ON THE LODAY SYMBOL IN THE

DELIGNE-BEILINSON COHOMOLOGY

by

Hélène Esnault

supported by Heisenberg Program

Max-Planck-Institut
für Mathematik
Gottfried-Claren-Str. 26
D-5300 Bonn 3

MPI/88-8

This note is thought as a complement to the volume on the Beilinson conjectures whose [EV] and [N] are two contributions. It gives an explicite formula for the Loday symbol in the Deligne-Beilinson cohomology. Thereby one obtains the proof of the "crucial lemma" 2.4 in [N],II, a formula for the evaluation of the Loday symbol on certain cycles. This formula was stated by A. Beilinson in [B], 7.0.2 and - together with very useful comments and the assumptions really necessary $[\mathrm{N}], \mathrm{II}, 2.4$, however both times without proof. Note that the explicite description of the regulator map for $\operatorname{Spec} \mathbb{Q}\left(\mu_{N}\right)$, where μ_{N} is the group of $N-t h$ roots of unity, given by A. Beilinson in [B], 7.1 relies on this crucial lemma.

Let $A_{\mathbb{C}}^{n+1}$ be the affine space of dimension $n+1$ of coordinates X_{i} over the complex numbers \mathbb{C}. Let $\phi=1-X_{0} \ldots X_{n}, A=A_{\mathbb{C}}^{n+1}-(\phi=0), U=A-\left(X_{0}=0\right)$. Then

[^0]$\left.\phi\right|_{U} \in H_{g}^{1}\left(U,\left(X_{0}=0\right) ; \mathbb{Z}(1)\right)$, the group of invertible regular functions on U which are 1 on $\left(X_{0}=0\right)$ and $X_{i} \in H_{\mathscr{D}}^{1}(U, \mathbb{Z}(1))$, the group of invertible regular functions on U. One considers the cup product $\left\{\left.\phi\right|_{U}, X_{1}, \ldots, X_{n}\right\}$ in the Deligne-Beilinson cohomology group $H_{\mathscr{G}}^{\mathrm{n}+1}\left(\mathrm{U},\left(\mathrm{X}_{0}=0\right) ; \mathbb{Z}(\mathrm{n}+1)\right)$. As $\quad H_{\mathscr{D}}^{\bullet}\left(\mathrm{U},\left(\mathrm{X}_{0}=0\right) ; \cdot\right) \quad$ rest $H_{\mathscr{D}}^{\dot{(}}\left(\mathrm{A},\left(\mathrm{X}_{0}=0\right) ; \cdot\right)$ is an isomorphism, this defines an element $\operatorname{rest}^{-1}\left\{\left.\phi\right|_{U}, X_{1}, \ldots, X_{n}\right\}$ in $H_{\mathscr{D}}^{n+1}\left(A,\left(X_{0}=0\right) ; \mathbb{Z}(n+1)\right)$. This is the Loday symbol in the Deligne-Beilinson cohomology. In this article we give explicite formuli (modulo torsion) for the Loday symbol as a cech coscycle (1.8), (2.3), (2.5)i.

Let $h: x \rightarrow A$ be an algebraic morphism, with X smooth. This gives explicite formuli for
$h^{*} \operatorname{rest}^{-1}\left\{\left.\phi\right|_{U}, X_{1}, \ldots, X_{n}\right\} \quad$ in $H_{\mathscr{D}}^{n+1}(X, S ; Q(n+1))$ if
$h(S) \subset\left(X_{0}=0\right)$. If dimension $X \leq n$, then
$H_{\mathscr{D}}^{n+1}(X, S ; \mathbb{Q}(n+1))=H^{n}(X, S ; \mathbb{C} / \mathbb{Q}(n+1))$, the Betti cohomology group. Therefore we may evaluate h^{*} rest $^{-1}\left\{\phi_{\mid U}, X_{1}, \ldots, x_{n}\right\}$ along relative homology classes $[\gamma] \in H_{n}(X, S ; \mathbb{Z})$. The previous explicite formuli give an expression (3.9) for this evaluation under certain assumptions on a representative γ of [γ].

Our method consists of reducing the problem to the analytic Deligne cohomology (1.3), and there to define a substitute for the cup product if the functions $X_{i}, i \geq 1$ are not invertible (1.4), (1.5). As this definition makes sense for analytic varieties as well, we define in this way a sort of Loday symbol in the analytic case (1.6), (1.7), which is no longer unique (2.5) ii, (2.5) iii.

In § 4 we weaken the condition on the dimension of the algebraic variety X by an assumption on the curvature of a sum of pull-backs of the Loday symbol. This allows to define it as the class of a global closed holomorphic n-form (4.2). We give in (4.4) and (4.5) the evaluation of this class along relative cycles with some assumptions which are milder than in (3.9).

Finally in (4.7) we explain the relationship with Bloch's regulator map $K_{2}(X)_{\mathbb{Q}} \longrightarrow H_{\mathscr{D}}^{2}(X, \mathbb{Q}(2))$ in any dimension.

I thank cordially M. Rapoport with whom I discussed several times on those points.
§1. Construction of a class x in $H_{\mathscr{D}}^{\mathrm{n}+1}(\mathrm{~A}, \mathrm{Y} ; \mathbb{Q}(\mathrm{n}+1))$
1.1 Let A be a smooth algebraic variety over $\mathbb{C}, \mathrm{Y}+\mathrm{Z}$ be a normal crossing divisor on A, where Z is defined by $X_{1} \ldots X_{m}, X_{i}$ being a global regular reduced function on A. We define the natural embeddings

$$
\underset{A-Y}{A-Y} \underset{\lambda}{A}
$$

Let ϕ be in $H_{\mathscr{D}}^{1}(A, Y+Z ; \mathbb{Z}(1))$

$$
=\operatorname{ker} O(A)^{*} \longrightarrow O(Y+Z)^{*} .
$$

Define $U=A-Z, X_{U}=Y \cap U$.
Then $\left.\phi\right|_{U}$ lies in $H_{\mathscr{D}}^{1}\left(U, Y_{U} ; \mathbb{Z}(1)\right)$

$$
=\operatorname{Ker} O(U)^{*} \longrightarrow O\left(Y_{U}\right)^{*}
$$

and X_{i} lies in $H_{\mathscr{D}}^{1}(U, \mathbb{Z}(1))=O(U)^{*}$. Choose $1 \leq n \leq m$. Then the cup product $\left\{\left.\phi\right|_{U}, X_{1}, \ldots, X_{n}\right\}$ is defined as an element in $H_{\mathscr{D}}^{n+1}\left(U, Y_{U} ; \mathbb{Z}(n+1)\right)$. We construct in $\S 1$ a specific element $x \in H_{\mathscr{D}}^{n+1}(A, Y ; \mathbb{Q}(n+1))$ from which we show in $\S 2$ that its restriction to $\left.U \quad x\right|_{U} \in H_{\mathscr{D}}^{n+1}\left(U, Y_{U} ; \mathbb{Q}(n+1)\right)$ is precisely $\left\{\left.\phi\right|_{U}, X_{1}, \ldots, X_{n}\right\}_{Q}$. In other words, we define a lifting of the cup product across Z .
1.2 Here we show that the problem is reduced to a problem in the analytic Deligne cohomology. Recall [E.V], 2.9 that

$$
\begin{aligned}
& H_{\mathscr{D}}^{q+1}(A, Y ; \mathbb{Z}(p+1)) \\
& =H^{q+1}\left(\bar{A}, \operatorname{cone}\left[R k_{\star} i^{\mathbb{Z}}(p+1)+F^{p+1}(\log (H+\bar{Y})(-\bar{Y}))\right.\right. \\
& \longrightarrow \Omega \dot{\bar{A}}(* H+\log \bar{Y})(-\bar{Y})][-1])
\end{aligned}
$$

where $k: A \rightarrow \bar{A}$ is a good compactification such that $\mathrm{H}:=\overline{\mathrm{A}}-\mathrm{A}, \overline{\mathrm{Y}}:=$ closure of Y in $\overline{\mathrm{A}}$ and $\mathrm{H}+\overline{\mathrm{Y}}$ are divisors with normal crossings.
Forgetting the growth condition along H on the F^{p+1} part, one obtains a morphism in the analytic Deligne cohomology [E.V], 2.13:

$$
\begin{aligned}
& H_{\mathscr{D}, a n}^{q+1}(A, Y ; \mathbb{Z}(p+1)) \\
& =H^{q+1}\left(A, \operatorname{cone}\left[i_{!} Z(p+1)+\Omega_{A}^{Z p+1}(\log Y)(-Y)\right.\right. \\
& \left.\left.\longrightarrow \Omega_{A}^{0}(\log Y)(-Y)\right][-1]\right) \\
& =H^{q+1}\left(A, i_{1} \mathbb{Z}(p+1)+\Omega_{A}^{S p}(\log Y)(-Y)\right) .
\end{aligned}
$$

One obtains a commutative diagram of exact sequences
$0 \rightarrow \frac{H^{q}(A, Y ; \mathbb{C})}{H^{q}(A, Y ; Q(P+1))+F^{p+1} H^{q}(A, Y ; \mathbb{C})} \longrightarrow H_{\mathscr{D}}^{q+1}(A, Y ; \mathbb{Q}(p+1))$

$$
H^{q+1}(A, Y ; Q(p+1)) \cap F^{p+1} H^{q+1}(A, Y ; \mathbb{C}) \rightarrow 0
$$

$$
f_{p+1, q+1}
$$

Lemma (see also [E.V], 2.13 and [B], 1.6.1)
-i- $f_{n+1, n+1}$ is injective. One has
$H_{\mathscr{D}}^{\mathrm{n}+1}(\mathrm{~A}, \mathrm{Y} ; \mathbb{Q}(\mathrm{n}+1))=\left\{\mathrm{X} \in \mathrm{H}_{\mathscr{D}}^{\mathrm{n}+1}(\mathrm{~A}, \mathrm{Y} ; \mathbb{Q}(\mathrm{n}+1)\right.$, such that $\left.d x \in F^{n+1} H^{n+1}(A, Y ; \mathbb{C})\right\}$
and $\operatorname{Ker} d=H^{n}(A, Y ; \mathbb{C} / \mathbb{Q}(n+1))$
-ii- $f_{p+1, q+1}$ is an isomorphism for $q<p$. One has then

$$
H_{\mathscr{D}}^{\mathrm{q}}{ }^{+1}(\mathrm{~A}, Y ; \mathbb{Q}(\mathrm{p}+1))=\mathrm{H}^{\mathrm{q}}(\mathrm{~A}, Y ; \mathbb{C} / \mathbb{Q}(\mathrm{p}+1))
$$

$-1 i i-f_{p+1, q+1}$ is an isomorphism for $\operatorname{dim} A<p+1$. One has then

$$
H_{\mathscr{D}}^{q^{+1}}(A, Y ; \mathbb{Q}(p+1))=H^{q}(A, Y ; \mathbb{C} / \mathbb{Q}(p+1))
$$

Proof.
-i- One has $F^{n+1} H^{n}(A, Y ; \mathbb{C})=0=H^{n}\left(A, \Omega_{A}^{\sum n+1}(\log Y)(-Y)\right)$ and $F^{n+1} H^{n+1}(A, Y ; \mathbb{C})=H^{0}\left(\bar{A}, \Omega \frac{n+1}{A}(\log (H+\bar{Y})(-\bar{Y}))\right.$ d closed is embedded in

$$
H^{n+1}\left(A, \Omega_{A}^{2 n+1}(\log Y)(-Y)\right)=H^{0}\left(A, \Omega_{A}^{n+1}(\log Y)(-Y)\right)_{d} \text { closed. }
$$

One has
$\frac{H^{n}(A, Y ; \mathbb{C})}{H^{n}(A, Y ; \mathbb{Q}(n+1))}=H^{n}(A, Y ; \mathbb{C} / \mathbb{Q}(n+1))$ as $H^{n+1}(A, Y ; \mathbb{Q}(n+1))$ is torsion free.
ii,iii. In both cases the cohomology of F^{p+1} and $\Omega^{2 p+1}$ appearing in the exact sequences vanish.
1.3 Corollary. In order to construct an element $x \in H_{q}^{n+1}(A, Y ; \mathbb{Q}(n+1))$, it is enough to construct it as an element of $H_{\mathscr{D}, a n}^{n+1}(A, Y ; \mathbb{Q}(n+1))$ and to verify that its curvature dx is algebraic, that is in $\mathrm{F}^{\mathrm{n}+1} \mathrm{H}^{\mathrm{n}+1}(\mathrm{~A}, \mathrm{Y} ; \mathbb{C})$.

Therefore in (1.4), (1.5), (1.6), (1.7), we assume only A, $Y+z$ to be analytic, X_{i} to be global holomorphic on A, ϕ to be global holomorphc invertible on A such that $\phi_{\left.\right|_{\mathrm{YUZ}}}=1$.
1.4 Consider $\phi: A \longrightarrow \mathbb{C}^{*}$, with $\phi(Y \cup Z)=1$. Let $\mathbb{A}_{0} U \mathbb{A}_{1}$ be an analytic open cover of \mathbb{C}^{*} such that $1 \in A_{1}-A_{0}$, $\left.\log \phi\right|_{\phi^{-1}\left(A_{i}\right)}$ is single valued and
$\left.\log \phi\right|_{\phi} ^{-1}\left(\mathrm{~d}_{1}\right) \cap(\mathrm{YUZ})=0$. One has
$\left.\log \phi\right|_{\phi} ^{-1}\left(A_{i}\right) \in H^{0}\left(\phi^{-1}\left(A_{i}\right), O_{A}(-Y-Z)\right)$.

Then for any refinement $\left(A_{i}\right)_{i \in I}$ of $\phi^{-1}\left(A_{i}\right)$, with map $\sigma: I \longrightarrow\{0,1\}$, one has
a) $\log _{i} \phi:=\left.\log \phi\right|_{A_{i} C^{-1}}\left(A_{\sigma(i)}\right)$
$\in H^{0}\left(A_{i}, O_{A_{i}}(-Y-Z)\right)$

乃) $z_{i_{0} i_{1}}^{n-1}:=(\delta \log \phi)_{i_{0} i_{1}}=\log _{\mathrm{i}_{1}} \phi-\log _{\mathrm{i}_{0}} \phi$

$$
\in H^{0}\left(A_{i_{0} i_{1}}, \lambda, \mathbb{Z}(1)\right)
$$

and $\left(\delta \mathrm{z}^{\mathrm{n}-1}\right)=0$.

Take such a refinement with
$\gamma)$ if $A_{i_{0} \ldots i_{k}} \cap(Y \cup Z)=\phi$,

$$
\log _{i_{0}} \ldots i_{k} x_{k} \in H^{0}\left(A_{i_{0}} \ldots i_{k}, O_{A}\right) .
$$

$$
\begin{array}{cc}
g_{i_{0}} \ldots i_{k}=\log _{i_{0}} \ldots i_{k} x_{k} & \text { if } A_{i_{0}} \ldots i_{k} \cap(Y \cup Z)=\phi \\
0 & \text { if } A_{i_{0}} \ldots i_{k} \cap(Y \cup Z) \neq \phi .
\end{array}
$$

One has

$$
g_{i_{0}} \ldots i_{k} \in H^{0}\left(A_{i_{0}} \ldots i_{k}, o_{A}(-Y-Z)\right)
$$

We want to construct

$$
\bar{X} \in H^{n+1}\left(A, \lambda_{!} \mathbb{Z}(n+1) \rightarrow \Omega_{A}^{S n-1}(\log (Y+Z))(-Y-Z) \rightarrow \Omega_{A}^{n}(\log Y)(-Y)\right)
$$

as a cocycle $\bar{x}=\left(x^{-1}, x^{0}, \ldots, x^{n}\right)$ in the cech complex

$$
\begin{aligned}
& \left(\mathscr { C } ^ { \bullet } \left(A_{i}, \lambda_{!} \mathbb{Z}(n+1) \rightarrow \Omega_{A}^{S n-1}\left(\log (Y+Z)(-Y-Z) \rightarrow \Omega_{A}^{n}(\log Y)(-Y)\right),\right.\right. \\
& \left.(-1)^{\bullet} \delta+d\right):
\end{aligned}
$$

$$
\begin{aligned}
& x^{-1} \in \mathscr{C}^{n+1}\left(\lambda_{1} \mathbb{Z}(n+1)\right) \\
& x^{0} \in \mathscr{C}^{n}\left(O_{A}(-Y-Z)\right) \\
& \cdot \\
& \cdot \\
& x^{n} \in C^{0}\left(\Omega_{A}^{n}(\log Y)(-Y)\right)
\end{aligned}
$$

with $(-1)^{n+1} \delta x^{j}+d x^{j-1}=0$
1.5 The condition 1.4, α implies that
$x_{i}^{n}:=\log _{i} \phi \frac{d X_{1}}{X_{1}} \ldots \ldots \wedge \frac{d X_{n}}{X_{n}}$ is in $H^{0}\left(A_{i}, \Omega_{A}^{n}(\log Y)(-Y)\right)$. This defines x_{i}^{n}.
We have to resolve the equation

$$
\left(d x^{n-1}\right)_{i_{0} i_{1}}=(-1)^{n}\left(\delta x^{n}\right)_{i_{0} i_{1}}=(-1)^{n_{z_{i}}^{n-1} i_{1}} \frac{d x_{1}}{x_{1}} \leadsto \ldots \wedge \frac{d x_{n}}{x_{n}}
$$

Define

$$
\begin{aligned}
x_{i_{0} i_{0}}^{n-1}= & (-1)^{n} z_{i_{0} i_{1}}^{n-1} g_{i_{0} i_{n}} \frac{d x_{2}}{x_{2}} \leadsto \ldots \wedge \frac{d x_{n}}{x_{n}} \\
& \in H^{0}\left(A_{i_{0} i_{1}}, n_{A}^{n-1}(\log (Y+Z))(-Y-Z)\right) .
\end{aligned}
$$

Assume by induction that we may define for $1 \leq \ell \leq k$

$$
z_{i_{0}}^{n-\ldots} i_{\ell} \in H^{0}\left(A_{i_{0}} \ldots i_{\ell}, \lambda_{!} Z(\ell)\right)
$$

with $\left(\delta \mathrm{z}^{\mathrm{n}-\mathrm{l}}\right)=0$

$$
\begin{aligned}
& x_{i_{0}}^{n-\ell i_{l}}=(-1)^{l n_{2}} z_{i_{0}}^{n-\ell} \ldots i_{l} g_{i_{0}} \ldots i_{l} \frac{d x_{l+1}}{x_{l+1}} \ldots \ldots \wedge \frac{d x_{n}}{x_{n}} \\
& d x^{n-l}=(-1)^{n} \delta x^{n-l+1} \quad \ell \leq k
\end{aligned}
$$

Define

$$
z_{i_{0}}^{n-(k+1)} \quad:=\delta\left(i_{i_{k+1}}^{n-k} \ldots i_{k} g_{i_{0}} \ldots i_{k}\right)
$$

If for all $\& \in\{0, \ldots, k+1\}$,

$$
\begin{aligned}
& \qquad A_{i_{0}} \ldots \hat{i}_{Q} \ldots i_{k+1} \cap(Y \cup Z) \neq \phi \text {, then } z_{i_{0}}^{n-(k+1)}=0 \\
& \text { (especially if } \left.A_{i_{k+1}} \ldots i_{k+1} \cap(Y \cup Z) \neq \phi\right) \text {. }
\end{aligned}
$$

Otherwise $\quad A_{i_{1}} \ldots i_{k+1} \cap(Y \cup Z)=\phi \quad($ say $)$.

Then

$$
\begin{aligned}
& z_{\left.i_{0} \ldots i_{k+1}^{n-(k+1}\right)}=\sum_{\ell=1}^{k+1}(-1)^{\ell} z_{i_{0}}^{n-k} \ldots \hat{i}_{\ell} \ldots i_{k+1}\left(g_{i_{0}} \ldots \hat{i}_{\ell} \ldots i_{k+1}-g_{i_{1}} \ldots i_{k+1}\right) \\
& +\left(\delta z^{n-k}\right)_{i_{0}} \ldots i_{k+1} g_{i_{1}} \ldots i_{k+1} . \\
& \text { If } z_{i_{0}} \ldots \hat{i}_{\ell} \ldots i_{k+1} \neq 0, \text { then } A_{i_{0}} \ldots \hat{i}_{\ell} \ldots i_{k+1} \cap(Y U Z)=\phi, \\
& \text { therefore } g_{i_{0}} \ldots \hat{i}_{\ell} \ldots i_{k+1}-g_{i_{1}} \ldots i_{k+1} \in \mathbb{Z}(1) .
\end{aligned}
$$

Therefore one has

$$
z_{i_{0}}^{n-(k+1)} \in i_{k+1} \quad \in\left(A_{i_{0}} \ldots i_{k+1}, \lambda_{!} \mathbb{Z}(k+1)\right)
$$

We may define

$$
\begin{aligned}
& \epsilon H^{0}\left(A_{i_{0}} \ldots i_{k+1}, \Omega_{A}^{n-(k+1)}(\log (Y+Z))(-Y-Z)\right) \\
& \text { with } \mathrm{dx}^{\mathrm{n}-(\mathrm{k}+1)}=(-1)^{\mathrm{n}} \delta \mathrm{x}^{\mathrm{n}-\mathrm{k}} \text { if } \mathrm{k}<\mathrm{n} \text {. } \\
& \text { If } k=n \\
& x_{i_{0}}^{-1} \ldots i_{n+1}=(-1)^{(n+1) n_{z_{i}}^{-1} \ldots i_{n+1}} .
\end{aligned}
$$

1.6 Proposition. The Cech cocycle $\bar{x}=\left(x^{-1}, x^{0}, \ldots, x^{n}\right)$ constructed in (1.5) defines a cohomology class
$\bar{x} \in H^{n+1}(A, \lambda!\mathbb{Z}(n+1)) \rightarrow \Omega_{A}^{S n-1}(\log (Y+Z))(-Y-Z)$

$$
\left.\Omega_{A}^{n}(\log Y)(-Y)\right)
$$

1.7 Let Z_{Q} be a smooth component of Z. We consider the morphism of restriction
$\begin{aligned} i_{!} \mathbb{Z}(n+1) & \longrightarrow \Omega_{A}^{S n}(\log y)(-Y) \\ \quad \left\lvert\, \frac{1}{2 i \pi}\right. & \|_{\text {restriction }}^{l}\end{aligned}$
$\left.i\right|_{Z_{Q}!} \mathbb{Z}(n) \rightarrow \Omega_{Z_{Q}}^{S n-1}(\log Y)(-Y)$
whose kernel contains

$$
\lambda_{!} \mathbb{Z}(n+1) \rightarrow \Omega_{A}^{S n-1}(\log (Y+Z))(-Y-Z) \rightarrow \Omega_{A}^{n}(\log Y)(-Y)
$$

and whose cohomology reads

$$
H_{\mathscr{D}, \mathrm{an}}^{\mathrm{n}+1}(\mathrm{~A}, \mathrm{Y} ; \mathbb{Q}(\mathrm{n}+1)) \underset{\text { restriction }}{\longrightarrow} H_{\mathscr{D}}^{\mathrm{n}+1}, \text { an }\left(Z_{Q}, Y ; \mathbb{Q}(\mathrm{n})\right)
$$

Theorem. There is a class
$x \in H_{\mathscr{D}, \text { an }}^{n+1}(A, Y ; \mathbb{Q}(n+1))$, such that restriction ${ }_{Q} x=0$ and such that
$d x=\frac{d \phi}{\phi} \wedge \frac{d X_{1}}{X_{1}} \leadsto \ldots \wedge \frac{d X_{n}}{X_{n}} \in H^{n+1}(A, Y ; Q(n+1))$ $\cap H^{0}\left(A, \Omega_{A}^{n+1}(\log Y)(-Y)\right)_{d}$ closed.

Proof. Define x as the image of \bar{x} via
$H^{n+1}\left(A, \lambda_{!} \mathbb{Z}(n+1) \rightarrow \Omega_{A}^{S n-1}(\log (Y+Z))(-Y-Z) \rightarrow \Omega_{A}^{n}(\log Y)(-Y)\right)$
$H_{\mathscr{D}, \mathrm{an}}^{\mathrm{n}+1}(\mathrm{~A}, \mathrm{Y} ; \mathbb{Q}(\mathrm{n}+1))$
given by the same cocycle. One has $d x=d x_{i}^{n}$.
1.8 Go back to the algebraic situation described in 1.1 .

Then $d x=\frac{d \phi}{\phi} \wedge \frac{d X_{1}}{X_{1}} \wedge \ldots \wedge \frac{d X_{n}}{X_{n}} \in F^{n+1_{H} n+1}(A, Y ; \mathbb{C})$.
We obtain by $1.2 i$

Theorem. The class x of 1.7 is in

$$
H_{\mathscr{D}}^{n+1}(A, Y ; \mathbb{Q}(n+1)) \quad \text { and } \quad d x=\frac{d \phi}{\phi} \wedge \frac{d X_{1}}{X_{1}} \ldots \wedge \frac{d X_{n}}{X_{n}}
$$

§2. Restriction of x to U.
2.1. In this paragraph, we want to show that the restriction to U of the class x constructed in 1.8 is

$$
y:=\left\{\phi \mid U X_{1}, \ldots, X_{n}\right\} \in H_{\mathscr{D}}^{n+1}\left(U, Y_{U} ; Q(n+1)\right)
$$

As $d y=\frac{d \phi}{\phi} \wedge \frac{d X_{1}}{X_{1}} \wedge \ldots \wedge \frac{d X_{n}}{X_{n}} \cdot[E . V],(3.7)$, we have by (1.2)i:

Lemma. $\left(X_{\left.\right|_{U}}-Y\right) \in H^{n}\left(U, Y_{U} ; \mathbb{C} / \mathbb{Q}(n+1)\right)$.
Therefore we may assume, as in (1.4), (1.5), (1.6) and (1.7) that A - and therefore U - are only analytic manifolds.
2.2 We take a refinement U_{j} of $X_{j} \cap U$ such that $\log X_{i \mid U_{j}}:=\log _{j} X_{i}$ is single valued, that is $\log _{j} X_{i} \in H^{0}\left(U_{j}, O_{U}\right)$ for $i \leq n$. Define $\mu=\left.i\right|_{U}: U-Y_{U} \rightarrow U$. Define y as a cocycle $y=\left(y^{-1}, y^{0}, \ldots, y^{n}\right)$ in the cech complex $\left(\mathscr{C}^{*}\left(U_{j}, \mu_{!} \mathbb{Z}(n+1) \rightarrow \Omega_{U}^{S n}\left(\log Y_{U}\right)\left(-Y_{U}\right)\right),(-1)^{\bullet} \delta+d\right)$ with $y^{-1} \in \mathscr{C}^{n+1}\left(\mu_{!} \not L_{(n+1)}\right)$
$y^{0} \in \mathscr{C}^{n}\left(O_{U}\left(-Y_{U}\right)\right)$
$y^{n} \in \mathscr{Q}^{0}\left(\Omega_{U}^{n}(\log Y)(-Y)\right)$
with $(-1)^{n+1} \delta_{y}^{j}+d y^{j-1}=0$.
One has [E.V.] (3.2):
$y_{j}^{n}=\log _{j} \phi \frac{d x_{1}}{x_{1}} \wedge \ldots \wedge \frac{d x_{n}}{x_{n}}$
$y_{j_{0} j_{1}}^{n-1}=(-1)^{n_{z}}{ }_{j_{0} j_{1}}^{n-1} \log _{j_{1}} x_{1} \frac{d x_{2}}{x_{2}} \ldots \ldots \wedge \frac{d x_{n}}{x_{n}}$

$$
\begin{aligned}
& y_{j_{0} \ldots \ldots j_{k}}^{n-k}=(-1)^{k n_{z_{j}}^{n-k}} \ldots j_{k} \log _{j_{k}} x_{k} \frac{d x_{k+1}}{x_{k+1}} \leadsto \ldots \wedge \frac{d x_{n}}{x_{n}} \\
& y_{j_{0} j_{n+1}}^{-1}=(-1)^{(n+1) n_{z_{j}}^{-1} \ldots j_{n+1}}
\end{aligned}
$$

with $z_{j_{0} j_{1}}^{\mathrm{n}-1}=z_{\mathrm{j}_{0} j_{1}}^{\mathrm{n}-1}=(\delta \log \phi)_{\mathrm{j}_{0} \mathrm{j}_{1}} \in \mathrm{H}^{0}\left(\mathrm{U}_{\mathrm{j}_{0} \mathrm{j}_{1}}{ }^{\prime \mu}!^{\mathbb{Z}(1)}\right)$

$$
\begin{aligned}
z_{j_{0} \cdots j_{k}}^{n-k} & =\delta\left(z_{j_{0} \cdots \cdot j_{k-1}}^{n-k+1} \log _{j_{k-1}} x_{k-1}\right) \\
& \epsilon H^{0}\left(U_{j_{0}} \ldots j_{k}{ }^{\prime \mu}!\underline{Z}(k)\right)
\end{aligned}
$$

Therefore one has

$$
x^{n}-y^{n}=0
$$

and for $1 \leqslant k \leqslant n$:
$\left(x^{n-k}-y^{n-k}\right)_{i_{0} \ldots i_{k}}=(-1)^{n-k}\left(z_{i_{0}}^{n-k} \ldots i_{k} g_{i_{0}} \ldots i_{k}-z_{i_{0} \ldots i_{k}}^{n-k} \log _{i_{k}} x_{k}\right.$
).
$\frac{d x_{k+1}}{X_{k+1}} \leadsto \ldots \wedge \frac{d x_{n}}{X_{n}}$
and

$$
x^{-1}-y^{-1}=(-1)^{(n+1) n}\left(z^{-1}-z^{-1}\right)
$$

2.3 Define

$$
\begin{aligned}
N_{i_{0} i_{1}}^{n-1}= & z_{i_{0} i_{1}}^{n-1} g_{i_{0} i_{1}}-z_{i_{0} i_{1}}^{n-1} \log _{i_{1}} x_{1} \\
= & z_{i_{0} i_{1}}^{n-1}\left(g_{i_{0} i_{1}}-\log _{i_{1}} x_{1}\right) \in H^{0}\left(U_{i_{0} i_{1}} \mu_{!} \mathbb{Z}(2)\right) \\
& \left(\delta N^{n-1}\right)=z^{n-2}-z^{n-2} .
\end{aligned}
$$

Define

$$
\begin{aligned}
r_{i_{0} i_{1}}^{n-2} & =(-1){ }^{n} N_{i_{0} i_{1}}^{n-1} \log _{i_{1}} x_{2} \frac{d x_{3}}{x_{3}} \wedge \ldots \wedge \frac{d x_{n}}{x_{n}} \\
& \in H^{0}\left(U_{i_{0} i_{1}}, \Omega_{U}^{n-2}\left(\log Y_{U}\right)\left(-Y_{U}\right)\right) .
\end{aligned}
$$

One has

$$
x^{n-1}-y^{n-1}-d r^{n-2}=0
$$

Define by induction $1 \leq \ell \leq k:$

$$
N_{i_{0}}^{n-\ell} \ldots i_{\ell} \in H^{0}\left(U_{i_{0}} \ldots i_{\ell}, \mu, Z(\ell+1)\right)
$$

with $\delta N^{n-l}=z^{n-l-1}-2^{n-l-1}$

$$
\begin{aligned}
r_{i_{0}}^{n-\ell-1} i_{l} & =(-1)^{\ell n_{N_{i_{0}}^{n}}^{n-\ell}} i_{\ell} \log _{i_{\ell}} x_{\ell+1} \frac{d x_{\ell+2}}{x_{\ell+2}} \wedge \ldots \wedge \frac{d x_{n}}{x_{n}} \\
& \in H^{0}\left(U_{i_{0}} \ldots i_{\ell}, \Omega_{U}^{n-(\ell+1)}\left(\log Y_{U}\right)\left(-Y_{U}\right)\right)
\end{aligned}
$$

such that

$$
x^{n-\ell}-y^{n-\ell}-\left((-1)^{n} \delta r^{n-\ell}+d r^{n-(\ell+1)}\right)=0 \quad \ell<k .
$$

Define

$$
\begin{aligned}
N_{i_{0}}^{n-k} \ldots i_{k} & =z_{i_{0} \ldots i_{k}}^{n-k} g_{i_{0}} \ldots i_{k}-z_{i_{0}}^{n-k} \ldots i_{k} \log _{i_{k}} x_{k} \\
& -\delta\left(N_{i_{0}}^{n-k+1} i_{k-1} \log _{i_{k-1}} x_{k}\right)_{i_{0}} \ldots i_{k} .
\end{aligned}
$$

One has

$$
\delta N^{n-k}=z^{n-k-1}-z^{n-k-1}
$$

and

$$
\begin{aligned}
N_{i_{0}}^{n-k} \ldots i_{k} & =z_{i_{0}}^{n-k} \ldots i_{k}\left(g_{i_{0}} \ldots i_{k}-\log _{i_{k}} x_{k}\right) \\
& -(-1)^{k-1} N_{i_{0}}^{n-k+1} i_{k-1}\left(\delta \log x_{k}\right)_{i_{k-1}} i_{k}
\end{aligned}
$$

$$
\in H^{0}\left(\mathrm{U}_{\mathrm{i}_{0}} \ldots \mathrm{i}_{\mathrm{k}}^{\prime, \mu}!^{\mathbb{Z}(\mathrm{k}+1))}\right.
$$

Define

$$
\begin{aligned}
r_{i_{0}}^{n-k-1} i_{k} & =(-1){ }^{k n_{N}}{ }_{i_{0}}^{n-k} \ldots i_{k} \log _{i_{k}} x_{k+1} \frac{d x_{k+2}}{x_{k+2}} \wedge \ldots \wedge \frac{d x_{n}}{x_{n}} \\
& \epsilon H^{0}\left(U_{i_{0}} \ldots i_{k}, \Omega_{U}^{n-(k+1)}\left(\log y_{U}\right)\left(-Y_{U}\right)\right)
\end{aligned}
$$

then

$$
x^{n-k}-y^{n-k}-\left((-1)^{n} \delta r^{n-k}-d r^{n-k-1}\right)=0
$$

Therefore one has
$x-y-\left((-1)^{\left.n^{\delta}+d\right) r}=0\right.$, and $x-y$ is a coboundary.

Proposition. One has
$\left.x\right|_{U}=y$ in $H_{\mathscr{D}, a n}^{n+1}\left(U, Y_{U} ; \mathbb{Z}(n+1)\right)$ and
$\left.x\right|_{U}=y$ in $H_{\mathscr{D}}^{n+1}\left(U, Y_{U} ; Q(n+1)\right)$.
2.4 Consider the morphisms
rest: $H_{\mathscr{D}}^{n+1}(A, Y ; \mathbb{Q}(n+1)) \rightarrow H_{\mathscr{D}}^{n+1}\left(U, Y_{U} ; \mathbb{Q}(n+1)\right)$
(respectively, if A is analytic
rest $^{\text {an }}: H_{\mathscr{D}, \mathrm{an}}^{\mathrm{n}+1}(\mathrm{~A}, \mathrm{Y} ; \mathbb{Z}(\mathrm{n}+1)) \rightarrow \mathrm{H}_{\mathscr{D}, \mathrm{an}}^{\mathrm{n}+1}\left(\mathrm{U}, \mathrm{Y}_{\mathrm{U}} ; \mathrm{Z}(\mathrm{n}+1)\right)$
and

$$
U: H_{\mathscr{D}}^{1}(A, Y+Z ; \mathbb{Z}(1)) \rightarrow H_{\mathscr{D}}^{n+1}\left(U, Y_{U} ; \mathbb{Q}(n+1)\right)
$$

(respectively, if A is analytic

$$
\mathrm{U}^{\mathrm{an}}: \mathrm{H}_{\mathscr{D}, \mathrm{an}}^{1}(\mathrm{~A}, \mathrm{Y}+\mathbb{Z} ; \mathbb{Z}(1)) \rightarrow \mathrm{H}_{\mathscr{D}}^{\mathrm{n}+1}\left(\mathrm{U}, \mathrm{Y}_{\mathrm{U}} ; \mathbb{Z}(\mathrm{n}+1)\right)
$$

defined by

$$
U \phi=\left\{\left.\phi\right|_{U}, X_{1}, \ldots, x_{n}\right\} .
$$

Then (1.7), (1.8) and (2.3) prove the

Theorem

image UC image rest
(respectively image $U^{\text {an }} C$ image rest ${ }^{a n}$).

2.5 Remarks

-i- The universal situation

Consider

$$
\mathrm{B}:=\mathrm{A}_{\mathbb{C}}^{\mathrm{n}+1}-(\Psi=0), \quad \Psi=1-\mathrm{Y}_{0} \ldots \mathrm{Y}_{\mathrm{n}}
$$

where Y_{i} are the coordinates. Then one has [N], (2.1):
$H_{\mathscr{D}}^{n+1}\left(B,\left(Y_{0}=0\right) ; \mathbb{Z}(n+1)\right) \xrightarrow{\text { rest }} H_{\mathscr{D}}^{n+1}\left(B-{\underset{U}{U}}_{n}^{1}\left(Y_{i}=0\right),\left(Y_{0}=0\right) ; \mathbb{Z}(n+1)\right)$
is an isomorphism. Take A as in (1.1). Then
$(1-\phi) / X_{1} \ldots X_{n} \in H^{0}(A, O(-Y))$. Define $X_{0}:=(1-\phi) / X_{1} \ldots X_{n}$. One defines a morphism

$$
\begin{aligned}
\mathrm{h}_{\phi}: & A \rightarrow B \\
& x_{i} \leftrightarrow \mathrm{y}_{\mathrm{i}} \quad 0 \leq i \leq \mathrm{n}
\end{aligned}
$$

with $\quad h_{\phi}^{*} \Psi=\phi$.

Then

$$
\left.h_{\phi}^{*} \text { rest }^{-1}\left\{\left.\Psi\right|_{B-}-{\underset{1}{u}}_{n}^{\left(Y_{i}\right.}=0\right), y_{1}, \ldots, Y_{n}\right\}=x^{\prime}
$$

is in $H_{\mathscr{D}}^{\mathrm{n}+1}(\mathrm{~A}, \mathrm{Y} ; \mathbb{Q}(\mathrm{n}+1))$, of restriction

$$
\begin{aligned}
\text { rest } x^{\prime}= & h_{\phi}^{*}\left\{\left.\Psi\right|_{B}-{\underset{1}{U}}_{n}\left(Y_{i}=0\right), Y_{1}, \ldots, Y_{n}\right\} \\
& =\left\{\left.\phi\right|_{U}, X_{1}, \ldots, x_{n}\right\} .
\end{aligned}
$$

In (1.5), we have given explicite formuli for x as a cech cocycle. This applies for

$$
\left.\operatorname{rest}^{-1}\left\{\left.\Psi\right|_{B}-{\underset{1}{u}}_{n}^{\left(Y_{i}\right.}=0\right), Y_{1}, \ldots, Y_{n}\right\},
$$

and therefore by pull-back for x '. Of course we could have worked directly on B, the universal case.
-ii- If A is only analytic, there is no universal situation. One observes the following: [N], (2.1) and (1.2) imply that
$H^{n}\left(B,\left(Y_{0}=0\right) ; \mathbb{C} / \mathbb{Q}(n+1)\right)$
$=H^{n}\left(B-{\underset{1}{u}}_{\sim}^{n}\left(Y_{i}=0\right),\left(Y_{0}=0\right) ; \mathbb{C} / \mathbb{Q}(n+1)\right)$, and therefore that
$H_{\mathscr{D}, a \mathrm{a}}^{\mathrm{n}+1}\left(\mathrm{~B},\left(\mathrm{Y}_{\mathrm{O}}=0\right) ; \mathbb{Q}(\mathrm{n}+1)\right)$ injects into
 The class x of (1.5) is then uniquely defined by (2.3):
$\left.\left.x\right|_{B-}{\underset{1}{u}}_{n}^{\left(Y_{i}\right.}=0\right)=y$ in
$H_{\mathscr{D}, \mathrm{an}}^{\mathrm{n}+1}\left(\mathrm{~B}-\stackrel{\mathrm{n}}{\mathrm{U}}\left(\mathrm{Y}_{\mathrm{i}}=0\right), \quad\left(Y_{0}=0\right) ; \mathbb{Q}(\mathrm{n}+1)\right)$.
-iii- More generally, whenever $H^{n}(A, Y ; \mathbb{C} / Q(n+1))$ injects into $H^{n}\left(U, Y_{U} ; \mathbb{C} / Q(n+1)\right)$, then rest ${ }^{\text {an }}$ is injective (modulo torsion) via (1.2). Therefore in this case x constructed in (1.5) is uniquely defined by $\left.x\right|_{U}$ via (2.3).
§3 Pull-back of x to x and formula [N], II.2.4
3.1 Let X be a smooth algebraic variety over \mathbb{C} of dimension $\leq n$, equiped with a morphism

$$
h: X \rightarrow A
$$

where now A is the universal situation described in (2.5),i, with coordinates X_{i}, and with $\phi=1-x_{0} \ldots X_{n}$. Define $h^{*} X_{i}=a_{i} \in H^{0}\left(X, O_{X}\right)$ for $i \geq 1$

$$
h^{*} \phi=f \in H_{\mathscr{D}}^{1}(X, S+T ; \mathbb{Z}(1))
$$

where T is defined by

```
t := a m...an and s is a divisor contained in h}\mp@subsup{h}{}{*}Y
```

Define

One has

$$
\begin{aligned}
\mathrm{h}^{*} \text { rest }^{-1}\left\{\left.\phi\right|_{U}, X_{1}, \ldots, x_{n}\right\} & \in H_{\mathscr{G}}^{n+1}(x, s ; \mathbb{Q}(n+1)) \\
& =H^{n}(x, s ; \mathbb{C} / \mathbb{Q}(n+1)) \quad \text { (1.2)iii. }
\end{aligned}
$$

As S is not necessarily a normal crossing divisor, we will explain this more precisely (3.2), (3.3), (3 4), (3.5), (3.6). Then we want to evaluate this class along relative homology classes $[\gamma] \in H_{n}(X, S ; \mathbb{Z})$. (3.4)
3.2 We assume in (3.2), (3.3), (3.4) that X is smooth analytic, T is a divisor defined by $a_{1} \ldots a_{n}=t=0$, $a_{i} \in H^{0}\left(X, O_{X}\right)$, and S is a divisor.

We define subcomplexes $\Omega_{X, S+T}^{*}$ and $\Omega_{X, S}^{*}$ of the holomorphic de Rham complex Ω_{X}^{\cdot} by: for each open set U
$\Omega_{X, S}^{i}(U)=\left\{\omega \in \Omega_{X}^{i}(U),\left.\quad \omega\right|_{S \cap U}=0\right\}, \Omega_{X, S+T}^{i}(U)=\left\{\omega \in \Omega_{X, S}^{i}(U)\right.$, $\left.\omega\right|_{a_{j}=0}=0$ for any $\left.1 \leq j \leq n\right\}$.
The sheaves $\Omega_{X, S}^{i}$ and $\Omega_{X, S+T}^{i}$ are coherent. As $\Omega_{X, S}^{0}=O_{X}(-S)$, one has a natural inclusion

$$
j_{!} \mathbb{C} \xrightarrow{\text { incl }} \Omega_{\mathrm{X}, \mathrm{~S}}^{*}
$$

which defines a map in cohomology

$$
H^{*}(X, S ; \mathbb{C}) \xrightarrow{i n c l} H^{*}\left(X, \Omega_{X, S}^{\bullet}\right)
$$

If S is a divisor with normal crossings, then $\Omega_{X, S}^{*}$ is the complex $\Omega_{X}^{*}(\log S)(-S)$, and incl is a quasi isomorphism. In general we construct a "splitting" of incl.

Lemma. There is a morphism p in $D^{b}(X)$

$$
p: \Omega_{x, s}^{*} \longrightarrow j_{!} \mathbb{C}
$$

such that p o incl is an isomorphism.

Proof. Let $\sigma: \tilde{X} \longrightarrow X$ be an embedded resolution of S. This means $\sigma^{-1} S=\tilde{S}$ is a divisor with normal crossings, σ is proper and $\left.\sigma\right|_{\mathrm{X}-\mathrm{S}}$ is an isomorphism.

Consider

One has $\sigma^{*} \Omega_{X, S}^{i} \subset \Omega \tilde{X}^{i}(\log \tilde{S})(-\tilde{S})$,
and $\sigma^{-1} j_{!} \mathbb{C} \longrightarrow \mathcal{J}_{!} \mathbb{C}$. Therefore one has a diagram in $D^{b}(X)$

$$
\begin{aligned}
& \Omega_{\mathrm{X}, \mathrm{~S}} \xrightarrow{\sigma^{*}} R \sigma_{*} \mathrm{n}_{\mathrm{X}} \dot{\tilde{\mathrm{X}}}(\log \widetilde{\mathrm{~S}})(-\tilde{\mathrm{S}}) \\
& \text { incl } \dagger \quad \left\lvert\, \begin{aligned}
R \sigma_{*} \\
i n c l
\end{aligned}\right. \\
& \mathrm{j}_{!} \mathbb{C} \xrightarrow{\sigma^{-1}} \mathrm{Ro}_{\star}{ }^{\mathrm{J}}!\mathbb{C} .
\end{aligned}
$$

As σ is proper and \mathcal{j} is exact one has
$R \sigma_{*} \tilde{J}_{!}=R \sigma_{!} \mathfrak{Y}_{!}=R(\sigma \circ \mathfrak{J})_{!}=j_{!}$in $D^{b}(X)$, and σ^{-1} is an isomorphism in $D^{b}(X)$. As incl is a quasi isomorphism $R \sigma_{*}$ iñcl is an isomorphism in $D^{b}(X)$.

Define

$$
\mathrm{p}=\left(\sigma^{-1}\right)^{-1} \circ\left(\mathrm{R} \sigma_{*} \mathrm{incl}\right)^{-1} \circ \sigma^{*}
$$

3.3 Define

$$
K^{*}=j, Q(n+1) \longrightarrow \Omega_{x, s}^{*}
$$

and

$$
K^{\prime}=v_{!} \mathbb{Q}(n+1) \longrightarrow \Omega_{X, S+T}^{S n-1} \rightarrow \Omega_{X, S}^{n}
$$

which is a subcomplex of K^{*}. One has:

```
\(j_{!} \mathbb{Q}(n+1) \longrightarrow j_{!} \mathbb{C}\)
    incl
    \({ }^{*}\)
    p
\(j_{!} \mathbb{Q}(n+1) \longrightarrow j_{!} \mathbb{C}\)
```

with: $p \circ$ incl is an isomorphism (3.2).

Corollary, There are morphisms

$$
\begin{aligned}
& H^{\bullet-1}(X, S ; \mathbb{C} / \mathbb{Q}(n+1)) \xrightarrow{\text { incl }} H^{\bullet}\left(X, K^{\bullet}\right) \\
& \prod_{\mathrm{p}}
\end{aligned}
$$

with: p o incl is an isomorphism.
3.4 Let \bar{z} be a cohomology class in

$$
\frac{H^{0}\left(X, \Omega_{X, S}^{n}\right)}{H^{n-1}\left(X, v!^{Q}(n+1) \rightarrow \Omega_{X, S+T}^{S n-1}\right)} \subset H^{n+1}\left(X, K^{\prime}\right)
$$

of representative $\omega \in H^{0}\left(X, \Omega_{X, S}^{n}\right)$.
Its image z in $H^{n+1}\left(X, K^{*}\right)$ lies in

$$
\frac{H^{0}\left(X, \Omega_{X, S}^{n}\right)}{H^{n-1}\left(X, j, \mathbb{Q}(n+1) \rightarrow \Omega_{X, S}^{S n-1}\right)} \subset H^{n+1}\left(x, K^{*}\right)
$$

and is of representative ω. Then for any n-chain γ with ar $C S$ representing the homology class $[\gamma] \in H_{n}(X, S ; \mathbb{Z})$ one has $\langle\gamma], \mathrm{pz}\rangle=\int_{\gamma} \omega$ modulo $\mathbb{Q}(\mathrm{n}+1)$.

3.5 Remark

If X is affine, then one has $H^{n+1}(X, j!\mathbb{Q}(n+1))=0$ by [BBD], 6.2.1. On the other hand, the sheaves $\Omega_{X, S}^{i}$ being coherent, they don't here higher cohomology. This implies

$$
H^{n+1}\left(X, K^{\prime}\right)=\frac{H^{0}\left(X, \Omega_{X, S}^{n}\right)}{H^{n-1}(X, S ; \mathbb{Q}(n+1))+d H^{0}\left(X, \Omega_{X, S+T}^{S n-1}\right)}
$$

and

$$
H^{n+1}\left(X, K^{\cdot}\right)=\frac{H^{0}\left(X, \Omega_{X, S}^{n}\right)}{H^{n-1}(X, S ; Q(n+1))+d H^{0}\left(X, \Omega_{X, S}^{S n-1}\right)} .
$$

As $H^{0}\left(X, \Omega_{X, S+T}^{n-1}\right)$ injects in $H^{0}\left(X, \Omega_{X, S}^{n-1}\right)$ the map $H^{n+1}\left(X, K^{\prime}\right) \longrightarrow H^{n+1}\left(X, K^{\bullet}\right)$ is surjective. One is then always in the situation of (3.4).
3.6 We go back to the situation (3.1). One has morphisms

$$
\begin{aligned}
& h^{*} \Omega_{A}^{i}(\log (Y+Z))(-Y-Z) \longrightarrow \Omega_{X, S+T}^{i} \\
& h^{*} \Omega_{A}^{i}(\log Y)(-Y) \longrightarrow \Omega_{X, S}^{i} \\
& h^{-1} \lambda_{!} \mathbb{Q}(n+1) \longrightarrow v_{!} \mathbb{Q}(n+1) \\
& h^{-1} i_{!} Q(n+1) \longrightarrow j_{!} \mathbb{Q}(n+1) .
\end{aligned}
$$

Therefore one has morphisms in $D^{b}(A)$:

$$
\begin{aligned}
& \lambda_{1} \mathbb{Q}(\mathrm{n}+1) \longrightarrow \Omega_{\mathrm{A}}^{\leq n-1}(\log (Y+Z))(-Y-Z) \rightarrow \Omega_{A}^{n}(\log Y)(-Y) \\
& \quad \mathrm{h}^{*} \\
& R h_{\star} K^{\prime}
\end{aligned}
$$

and

$$
\begin{aligned}
& i_{!} \mathbb{Q}(n+1) \longrightarrow \Omega_{A}^{S n}(\log Y)(-Y) \\
& \quad R h_{\star} K^{\cdot} .
\end{aligned}
$$

This proves the

Lemma. One has commutative diagrams

$$
\begin{aligned}
& H_{\mathscr{D}}^{n+1}(A, Y ; \mathbb{Q}(n+1)) \longrightarrow H^{n}(X, S ; \mathbb{C} / \mathbb{Q}(n+1)) \\
& \text { 1.2.i } \\
& \dagger \mathrm{p} \\
& \underset{H_{\mathscr{D}}, a n}{\mathrm{n}+1}(A, Y ; Q(\mathrm{n}+1)) \xrightarrow[\mathrm{h}^{*}]{\mathrm{H}^{\mathrm{n}+1}\left(\mathrm{X}, \mathrm{~K}^{*}\right)} \\
& H^{n+1}\left(A, \lambda!Q(n+1) \rightarrow \Omega_{A}^{S n-1}(\log (Y+Z))(-Y-Z) \rightarrow \Omega_{A}^{n}(\log Y)(-Y)\right)
\end{aligned}
$$

3.7 Consider the open cover $h^{-1} A_{j}$ of x (1.4). Then $h^{*} \bar{x}$ is represented by the cocycle

$$
\begin{aligned}
& h^{*} \bar{x}=\left(h^{-1} x^{-1}, h^{*} x^{0}, \ldots, h^{*} x^{n}\right) \quad \text { in } \\
& \left(\mathscr{C}^{n+1}\left(h^{-1} A_{i}, K^{\cdot}\right),(-1)^{n+1} \delta+d\right)
\end{aligned}
$$

with
$h^{-1} x^{-1}={(-1)^{(n+1)} n_{z}^{-1}}^{(n)}$

$h^{*} x^{n}=\log _{i} f \frac{d a_{1}}{a_{1}} \ldots \ldots \wedge \frac{d a_{n}}{a_{n}}$ with $\quad \log _{i} f=h^{*} \log _{i} \phi$.

Define for simplicity

$$
G_{i_{0}} \ldots i_{k}=h^{*} g_{i_{0}} \ldots i_{k} \in H^{0}\left(h^{-1} A_{i_{0}} \ldots i_{k}, 0_{X}(-S-T)\right)
$$

3.8 Let X_{j} be a refinement of $h^{-1} A_{j}$ such that another determination $\quad \ell n_{j} f$ of $\log _{i} f$ on X_{j} exists with

$$
\ln _{j} f \in H^{0}\left(X_{j}, t 0_{X}(-S)\right)
$$

Observe that this implies
if $X_{j} \cap(S \cup T) \neq \phi$, then

$$
\begin{aligned}
& \ell n_{j} f=\log _{j} f, \text { and therefore }\left(\ell n_{i_{1}} f-\ell n_{i_{0}} f\right) \\
& \in H^{0}\left(X_{i_{0} i_{1}}, v_{!} \mathbb{Z}(1)\right) .
\end{aligned}
$$

Define the element

$$
\begin{aligned}
& u=\left(u^{-1}, u^{0}, \ldots u^{n}\right) \quad \text { in } \\
& \left(\varphi^{n+1}\left(X_{j}, K^{\prime}\right),(-1)^{n+1} \delta+d\right) \quad \text { by: }
\end{aligned}
$$

$u^{-1}=(-1)^{(n+1) \cdot n} z^{-1}$
$u^{n-k}=(-1)^{k n_{z}}{ }_{i_{0}}^{n-k} \ldots i_{k}{ }^{G_{i}} i_{0} \ldots i_{k} \frac{d a_{k+1}}{a_{k+1}} \ldots \ldots \frac{d a_{n}}{a_{n}}$
$1 \leq k S n$
$u^{n}=\ln _{i} f \frac{d a_{1}}{a_{1}} \ldots \ldots \frac{d a_{n}}{a_{n}}$
with $\mathrm{z}_{\mathrm{i}_{0} \mathrm{i}_{1}}^{\mathrm{n}-1}=(\delta \ln \mathrm{f})_{\mathrm{i}_{0} \mathrm{i}_{1}}$

$$
z_{i_{0}}^{n-k} \ldots i_{k}=\delta\left(z_{i_{0}}^{n-k+1} i_{k-1}{ }^{i_{0}} \ldots i_{k-1}\right)_{i_{0}} \ldots i_{k}
$$

As in (1.5), the condition
$\left(\ln _{i_{1}} f-\ln {i_{0}}^{f}\right) \in H^{0}\left(X_{i_{0} i_{1}}, v!^{\mathbb{Z}}(1)\right)$ implies that
$z_{i_{0}}^{n-k} \ldots i_{k} \in H^{0}\left(X_{i_{0}} \ldots i_{k}, v l^{Z}(k)\right)$ and that u is a lech
cocycle, defining a cohomology class u in $H^{n+1}\left(X, K^{\prime}\right)$

Proposition One has

$$
\mathrm{h}^{*} \overline{\mathrm{x}}=\mathrm{u} \text { in } \mathrm{H}^{\mathrm{n}+1}\left(\mathrm{X}, \mathrm{~K}^{\prime^{\circ}}\right)
$$

proof. Choose a refinement x_{j} of x_{j} such that if $X_{i_{0}} \ldots i_{k} \cap(S U T)=\phi$, then $\log _{i_{0}} \ldots i_{k} a_{k+1}$ is single valued on $x_{i_{0}} \ldots i_{k}$, that is in $H^{0}\left(X_{i_{0}} \ldots i_{k},{ }^{0}{ }_{x}\right)$.

Define

$$
\begin{array}{cl}
h_{i_{0}} \ldots i_{k}=\log _{i_{0}} \ldots i_{k} a_{k+1} & \text { if } x_{i_{0} \ldots i_{k} \cap(S U T)=\phi} \\
& \text { if } x_{i_{0} \ldots i_{k}} \cap(S U T) \neq \phi .
\end{array}
$$

In this refinement X_{j} one has
$h^{*} x^{n}-u^{n}=\left(\log _{i} f-\ln n_{i} f\right) \frac{d a_{1}}{a_{1}} \wedge \ldots \wedge \frac{d a_{n}}{a_{n}}$. Define
$N_{i}^{n}=\left(\log _{i} f-\ell n_{i} f\right) \in H^{0}\left(X_{i}, v \mathbb{Z}^{Z}(1)\right)$.
one has $\left(\delta N^{n}\right)_{i_{0} i_{1}}=z_{i_{0} i_{1}}^{n-1}-z_{i_{0} i_{1}}^{n-1}$.

Define

$$
r_{i}^{n-1}=N_{i}^{n_{1}} h_{i} \frac{d a_{2}}{a_{2}} \wedge \ldots \wedge \frac{d a_{n}}{a_{n}} \in H^{0}\left(X_{i}, \Omega_{X, S+T}^{n-1}\right)
$$

One has

$$
h^{*} x^{n}-u^{n}=d r_{i}^{n-1}
$$

Define by induction for $1 \leq \ell<k$

$$
\begin{aligned}
& N_{i_{0}}^{n-Q} \ldots i_{Q}=\left(z_{i_{0}}^{n-Q} \ldots i_{Q}^{-Z_{i}^{n-Q}} i_{0} \cdots i_{Q}\right) G_{i_{0}} \ldots i_{Q} \\
& -\delta\left(N_{i_{0}}^{n-\ell+1} \ldots i_{\ell-1}{ }^{h_{i}} \ldots i_{\ell-1}\right)_{i_{0}} \ldots i_{\ell} \\
& \in H^{0}\left(X_{i_{0}} \ldots i_{Q}, v, \mathbb{Z}(\Omega+1)\right)
\end{aligned}
$$

with $\left(\delta N^{n-\ell}\right)=z^{n-\ell-1}-z^{n-\ell-1}$
and $r_{i_{0} \ldots i_{\ell}}^{n-Q-1}=(-1)^{\ell n} N_{i_{0}}^{n-\ell} \ldots i_{Q} h_{i_{0}} \ldots i_{Q} \frac{d a_{Q+2}}{a_{Q+2}} \ldots \sum_{n}^{a_{n}}$

$$
\in H^{0}\left(X 1_{0} \ldots i_{Q}, \Omega_{X, S+T}^{n-(Q+1)}\right)
$$

with
$\left(h^{*} x^{n-Q}-u^{n-Q}\right)-\left[(-1)^{n} \delta r^{n-1}+d r^{n-(\ell+1)}\right]=0$.

Define
$N_{i_{0}}^{n-k} \cdots i_{k}=\left(z_{i_{0}}^{n-k} \ldots i_{k}-z_{i_{0}}^{n-k} i_{k}\right) G_{i_{0}} \ldots i_{k}$
$-\delta\left(N_{i_{0}}^{n-k+1} i_{k-1} h_{i_{0}} \ldots i_{k-1}\right)_{i_{0}} \ldots i_{k}$

One has

$$
\delta N^{n-k}=z^{n-k-1}-z^{n-k-1}
$$

If $X_{i_{0}} \ldots \hat{i}_{\ell} \ldots i_{k} \cap(S U T) \neq \phi$ for all $\ell \in\{0, \ldots, k\}$, then $N_{i_{0}}^{n-k} i_{k}=0$. Especially if $X_{i_{0}} \ldots i_{k} \cap$ (SUP) $\neq \phi$. Otherwise $x_{i_{1}} \ldots i_{k} \cap($ SOT $)=\phi($ say $)$. Then
$N_{i_{0}}^{n-k} \ldots i_{k}=\left(z_{i_{0}}^{n-k} \ldots i_{k}-z_{i_{0}}^{n-k} \ldots i_{k}\right)\left(G_{i_{0}} \ldots i_{k}-h_{i_{1}} \ldots i_{k}\right)$

$$
-\sum_{\ell=1}^{k}(-1)^{\ell} N_{i_{0}}^{n-k+1} \ldots \hat{i}_{\ell} \ldots i_{k}\left(h_{i_{0}} \ldots \hat{i}_{\ell} \ldots i_{k}-h_{i_{1}} \ldots i_{k}\right)
$$

If $\left(z^{n-k}-z^{n-k}\right)_{i_{0}} \ldots i_{k} \neq 0$, then $X_{i_{0}} \ldots i_{k} n(S U T)=\phi$, and $\left(G_{i_{0}} \ldots i_{k}-h_{i_{1}} \ldots i_{k}\right) \in \mathbb{Z}(1)$.

If $N_{i_{0}}^{n-\ldots \hat{i}_{\ell} \ldots i_{k}} \neq 0$, then $x_{i_{0}} \ldots \hat{i}_{\ell} \ldots i_{k} \cap(S U T)=\phi$, and $\left.\left(h_{i_{0}} \ldots \hat{i}_{l} \ldots i_{k}-h_{i_{1}} \ldots i_{k}\right) \in \mathbb{Z}(1)\right)$. Therefore
$N_{i_{0}}^{n-k} \ldots i_{k} \in H^{0}\left(X_{i_{0}} \ldots i_{k}^{\prime v}!^{\mathbb{Z}}(k+1)\right)$.

Define

$$
r_{i_{0} \ldots i_{k}}^{n-k-1}=(-1){ }^{k n} N_{i_{0}}^{n-k} \ldots i_{k} h_{i_{0}} \ldots i_{k} \frac{d a_{k+2}}{a_{k+2}} \not \ldots \wedge \frac{d a_{n}}{a_{n}} .
$$

One has

$$
\left(h^{*} x^{n-k}-u^{n-k}\right)-\left[(-1)^{n} \delta r^{n-k}+d r^{n-k-1}\right]=0
$$

Therefore $\left(h^{*} \bar{x}-u\right)-\left[(-1)^{n} \delta+d\right] r=0$, and $\left(h^{*} \bar{x}-u\right)$ is a coboundary in $\mathscr{C}^{\bullet}\left(\mathrm{K}^{\circ}\right)$.
3.9. Let γ be an n-chain with support $\gamma \subset \mathscr{1}$, open analytic, $\partial \gamma C S$, of homology class $[\gamma] \in H_{n}(X, S ; \mathbb{Z})$ such that:
there is a determination $\ell n f$ of $\log f$ on ${ }^{2}$ with

$$
\operatorname{lnf} \in H^{0}\left(q, t 0_{x}(-S)\right)
$$

By 3.8, one has

$$
h^{\star} \bar{x}=\text { class of } \omega=\operatorname{lnf} \frac{d a_{1}}{a_{1}} \not \ldots \wedge \frac{d a_{n}}{a_{n}}
$$

in $H^{n+1}\left(9, K^{\circ}\right)$.
By (3.4), one obtains

Theorem (see [B], 7.0.2 and [N], II, (2.4)):

$$
\left.<[\gamma], \mathrm{ph}^{\star} x\right\rangle=\int_{\gamma} \operatorname{lnf} \frac{d a_{1}}{a_{1}} \ldots \ldots \frac{d a_{n}}{a_{n}} \text { modulo } \mathbb{Q}(n+1) .
$$

3.10 Remark The condition X affine of [N], II, (2.4) does not appear in (3.9). This is just because the assumption on the existence of $\ell \mathrm{nf}$ is sufficient to assure that $\mathrm{ph}^{*} \mathrm{x}$ is represented by a global n-form on \mathbb{q} (via (3.8)).

3.11 Comment

The formula 3.9 depends on the existence of a representative γ of the homology class $[\gamma] \in H_{n}(X, S ; \mathbb{Z})$ along which there is a single valued determination of $\log f$ which vanishes on support $\gamma \cap S$ and support $\gamma \cap\left(a_{i}=0\right)$ for 1 s i 」 n . So it is not valid in general. In §4 we weaken the assumptions on dimension X and on γ in order to write a slightly more general formula in the case $n=1$.

§4 Other formuli on X and relationship with Bloch's regulator map

4.1 Let X be a smooth affine variety over \mathbb{C} equiped with morphisms $h^{\alpha}: X \longrightarrow A, \alpha=1, \ldots, N$, where A is the universal situtation as in (3.1). We define
$\mathrm{h}^{\alpha{ }^{*}}{ }_{\phi}=\mathrm{f}^{\alpha} \in \mathrm{H}_{\mathscr{D}}^{1}\left(\mathrm{X}, \mathrm{S}+\mathrm{T}^{\alpha} ; \mathbb{Z}(1)\right)$
$h^{\alpha *} X_{i}=a_{i}^{\alpha} \in H^{0}\left(X, o_{X}\right)$
where $t^{\alpha}:=a_{1}^{\alpha} \ldots a_{n}^{\alpha}$ defines T^{α} and s is a divisor contained in $\quad{ }_{n}^{N} h^{\alpha-1} Y$. This defines

$$
u:=\sum_{1}^{N} h^{\alpha *} r^{N} \operatorname{rest}^{-1}\left\{\left.\phi\right|_{U}, X_{1}, \ldots, X_{n}\right\} \in H_{\mathscr{D}}^{n+1}(X, s ; \mathbb{Q}(n+1))
$$

Define $j: X-S \longrightarrow X$.

Recall (3.6) that we have defined

$$
h^{\alpha *}:\left(i_{!} Q(n+1) \longrightarrow \Omega_{A}^{S n}(\log Y)(-Y)\right) \longrightarrow R_{*}^{\alpha}\left(j_{!} Q(n+1) \rightarrow \Omega_{X, S}^{S n}\right)
$$

in $D^{b}(A)$.
This defines

$$
\begin{gathered}
\bar{u}:=\sum_{1}^{N} h^{\alpha *} \text { rest }^{-1}\left\{\left.\phi\right|_{U}, X_{1}, \ldots, X_{n}\right\} \text { as a class in } \\
H^{n+1}\left(X, j!\mathbb{Q}(n+1) \rightarrow \Omega_{X, S}^{S n}\right) .
\end{gathered}
$$

Lemma. The natural morphism

$$
\left.H^{n+1}\left(X, K^{\bullet}\right) \rightarrow H^{n+1}\left(X, j_{!} \mathbb{Q}(n+1)\right) \longrightarrow \Omega_{X, S}^{S n}\right)
$$

is injective. The class \bar{u} lies in $H^{n+1}\left(X, K^{*}\right)$ if and only if

$$
\mathrm{d} \bar{u}=\sum_{1}^{N} \frac{d f^{\alpha}}{f^{\alpha}} \wedge \frac{\mathrm{da}_{1}^{\alpha}}{\mathrm{f}_{1}^{\alpha}} \leadsto \ldots \wedge \frac{d a_{n}^{\alpha}}{a_{n}^{\alpha}}=0 .
$$

Proof. The kernel of
$H^{n+1}\left(X, K^{\bullet}\right) \longrightarrow H^{n+1}\left(X, j_{!}^{Q}(n+1) \longrightarrow \Omega_{X, S}^{S n}\right)$
comes from $H^{n+1}\left(X, \Omega \sum_{X, S}^{\sum n+1}[-1]\right)=0$, and $\bar{u} \in H^{n+1}\left(X, K^{\bullet}\right)$ if and only if it maps to 0 under
$\left.d: H^{n+1}\left(X, j_{!} Q(n+1)\right) \rightarrow \Omega_{X, S}^{S n}\right)$
$H^{n+1}\left(X, \Omega_{X, S}^{2 n+1}\right)=H^{0}\left(X, \Omega_{X, S}^{n+1}\right)_{d}$ closed.

One has

$$
\begin{aligned}
d \bar{u} & =\sum_{1}^{N} h^{\alpha *} \frac{d \phi}{\phi} \wedge \frac{d x_{1}}{x_{1}} \wedge \ldots \wedge \frac{d x_{n}}{x_{n}} \\
& =\sum_{1}^{N} \frac{d f^{\alpha}}{f^{\alpha}} \wedge \frac{d a_{1}^{\alpha}}{a_{1}^{\alpha}} \leadsto \ldots \wedge \frac{d a_{n}^{\alpha}}{a_{n}^{\alpha}} .
\end{aligned}
$$

4.2 Corollary There is $\omega \in H^{0}\left(X, \Omega_{X, S}^{n}\right) d$ closed representing u via the composed morphism
$H^{0}\left(X, \Omega_{X, S}^{n}\right) d$ closed $\longrightarrow H^{n+1}\left(X, K^{\bullet}\right)$
p (3.2)
$H^{n}(X, S ; \mathbb{C} / \mathbb{Q}(n+1))$
(1.2)
$H_{\mathscr{D}}^{\mathrm{n}+1}(\mathrm{X}, \mathrm{S} ;(\mathbb{Q}(\mathrm{n}+1))$
if $d u=d \bar{u}=\sum_{1}^{N} \frac{d f^{\alpha}}{f^{\alpha}} \wedge \frac{d a_{1}^{\alpha}}{a_{1}^{\alpha}} \ldots \wedge \frac{d a_{n}^{\alpha}}{a_{n}^{\alpha}}=0$.

Proof. One has the exact sequence

$$
0 \longrightarrow \frac{H^{n}\left(X, \Omega_{X, S}^{\bullet}\right)}{H^{n}(X, S ; Q(n+1))} \longrightarrow H^{n+1}\left(X, K^{\bullet}\right)
$$

$$
\mathrm{d}
$$

$$
\begin{aligned}
& H^{n+1}(X, S ; Q(n+1)) \cap H^{0}\left(X, \Omega_{X, S}^{n+1}\right) d \text { closed } \\
& \quad \downarrow
\end{aligned}
$$

Therefore $\bar{u} \in \frac{H^{n}\left(X, \Omega_{X, S}\right)}{H^{n}(X, S ; Q(n+1)}$.
As X is affine, one has

$$
H^{n}\left(X, \Omega_{X, S}^{\cdot}\right)=H^{0}\left(X, \Omega_{X, S}^{n}\right)_{d} \text { closed } / d^{0}\left(X, \Omega_{X, S}^{n-1}\right) .
$$

4.3 Let γ be an n-chain on X with $\partial_{\gamma} C S$, of homology class $[\gamma] \in H_{n}(X, S ; \mathbb{Z})$. One has

$$
\langle[\gamma], u\rangle=\int_{\gamma} \omega \text { modulo } \mathbb{Q}(n+1) .
$$

4.4 We assume now $n=1$ in (4.4) and (4.5). Given [γ] as in 4.3, then is a representative γ of $[\gamma]$ as a chain as in [N], II, 2.4:
$\gamma=\gamma_{0}+\sum \gamma_{i}$ with $\partial \gamma_{0}=\phi, \quad \partial \gamma_{i} \neq \phi \subset S$ for $i \geq 1$. We i) 1
first compute $<\left[\gamma_{0}\right]$, $u>$.

Proposition. Let $p_{0} \in$ support γ_{0} be a point such that $\log f^{\alpha}$ is single valued along $\gamma_{0}-p_{0}$, and vanishes along $t^{\alpha}=0$ and s, for $\alpha=1, \ldots, N$.

1) Assume $p_{0} \notin{\underset{1}{U}}_{N}^{N}$. Then if $p_{0} \notin s$ or if p_{0} is an isolated point of $s \cap$ support γ_{0}, one has
$\left.<\left[\gamma_{0}\right], u\right\rangle=\int_{\gamma_{0}} \sum_{\alpha} \log { }^{\alpha} \frac{d a_{1}^{\alpha}}{a_{1}^{\alpha}}-\sum_{\alpha} \log a_{1}^{\alpha}\left(p_{0}\right) \int_{\gamma_{0}} \frac{d f^{\alpha}}{f^{\alpha}}$ modulo $Q(2)$.
2) If $p_{0} \in S$ is not isolated in $s \cap$ support γ_{0}, or if $p_{0} \in \stackrel{N}{N_{1}} \mathrm{~T}^{\alpha}$ is not isolated in ${\underset{1}{N}}_{\underset{1}{N}} T^{\alpha} \cap$ support γ_{0}, one has

$$
\left\langle\left[\gamma_{0}\right], u\right\rangle=\int_{\gamma_{0}} \sum_{\alpha} \log f_{f}^{\alpha} \frac{\mathrm{da}_{1}^{\alpha}}{\mathrm{a}_{1}^{\alpha}} \text { modulo } \mathbb{Q}(2) .
$$

3) If $\log f^{\alpha}$ is single valued along γ_{0} and vanishes along $t^{\alpha}=0$ and s for $\alpha=1, \ldots, N$, one has

$$
\left\langle\left[\gamma_{0}\right], u\right\rangle=\int_{\gamma_{0}} \sum_{\alpha} \log f^{\alpha} \frac{d a_{1}^{\alpha}}{a_{1}^{\alpha}} \text { modulo } Q(2) .
$$

proof. In 1) and 2), there are an open set q containing γ_{0}, I a segment in $q /$ with $p_{0}=I \cap$ support γ_{0}, and a determination $\ell n_{1} f^{\alpha}$ on $q_{1}=q-I$ with $\ell_{1} f^{\alpha} \in H^{0}\left(q_{1}, t^{\alpha} O_{X}(-S)\right)$. For any $\epsilon>0$, define an open set $थ_{0 \in}$ containing p_{0} such that:
(*) is fulfilled in case 1)
(**) is fulfilled in case 2)
with
(*) $\log a_{1}^{\alpha}$ is single valued along $u_{0 \epsilon} \cap$ support γ_{0} and verifies
$x, y \in \mathcal{q u p}_{0 \epsilon} \operatorname{nip}_{\text {support }} \gamma_{0}\left|\log a_{1}^{\alpha}(x)-\log a_{1}^{\alpha}(y)\right|<\epsilon$
(**) ${ }^{q_{0 \varepsilon}} \cap$ support $\gamma_{0} \subset S$ or ${ }_{1}^{N} T^{\alpha}$
(As support $\gamma_{0} \cap \mathrm{~S}$ (or support $\gamma_{0} \cap \begin{gathered}N \\ n_{1}^{N} \\ T^{\alpha}\end{gathered}$) is compact, the condition 2) says that a subsegment of γ_{0} centered at p_{0} is contained in S (or in ${\underset{1}{n}}_{\substack{N \\ T^{\alpha}}}$). Therefore one may realize (**)).

Let $\psi_{\epsilon}=q_{1} U q_{0 \epsilon}$. Take a common refinement of the covers q. $_{1} \cup \|_{0 \epsilon}$ and $\psi_{\epsilon} \cap h^{\alpha-1} A_{i}$ of ψ_{ϵ}. By (3.8), $\left.\bar{u}\right|_{\psi_{\epsilon}}$ is represented by the cech cocycle in this cover
$\left(u^{-1}, u^{0}, u^{-1}\right) \in \mathscr{C}^{2}\left(\psi_{\epsilon}, j^{\mathbb{Q}}(2)\right) \times \mathscr{C}^{1}\left(\psi_{\epsilon}, 0 X_{X}(-S)\right) \times \mathscr{C}^{0}\left(\psi_{\epsilon}, \Omega_{X, S}^{1}, d\right.$ closed $)$
with

$$
u^{-1}=\sum_{\alpha} z_{i_{0} i_{1} i_{2}}^{\alpha}, u^{0}=-\sum_{\alpha} z_{i_{0} i_{1}}^{\alpha} G_{i_{0} i_{1}}^{\alpha}, u^{1}=\sum_{\alpha} \ln _{i} f^{\alpha} \frac{d a_{1}^{\alpha}}{a_{1}^{\alpha}}
$$

with

$$
\begin{gathered}
G_{i_{0} i_{1}}^{\alpha}=h^{\alpha *} g_{i_{0} i_{1}}, z_{i_{0} i_{1}}^{\alpha}=\left(\delta \ln f^{\alpha}\right)_{i_{0} i_{1}}, \\
z_{i_{0} i_{1} i_{2}}^{\alpha}=\delta\left(z_{i_{0} i_{1}}^{\alpha} G_{i_{0} i_{1}}^{\alpha}\right)_{i_{0} i_{1} i_{2}} .
\end{gathered}
$$

By (4.2) there is a refinement $\left({ }^{(}{ }_{i}\right) \quad i=0, \ldots, \ell$ of the open cover, there are

$$
\omega \in H^{0}\left(X, \Omega_{X, s^{1}}^{1}\right)_{d} \text { closed }, s \in \mathscr{C}^{1}\left(\gamma_{i}, j!Q(2)\right)
$$

and $r \in \varphi^{0}\left({ }_{i}, 0_{X}(-S)\right)$ with

$$
\mathrm{u}^{-1}=-\delta \mathrm{s}, \mathrm{u}^{0}=-\delta r+s, \quad \mathrm{u}^{1}=\omega+\mathrm{dr}
$$

Following the orientation of γ_{0}, take an order ${ }^{\boldsymbol{y}}{ }_{i}$ with
$p_{0} \in \boldsymbol{Y}_{0}-\underset{i \geq 1}{ }{ }^{\boldsymbol{U}}{ }_{i}$
$p_{1} \in \boldsymbol{\psi}_{0} \cap \boldsymbol{\gamma}_{1} \cap \gamma_{0}$
$p_{\ell} \in \mathcal{V}_{\ell-1} \cap \boldsymbol{\gamma}_{\ell} \cap \gamma_{0}$
$p_{\ell+1} \in \boldsymbol{\psi}_{\ell} \cap \boldsymbol{\gamma}_{0} \cap \gamma_{0}$

One has
$\int_{\gamma_{0}}{ }^{\omega}=\mathrm{F}-\mathrm{R}_{\epsilon}$ with
$F=\int_{p_{l+1}}^{p_{1}} \sum_{\alpha} \ell n_{0} f^{\alpha} \frac{d a_{1}^{\alpha}}{a_{1}^{\alpha}}+\int_{p_{1}}^{p_{l+1}} \sum_{\alpha} \ell n_{1} f^{\alpha} \frac{d a_{1}^{\alpha}}{a_{1}^{\alpha}}$

$$
\begin{aligned}
R_{\epsilon}= & \int_{p_{Q+1}}^{p_{1}} d r_{0}+\int_{p_{1}}^{p_{2}} d r_{1}+\ldots+\int_{p_{\ell}}^{p_{Q+1}} d r_{\ell} \\
= & \left.r_{0}\right|_{p_{Q+1}} ^{p_{1}}+\left.r_{1}\right|_{p_{1}} ^{p_{2}}+\ldots+\left.r_{\ell}\right|_{p_{Q}} ^{p_{Q+1}} \text { (Stokes) } \\
= & \sum_{\alpha}\left[Z_{10}^{\alpha} G_{10}^{\alpha}\left(p_{1}\right)+z_{21}^{\alpha} G_{21}^{\alpha}\left(p_{2}\right)+\ldots+z_{\ell, \ell-1}^{\alpha} G_{Q, \ell-1}^{\alpha}\left(p_{Q}\right)\right. \\
& \left.+z_{0 Q}^{\alpha} G_{0 Q}^{\alpha}\left(p_{Q+1}\right)\right] \text { modulo } Q(2) .
\end{aligned}
$$

One has

$$
z_{21}^{\alpha}=\ldots=z_{\ell, \ell-1}^{\alpha}=0
$$

In 1), $G_{10}^{\alpha}\left(P_{1}\right)$ and $G_{0 Q}^{\alpha}\left(P_{Q+1}\right)$ are two determinations of $\log a_{1}^{\alpha}$ by (1.4), γ. Therefore one has

$$
R_{\epsilon}=\sum_{\alpha} z_{10}^{\alpha} \log a_{1}^{\alpha}\left(p_{1}\right)+z_{0 \ell}^{\alpha} \log a_{1}^{\alpha}\left(p_{Q+1}\right) \text { modulo } Q(2)
$$

As z_{10}^{α} and $z_{0 Q}^{\alpha}$ donot depend on ϵ, one has

$$
\begin{aligned}
& \left|\sum_{\alpha} z_{10}^{\alpha}\left(\log a_{1}^{\alpha}\left(p_{1}\right)-\log a_{1}^{\alpha}\left(p_{0}\right)\right)+z_{0 \ell}^{\alpha}\left(\log a_{1}^{\alpha}\left(p_{\ell+1}\right)-\log a_{1}^{\alpha}\left(p_{0}\right)\right)\right| \\
& \quad \leq \text { constant. } \in \text { by }(*)
\end{aligned}
$$

Therefore R_{ϵ} tends to

$$
\mathrm{R}=\sum_{\alpha}\left(\mathrm{z}_{10}^{\alpha}+\mathrm{z}_{0 \mathrm{Q}}^{\alpha}\right) \log \mathrm{a}_{1}^{\alpha}\left(\mathrm{p}_{0}\right)=\sum_{\alpha} \log \mathrm{a}_{1}^{\alpha}\left(\mathrm{p}_{0}\right) \int_{\gamma_{0}} \frac{\mathrm{df}}{f^{\alpha}}
$$

as ϵ tends to zero.

In 2), R_{ϵ} does not depend on ϵ, and
$G_{10}^{\alpha}\left(p_{1}\right)=G_{0 \ell}^{\alpha}\left(p_{\ell+1}\right)=0$ by (**) and (1.4) γ. This proves the cases 1) and 2).

In case 3), consider an open set q containing γ_{0} such that a determination $\operatorname{lnf} f^{\alpha}$ of $\log f^{\alpha}$ exists and is single valued on थ with

$$
\ln f^{\alpha} \in H^{0}\left(थ, t^{\alpha} O_{X}(-S)\right) .
$$

Then take a common refinement of $q \cap h^{\alpha-1} A_{i}$, , and a refinement $\quad\left({ }^{(}{ }_{i}\right)_{i=0, \ldots, \ell}$ of it with ω, s, r as before, and p_{i} as before.

One as

$$
\int_{\gamma_{0}} \omega=\mathrm{F}-\mathrm{R}
$$

with

$$
F=\int_{\gamma} \sum_{\alpha} \operatorname{lnf} f^{\alpha} \frac{d a_{1}^{\alpha}}{a_{1}^{a}}
$$

$$
R=\sum_{\alpha}\left[Z_{10}^{\alpha} G_{10}^{\alpha}\left(p_{0}\right)+\ldots+Z_{0 Q}^{\alpha} G_{0 Q}^{\alpha}\left(p_{Q+1}\right)\right] \text { modulo } Q(2)
$$

As $Z_{j, j-1}^{\alpha}=z_{0 Q}^{\alpha}=0$, one obtains 3).
4.5 Take γ_{1} with $\partial \gamma_{1} \neq \phi \subset S$. Let $p_{0} \in$ support $\gamma_{1} \cap S$. If for all $\alpha=1, \ldots, N$ there is a single valued determination of $\log f^{\alpha}$ along $\gamma_{1}-p_{0}$ which vanishes along $t^{\alpha}=0$ and s, then $\log f^{\alpha}$ is single valued along γ_{1} as well.

Proposition. Let $p_{0} \in$ support $\gamma_{1}-S$ be a point such that $\log f^{\alpha}$ is simple valued along $\gamma_{1}-p_{0}$, and vanishes along $t^{\alpha}=0$ and s for $\alpha=1, \ldots, N$.

$$
\begin{array}{r}
\left\langle\left[\gamma_{1}\right], u\right\rangle=\int_{\gamma_{1}} \sum_{\alpha} \log f^{\alpha} \frac{\mathrm{da}_{1}^{\alpha}}{a_{1}^{\alpha}}-\sum_{\alpha} \log a_{1}^{\alpha}\left(p_{0}\right) \int_{\gamma_{1}} \frac{d f^{\alpha}}{f^{\alpha}} \\
\text { modulo } Q(2)
\end{array}
$$

 then one has

$$
\left\langle\left[\gamma_{1}\right], u\right\rangle=\int_{\gamma_{1}} \sum_{\alpha} \log f^{\alpha} \frac{d a_{1}^{\alpha}}{a_{1}^{\alpha}} \text { modulo } \mathbb{Q}(2)
$$

3) If $\log f^{\alpha}$ is single valued along γ_{1} and vanishes along $t^{\alpha}=0$ and s for $\alpha=1, \ldots, N$ then one has

$$
\left\langle\left[\gamma_{1}\right], u\right\rangle=\int_{\gamma_{1}} \sum_{\alpha} \log f^{\alpha} \frac{d a_{1}^{\alpha}}{a_{1}^{\alpha}} \text { modulo } Q(2) .
$$

Proof. For $1,2,3$ define $\left({ }_{i}\right)_{i=0, \ldots, l}$ as in the proof of (4.4), 1 and (4.4),2. Write

$$
\partial \gamma_{1}=\left\{s_{0}, \ldots, s_{k}\right\} \subset s .
$$

One has to take
$p_{0} \in \boldsymbol{\psi}_{0}-\underset{i \geq 1}{u} \boldsymbol{\psi}_{i}$
$p_{1} \in \boldsymbol{\psi}_{0} \cap \psi_{1} \cap \gamma_{1}$
$p_{l_{1}} \in \mathcal{V}_{1}-1{ }^{n} \mathcal{Y}_{1} \cap \gamma_{1}$
$s_{1} \in \forall_{Q_{1}}$
$s_{2} \in \mathcal{U}_{\ell_{1}+1}$
$p_{l_{1}+2} \in \forall_{Q_{1}+1} \cap \psi_{l_{1}+2} \cap \gamma_{1}$

$$
p_{l_{1}+3} \in \psi_{l_{1}+2} \cap \gamma_{l_{1}+3} \cap \gamma_{1}
$$

$$
\begin{aligned}
& \mathrm{p}_{\ell_{1}+\ell_{2}} \in{\ell_{1}+\ell_{2}-1}^{\cap \gamma_{\ell_{2}} \cap \gamma_{1}} \\
& s_{3} \in \ell_{2}
\end{aligned}
$$

$$
p_{l} \in \gamma_{l-1} \cap \psi_{l} \cap \gamma_{1}
$$

$$
p_{\ell+1} \in \gamma_{\ell} \cap \psi_{0} \cap \gamma_{1} .
$$

Note that the corresponding R is defined by

$$
\begin{aligned}
\mathrm{R} & =\int_{\mathrm{p}_{\ell+1}}^{\mathrm{p}_{1}} d r_{0}+\int_{p_{1}}^{\mathrm{p}_{2}} d r_{1}+\ldots+\int_{p_{\ell}}^{s_{1}} d r_{\ell_{1}} \\
& +\int_{s_{2}}^{p_{\ell_{1}}+2} d r_{l_{1}+1}+\int_{p_{\ell_{1}+2}}^{p_{\ell_{1}}+3} d r_{\ell_{1}+2}+\ldots+\int_{p_{\ell}}^{p_{\ell+1}} d r_{\ell}
\end{aligned}
$$

As $r \in \mathscr{C}^{1}\left(O_{X}(-S)\right)$, one has

$$
\begin{aligned}
& R=\left(r_{0}-r_{1}\right)\left(p_{1}\right)+\left(r_{1}-r_{2}\right)\left(p_{2}\right)+\ldots+\left(r_{\ell}-1-r_{\ell}\right)\left(p_{\ell_{1}}\right) \\
& +\left(r_{\ell_{1}+1}-r_{\ell_{1}+2}\right)\left(p_{\ell_{1}+2}\right)+\ldots+\left(r_{\ell}-r_{0}\right)\left(p_{\ell+1}\right) .
\end{aligned}
$$

One concludes in (4.4).
4.6 Let now X be a smooth affine variety over \mathbb{C}. Let $f_{0}^{\alpha}, \ldots, f_{n}^{\alpha}$ be global invertible algebraic function on x, for $\alpha=1, \ldots, N$. We consider the cup product
$u=\sum_{1}^{N}\left\{f_{0}^{\alpha}, \ldots, f_{\mathfrak{n}}^{\alpha}\right\} \in H_{\mathscr{D}}^{n+1}(X, Q(n+1))$. Assuming
$d u=\sum_{1}^{N} \frac{d f_{0}^{\alpha}}{f_{0}^{\alpha}} \ldots \ldots \frac{d f_{n}^{\alpha}}{f_{n}^{\alpha}}=0$, we have ((1.2), i, with $\left.Y=\phi\right):$
$u \in H^{n}(X, \mathbb{C} / \mathbb{Q}(n+1))$.

Now, X being affine, we have as in (4.2):

$$
H^{n}(X, \mathbb{C} / Q(n+1))=\frac{H^{0}\left(X, \Omega_{X}^{n}\right)}{H^{n}(X, Q(n+1))+d^{0}\left(X, Q_{X}^{n-1}\right)}
$$

and if $\omega \in H^{0}\left(X, \Omega_{X}^{n}\right)$ dosed represents u, one has: for any $[\gamma] \in H_{n}(X, \mathbb{Z})$ of representative γ :

$$
\langle[\gamma], u\rangle=\int_{\gamma} \omega \text { modulo } \mathbb{Q}(n+1) .
$$

4.7 Take $n=1$, and X no longer affine. As explained by R. Hain in his talk at the Max-Planck-Institut, fall 1987, one has Bloch's regular map

$$
\mathrm{r}: \mathrm{K}_{2}(\mathrm{X})_{\mathbb{Q}} \longrightarrow \mathrm{H}_{\mathscr{D}}^{2}(\mathrm{X}, \mathbb{Q}(2))
$$

This is defined as follows. Let $x=T_{1}^{N}\left\{f_{0}^{\alpha}, f_{1}^{\alpha}\right\}$ be in $K_{2}(\mathbb{C}(X))$. Let U be a affine subset of X such that $f_{i}^{\alpha} \in O(U)^{*}$. Then the any product

$$
\begin{aligned}
\sum_{1}^{N} f_{0}^{\alpha} \cup f_{1}^{\alpha} \text { lies in } H_{\mathscr{D}}^{2}(U, Q(2)) \subset & \begin{array}{l}
\text { lim } \\
\\
\\
\\
\\
\text { Variski } \\
\text { Open in }
\end{array} \quad \mathrm{X}
\end{aligned}
$$

The existence of the dilogarithm function tells us that

$$
\sum_{1}^{N} f_{0}^{\alpha} \cup f_{1}^{\alpha} \in \underset{\substack{\mathrm{V} \text { Zariski } \\ \text { open in }}}{ } H_{\mathscr{T}}^{2}(V, Q(2))
$$

does not depend on the decomposition choosen of x as symbols $\left\{f_{0}^{\alpha}, f_{1}^{\alpha}\right\}$. The existence of a Gersten-Quillen resolution for $H_{\mathscr{D}}^{2}(2)_{\mathbb{Q}}$ tells us that if $x \in K_{2}(X) \subset K_{2}(\mathbb{C}(x))$, then $r(x):=\sum_{1}^{N} f_{0}^{\alpha} U f_{1}^{\alpha}$ lies in $H_{\mathscr{D}}^{2}(X, Q(2)) \subset{\underset{V}{i n}}_{\lim }^{H_{\mathscr{D}}^{2}}(V, \mathbb{Q}(2))$.

Assume $\mathrm{dr}(\mathrm{x})=0$.

Proposition. Let $[\gamma] \in H_{1}(U, \mathbb{Z})$, of representative γ. Let $p_{0} \in$ support γ such that $\log f_{0}^{\alpha}$ is single valued along $\gamma-p_{0}$. Then
$<[\gamma], r(x)\rangle=\int_{\gamma} \sum_{\alpha} \log f_{0}^{\alpha} \frac{d f_{1}^{\alpha}}{f_{1}^{\alpha}}$

$$
-\sum_{\alpha} \log f_{1}^{\alpha}\left(p_{0}\right) \int_{\gamma} \frac{d f_{0}^{\alpha}}{f_{0}^{\alpha}} \text { modulo } Q(2) .
$$

If X is a curve, this is true modulo $\mathbb{Z}(2)$.

The proof is word by word the same as in (4.4)1), where one replaces $G_{i_{0} i_{1}}^{\alpha}$ by $\log _{i_{1}} f_{1}^{\alpha}$. If X is a curve, then $H_{\mathscr{D}}^{2}(\mathrm{U}, \mathbb{Z}(2))=H^{1}(\mathrm{U}, \mathbb{C}) / \mathrm{H}^{1}(\mathrm{U}, \mathbb{Z}(2))$ $=H^{1}(\mathbb{U}, \mathbb{C} / \mathbb{Z}(2))$.

REFERENCES

[BBD] A. BEILINSON, J. BERNSTEIN, P. DELIGNE: Faisceaux pervers, Astérisque no 100.
[B] A. BEILINSON: Higher regulators and values of L functions, Sovremenie Problemi Mathematici 24 , Moscow, Viniti (1984), Translation in J. Soviet Math 30, 2036-2060 (1985).

The two following artiles appeared in "Beilinson conjectures", Perspectives in Mathematics, Academic Press; editors: M. Rapoport, N. Schappacher, P. Schneider, (1988).
[EV] H. ESNAULT, E. VIEHWEG: Deligne-Beilinson cohomology.
[N] J. NEUKIR :CH: The Beilinson conjecture for algebraic number fields.

[^0]: ${ }^{1}$ supported by Heisenberg Program; Max-Planck-Institut für Mathematik Gottfried-Claren-Str. 26 D-5300 Bonn 3, Fed.Rep. of Germany

