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ON THE LODAY SYMBOL IN THE

DELIGNE-BEILINSON COHOMOLOGY

by
Héléne Esnault1

This note is thought as a complement to the volume on the
Beilinson conjectures whose [EV] and [N] are two contribu-
tions. It gives an explicite formula for the Loday symbol in
the Deligne-Beilinson cohomology. Thereby one obtains the
proof of the "crucial lemma™ 2.4 in [N],II, a formula for the
evaluation of the Loday symbol on certain cycles. This formula
was stated by A. Beilinson in [B], 7.0.2 and - together with
very useful comments and the assumptions really necessary -
[(N], II, 2.4, however both times without proof. Note that the
explicite description of the regulator map for Sped Q(pN),
where BN is the group of N-th roots of unity, given by A.
Beilinson in [B], 7.1 relies on this crucial lemma.

n+1l

Let Ag be the affine space of dimension n + 1 of

coordinates Xi over the complex numbers €. Let

n+l
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¢|U € H;J'(U,(X0 = 0); Z(1)), the group of invertible regular
functions on U which are 1 on (X0 = 0) and

Xi € H%(U,Z(l)), the group of invertible regular functions on
U. One considers the cup product {¢|U,X1,...,Xn} in the

Deligne-Beilinson cohomology group Hgﬂ'(U,(x0 = 0); Z(n+l)).

As Hé(U,(X0 = 0);*) %EEE Hé(A,(XO = 0);*) is an isomor-
phism, this defines an element rest-1{¢|U,x1,...,xn} in
Hg+l(A,(XO = 0); Z(n+l)). This is the Loday symbol in the
Deligne~Beilinson cohomologqy. In this article we give explici-
te formuli (modulo torsion) for the Loday symbol as a Cech co-

cycle (1.8), (2.3), (2.5)i.

Iet h : X — A be an algebraic merphism, with X

smooth. This gives explicite formuli for

n+l
D

h(s) € (X, = 0). If dimension X ¢ n, then

Hg+l(X,S;Q(n+l)) = Hn(X,S:C/Q(n+1)), the Betti cohomology

h*rest-l{¢IU,¥i,...,Xn} in H (X,S:Q(n+1)) if

group. Therefore we may evaluate h*rest-l{¢lu,xl,...,xn}
along relative homology classes [¥] € Hn(X,S;Z). The previous
explicite formuli give an expression (3.9) for this evaluation

under certain assunptions on a representative ¥ of [¥].

Our method consists of reducing the problem to the ana-
lytic Deligne cohomology (1.3), and there to define a substi-
tute for the cup product if the functions Xi, i > 1 are not
invertible (1.4), (1.5). As this definition makes sense for
analytic varieties as well, we define in this way a sort of
Loday symbol in the analytic case (1.6), (1.7), which is no

longer unique (2.5) ii, (2.5) iii.



In §4 we weaken the condition on the dimension of the al-
gebraic variety X by an assumption on the curvature of a sum
of pull-backs of the Loday symbol. This allows to define it as
the class of a global closed holomorphic n-form (4.2). We give
in (4.4) and (4.5) the evaluation of this class along relative

cycles with some assumptions which are milder than in (3.9).

Finally in (4.7) we explain the relationship with Bloch's

regulator map K2(X)0 — Hg(x,Q(2)) in any dimension.

I thank cordially M. Rapoport with whom I discussed seve-

ral times on those points.



§1. Construction of a class x in Hg+l(A,Y:Q(n+l))

1.1 Let A be a smooth algebraic variety over C, Y + Z be
a normal crossing divisor on A, where 2 1is defined by
xl...xm, X being a global regular reduced function on A.

We define the natural embeddings

A-vy -2

P

A-Y-1Z

Let ¢ be in Hé(A,Y + 2:Z(1))
= ker 0(A)" — oy + 2)".
Define U = A - Z,.YU =Y N U.
Then ¢|U lies in Hé(U,YU;Z(l))
= ker 0(U)" — 0(vy ",
and Xy lies in H%(U,Z( 1)) = O(U)*. Choose 1 { n ¢ m. Then
the cup product {¢|U,Xl,...,xn} is defined as an element in

H;+1(U,YU:Z(n+1)). We construct in §1 a specific element

n+l

X € Hg “(A,Y;Q(n+l)) from which we show in §2 that its res-
triction to U x|U € H3+1(U,YU;Q(n+1)) is precisely
{¢|U,X1,...,xn}Q. In other words, we define a 1lifting of the

cup product across 2.

1.2 Here we show that the problem is reduced to a problem in

the analytic Deligne cohomology. Recall [E.V], 2.9 that



THE (A, ¥52(pr1))
= Hq+l(i,cone[Rk*i,Z(p+1) + Fp+1(1og (H+Y) (-Y))

— 0z (*H + log ¥) (-¥)1[-1])

|

where k : A — is a good compactification such that
H:=A-A, Y :=closure of Y in A and H + Y are divi-
sors with normal crossings.

Forgetting the growth condition along H on the Fp+1 part,

one obtains a morphism in the analytic Deligne cohomology

[E.V], 2.13:

+1
Hg'an(A,Y;Z(p+l))

Hq+l

(A,cone[i,Z(p+1) + nip+1(10g Y) (-Y)

— 0, (log ¥) (-¥)](-1])

= 1% (2, 1,2 (p+1) + Qép(log Y) (-¥)) .

One obtains a commutative diagram of exact sequences



H9(a,v;C)

q+1
(A,Y:Q(p+1))
HY (A, v:q (p+1) ) +FP Iud (A, v;C)

0 —

q
H¥ (A, v;q(p+1) )nFP aTt L (A, vic) — 0

fp+1,q+1

l

_, B3 v;c)
19 (a, v:a(p+r1))+19(a, 058P  (log ¥) (-1))

, Hq+l (A,Y;:Q(p+1))

B

Y (a, va(pr1) 0 BT (a,05P* (10g ¥) (-v)) — 0

Lemma (see also [E.V], 2.13 and [B], 1.6.1)

-i- fn+1,n+1 is injective. One has

Hy ~(A,Y¥;Q(n+l)) = {x € Hp'1 (A, ¥;Q(n+1), such

n+1Hn+1

that dx € F (A,Y:C)}

and Ker d = H'(A,Y;C/Q(n+1))

-ii- fp+1,q+1 is an isomorphism for g < p. One has then
g+l . d .
Hg “(A,Y;Q(p+l)) = H7(A,Y:;C/Q(p+l))
-iii- fp+1,q+1 is an isomorphism for dim A < p + 1.

One has then



HE (8, v:@(p+1)) = HY(A,¥iC/Q(pH1))

Proof.

-i- One has Fn+1Hn(A,Y;C) = 0= Hn(A.ﬂin+1(109 Y) (-Y))

n+1l n+l .cy = g9 (x ohtl Y) (-Y
and F "H T(A,Y:;C) = H (A,07 "(log(H + Y) (-¥))4 ~iosed

is embedded in

n+l 2n+l _ _ 40 n+l _

H7(A,05 0 “(log Y)(-Y)) = H (A, " (log ¥) (-¥)) 4y ,josed.
One has
n .
H' (A, Y;:C) - 1A, v;C/Q(n+1)) as H"T1(a,v:Q(n+1)) is

HY(A,Y;:Q(n+1))
torsion free.

ii,iii. In both cases the cohomology of FP*1  ana 2P+l

appearing in the exact sequences vanish.

1.3 Corollary, In order to construct an element

X € Hg+1(A,Y;Q(n+1)), it is enough to construct it as an ele-

n+1l

ment of HE,an

(A,Y:Q(n+l)) and to verify that its curvature

dx 1is algebraic, that is in Fn+1Hn+;(A,Y;®).

Therefore in (1.4), (1.5), (1.6), (1.7), we assume only A,
Y + Z to be analytic, X, to be global holomorphic on A, ¢
to be global holomorphc ipnvertible on A such that

®lyz = 1-



1.4 Consider ¢ : A — G*, with ¢(Y U Z) = 1. Let do U dl

be an analytic open cover of G* such that 1 € dl - do,
log ¢ | -1 is single valued and

# "1y

log ¢| -1 = 0. One has
¢ () N (YUZ)

log ¢ _;, e HO(eTH(,),0,(-Y - 2)).
$ ()
\ -1
Then for any refinement (Ai)ieI of ¢ (di), with map
c : I — {0,1}, one has
a) logy ¢ := log ¢ | -1
By (A, (4))
0
€ H (A;,0, (-Y-2))
i
p) 2077 := (5 log )y ; = log; ¢ - log, o
071 071 1 0
0
€ H (Aioil,A!Z(l))
and (6z™71) = o.

Take such a refinement with

¥) if A, . N (YU Z) =9,
lo...lk

log; E T

e HO(A;
o

10,) .
Onloik A

Define



g = log X, 1if A, . N (YU 2Z) =¢
io...ik io...ik k ig---1y
0 if A N (YU Z) # ¢.
iOOO. ik
One has
9; L€ HO(Ai 10, (-Y-2)) .
o1y o - ix

7
We want to construct

x e B la,n,z2(n+1) - Qén-l(log(Y+Z))(-Y-Z) > 7 (log Y) (-¥))

as a cocycle x = (x-l,xo,...,xn) in the Cech complex

(€ (A; N Z(n+1) — Qin-l(log (Y+2) (-Y-2) — 92(1og Y) (-Y)),
(-1) "5+d):

x 1 e ™l z(n+1))

x° e ¢ (0, (-¥-2))

X" e @0(92(1og Y) (-Y))

with (-1)™1sx3 + ax3™1 = o



- 10 -

1.5 The condition 1.4, a implies that

dax dx
n __ 1 R n . : 0 n _
Xy 3 1ogi¢—§z e '_3; is in H (Ai,nA(log Y) (-Y¥)). This

defines x?.

We have to resolve the equation

dx aX
n-1 n n n_n-1 1 n
071 071 071 1 n
Define
n-1 _ n_n-1 dxz daX
Xj . =002y 5 953 X TR
070 071 0'n 2 n

€ Ho(Aioil,Qz_l(log(Y+Z))(-Y-Z)).

Assume by induction that we may define for 1 ¢ 2 < k

n-9 0
Z; ...i € H (3 ...ig’klz(n))

0 Q 0

xn—n (_I)ann-n g dxD.+1 dxn
i5.--1; io...l.!1 10...in XQ+1 X,
ax™ 9 _ (_1)n5 n-0+1 2 < k

Define



- g1 -

0= (k+1) . n-k

1= 6(z; . g, .
i 1gesedpige iy

)l
0°° *1xs1 0

If for all 2 € {0,...,k+1},

n-(k+1)

A, 2 . N (YU 2) # ¢, then =z 0
lgecedgeeedp g ! RS S
(especially if A, i N (YUZ) # ¢).
0" " "k+1
Otherwise A, i N (YU 2z) =¢ (say).
17" Tk+1
Then
k+1
n-(k+1) 0 _n-k
p = (-1)"z 2 . (g ” . -g . )
io"'ik+1 QZI io...ln...lk+l io...ln...lk+1 il"'lk+1
n-k
+ (62 )} qg. . .
io"‘ik+1 1y000dpyg
I 25 .1 1,0 (WD =

# 0, then A
io...iﬂ... K41

€ Z(1).

o"" "0 k+1

therefore g 2 : - g .
io...ln...1k+1 il"'1k+1

Therefore one has

zn-(k+1)

0
€ H (A A Z(k+1)) .
0° " tk+1 lgeeedyyy”

k+1

We may define
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dx
k+2
9 .. .1 . TX -

n-(k+1)
X, . 3 ~
k+1 0 k+1 “k+2 n

(k+1)'n_n-(k+1)
i i ) 23 i
0" " "k+1

(-1
1ge--1

L ah ) (1og(vez) ) (-¥-2))

e Ho(a,
o' ik+1

n-(k+1)

with dx (-1)%6x" K if x < n.

-1 = (-1) (n+1)nz;1
0‘.‘ n+1

1.6 Proposition, The Cech cocycle X = (X ~,X ,...,X") cons-

tructed in (1.5) defines a cohomology class

<{n-1

x € BN z(nv1)) — a3

!

n
03 (log ¥) (-¥)).

(log (¥+2)) (-Y-2)

1.7 Let ZQ be a smooth component of Z. We consider the mor-

phism of restriction

1,Z(n+1) — Qin(log Y) (-Y)

1 l . L
1 >ir restrlctlonQ

ilg (2(n) — né:'l(log ¥) (-¥)

whose kernel contains
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N Z(n+1) — 0377 (log (¥+2)) (-¥-2) — Q) (log ¥) (-¥)

and whose cohomology reads

n+1
ﬁ an

n+1

(A,Y;Q(n+1)) g an

(Zy,Y:Q(n)) .

restriction;l

Theorem. There is a class

X € Hg+;n(A,Y:Q(n+1)), such that restrictiong x = 0 and such
’
that
dx dax
1 n
+1
n 12,00 (log ¥) (=¥))y L1peq -

Proof, Define x as the image of X via

aanzma) — nin_l(log (Y+2)) (~¥-2) — 23 (log Y) (-¥))

l

L (a,v:q(n+1))

% an

given by the same cocycle. One has dx = dx?.

1.8 Go back to the algebraic situation described in 1.1.

dX dXx
Then dx = de 1 A—3§\€ Fn+1 n+1l

A —

- (A,Y;C).
¢ Xl

n
We obtain by 1.2i
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Theorem. The class x of 1.7

Hg+1(A,Y:Q(n+1)) and dx

is in

=-d-iA
$
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§2. Restriction of x to U.

2.1. In this paragraph, we want to show that the restriction

to U of the class x constructed in 1.8 is

n+1l

y = {8)ysXpseeoa X} € Hy 7(U,Y5Q(n + 1))
dXx ax
As dy = Q% ~ —il A eee A —351,[E.V], (3.7), we have by
1 n

(1.2)1i:

Lemma. (x|y - ¥) € H“(U,Yu;m/Q(n+1)).
Therefore we may assume, as in (1.4), (1.5), (1.6) and (1.7)

that A - and therefore U - are only analytic manifolds.

2.2 We take a refinement Uj of xj N U such that

log X, X is single valued, that is

U.
il :

0 . _ . _ :
logjxi € H (Uj,OU) for i ¢ n. Define p = iIU : U - Y, — U
-1 .0

'Y ,...,yn) in the Cech com-

=1 .
og:l

Define y as a cocycle y = (y

plex (€' (Uy,u Z(n+1) — 2™ (log Yy) (-¥,)), (-1) ‘6+d) with

y-l c %n+1

0 n
y & € €7(0,(-Y

(1,2 (n+1))

)

.

y" € €%l (log ¥) (-¥))
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n+1l

with (~1)"1sy3 + ayd™1 = 0.

One has [E.V.] (3.2):

dx dX
n 1 n
. — 10 » -~ A. ~ -
dx ax
n-1 n.n-1 2 n
P = (=1) Z, . 1 s XL o Ae e~
Y343, (=4 ody 731 K, Xn
n-k _ kn,n-k dxk+l dxn
yj 3 = (-1) Zj j logj ka_ Ausen X
0" "“k 0"’k k k+1 n
-1 n+l)n,-1
Yj 3 = (‘1)( ) Zj 3
0’ n+1 0°""“n+l
n-1 n-1 0
with 2, . = 2. + = (6 log ¢) € H' (U, . ,u,Z(1))
303 JoJa 334 Jod1 ¢
n-k n-k+1
AR = 6 (2., . log. X
jo...jk ( PR Y gjk-l k-l)
e BO(Uy . ,u,Z(k))
DPCRE P
Therefore one has
< - yn = 0
and for 1 < k ¢ n:
n-k n-k n-k, _n-k n-k
(x -y ) . = (-1) (z . - Z. . log, X
ig.. . 1k io...lk 10...ik 1gee-iy i, k
).
e
X vt X
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and

-1 -1 n+i)n, -1 -1
x1 -y (-1) (AtLIn ., z™1y.
2.3 Define
n-1 n-1 n-1
N, =2, 7 . -2, 7 log, X
1011 1,1, 1011 ol i, 1
n-1 0
= 2z, (g - log., X.) € H (U, . pn,Z(2))
1011 ioil i, 1 i5i,, !
(6Nn_1) zn-z _ Zn—2.
Define
dX dax
i i T (UMY legy X, - ... s
071 071 1 3 n

€ Ho(Uioil,QE_z(log ¥y, (<¥)) -

One has

Define by induction 1 ¢ % ¢ k:

n=-9 0
N . € H (Ui "'in'u!Z(n+l))

10...1;1 0
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with oNU™% = gN™871 _ gn-@-1
r?-%j%i = ('1)QnN2_%..i log; Xp4q f;gig R s
R or -t Tl 0+2
e 10u, ,,al"®* ) eg v (-1

ot |

such that
R e R AT Tl L) R S S
Define
N?;?..ik = Z?;%. 1,91 ...4, Z?;?..ik togy Xx

- 6(N2;¥T?ik_ll°gik_lxk)io. Ay

One has
sk - pnk-1 _ o n-k-1

and
N?;?..ik = Z?;?..ik(gio...ik T 109y Xy

0‘ L

. )
. k1

k-11x



_19_

€ HO(UiO_ .ik,u!Z(k+1)).
Define
rril:.{fik = ('1)anr‘;;].(..ik 1093 k41 % R
€ HO(Ui coad '93-(k+1)(1°g Yy) (=¥y))
0"k
then
xn-k_yn--k_ ((_1)n6rn-k _ drn—k—l) =0

Therefore one has

X-y - ((—1)n6+d)r = 0, and x - y 1is a coboundary.

Proposition. One has

x|, =y in HD'?

%,an(U’YU;z(n+1)) and

x|, =y in Hg+1(U,YU:Q(n+1)).

2.4 Consider the morphisms
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rest: Hy' ' (A,Y:;Q(n+l)) — Hg+l(U,YU:Q(n+1))

(respectively, if A is analytic
n+l

an
rest : Hg’an(A,Y:Z(n+1)) — H

n+1

9 an (U YyiZ(n+l))

and

1 +1
U : Hg(A,Y¥+Z;Z(1)) — Hg (U, ¥y i@ (n+1))

(respectively, if A 1is analytic

an 1 n+1l :
U : Hm'an(A,Y+z;Z(1)) — Hg " (U,Y,iZ(n+1))

defined by

Ug = {¢|U,x1,...,xn}ﬁ

Then (1.7), (1.8) and (2.3) prove the

Theorem
image U C image rest

n

(respectively image e ¢ image restan).

2.5 Rema =]

-i- The universal situation

Consider
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B:= AMl _ w-0), ¥v=1-Y_...Y
where Yi are the coordinates. Then one has [N], (2.1):

n
HEt L (B, (¥, = 0)5Z(n+1))ESE, g+l (p- U (1 = 0),(¥=0) ;2 (n+1))

is an isomorphism. Take A as in (1.1). Then
0 .
(1 - ¢)/%X;...X_ € H (A,0(-Y)). Define X, := (1-¢)/X,...X .

One defines a morphism

Xi — Yi 0<1i<¢<n

with h'v = ¢.

©

Then
* -1 n B
h¢rest {¢IB ~ U (Y. = 0) Yo,eea,Y ) = x
i
1
is in H3+1 (A,Y:;Q(n+1)), of restriction

* n
' =
rest x h¢{~1'|B -U (¥, = 0y LOPRRRYS &Y
1

= {¢lys XyreeeaX }e

In (1.5), we have given explicite formuli for x as a Cech

cocycle. This applies for
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and therefore by pull-back for x'. 0f course we could have

worked directly on B, the universal case.

-ii- If A 1is only analytic, there is no universal situation.

One observes the following: [N], (2.1) and (1.2) imply that

Hn(B,(YO = 0); C/Q(n+1))

n
= H'(B - U(y; = 0), (¥, = 0); C/@(n+1)), and therefore that
1

n+l - .
Hy an(Bs (Yy=0):Q(n+1)) injects into
n+1l n
Hy an(B - g(Yi = 0), (¥, = 0); Q(n+1)).
The class x of (1.5) is then uniquely defined by (2.3):
n —
xIB_ U (Y., = 0) Y in
i
1
n+1l n
Hy an(B - g (Y; = 0), (Y5 =0); Q(n+l)).

-iii- More generally, whenever Hn(A,Y;C/Q(n+1)) iniects
into Hn(U,YU;C/Q(n+1)), then rest?" is injective (modulo
torsion)'via (1.2). Therefore in this case ¥x constructed in

(1.5) is uniquely defined by xIU via (2.3).
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83 Pull-back of x to X and formula [N], II.2.4
3.1 Let X be a smooth algebraic variety over € of

dimension < n, equiped with a morphism

where now A 1is the universal situation described in (2.5),1,
with coordinates X0 and with ¢ =1 - Xgeoo X, -

Define h*xi = a, € HO(X,O for 121

X)
h* = £ € Hy(X,5 + TiZ(1))

where T is defined by

. . . . *
1...an and S 1is a divisor contained in h Y.

Define
X -s —lo x
[ /
X-S=T
One has
* -1 n+l
h rest {¢|U,x1,...,xn} € Hg ~ (X,5:;Q(n+1))

= H™(X,5;C/Q(n+1)) (1.2)iii.
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As S 1is not necessarily a normal crossing divisor, we will
explain this more precisely (3.2), (3.3), (3 4), (3.5), (3.6).
Then we want to evaluate this class along relative homology

classes ([¥] € Hn(X,S:Z). (3.4)

3.2 We assume in (3.2), (3.3), (3.4) that X 1is smooth

analytic, T is a divisor defined by a =t = 0,

lo . oan

a; € HO(X,O and S is a divisor.

)

We define subcomplexes and 0. of the holomorphic

X,S+T X,S
de Rham complex Qi by: for each open set U

i
X,8

wl =0 for any 1 ¢ j ¢ n}.

a.=0
J . i
i
The sheaves QX,S and QX,S+T
0

X,S

0y s(U) = {0 € AY(U), ©|gny = 0}, By < (V) = {v € Oy (U),

are coherent. As

Y = OX(-S), one has a natural inclusion

. incl .
J,C > Uy s

which defines a map in cohomology

incl )
X,s8’"°

H (X,8;C) —2%=, B (X,0

If S 1is a divisor with normal crossings, then Q; S is the
r

complex Qi(log S)(-S), and incl is a quasi isomorphism. In

general we construct a "splitting" of incl.
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Lemma, There is a morphism p in Db(X)

such that p o incl is an isomorphism.

Proof. Let o : X — X be an embedded resolution of 8.

This means o S = § is a divisor with normal crossings, o

is proper and o is an isomorphismn.

X-5

Consider

X -2 x

s 4 N

i\ /3

X-S

*

One has o C Qi(log §)(-§) ’

i
X,8
and a'lj,c — E!C. Therefore one has a diagram in Db(X)

L] 6* . ~r o
QX,S~——+ Ra*ﬂi(log S) (~S)
incl ] I Ro,incl

-1
j!G < Ra*glm.
As o is proper and 3 is exact one has
Ra*a! = Rola'l = R(o o 3)! = j! in Db(X), and o ! is an
isomorphism in Db(X). As incl is a quasi isomorphism

Ro, incl is an isomorphism in Db(X).
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Define
p=(H ™o (Ro, ificl)™! o o
3.3 Define
K = j,Q(n+1) — n%'s
and

. {n-1 n
1 = —
K v,@(n+l1) 0%, s+1 ™ 9,5

which is a subcomplex of K . One has:

j|Q(n+1) —_— j,C
l incl

K

| »

j,@(n+1) — §,C
with: p o incl is an isomorphism (3.2).

Corollary. There are morphisms

1"l (x,s:C/q(n+1)) AL, ' (x,K")

[ »

11 (x,8:0/0(n+1))
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with: p o incl is an isomorphism.

3.4 Let z be a cohomology class in

H° (X,Q ) .
X,S or— C UK
(X,D!Q(n+l) — QX,S+T)
of representative w € H° (X, Qx S)

Its image 2z in Hn (X,K') lies in

H (X, Qx S)

e © " x, k")
(X,J.Q(n+1) — 03

s )

and is of representative . Then for any n-chain ¥ with
dy C S representing the homology class [¥] € Hn(X,S:Z) one

has <[¥),pz> = fxw modulo Q(n+1).

3.5 Remark

If X is affine, then one has Hn+1(x,j,Q(n+1)) = 0 by

[BBD], 6.2.1. On the other hand, the sheaves 9; s being
[

coherent, they don't here higher cohomology. This implies

1o (x, Qx s)

1 .
(X,K' ) =
1ex,s;:;q(n+1)) + an®(x, an

S+T)

and
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0 n
H (X,Qx's)

n+1 .
HO 7 (XK n-1 0
BT (X,S:;Q(n+1)) + dH (X,0

<{n-1 )'
X,8

0 n-1 . . 0 n-1
As H (X'QX,S+T) injects in H (X'QX,S) the map

Hn+1(x,K") — Hn+1(x,K') is surjective. One is then always

in the situation of (3.4).

3.6 We go back to the situation (3.1). One has morphisms

i

* 3
™0 (log (¥+2)) (-¥-2) — 0y oo

i
X,S

h™In,@(n+1) — v,@(n+1)

h"e} (log ¥) (-Y) —> @
h™'i,@(n+1) — 3,Q(n+1) .
Therefore one has morphisms in Db(A):

A ,@(n+1) — 03" 1 (log(¥+2)) (-¥-2) — 0] (log ¥) (-¥)

and

i,@(n+1) — Qin(log Y) (-Y)

|

Rh K" .

This proves the



- 29 =

Lemma. One has commutative diagrams

Hy (R, ¥:Q(n+1)) » H7(X,8;C/Q(n+1))
1.2.11 I P
*
Hp ' an (A ¥iQ(n+1)) —2 = H“*?(x,x')
I Hn+1(X,K'.)
tn

<n-1

H“*l(A,A!m(n+1) — 03

(log (Y+2)) (-¥=2) — Q(log Y) (-¥))

- | -
3.7 Consider the open cover h lAj of X (1.4). Then h x

is represented by the cocycle

h'x = (v Ix"1,n*x%, ..., n*x")  in
(™t h7ta k), (-1)™s+q)
with
hlyxl o (oq) (MFLIN-1
_ _ da da
p* 0k _ (-1)kngn7k T ak+1 N
o'tk Tlorrrlx % n
. ‘ 1¢k<n
da da
* n 1 . - n¥
hx = logif 5. et Tm with logif = h 1ogi¢.
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Define for simplicity

o 0, -1
G, =hg; .3 €H(h7Ay

. 0,(-S-T)).
1oy 0 X D 4

O”'lk

1l

3.8 Let Xj be a refinement of h’ Aj such that another

determination anf of logif on X. exists with
on.f € HO(X.,t0,(-S))
J 'K )

Observe that this implies

if Xj N (SUT) # ¢, then

nnjf = logjf, and therefore (Qni f - Qni f)

1 0
0 .
€ H (X, . ,v,Z(1)).
151,77
Define the element
u = (u_l,uo,...un) in
(%“*1(xj,x'°), (-1)™%s + d) by:
u-l - (_l)(n+1)-nz-1
n-k kn_n-k dak+1 dan
0... k 0... k k+1 n
. 1<k <n
da da
n _ 1, . _m
u = 4n.f a3 . e a
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with 2 = (80nf) .
oty ipiy
n~-k n-k+1
Z. = 6(2 G ) .
ige.-1y igeeedy 4 igeeedp igeeeiy

As in (1.5), the condition

(@n; £ - an, f) € HO(Xioil,u!Z(lj) implies that
1 0

27 . en®x; ; ,»,Z(k)) and that u is a Cech
oVt

ige--1p
cocycle, defining a cohomology class u in Hn+1(X,K")

Proposition O©One has
o .
n*% = u in H" 1 (x,K'").

Proof. Choose a refinement Xi of Xj such that if

xio"‘ik n (suUT) = ¢, then 1°gio...i CI) is single valued
k
. . 0
on X! . that is in H" (X! o,).
io...lk' io...ik' X
Define
h. = log, . a if X! n (sUt) = ¢
10...1k igeedy k+1 10...ik
0 if Xi i N (SUT) # ¢.
0...k
In this refinement Xj one has
' da da
* n n _ _ 1 " n
hx -u = (logif Qnif)—a— e 3 Define
1 n
n 0
Ni = (1ogif - nnif) € H (Xi,vll(l)).
n n-1 n-1
One has (6N7), = 2, -2, 4 .
1011 1011 i1,
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Define

da da

_ o 2 . N 0,,, on-1
ri - Nihi LI a e H (Xi,n

X,S+T)'

One has

n-1

n n
- u = dr, .
i

h*x
Define by induction for 1 ¢ 2 < k

T Gt
OII- Q' 0.'. Q
n=-9+1

- (N h ) . :
Bgeendg g igeeadg ligaeidy

0
€ HO(X! . v, Z(2+1))
10"'1,0, H

with (6Nn_Q) - zn-D.-l _ Zn-Q.—l

n da
h. 0+2 n

o' 1 ige-eigiige.cdy ag ., ‘ a,

n-0-1 _ o
and ry i = (-1) N,

0 n-(2+1)
€ H (Xi 'QX,S+T .)

0...10_

with
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Define
n-k n-k n-k
N = (z- » -Zu » )Go »
io...ik i1geeedy Tigeeeip i Tige 001y
n-k+1
- & (N, . h, C ) .
igeeedp g igeeedy 150000
One has
sk = Zn-k-l - zn-k-l
If X! Nn (sUT) # ¢ for all 2 € {0,...,k}, then
i ...1 ...i
0 Q k
Np-k . = 0, Especially if X! N (SUT) # ¢. Otherwise
i ...1 i ...i
0 k 0 k
X! N (SUT) = ¢ (say). Then
i ...i
1 k
n-k n=-k n-k
N. = (z . - D . ) (G . - h )
10...ik io...lk ig---ip ige--iy il"'ik
k
0 n-k+1
- (-1) N, 2 (h, 2 - h. )
Qzl 10...1n...ik 1geeelgen.iy i, .ik
e ("% - 27Ky, { #0, then X! . N (SUT) = ¢, and
0 ip 01y
(G. - h . ) € Z(1).
loaalik il.‘.lk
n-k+1
If N # 0, then X! n (suT) = ¢, and
io... n...ik ' lolllin’...ik ’
(h - h ) € Z(1)). Therefore
io...ig...ik 1p..04,

n-k 0
N, i € H (xi ...ik'vlz(k+1))°

10...k 0
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Define
n-k-1 _ kn n-k dak+2 dan
Ty, SN Ny T by i T et ALt
ok o' ik lo'rrlx  Zke2 n
One has
(m*xK - WKy -1y Per™K + ar™ KLy = o,

— n & —
Therefore (h x - u) - [(~1)" 6 + d)Jr = 0, and (h x - u) 1is a

coboundary in € (K' ).

3.9. Let ¥ be an n-chain with support ¥ C %, 4« open
analytic, 8y C S, of homology class [¥] € Hn(X,S;Z) such
that:

there is a determination Onf of log £ on 4 with
0
@nf € H'(%,t0,(-8)).

By 3.8, one has

da dan

e —
h x = class of w = 4nf = "t Th
1 n

in B™Ml@,x').

By (3.4), one obtains



- 35 =

Theorem (see [B], 7.0.2 and [N], II, (2.4)):

<[¥), ph x> = [ _anf —= ...~ — modulo Q(n+l1).
¥ a, an

3.10 Remark The condition X affine of [N], II, (2.4) does
not appear in (3.9). This is just because the assumption on
the existence of 4nf is sufficient to assure that ph*x is

represented by a global n-form on A (via (3.8)).

3.11 Comment

The formula 3.9 depends on the existence of a representa-
tive ¥ of the homology class [y¥] € Hn(X,S:Z) along which
there is a single valued determination of 1log £ which vani-
shes on support ¥y N § and support ¢y N (ai = 0) for
1 {1i< n. So it is not valid in general. In §4 we weaken the
assumptions on dimension X and on ¥ in order to write a

slightly more general formula in the case n = 1.
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§4 Qther formuli on X and relationship with Bloch's
redqulator map

4.1 Let X be a smooth affine variety over C equiped with
morphisms i : x — A, a=1,...,N, where A is the uni-

versal situtation as in (3.1). We define

h** = £% € Hy(xX,s+1%:2(1))

a* a 0
h xi ai € H (X,OX)

where t% : = ai .o aﬁ defines T and § is a divisor
N a=-1 _
contained in N h Y. This defines
1
N
* -1 +1
u := ) h*rest ($1yeXpreensX ) € BpTL(x,550(n+1)).
1

Define j : X-s — X.

Recall (3.6) that we have defined

n** . (1,@(n+1) —> nin(log Y) (-Y)) — Rhﬁ(jlm(n+1) — n§“s)
in D°(a).

This defines
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el
i
N2

* -
n*“rest 1{¢|U,X1,...,Xn} as a class in

Lx,3,@(ne1) — 057

Lemma. The natural morphism

(x,K') — HH(x, 3 ami) — 0yl

is injective. The class u lies in H™"1(X,K’) if and only
if

a da daa
dﬁ = z if_— ~ _l- Naa o™ n = 0.
s anl a%
1 1 n
Proof. The Kkernel of
(x,K) — BN x5 ame) — 03"

comes from Hn+1(x Q 2n+1[ -1]) = 0, and u € Hn+1(X,K.) if

and only if it maps to 0 under

d : (X j,Q(n+1)) — Q S)
1 2n+1 _ 0 n+l
(X, 0y ) = H (X'QX s’d closed °

One has
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N
dﬁ=§ha*ﬂA&A___AE§‘
¢ X X
1 n
1l
N a a
Y- S
a - & & a.
1 £ 21 %n
O n +
. !
4.2 Corollary There is o € H (X QX,S)d closed representing
u via the composed morphism
0 n n+l,, ,°
H (X,ﬂx’s)d closed H (X, X )
l p (3.2)
H'(X,5:C/Q(n+1))
l (1.2)
+
Hy L (X, S5 (@(n+1))
N a
_ da da
if du=du =) ag” 1 Do,
£* a% a%
1 1 n
Proof. One has the exact sequence
n .
H (X, &) .
o » — X,8 , B9 (%, k")
H (X,S:;Q(n+1))
| a
n+1l

" (x,s;:0(n+1))nu® (x, 0

|

0

X,S)d closed
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X,s’
H" (X,S;Q (n+1)
As X 1is affine, one has

2 (X, 0

Therefore u €

n-
X,S)

0 1
dH (X'QX,S)'

H(X,0 = #%(x,0

n
X,S)d closed/
4.3 Let ¥ be an n-chain on X with 8y C S, of homology

class [¥] € Hn(X,S:Z). One has
<[¥],u> = Irm modulo Q(n+1).

4.4 We assume now n =1 in (4.4) and (4.5). Given [¥] as in
4.3, then is a representative y of ({¥] as a chain as in
[N}, II, 2.4:

¥ = xo + 2 xi with axo = ¢, Bxi #£# ¢ C 8 for 1> 1. We
i21
first compute <[¥yl,u>.

Proposition. Let P, € support ¥ be a point such that

0
log £ is single valued along ¥o = Pys and vanishes along
t* = 0 and S, for a=1,...,N.
N a
1) Assume Py ¢ UT . Then if Py € S or if Py is an
1l

isolated point of S N support ¥os One has

da”
1 ag®
<[¥0]fu> = f’o z 1oga ;E_ - 2 log ai(po) f‘o —;E modulo Q(2).
a 1 a
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2) If Py € S is not isolated in S N support ¥or OF if

N N
Po e N ™ is not isolated in N T% N support ¥y + One has
1 1
dai
<[¥gy],u> = ]’0 z 1og? ;E_ modulo Q(2).
a 1 '

3) If log £f* is single valued along

¥o and vanishes along
t* =0 and S for a = 1,...,N, one has
da%
a 1
<[xo},u> = f 2 log £ —— modulo Q(2).
¥o a%
a 1

Proof. 1In 1) and 2), there are an open set % containing
¥or I a segment in A with Py = I N support ¥or and a
determination infa on %l =4 - I with

nnlfa € Ho(ml,taox(—S)). For any e > 0, define an open set

MOe containing Py such that:
(*) 1is fulfilled in case 1)

(**) is fulfilled in case 2)
with

(*) log a? is single valued along % N support ¥ and
1 Oe 0

verifies

sup |1log ai(x) - log a;(y)| < e
x,yGQOeﬂsupport L2
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N
(*%*) A N support ¥y, C S or N ¢
Oe 0 1
N o
(As support y, N 8 (or support ¥y, N N T) is compact, the
1
condition 2) says that a subsegment of ¥, centered at p,
N
is contained in S (or in N T%). Therefore one may realize
1

(**)).

Let fe =9 U MOE. Take a common refinement of the covers

1
a-l - .
¥, Ua,  and ¥_0N h A, of ¥ _. By (3.8), ulfe is

represented by the Cech cocycle in this cover

-1 0
(™ uThee? (1, 5 02))xet (7, ,0,(-8))x€% (0% ¢ 4 c1osed)
with
-1 a 0 a a 1 a dag
u o= 2 i i 40 W =~ 2 2; 1 6y 4 0 = 2 ing 87 —2
07172 071 T071 a
a a a 1
with
a ok a o
G5 = h%'g z% . = (6 an %), .
1011 ioil' i1, 1011
Za

X = &5(2% ¢t . ) .
101112 1 i ioi1 ioill2
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By (4.2) there is a refinement (¥.) ._ of the open
l i_o'oo.'n

cover, there are
0] 1 1 .
w € H (X’QX,S)d closed’ S € ¢ (11,]!Q(2))

and r € @O(vi,ox(-S)) with

-1

u 0 l

-6s, u = =6r + 8, u =w + dr.

Following the orientation of ¥ take an order Vi with

o’

Po € Yo _13111

P, €T N Y, N ¥,

pQ € 1&-1 n Vn n xo

Ppyp € Yo NV N ¥y

One has
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P b P
1 2 0+1
R = [ dr. + [ ° dr. +...+f dr
€ "Pgyy O TPy 1 Py 2
p p p
= rol 1 rll 2 o+ rQI L+1 (Stokes)
Po+1 Py Py

[22 (24

a o a o
= 2 [210C10(P1) *+ 259G (Py)*--F 29 o _1Gg,0-1(Py)

R

a a
+ Z09Gog (Pg4q)

One has

In 1), Gio(pl) and G~

log ai by (1.4),
— a
Re = 2 Z10 log
a

a a
As Zlo and ZOQ

1) 25,(109 a2 (p,)
a

¢ constant.

] modulo Q(2).

oo (Pg4+q) @are two determinations of

¥. Therefore one has

a a a
al(pl) + ZOQ log al(pﬂ+1) modulo Q(2).

donot depend on €, one has

- log aj(p,))+ 20, (log af(py ) -1log aJ(py)) |

e by (*).

Therefore Re tends to

R = E (Zlo +

2% Ylog a%(p.) = 2 log a%(p,) [ ar
og’+°9 21 (Pq 9 a,(Pg 5y £@
a
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as e tendsto zero.

In 2), Re does not depend on e, and
a o _ )
Gig(Py) = Ggpo(Pg,q) =0 by (**) and (1.4) y. This proves

the cases 1) and 2).

In case 3), consider an open set % containing such that

¥o
a determination onf® of log f® exists and is single valued

on % with

ont® € Ho(m,t“ox(—S)).

Then take a common refinement of ¥ N ha-lAi, Pl

, and a refinement (¥ of it with

ili=o0,...,0
w,s8, r as before, and py as before.

One as

with
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_ a .o a .«
R = E{ZloGlo(po)+...+ZOQG0Q(pQ+1)] modulo Q(2).
a

Zg j-1 = Zgn = 0, one obtains 3).
’

As
4.5 Take ¥, with 6:1 # ¢ C S . Let Py € support L2Y ns.
If for all a« = 1,...,N there is a single valued
determination of 1log £% along ¥, ~ Py which vanishes along

t* = 0 and S, then 1log £%  is single valued along ¥, as

Proposition. Let Py € support ¥, - S bea point such that
log £¢ is simple valued along ¥, = Py, and vanishes along

t* =0 and 8§ for a = i,...,N.

N

1) Assume p, € U T%. Then one has
1
da% a
a 1 a df
<[¥,1,u> = Ir 2 log £ —> - z log a,(py) J, =5
1 1 £
a 1l a
modulo Q(2)
N a N (a4
2) If Pp €NT and is not isolated in N T N support ¥y
1 1
then one has
da%
_ a 1
<{¥,],u> = [ 2 log £f© —= modulo Q(2).
1 L2Y a%
a 1

3) If 1log £ is single valued along ¥, and vanishes along

t* =0 and S for a = 1,...,N then one has
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da

nl»—-p

<[¥4],u> = fxl E log £%

a

a

[

Proof. For 1,2,3 define (7i)i=0,...,n
(4.4), 1 and (4.4),2. Write

Bxl = {so,...,sk} C s.

One has to take

-u ¥,

Py € ¥y 31 4

P, €T N ¥, 0N ¥,

modulo Q(2).

as in the proof of
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pn € Tﬂ—l n TQ n ’1

Po4+1 € 1& n 10 n ¥q-

Note that the corresponding R 1is defined by

Py Py S
R =/ dr, + f dr +...+ S/ dr,
Pg 41 P, Pp, 1
pnl+2 po.1+3 Pp+1
+ é drn1+1 + er1+2+...+ f dr,
2 pa1+2 Py

As 1 € el(ox(-S)), one has

R = (ro-rl) (pl) + (rl-rz) (p2)+' . '+(rn1_1- rnl) (pn_l)

+ (rgl+1 - rnl+2)(PQ1+2)+...+ (rQ - ro)(pn+1).
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aus
One concludé;V;; {(4.4).

4.6 Let now X be a smooth affine variety over C. Let
a a
fo' LI ’fn

a=1,...,N. We consider the cup product

be global invertible algebraic function on X, for

u = 2 {fg,...,fi} € Hg+1(x,Q(n+1)). Assuming
1
Q afy ar?
du = 2 —o ~...n —0 = 0, we have ((1.2), i, with Y = ¢):
1 %o £

u € HY(X,C/Q(n+1)).
Now, X being affine, we have as in (4.2):

0 n
H (X,Qx)d closed

HY(X,C/Q(n+1)) = — S
H" (X,Q (n+1) ) +dH" (X, 0

n-1
x )

0 n
and if w € H (X,Qx)d closed represents u, one has: for any

[¥] € Hn(X,Z) of representative y:

<[(¥],u> = /| @ modulo Q(n+1).
¥

4.7 Take n =1, and X no longer affine. As explained by R.
Hain in his talk at the Max-Planck~Institut, fall 1987, one

has Bloch's regular map

r : Ky(X)g — HA(X,Q(2))
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N
This is defined as follows. Let x = | | {f%,fi} be in
1

KZ(C(X)). Let U be a affine subset of X such that

f? € 0(U)*. Then the any product

N
> £2 U £2 lies in HZ(U,0(2)) € 1im HZ (V,Q(2)) .
1

V Zariski
open in X

The existence of the dilogarithm function tells us that

N
) £2 U £7 € 14im Hz (V,Q(2))

1 V Zariski

open in X

does not depend on the decomposition choosen of X as symbols
{f%,fi}. The existence of a Gersten-Quillen resolution for

H;(z)Q tells us that if x € K,(X) C K,(C(x)), then

N
r(x) := 2 fg U fi lies in H;(x,m(z)) C lim H;(V,Q(Z)).
1 v
Assume dr(x) = 0.
Proposition. Let [¥] € Hl(U,Z), of representative y. Let

Py € support ¥ such that 1log fg is single valued along

¥ - po. Then
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Qa

<t¥l,r(x)> = f_ ) log £% f;

a 1l

daf

df

OR

- z log fi(po) ft modulo @Q(2).

[2

|
o R

If X 1is a curve, this is true modulo Z(2).

The proof is word by word the same as in (4.4)1), where one

replaces Gi i by logi f:. If X 1is a curve, then
071 1

Hy (U,Z(2)) = H'(U,C)/H" (U,Z(2))

= ut(u,c/z(2)).
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