 0 1 0 0
1 0 0 0 −2 0 0 0 1
0 1 0 0 0 −2 0 0 0
0 0 0 1 0 0 −2 0 0
0 0 0 0 0 1 0 −2 0
0 0 0 0 0 0 0 1 −2


We see that the lower-right minor of codimension 1 has the required property,
and its Smith normal form can be found by drawing horizontal and vertical
lines between the non-zero entries in each row and column of the matrix and
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considering the cycles obtained:

−2 · · · 1 0 0 0 0 0 0
...

...
0 −2 · · · 0 · · · 1 0 0 0 0
...

...
0 0 −2 · · · 0 · · · 0 · · · 1 0 0
...

...
...

...
0 0 0 −2 · · · 0 · · · 0 · · · 0 · · · 1
...

...
...

...
1 · · · 0 · · · 0 · · · 0 · · · −2 0 0 0

...
...

...
...

0 0 1 · · · 0 · · · 0 · · · −2 0 0
...

...
0 0 0 0 1 · · · 0 · · · −2 0

...
...

0 0 0 0 0 0 1 · · · −2

In this example we see two cycles of lengths 4 and 12 which are simply a
visualization of the orbits of lengths 2 and 6 in the set Z9 \ {0} under the
doubling operator x 7→ 2x (in our case the orbits are {1, 2, 4, 8, 7, 5} and
{3, 6}). It is readily verified that each orbit of length d adds a summand
Z2d−1 to the Smith group of such a matrix (where each row and each column
contain one entry 1 and one entry −2), so for our example we obtain Z63⊕Z3.
Unfortunately, the presence of a nonzero first column spoils this clear picture,
namely, it decreases the size of the group by a factor of n (more exactly, it
leads to a subgroup of index n). For the example under study, any subgroup
of index 9 is isomorphic to Z21. However, there are situations where such
a group may have different subgroups of index n. S.H.Chan in a series of
rather involved technical lemmas showed what exactly the resulting group
S(Γn) looks like. In most cases, one must simply divide by n the order of the
first cyclic group, corresponding to the orbit of the number 1. This is so for
all odd integers up to 19. For n = 21, however, the set Z21 \ {0} decomposes
into five orbits {1, 2, 4, 8, 16, 11}, {3, 6, 12}, {5, 10, 20, 19, 17, 13}, {7, 14} and
{9, 18, 15} of lengths 6, 3, 6, 2 and 3, respectively, but the sandpile group is
actually equal to Z2

9 ⊕ Z3
7, and not to Z2

3 ⊕ Z9 ⊕ Z3
7 as one might infer from
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the previous rule. To state the exact formula proven by S.H.Chan, we need
some notations.

Let n be an odd number. For any element v ∈ Zn \ 0 let l(v) be the
length of its orbit under the doubling operator x 7→ 2x. Let Hn be the set of
minimal representatives of all orbits. Now, denote by Pn the set of all prime
divisors of n. For each q ∈ Pn let q′ stand for the maximal power of q that
divides n and let q′′ = n/q′. Denote the set of all such residues q′′ by Vn.
Finally, for an abelian group G and an integer k let kG be the subgroup of
all elements of G of the form kx, x ∈ G. Then

Lemma 2. If n is odd, then the group S(Γn) has the following decomposition

S(Γn) ∼=
⊕
q∈Pn

q′Z2l(q′′)−1 ⊕
⊕

v∈Hn\Vn

Z2l(v)−1

Example. Take n = 21. Then Pn = {3, 7}, q′1 = 3, q′′1 = 7, l(7) = 2,
q′2 = 7, q′′2 = 3, l(3) = 3, H21 = {1, 3, 5, 7, 9}, V21 = {3, 7}, so the first direct
summand in the above formula is trivial, and the second gives:

S(Γ21) = Z63 ⊕ Z63 ⊕ Z7.

The proof of the next lemma is much simpler: it follows from the fact
that Γ2n is the directed line graph of Γn (see [Lev]).

Lemma 3. Suppose that n = 2km where m is odd. Then

S(Γn) ∼= S(Γm)⊕ Zm−1
2k ⊕

[
k⊕
i=2

Z2i−2m
2k+1−i

]

10 Circulant matrices

An n × n matrix A = ai,j, i, j ∈ Zn, over a field K is called circulant if its
rows are the cyclic shifts of the first row, i.e.

Ai+1,j+1 = Aij, for all i, j ∈ Zn,

where i+ 1 and j + 1 are taken modulo n.
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In particular, the permutation matrices associated with the powers of the
cyclic permutation (0, 1, . . . , n − 1) are circulant; they form a basis of the
algebra Cn(K) ∼= K[Zn] of all n × n circulant matrices over K. We see that
the algebra Cn(K) has dimension n and is commutative.

For a circulant matrix to be non-degenerate it is necessary (but not suf-
ficient) that its rows (and columns) are aperiodic. Denote the group of
non-degenerate circulants by Cn(K)∗. By the observation made above, it
is commutative. In the case K = Fp, by studying the natural action of this
group on the field Fpn considered as a vector space over Fp, it is easy to deduce
that the Reutenauer group RGp

n is isomorphic to the quotient Cn(Fp)∗/Zn,
where Zn is the group of permutation circulant matrices, those associated
with the powers of (0, 1, . . . , n− 1).

In the case p = 2, it was proved in [Ch] that the series of these quotient
groups satisfies the same relations as those given in lemmas 2 and 3. The
proof of these facts is not so involved as the proof of lemma 2 and relies
basically on the primary decomposition theorem from linear algebra. The
main theorem follows.

Theorem. (S.W.Chan) For any natural n we have

RG2
n
∼= S(Γ2

n) .

This theorem is quite remarkable, because it relates the objects coming
from entirely different areas of mathematics. It is noteworthy that nobody
knows any explicit isomorphism between the two groups in question, although
the elements of both can be encoded by some sequences of 0’s and 1’s.

In the paper [CHP], this result is generalized to any prime number p as
follows: RGp

n
∼= S(Γpn)⊕ Zp−1. Moreover, that paper describes the structure

of sandpile groups for the generalized de Bruijn graphs Γpn for arbitrary values
of p, not only prime. Of course, in the general case there is no analogue of
the isomorphism theorem; however, if p is a power of a prime both groups
are defined and the relation between them should be studied.

11 Golomb’s construction

We conclude the paper with some experimental data related to another set
of 1–1 correspondences between the necklaces and irreducible polynomials
mentioned above.
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Let α be a generator of the multiplicative group of the field Fq, q = pn.
S. Golomb [Gol] defined a bijection ψα : Np

n → Ipn which depends only on
the orbit of the element α under the Galois group action, that is, ψα is
completely determined by the primitive polynomial with one of the roots α.
To a necklace ν = (ν0, ..., νn−1) we assign the following element of Fq:

αν0+pν1+...+pn−1νn−1

and then take its minimal polynomial, which we denote by ψα(ν). It is not
hard to prove (see [Gol]) that the map ψα is 1-to-1 for any α which is a root of
a primitive polynomial, and that these maps are the same for all roots of one
primitive polynomial, and are distinct for different primitive polynomials, so
that they generate a group of automorphisms of necklaces whose order equals
the number of primitive polynomials φ(2n − 1)/n, where φ is Euler’s totient
function. This group turns out to be abelian, too.

Here is a table of these groups for p = 2 and 2 ≤ n ≤ 12 given together
with the sizes of the orbits into which they split the set of necklaces (Mn

stands for the order of the group):

n |N2
n| Mn group orbits

2 1 1 Z1 1
3 2 2 Z2 2
4 3 2 Z2 2 + 1
5 6 6 Z6 6
6 9 6 Z6 6 + 2 + 1
7 18 18 Z18 18
8 30 16 Z2 ⊕ Z8 16 + 8 + 4 + 2
9 56 48 Z2 ⊕ Z24 48 + 8

10 99 60 Z2 ⊕ Z30 60 + 30 + 6 + 2 + 1
11 186 176 Z2 ⊕ Z88 176 + 8 + 2
12 335 144 Z2 ⊕ Z6 ⊕ Z12 144 + 48 + 36 + 2 · 24 + 2 · 12

+8 + 2 · 6 + 2 · 4 + 3 · 2 + 1

Notice that the sequence of orders of these groups is not monotonous. As
yet, nobody knows any relations between these groups and other mathemat-
ical objects, which was the case for the Reutenauer groups.
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