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ONE GROUP-THEORETIC PROPERTY

OF THE RAMIFICATION FILTRATION

VICTOR A. ABRASHKIN

ABSTRACT. Let r(p) be the Galois group of a maximal p-extension of a complete
discrete valuation field with perfeet residue field of characteristic p > O. If Va > -1
and r(p)(tl o) is the ramification subgroup of r(p) in upper numbering, we prove that
any closed but not open finitely generated subgroup of the quotient r(p )jr(p)( tlo) is
a free pro-p-group. In partictIlar, this quotient does not have non-trivial torsion and
non-trivially commuting elements.

1. The statement of the main theorem.
Let !{ be a complete discrete valuatian field with perfeet residue field k of ehar

acteristic p > O. Chaose a separable closure !(sep of K and denote by K(p) the
maximal p-extension of K in !(sep.

If r = Gal(!{sep/!() and {r(v)}v>o is the ramification filtration of r in upper
numbering, cf. [Se, Ch.III], we have tlle induced filtration {r(p)( v)} 11>0 of the group
r(p) = Gal(I((p)/ j(). We note that for -1 < v ~ 1, r(p)(v) = !(p) is the inertia
subgroup of r(p), i.e. j((p )I(p) is the 11laximal unramified extension !{(p)ur of ](
in K(p).

Consider areal number Vo > -1 and a closed subgroup H of r(p) such that
H ~ r(p)(vo). If jj = H/r(p)(vo), then H is a closed subgroup of f(p)/f(p)(vo).

We use the notation d(ii) = rkz/pz (ii /iiP[ii, iil) for the minilnal number of

topological generators of the pra-p-group H.
If -1 < Vo ~ 1, then f(p)/f(p)(v o) is a free pro-p-group, because it coincides

with 0e Galois group of the lnaximal p-extension of the residue field k. So, in this
case H is a free pro-p-group.

Suppose that Vo > 1 and ii is an open subgroup in f(p)/f(p)(vo). Then H is an
open subgroup in f(p), ](H := j((p)H is a finite extension of j{, H = f KH (p) is the
Galois group of the maximal p-extension K (p) of !(H, and f (p )(Vo) = f K H (p) (Va 1I )

with VOH = 7/J KH / K( vo), where 1/JKu / J( is the inverse to the Herbrandt '8 function

of the extension !(H / K. So, in this case the study of the group ii is equivalent
to the study of the group f(p) /f(p)( va). This group is very far from to be a free
pro-p-group: if k is finite then the number of its relations is infinite, cf. [Go] (but
it has finitely many generators).

In this paper we consider almost the opposite situation. The main result can be
stated as follows.

The aut.hor expresses his deep gratitude for the hospitality to the Arbeitsgruppe "Algebraische
Geometrie und Zahlentheorie" (Max-Planck-Gesellschaft, Berlin), where this paper was written.

Typeset by AMS- 'I)yX



Theorenl. H VD > -1 and H is a c10sed but not open subgroup of the pro-p-group
f(p )jf(p)(VO), then His a free pro-p-group.

vVe have noted already that for VD ~ 1 this theorem holds because in this case
the group f(p)jf(p)(vo) is itself a free pro-p-group. So, in the proof of the above
theorem (cf. nn. 2 and 3 below) we can assume that VD > 1.

Corollary 1. a) If VD > -1 al)d k is inB.nite, then aJlY finitely generated c10sed
pro-p-subgroup jj of f(p )jf(p)(vo) is a free pro-p-group.
b) Any nnitely generated c10sed pro-p-subgroup of I(p)jf(p)(vo), where VD > 1, is
a free pro-p-group.

Proof. The part a) follows frorn the above theorem, because here any open subgroup
of f(p)jf(p)(vo) has infinitely many generators and therefore, H is not open. The
part b) is a special case of the part a), where K is replaced by the p-adic completion- -If,I(P )ur of its maxünal unrarnified p-extension, because the residue field of ]((p)ur
is infini te.

I
Cörollary 2. Tbe grollp f(p)jf(p)(vo) does not have non-trivial torsion and nOD-

trivially corrmluting elelnents.

Proof. We can assunle that Vo > 1. Then for any open subgroup ii C f(p)jf(p)(vo)

~e have d( ii) 2 2. Therefore, if ii is closed in f (p )/f(p)(vo) and d(H) = 1, then
H is pro-p-free. Clearly, this is equivalent to the absence of non-trivial torsion.

The existence of non-trivially cormnuting elements is equivalent to the existence
of a closed comrnutative subgroup H C f(p)jf(p)(vo) such that d(H) = 2. Dur the
orern irnplies that His an open subgroup, so we can assume that ii = f(p)jf(p)(vo),
where VD is still > 1 (cf. proposition 1 c) of n. 3.1.1 below). Then d(H) = 2 if and
only if k ~ IFp aI1d VD :s; 2. Consider the set HP = {hP I h E H}. Then HP is

a commutative subgroup of ii (because ii is commutative), (H : HP) = pZ and
d(HP) = 2 (because ii has no torsion). Therefore, HP = fK

1
(P)/f K1 (p)(vd, where

1(] is an extension of I{ of degree p2 and v] = 'lj; K
1

/ J«(VD) > 1. It is easy to see
that [k] : Fp ] = p, where k] is the residue field of 1{1. This gives the contradiction

2 = d( HP) 2:: 2p. The corollary is provecl.

The above corollary gives that: a) if r ~ f(p)(vo), then for any n E N, T
pn

~

f(p)(vo); b) if 7),7Z ~ f(p)(vo), but the comnlutator (7],7Z) E f(p)(vo), then for
some a E Zp, we have either T] = T;, or 7Z = Tt. These properties mean that
the ramification filtration does not have any relation to the p-central filtration
of the group f(p). One can find indication to such phenomena in the paper of
E.Mauss [Ma]. In fact our theorem means that the group f(p) jf(p)(Vo) does not
have "sirnple" relations, e.g. there is no relations which can be expressed in terms
of any proper subset of some rninimal set of generators of the group f (p ) j f(p )(Vo) .
In the characteristic p case these relations modulo the subgroup of commutators of
order ~ p were described in terms of generators of the group f(p) in the papers
[Abl-3].

Let I = U f(v) be the higher ra~ficationsubgroup in f. The following analogue
v>D

of the main theorenl holds for the rarnification filtration of the Galois group f.
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Corollary 3. Ifva > 0 and agroup HelIr(vo) is a finitely generated pro-p-group,

tben ii is pro-p-free (in particular, Ilf(vo) does not bave torsion and non-trivial
commu ting elements).

Proof. Let I{tr be the luaximal tamely ramified extension of K in Keep. Then
K tr = limKo, where {!(o 10' E A} is the set of all finite tamely ramified Galois

~

oEA
extension of !( in K sep . We shall provide the above notation with a lower index 0',

if the notation is related to the field K o . Clearly, the family of groups {Io(p) I 0' E
A} is a projective system induced by the projective systelu of the Galois groups
f 0, 0' E A, and

I = lim Io(p).
f--
oE.A

Using simplest functorial properties of the ramification filtration it is easy to see that
~e have a natural projective system {ro(p)(envo) 10' E A}, where ea = e(!<aIK)
'i~ the relative ramification index of the extension KalK, and we have
~
J r(vo) = limro(p)(eavo).

f-
oEA

Therefore,

If pro is projection of the above projective limit to its component with the index
0', then Ho := pro(H) is a pro-p-free group by the above corollary 1 b). Clearly,

there.--exists 0'0 E A such that d(H) = d(H00) therefore, pr00 IH is an isomorphism,

and H is a pro-p-free group. The corollary is proved.

2. Proof of the theorelTI.
2.1. Let {Ko I 0' E A} be the family of all finite Galois extensions of !( in

]{(p). A is a filtered set (for Q'], 0'2 E A, Q'1 ~ 0'2 means that !(01 ~ ](0"J)' and
r(p) = limr0, where r 0 = Gal(](ol!() for 0' E A.

of--

oEA

Consider the fields tower ]( c I<:! c Kivo
) c !{o, where 0' E A and ](i

vo
) is t,he

subfield of ](o fixed by r(vo). Then H= limHo , where Ho = Gal(Kivo
) I!(!!).

f--

oE.A

If Q' E A, then the natural projection pro: H ----4 Ho is a group epimorphism.
If 0:1,0'2 E A and 0'1 ~ Q'2, then the connecting morphislll

is uniquely defined by the relation prO"J = pr01 0 pr01 0 :;1 •

Consider a free pro-p-group (I with an epimorphic map of pro-p-groups

such that the induced morphism; : 9/9 p [9, 9] ----4 H/HP [ii, H] is an isomorphism.
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Let 9 = lim9p, where {9p}PEß is a projective system of finite p-groups and all
~

PEB
projections prß : 9 -----t 9ß are group epimorphisms.

The morphism of pro-p-groups j can be given by the following data:
(j1) a map 1,: A -----t B such that 1,(0'1) ~ 1,(0'2), where 0'1,0'2 E A and 0'1 ~ 0'2;

(j2) group epimorphisms ja : 9t(0) ~ Hetl where 0' E A;
(j3) if 0'1,0'2 E A and 0'1 ~ 0'2, then the following diagraIll is commutative

9t( at}

pr,(<:q )I(a:;d1
jal

---+) HaI

pr<:qa21
ia2

---+) H
a2

G"If a E A and ß E B is such that ß ~ t(a), define jßa E Hom(9ß' Ha) as the
cgmposition j ß0: = prßt (0') 0 ja' Then the property (j 3) can be st ated in the following

Dform:
,j (j3') if 0'1,0'2 E A and ßl, ßz E B are such that 0'1 2: 0'2, ß1 ~ 1,(0'1), ß2 ~ 1,( CY2)

and ßl 2: ß2, then the following diagram is commutative:

jPt nl ~
--~) HOl

pr 0'10' 21
Jß2D.2 H"""

) 0'2

2.2. Let Al be the subset of A consisting of 0' E A such that

l.e. the projection prO' induces the isomorphism

Clearly, Al is a cofinal subset in A.
For 0' E Al, consider the fields tower from n.2.1

The following lemma will be proved in n.3 below. We use all notation frorn n.2.1.

The main lemma.
Jf 0' E Al and ß ~ 1,(0'), then there exist E.nite extensions Eßo: of K:.! and Fßa of

E po := Eßo](ivo
) such that

(a) Eßo C j((p)H and tberefore, we have the natural group isomorphism
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(b) Fßo is a Galois extension over E ßo and there exists a group isomorphism gßo
such that the following diagram is commutative

Qß
gßc.

I Gal(Fßo / Eßo)

i ßc.l 1
Ho

fßc.
) Gal(Epo /Eßo )

= ](/ = Dßo

c

c

c

(here' the right vertical arrow is the natural projection);
(c) Fßo: is contained in the subfield J((p){vo) of J{(p) fixed by the group f(p){vo).

2.3. For a E Al and ß ~ L(U), consider the fields Eßo , E po and Fßa from the
~bove lemma. Denote by Dßo the normal closure of F ßo over J{ (in ]((p)). Then
,there exists I E A such that ]("'( = Dßo, and we have the following commutative

, äiagram in the category of finite extensions of the field J{:

~

Note that F ßo is a Galois extension of Eßo , Eßo C J«(p)H, Fßo C J{(p){vo) and
therefore, we have the natural group homomorphism

such that hßo 0 gß~ 0 jßo = pro:. B:ca::se U E Al and ß 2: L(O'), the minimal

nUlnbers of generators for the groups H, Ho and Qß coincide. Therefore, hßa 0 gß~

is epimorphic, and we obtain that

This gives Fra = E ßa and thus, the fields Fßa and J<!/ are linearly disjoint over
Eßa and we have the group epimorphism

-1

i/pa: H/ -t Gal(Fßo/Epa )~ Qß,

such that pr/o = i/ßa 0 jpo.

2.4. Consider the set

C = {(ß,u) E B x Al I er E AI,ß 2: l,(a)}.

Clearly, C is a filtered set.
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If (ß, a) E C, consider the set

I(ß,a) = {i E HOfficont(H, 9ß) I pro = i 0 Jßa}'

This set is finite (because H is finitely generated) and non-empty (cf. n.2.3). The
property (j3') of n. 2.1 gives that {I(ß, Q)hß1a) EC is a projective system and therefore,
its projective limi t I i= 0.

Take i E I.
For any a E Al, the set

Ba = {ß E B I (ß, a) E C} = {ß E BIß "2. t(a)}

is cofinal in B. Therefore, for any a E Al, the collection

1 {pr(ß''')~) I ß E B,,}

gi;ves a morphism of pro-p-groups i a : H ---7 9 such that pra = i a 0 J 0 pro·
~ The property (j3') gives that ia does not depend on a E Al. So, i = lim io: E

r-
oEA 1

Homcont(H, 9) and satisfies the identity i 0 j = idj].

Clearly, i is injective. But "2 = i mod HP[H, H] =;-1 is an isomorphism. So, i is

surjective and jj is a pro-p-free group (isomorphie to Q).
The theorem is proved.

3. Proof of the main lemma.

As we have noted in n.l we can assume that Vo > 1.

3.1. Preliminarie3.

3.1.1. The largest ramification number3. Let L be a complete diserete valuation
field with perfeet residue field of characteristic p > O. We recall some general facts
froln the lligher ramification theory, cf. [Se, eh.lII].

If E / L is a finite Galois extension, r EI L = Gal(E/ L), and OE is the valuation
ring of the field Ethen for any x > -1, we have the ramification subgroup

rEIL,x = {T E fEIL I vE(Ta-a);?:: x+ 1 Va E OE},

where v E is the valuation of E such that v E(E*) = Z. This gives the ramification
filtration {fEI L!x }x2::0 of the group f EI L in lower numbering. This filtration is a
decreasing left-continuous filtration of normal subgroupsj for -1 < x ::; 0, f EI L!x

is the ramification subgrouPi and for 0 < x ::; 1, r EI L ,x is the higher ramification
subgroup of the group f EIL.

The Herbrandt's function of the extension E / L is defined for all x ;?:: 0 by the
expreSSIon

'PE/L(X) = 1X

(fE/L,O : fE/L,t)-l di.

For -1 < x < 0, 'P EIL ( x) = x by definition. Then 'P EIL ( x) is an increasing
continuous piece-linear functioll, r..p EIL (0) = 0, and for a sufficiently large x, one
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has that ep'(x) = e(EIL)-I, where e(EIL) is the ramification index of the extension
EIL.

Set r~}L = rEIL,x, if x > -1 and v = I.pEIL(X). This gives the ramification
filtration of r EI L in upper numbering. If EI is a Galois extension of Land E C EI
then the natural projection r EI IL ~ r EI L induces for any v 2:: 0 the group epimor-

phism r~;IL ~ r~}L' Taking projective limit with respect to these epimorphisms

we obtain the ramification filtration {r~v)}v~o of the group rL = Gal(LsepIL) in
upper numbering.

The Herbrandt's function satisfies the composition property:
if EIL and EI IL are finite GaloiL~ extensions such that E c EI) then fOT any

x > -1) one has

The definition of the Herbrandt 's function cP EI L can be uniquely extended to
clle case of arbitrary finite separable extensions EIL under the requirement that
the composition property should hold for arbitrary tower of finite extensions L c
E C EI, cf. [De].

Let 7/J EIL be the inverse function for ep EIL' This function is also an increasing
piece-linear function satisfying the composition property:

if LeE c EI is a fields tower of finite extensions) then fOT any x > -1) one
has

'l/JEt/L(X) = 7/JE1 IEC/PE/L(X)),

If EIL is a finite extension such that e(EIL) > 1, then the set of edge points of
the graph of the function cp EIL (x) is not empty and we denote by (x (E IL), v(EIL))
the coordinates of the last edge point. If e(EIL) = 1, we set (x(EIL),v(EIL)) =
(-1, -1). vVe have the following properties.

Proposition 1. Jf LeE c EI js a tower of finite extensions, then:

a) the group r~v), wbere v > -1, acts triviallyon E, if and only jf v > v(EIL);
b) v(E1IL) = max{v(EIL),cpE/L(V(EIIE))};
c) if v 2:: v(EI L), then r}~) = r~E/ L(V)).

The above property a) follows directly from definitions, the property b) follows
froln the composition property. To prove c) let us consicler an arbitrary finite Galois
extension E 2 of L such that E2 :> E. It is sufficient to verify that

For any x ~ 0, the equali ty r E'J IE n r E'J ILI X = r E'J IE, x follows directly from the
definition of the lower numbering of the ranufication filtration. Take x = 7/J E'JI L (v)
then rE'J/L,x C rE'JIE (cf. n. a)) ancl therefore, rE'JIL,x = rE'JIE,x' It remains
only to note that by the cornposition property we have cP E'J / E(x) = 7jJ EIL (v), i. e.

r r (VJE/L(V)) Th ... clE'JI E,x = E'JI E . e proposItIon IS prove .
We note that, if E is contained in the maximal p-extension L(p) of L, then either

v(EIL) 2:: 1, or EIL is an unramified extension. So, if r L(P) = Gal(L(p)1L), then
for -1 < v ~ 1, r L(p)(v) = r L(p)(1) is the ramification subgroup of r L(p).
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Proposition 2. Let E and L] be finite extensions of L in L(p). Then

Proof. Let [E : LJ = pn E and [L] : LJ = pn 1
, where nE, nI E Z>o.

The cases nE = 0 01' n] = 0 can be easily considered, so we can assume that
nE, nI E N. Let VE = v(E/L) and VI = v(L1/ L).

Assume that nE = n] = 1. Clearly, v(LIE/L) = max{vE,vI}'
If VI 2: V E, we have by the proposi tion 1 b) that

therefore, VI 2: <P EIL (v(L1 E / E» and we abtain the formula of our proposition.
!lConsider the case VI < VE. The equality 'PL 1 EIL = 'PLIEIE 0 'PEIL gives that

tlte values of the function rp LI EIL in its edge points equal <P EIL (v(LI E / L» and 7) E·

The equality 'PLI EI L = 'P LI EI LI 0 'P L1 IL gives that the values of this function in its
edge points equal VI and rp L

1
I L (v(L] E / L])). Now the inequality VI < V E implies

that VI = 'PEIL(V(L1 E/E». So, the case nE = nl = 1 is completely considered.
Let nI = 1 and nE > l.
In this case there exists a field E' such that L ~ E' ~ E. By induction we

can assume that our proposition is provecl for the tripies of fiields (E', LI, L) and
(E,E',LIE'). Then

and the case nl = 1 and nE > 1 is considered.
Assurne that n] > 1 and nE is an arbitrary natural number.
Consider the field L z such that L ~ L 2 ~ L]. By induction we can assume that

our proposition is proved for the tripIes (E, L 2 , L) and (E, LI, Lz ). Applying also
the composition property of the Herbrandt's function and the above proposition 1
we obtain that

'P EI L(v(L] E / E» = maxi 'P EI L(v(L2 E / E», 'P L2 EIE(v(L1E / LzE»)} ::;

max{ v(L2 / L), 'P L 2 1L(v(L] / Lz»} = v(L1 / L).

The proposition is proved.

3.1.2. A property 0/ the field 0/ norms functor.
We use basic properties of the field of norms functor, cf. [WtbJ.
Let E be a complete discrete valuation field of characteristic 0 with perfect

residue field k af characteristic p > 0 and absolute ramification index e(E). Choose
an algebraic closure E of E, a unifonnizing element ?T E E, and a sequence {7T'n}n::::a
of elenIents af E such that ?Ta = 7T' and ?T~+] = 7T'n for all n 2: o.

If E n = E(?Tn) for n > 0, and E = lim En , then E is an arithmetically profinite
- -----i'

extension of E. Consider its fielel of narms XE(E) = E. Then E is a conlplete
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discrete valuation field of characteristic p and its residue field cau be canonically
identified with k.

If L is a finite extension of E in E, then L is an arithmetically profinite exten
sion of E and its field of norms XE(L) is a separable finite extension of E. The
correspondenc~L Ho XE(L) induces an equivalence of the category· of algebraic
extensions of E and the category of separable extensions of its field of norms E.
Therefore, we can choose a separable closure of E in the form Esep = XE(E) and
obtain the following identification:

QE := Gal(EsepIE) = Gal(EIE) c rE = Gal(EIE).

The (infinite) extension EIE has the Herbrandt' s funetion

<P EIE = lim (<Pn 0 ... 0 <p] ) ,
u-tco

~
where
~

{

X,
epn(x) =

e*(En ) + (x - e*(Eu))jp,

for 0 ~ x ::; e*(En )

for x 2:: e*(En ),

and e*(En ) = pUe*(E) with e*(E) = pe(E)j(p - 1). The above identification
QE c rEis cOInpatible with ramification filtrations: for any v > -1,

n(V) _ n n r(4'E/E(v))
'::Je - '::JE E .

One can verify that Qer~·(E)) = rE and therefore, the embedding Qe C rE
induces an isomorphism

This gives the following proposition.
,...., ,....,

Proposition. H L is a finite extension of E and L = LE, then tbe correspondence

L Ho Xg(L) := XE(L)

induces an equivalence of tbe category of algebraic extensions LjE such that
v(LjE) < e*(E) and tbe category of separable extensions LIE such tbat v(l.jE) <
e*(E).

Remark. If [L : E] < 00, v(LjE) < e*(E) and [, = XjE(L), then we have the
equality of Herbrandt's functions ep LI E = CP eiE'

3.1.3. An application 01 the A rtin-Schreier theory.
Let [(] be a eomplete diserete valuation field with perfect residue field k] of

charaeteristic p > O. Choose a maximal p-extension K) (p) of K 1 and denote by
F( [(1) the category of separable extensions of the field K 1 in K) (p) (if L], L 2 E

F (K)) anel L) C L 2 , then HOlnF( K t} (L) ,L 2 ) eontains only one element - the
embedding of L) into L 2 ; if L) rt L 2 , then HomF{l(t}(L], L 2 ) = 0).

9



We use the nota.tion e(K) ) for the absolute ramification index of the field K) if
it has characteristic 0 and define e(!()) = 00 if char K) = p. In the both cases we
set e*(I{)) = pe(K) )/(p - 1).

Let v), v~ E IR. be such that 1 ~ v~ < v) ~ e*(1()). Consider the IFp-linear space

V(kl, v~, V)) = ffi (k))a,
aE[v~,v1)P

where [v~, V))p = {n E N I v~ ::; n < v), (n, p) = I}.
Denote by S( k), vi, V)) the category of finite dimensional linear subspaces of

V( kI , v~, VI) (here we have also for any 2 objects Vi and V2 of this category, that
HOmS(k11V~,VI) (V1 , V2 ) = 0 if VI rt V2 , otherwise the set HOmS(k 1 ,V~ lVI) (V) , V2 ) con
sists only of one element - the embedding V1 C V2 ).

Proposition 1. Tl1ere exists a fully faithful functor

"1 :F: S(k I , v;, VI) ---+ F(KI )
...

sach that for any L E S( k1 , v~ , V1) one has
a) T(L) is a finite Galois extension of K) and there exists a natural identiEcation

Gal(F(L)/]{]) = L := Hom(L, IFp );

b) If L # 0, then v~ ::; v(F(L)/!{)) < Vj.

Proof. Consider first the case char 1() = p.
If (j is Frobenius and r](1 (p) = Gal(K) (p)/K]), then one has the na.tural iden

tification of the Artin-Schreier theory K 1/(a - id)K] = Hom(rK 1 (p), IFp ).

Chaose a uniformizer t) af !{] and consider the identification of V(k), v~, v])
with a linear subspace üf K 1 /(C7 - id)!{] induced by the correspondence

{ll'a}aE[v~,vdp I-t ( L Q'at~a)mod(C7 - id)K).
aE[v~ ,VI)p

If L E S(k)1Vi,V]) is an IFp-linear subspace of V(kI,vi,vd, then we set F(L) =
1(1 (p )H(L), where

H(L) = nKer l c r KI (p),
lEL

and elements 1 E L are cünsidered as elements of the group Ham(r K 1 (p), IFp ) by
the use of the above identifications

It is easy to see that the eorrespondence L I-t F(L) determines a functor whieh
satisfies the properties of our proposition. We note that this functor depends only
on the ehüice of a unifonnizer t] in the field K].

If char I{) = 0, we choose a uniformizer 1f0 E K), a sequence 1fn E K] sep :'l

K 1 (p), such that 1f~+) = 1fn for all n E Z);O, and eonstruct the functor XKI

from n.3.1.2. If t] is the uniformizing element of the field Je] = Xi\\ (I<)), which
corresponds to the sequenee {7rn} n);O, ]="' is the above constructed functür für the
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field /Cl and its uniformizer t1 , and ;\:'1\\ is the functor from n.3.1.2, then the functor

:F = :F' 0 XRt
1 satisfies the properties of our proposition. The proposition is proved.

We sha11 apply the above proposition in the following situation.
Suppose that 1 < VI ::; e*(1(1), H1 is a closed subgroup of r K

1
(p) containing the

ramification subgroup rKt(p)(Vt), H 1 = Hl/r~l(p)(vd and d(Hj ) is the minimal
number of topological generators of the group H1 .

Proposition 2. 1f1::; v~ < Vl(~ e*(K1 )) and dimFp V(kl,V~,V]) > d(H]), then
there exists an extension 1(2 of ](j of degree p such tbat ](2 C ]{1 (p)Ht and
v(K2 /]{])?: V~'

Proof. In the notation of the above proposition 1 consider the field EI = ;:(L),
where L E S(kI,V~,Vl) is such that dimFp L > d(H]). Then V~ ::; v(E]/K]) < VI.
SO, ifä f: r K, (p) -; Gal(EI/Kd = L
l~ the natural projection, then r K t (p )(Vt) eKel' f and d(f(H])) ::; d(H1 ). There

fore, f(H l ) is a proper subgroup of Land there exists a subextension ](2 of E{(H t
)

over ](1 such that {K2 : ](1] = p. The proposition is proved.

3.2. The field ](c.1.

As earlier, consider for Q' E AI, the fields tower

Denote by C(H) a positive real number such that for any r > °the interval
(r, r +C(H)) contains at least d(ii) +1 prime to pintegers.

Proposition. Tbere exists a finite extension ](a1 of 1(:: in K(p)H such that

Proof.
3.2.1. Prove first that there exists an infinite fields tower

](!! = K ao 0 C ](aO 1 C ... C ](0:0 n C ...
"-4 J J ,

such that for any n E N, we have [](aO,n : ](ao,n-l] = p and ](aO,n C K(p)H.
Indeed, let no E Z>o and assume that we have constructed slich fields ](0'0 n

for n ~ no. Because 1(0:0,no C K(p)H, we have Herno = Gal(1«(p)/ Kao,no').
Because [!(aO,no : K] < 00 and H is not open subgroup of r(p), we have H =I- r no
and therefore, H no ;= Hr~o [rno, r no] ~ r no' Let E no = ]«(p)Hno . Then E no is
a non-trivial abelian extension of ](0'0 ,n 0 in K (p )H. Clearly, there exists the field
K aO ,no+l such that ]{aO,no C 1(0:0,no+l C E no and []{aO,no+l : Ko:o,no] = p.

3.2.2. We want to prove here that the fields tower ]{aO,n, n ;;::: 0, from n.3.2.1
cau be chosen in such a way that for almost a11 n E N, the field !{aO ,n is tota11y
ramified over ]{aO n-j.

I

11



Denote by K~o n' n ~ 0, the fields tower from n.3.2.1. If this tower does not
satisfy the above ~onclition, then there exists no ~ °such that the residue field
k1 of K~oJno contains more that pd(fi) elements (recall that d(ii) is the minimal

number of topological generators of the pro-p-group ii = H/r(p)(vo)).
For °~ n ~ no set ](aO,n = K~o,n' Let n1 E Z~o be such that nl ~ no and

assume that we have consructed for no < n ~ nl, the fields !{aO,n such that for°< n ~ nl we have [Kao,n : 1(aO,n-l] = p, Kaü,n C K(p)H ancl for no < n ~ nl,
V(!(aO,n/ K ao ,n-l) ~ 1 (i.e. ](oO,n is totally ramifiecl over ](aO,n-l).

Let !{1 = KaO,nIl 1)1 = min {1fJ](1 /]((vo), e*(K1 )} and H1 = Hr~V1), where
r 1 = Gal(!{(p) / ](1). We note that k1 is the residue field of Kl, V1 > 1 and

dimFp V(k1 , I, vJ) ~ dimFp k1 > d(ii) (cf. the notation of n.3.1.3). Because
!(1 C K(p)H and H :) f(p )(vo), we have v(K1 / !() < va and therefore, r(p )(vo) =

(1/JK / K (vo)) ( . . f ) B ~/, () hf 1 t cf. propositIon 1 0 n.3.1.1. ecause 7)1 ~ if/](1 /]( Vo ,we ave
~(i1/JK /ldvo)) (vt} cl 1· h al . h'fi 1 C r 1 an therefore, t lere eX1sts t e natur group eplillorp ISIU

~

This gives d(ii) ~ d( jj1 ). So, we can apply the proposition 2 of n. 3.1.3 to 0 btain the
field extension !{z/ !{1 of relative degree p such that K z C !{(p)Ht and V(1(2/!{l) ~
1. Because H 1 :) H we can take K aO ,nt+1 = K z.

3.2.3. By the above arguments, we can consider the fields tower Koo,n, n ~ 0,
froln n.3.2.1 such that the set {n E Z~o Iv(KaO,n+l/Koü,n) ~ I} is infinite. Clearly,
the properties 1f.; I(,;~ 0, n / F,' ( vo) ~ +00 and e*(K uO, n) ~ +00 for n ~ 00 will imply
the statement of our proposition.

We note first that if v~ := v(!{uO,n+1/!(uO,n) < 1, then 1J~ = -1, i.e. !(oO,n+l is
unramified over J{aO,n. In this case we have 'f/;J(ao,n+tlK = 'f/;Kao,n/ K and
e*(KaO ,n+1) = e*(Koo,n)' If v~ ~ 1, then by the composition property of the
Herbrandt function we have

() {
1fJKc.o,n/K(X),

'l/JKc.o,n+1/ K x = * + (~/, () *)v n P l.f/](aO,n/ K X - v n ,

for 'lj;J(c.o,n/K(x) < v~

for 'l/J]<'"no,n/K(X) ~ v~.

and e*(J{oO,n+1) = pe*(Koo,n).
The property e*(I(uo,n) ~ +00 for n ~ 00, is obvious.
For any n E Z~o by proposition I b) of n.3.1.I, we have

Therefore, v~ < 'l/JKc.o,n/K(vO)' So, if we set 'l/Jn = 1fJKao ,n/K(vO), then

if v~ = -1

if v~ ~ 1.

Note that in the second case we have v~ E N, 7)~ < 'l/Jn and 1fJn+1 > 'l/Jn. Consider
the strictly increasing sequence {1fJ~JmEN of all elements of the set {1fJn I n E Z~o}.

12



This sequence is infinite by the choice of the fields tower !{oO,n, n ;::: 0 (cf. n.3.2.2),
and it is sufficient to prove that 7/J:n --+ +00 if m --+ 00.

For x E IR, set {{x}} = min{x - n I n E Z, n < x}.
For any m E N, we have

where n(m) E Z)O is such that 7/J:n = 7/Jn(m) and 7/J:n+] = 7/Jn(m)+]' Therefore,

for any m E N. So,

7/J:n ~ (p - 1) L {{ 7/J~} } = (p - 1) L {{ pn- ]7/J; }} --+ +00 ,
]~n<m ]~n<m

fI
~hen rn ~ 00. The proposition is proved.

(> 3.3. The fields !(o],n and Ln] ,n, n 2:: O.
3.3.1. Consider the field KaI given by proposition of n.3.2. Let

and let
v; = max {v~, v(!(ivo ) / ](), v(!(o] / !() } .

We note that v~ < Vo and 7/JKnl/K(V~)> G(H).

Proposition. There exists a neids tower

1(0] 0 := K a ] C !(cd ] C ... C JC)'] n C ... ,I , ,

where for a11 n E N it holds
a) [Kal,n : ](ol,n-]] = p and !(ol,n C K(p)H;
b) ifv(n) = V(!{o]ln/J(al,n-I) and An = min{7/JKnl,n_l/J(V~),e*(!{OI,n-l)}'

(n) ( ,......)then V E An - C(H), An .

Proof. We use induction on n. Let no E N and assulne that such fields are COll

structed for 0 ~ n < no. We note that for all 0 < n ~ no, we have An ~ Al > C(H)

and therefore, the interval (An - G(H), An) contains at least d(H) + 1 integers

prime to p.

Set J(] = Ka1,no-] and H I = Hr~Ano), where r] = Gal(!«(p)/K]). If k] is

the residue field of /(1, v2 = An, and vi = [An, - C(H)] + 1, then vi ~ 1 and

dimFp V(kl,V~,Vl) > d(H). As in n.3.2.2 we obtain now that v(](]/!() < Vo,

r(p)(vo) = r~"'KtlK(VO)) C r~Ano) (because A no ~,1f;Knl,nO_lll"'(VO))' we have the
natural group epimorphism

13



and therefore, d( ii) ~ d(ii1 ).

So, the proposition 2 of n.3.1.3 gives the extension 1(21K 1 such that (K2 : /(1] =
p, A no > v(K2 1K 1 ) ~ vi > A no - C(H) and K 2 C K(p)H1 C I((p)H.

Clearly, we can take J(2 = IC:d,no' The proposition is proved.

3.3.2. Consider the fields tower J{o1,n, n ~ 0, from the above proposition. Set

La1 ,n = Kivo
) K a1 ,n for all n E z~o. Because K(p)H and Kivo

) are linearly disjoint
over J<!!, we have for all n ;::: 0 the natural isomorphism

Proposition. H Vois the real number from n.3.3.l, then for a11 n E Z )0, we bave
v(Lcd,nlK) ~ v~.

~1foof. Because
I

ti
v(Lo1 ,nlK) = max {v(Kivo

) IK), v(J(01,nlK)} ,

it is sufficient to prove that v(I<al,nl /() ~ v~.

We can aSSUlne by induction that v(Ka],n-ll/() ~ v; for some n E N. Then

v(J{0] ,niJ<) = max { v( Je:rl ,n-] IK), !.p K n 1 ,n-l / K(V(n») } ,

( (n») ,..
!.pKn1 ,n-tlK V <VO'

The proposition is proved.

3.3.3. In the above notation we have the following proposition.

Proposition. HVn = v(L0:1JnIJ(O:l,n) and en = e(K01,nIK!j), then

lim (vnl en) = o.
n-oo

Proof. By the proposition 2 of n.3.1.1 we have

and by proposition 1 b) of n. 3.1.1 it holds

Therefore, v(L a1 ,niK0: 1,n) ~ 'lj;n := 'lj; Kn1 ,n / g( v~) and it is sufficient to prove that
lilnn_oo('lj;nlen) = O.

Prove first that there exists no E Z)O such that 'lj;no < e'" (J{0: 1, n 0 ).
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If such no does not exist we have for all n E Z~o, that 'l/Jn ~ e*(IC:dln) 
pne*(I(ol 10) and A n+1 = e*(I(ol,n). Therefore,

,,/, _ ~/. . ("I, ) _ (n+l) (,,/, _ (n+l))
tj/n+l - lf/Kcd,n+t/Kcd,n lf/n - V +p tj/n v ,

because 'l/Jn ~ e*(Ko1 In) and v(n+l) < A n+1. Using the inequalities v(n+l) >
An+1 - C(ii) we abtain for any n E Z~o, that

'ljJn+l ~ pn+l 1/;0 - (pn+l - pn)(e*(I\ol 10) - C(H)) _ ... - (p-1)( e*(Ko1 ,n) - C(H)) =

pn+l ('l/Jo+ C(H) (1- p-n-l) - (n + 1)e*(I{aI
I
O)(1 - p-l)) .

This gives the contradictioll, because the right-hand side of the above equality tends
-to -00, if n ----t 00 .

.~. Let no E Z;;,o be such that ,pno < e*(I(,,],no)' Then far any n ;;;, no, we have also
,pn < e*(I{al,n), because for any n, it holds

Prove that for any n ~ no,

(1) 'l/Jn+l - Wn < (p - 1)C(H).

Indeed if "I. ~ v(n+l) then, o/n -...;::: ,

and the inequality (1) holds. If 1/Jn > V (n+ 1), then

The inequality (1) is proved.
Therefore, for any n ~ no, we have

and because en = pn-no eno , this implies obviously that 7/Jn/en ----t 0, if n ----t 00. The
proposition is proved.

3.4. The jields K o2 ,n and L o2 ,nJ n ~ O.
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Proposition 1. Tbere exists a tower oI finite extensions oI tbe neid K!i in K(p)H
oI relative degree p

!{er2 0 C !(a2 1 C . . . C !(a2 n C ...
" ,

such that if for n ~ 0 we set Laz,n = !{az,nKivo) , VaZ,n = v(Laz,n/K), Va,n 

v(LaZ,n/!(a2,n), V(n+I) = v(Ka2 ,n+I/K a2 ,n), and ea2,n = e(KO:Z,n/!(), then

(1)

(2)

\;'

p ( Va n ""'))
V a2,n + (p _ 1)e

a
2,n p ~ 1 + C(H +1 < Va;

Vo,n + (p - l)(C(H) +1) ~ l'
-....;;: ,

eaz,O peaz,o

Proof. Consider the fields tower !(aI,n, n ~ 0, from n.3.3.1. The propositions of
un. 3.3.2 and 3.3.3 imply the existence of a sufficiently large NI E N such that if
!(o:z,o := !(0:1 ,Nt thell the properties (1) and (2) hold for n = O.

We use induction on n 2: O. Assume that the fields K a2 ,n are constructed for all
n ::; N, where N E Z, N 2: O.

Lemma.

(
pvaN""') 1 ( V Cl' N ""' )

CPKQ2 ,NIK P -' 1 + C(H) + 1 + (p _ l)e
a

z,N p ~ 1 + C(H) + 1 < Vo·

Proof. Let x = Inax{x(Ka2 ,N/!(),VCl',N}, then CPKo'l,NIK(X) = Va2,N, cf. propOSI
tion 1 b) of n.3.1.1.

If pVu,N /(p - 1) + C(H) +1 :s; x, then

'P KOl '1., N I J( (PV o ,N / (p - 1) +C(H) +1) ::; 'P Ka '1., N I K (x) = V aZ ,N .

If pVa,N /(p - 1) + C(H) + 1 > x, then

~ (PVn,N + C(H""') + 1) = _( ) + pVa,N /(p - 1) + C(H) + 1 - X
'PKa 2 NIl\. 1 'PKa2 NIl<. X, P - ' ea 2,N

(we use that if x > x(Kaz N/K), then <p~( IL'(X) = e~~ N), a'l,N n ,

1 (va N ""' ):s; Vaz,N +-- --'- + C(H) + 1
ea 2,N p - 1

(this follows froln the inequality X ~ Va,N).

In the both cases the inequality of our lemma is implied now by the property (1)
for n = N.
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The lemma is proved.

Set KaZ,N = ](1, r l = Gal(K(p)/K I ) and VI = pVa,N /(p - 1) + C(H) + 1.
We note that the property (2) for n = N gives that VI ~ e*([(az,o) ~ e*(KaZ,N)'

Because by the property (1) it holds v(]<I/K) = VaZ,N < Vo, we can apply the
proposition 1 c) of n. 3.1.1 and the inequality 'PK1/K(VI) < Vo (cf. the above
lemma) to obtain

f(p)(vo) = r~tPKI/K(VO» C r~vd.

Therefore, if H I = Hr~VI), then we have the natural group epimorphisln

ii = H/f(p)(tlo)~ H/H n r~Vl) = Hl/f~vd := ii1,

and therefore, d(H]) ~ d(H).
Now we can apply the proposition 2 of n.3.1.3 with the above chosen K], V1,

~H] and v~ = PVa,N /(p - 1) + 1 to obtain the extension [(z of degree P over [(1

~uch that 1(2 C K(p)H I C ]«(p)H and v([{Z/](l) ~ pVa,N/(p -1) + 1. If we set
K z = K aZ ,N+l, then the property (3) is satisfied for n = N.

-t By the proposition 2 of n.3.1.1 we have the inequality VO',N+l ~ 7.jJK
J
/K1 (Va,N).

But 7jJ K z / K 1 (Va,N) = Va,N, becausc VO',N < pV O', N /(p - 1) + 1 ~ v(I{z/K]). There
fore, Va,N+l ~ Va,N and the property (2) holds for n = N + 1.

Because v(Kz/](t} = v{N+l) ~ pVO',N /(p-1)+ 1 ~ 1, we have eO'Z,N+l = pe O''1.,N.

By the above construction of the field ](a2,N+l and the property 1 b) of n.3.1.1,
we have

VaZ,N+l = lnax{VaZ,N, 'P K ~2,N / K (v{N+l»)}.

Therefore, the property (1) for n = N +1 follows from the inequality of the above
lemma.

The proposition is proved.

We use the above construction to obtain the following proposition.

Proposition 2. For any 0' E Al, there exists a commutative diagram in the cate
gory of finite extensions of the fieid I{.'

](H
a

n
} ...{VO)

\.0'

c

c

K a2 °,
n

Lo:z 0
1

c

c

c

c

](a2,n
n

L a2 n,

c

c
such that for any n E Z~o it hoids.'

a) ]{aZ,n C ]{(p)H, Laz,n = Kivo )](a2,n and the natural map

Gal(Laz,n/]{aZ,n)~ iia = Gal(]{ivo
) /]<:!)

is an isomorpbism;
b) [](aZ,n+l : K a2 ,n] = p and v{n+l) := v(I(az,n+l/Ko2,n) > pVO',n/(P - 1), wllere
va,n = v(Laz,n/ ](a2,n);
c) v(La2,n/Ka2,0) < e*(](o:2,0);
d) v(n+l) ~ v{N-) for some N* E N, and 'PK~2,N._tlK(v(N·») < va.

Proof. Consider the fields tower K a2 ,n, n ~ 0, from the above proposition 1. Ob
viously, the statements a) and b) hold for this tower.
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For any n E N, we have

Applying the proposition 1 b) of n.3.1.1 we 0 btain that

v(Kaz,n / Kaz,o) :s; max {v(m) I 1 :s; rn ~ n} < e*(I(oz,o).

Because v(La2 ,o/](oz,o) = va,O < pvo,o/(p-1)+C(H)+1 < e*(](aZ,O) and L02 ,n =
Laz oIeoZ n wo obtain the statement c).

:Becau~e al1 v(n) belong to N and are less than peoz,O / (p-l), the set {v(n) jn E N}
has the maximal element v(N-), where N* E N. By the proposition 1 b) of n.3.1.1
we have also

The proposition is proved.

3.5. In this section we prove an auxiliary proposition in the case char]( = p.
As earlier, ]( C ](l C L) is a tower of finite extensions in K(p) and v) 

v(L) / K 1 ) 2 1. Cansider an extension K z of degree p aver K) in K(p) such that
v* = v(Kz / ](1) > pv] /(p - 1).

Obviously, I(z alld L] are linearly disjaint over K l . Therefore, if L z = LI ](z

then [L z : K:~d = [L 1 : K]]. In fact, we have the following more strang statement:

Proposition. Witll the above notation and assumptions there exist field isornor
phisrfls f : 1(] --t ](2 and 9 : LI --t L z such tbat glK1 = f·

Proof. If E is one of the fields K 1 , ](z, L], L z , denote by 0 E its valuation ring.

Lemma 1. There exist uniformizing elements t) in K] and t2 in K z such that

Proo/ 0/ lemma. If kl is the residue field of ](1 and t is its unifonniser, then K] 
k] ((t)). By the Artin-Sehreier theory, K z = K] (T), where TP - T = a E K] and
a = at-v· + (higher terms), 0:' E kr

Set 0:'1 = a-1(a-1 ) (where ais Frobenius) and alT = Tl, then

where c E kJ[[t]] is a principal unit.
Clearly, there exists a uniformizer to of K l such that t-v· c = töv-. Now the

relation (*) implies that Tl = f:;v· , where tz is a uniformizer of K z , and ean be
rewri t ten in the following form
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where ß E k1 is such that ßV· = 1. This gives i~ == t 1 mael t~+V·(P-l), where
t 1 = ßio is a unifarmizer of ](l. The lemma is proved.

Let
P = P(X) = X r + L aixr- i E 0/(1 {X]

1 :S;i~r

be the characteristic polynolnial of some generator of the valuation ring 0 L 1 of the
field LI over the valuation ring 0 K 1 of the field K I .

The proof of the following statement cau be found in [De].

Lemma 2. If y E ](sep is such that V/(1 (P(y)) > 1 + vI, tllcn there exists {} E ]{sep
such that P(B) = °and V/(l (y - B) > VI<1 (y - B'), where {}' E ](sep, ()' =f:. {}, and
P(B') = O.

Remark. If T E Gal(]{sep/[{d er and Ty = y, then T{} = B. Therefore, B E [\I(Y)'
.~~ We use uniformizing elements t 1 and t z from the lemma 1 for identifications
K I = kI ((iI)) and [\2 = k1((tz)) and define the isomorphism f : [(I -----? K z by the

...
following conditions: f(tl) = tz and flk 1 = 0--

1 , where a is Frobenius.
4- Consider the extension L2 of ]<2 in K(p) generated by some root {}z of the

polynomial

f*P = X r + L f(ai)X r
-

i E OK.[X].
I~i~r

If ()z is a root of f*P in K(p), then

P(B~) = P(()~) - 0- ((f*P) (()z)) = L (ai(tl) - ai(i~)) B~(r-i)
l~i~r

anel by lemma 1

VKt (P({}~)) ~ ~(p +v*(p - 1)) > 1 + VI·
P

Now lemma 2,_._gives the e;:istence of e E ]<1 (()~) C L2 such that P(B) = O.

Therefore, LI C L 2 , LI K z = L z and,_._the correspondence e1-+ B2 gives the extension
of f to the isomorphism 9 : LI ---+ L z = L z.

The proposition is proved.

3.6. The fields K on and L OnJ n ~ O.
Assurne first that char]( = O.
In this case one cao......apply considerations of n.3.3 to construct for the field ]\oz,o

its infinite extension K o2 ,o in K sep , consider the complete discrete valuation field

K oo = XK ., o(K02 0) of characteristic p, and the equivalence Xo := XK- of the
"'., , "'. 0

category of algebraic extensions L/Ko2 ,o such that v(L/K o2 ,o) < e*(Ko'z,o) and
the category of separable extensions L/Ka2 ,0 such that v(L/Kao ) < e*(]<oz,o).

If XO(Ka2 ,n) = K an and Xo(L a2 ,n) = Lan for n 2: 0, then we obtain the following
commutative diagram of complete discrete valuation fields of characteristic p and
their embeddings:

c K an C
n

CLan C
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such that for any n 2: 0, L on = LaoKan . Note that the functor Xo induces the
identifications

Gal(Lan / Kun ) = Gal(L(j'z,n/!(aZ,n).

Because the equivalence Xo is compatible with ramification filtrations we have
also for n 2 1, that

v (Jea,n/ K a ,n- d = v(n) > pVa1n-1 / (p - 1) 1

where Va,n-l = v('ca,n-l /JCa,n-l)'
If the case char!( = p we have the same result by setting K an = K oz ,7l and

La7l = LOZ,7l for a11 n 2: 0.
With the above notation we obtain from the above proposition of n.3.5 the

following proposition.

Proposition. For n 2: 0 there exist field isomorphisms in : K ao ~ JC an and
j~: Lao -+ La" SUdl that jnkoo = in, i.e. jn is aprolongation oEin.

I:, 3.7. Because the Galois group of a maximal p-extension of the field Kao is pro
p~free and d(9ß) = d(Ha ) (indeed, d(H) = d(9) ~ d(9ß) ~ d(Ha) = d(H)), there
exists aGalais extension F'ßaO of K ao such that F'ßaO :::> Lao and there exists a
group isomorphism gßaO such that the following diagram is commutative:

Qß
Uße-O

) Gal(F'ßao/K uo )

(*0) ißQ1 1
Ha

lao
Gal(Lao / Kao )

where lao is induced by identifications

Ha ~ Gal(Laz,o/Kaz,o)~ Gal(Lao/JC uo )

and the right vertical arrow is the natural projection.
If n 2: 0, consider a prolongation of the isomorphism jn : 'caD ~ L an from

n.3.6 to an isolllorphism of separable closures

Jn : Xo(k) = Kuo,sep ---+ JCan,sep = JCaO,sepl

and let F'ßa7l = Jn(F'ßaO)'
Then F'ßan :::> LU71 :::> Kun and v(F'ßan/Kan) = v(F'ßao/Kao ) = VßaD does not

depend on n.
By the use of the above prolongations Jn, n ~ 0, we obtain the following com

mutative diagrams:

9ß
9ßQn

l Gal(Fßan/JC an )

(*n) jßa1 1
Ha

lQn
Gal('can / K an )I

where the right vertical arrow is the natural projection, 9ßan and fan are group
isomorphisms.
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Lemma. There exlsts NI ~ 0 such HIat for n ~ NI, we have

Proof. If n 2:: 0, then

Clearly (cf. proposition 2 of n.3.4),

For all n E N, the natural number N* E N from n.3.4 and any x ~ 0, we have

where

for °~ x ~ v (N *)

for x > v(N*).

By the composition property, we have Y;ICCl.n/ICCI.,o(vßaO) ~ y;*(n)(VßaO)' where y;*(n)

is the n-th iteration of the function c.p*. It is easy to see that:
1) if vßaO ~ v(N*), then y;*(n)(VßaO) ~ v(N*);

2) if VßCiO > v(N*), then y;*(n)(VßCiO) -t v(N*).
n-oo

Because v(N*) < e*(]C~2,O) (cf. the beginning of the proof of proposition 2 of
n.3.4), the above properties 1) and 2) imply the existence of NI E N such that

for all n ~ NI. Clearly, this gives the statement of our lemma.

3.8. If char K = 0, then by the lemilla of n.3. 7, we cau apply the inverse equiv
alence XO-

I to obtain the following COllllllutative diagrallls for all n 2:: NI from the
above diagrams (*n) of n.3.7:

9ß
9/3 0. n

Gal(FßCin / ](a2,n)l

(**n) j/3C1.1 1
Ha

!01.n ) Gal(La2 ,n/](o:2,n),

where XO(FßCin ) = FßCin, fCin is the natural identification, gßCin is a group isomor
phisffi, and the vertical arrow is the natural projection.

The same result holds also in the characteristic p case, if we take identical functor
instead of Xo-

I
.
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Lemma. Tbcre exists N z 2: NI such that for a11 n 2::: N z , we bave

v(Fßon / J() < va.

Proof. Let N; = max{Nt , N* - I}.
If n ~ N;, then

We know that v(J<az,Ni / J<) < va.
By proposition I b) of n.3.l.I, we have

~)(Fß<m/ K ,,2,N; ) = v( :Fß"n/K"N;) = max {v(K"n/K" N; ), 'P Kn./KnN; (vß"o) } .

Ciearly, for all n ~ N;, we have V(JCon/JCoNi) ~ v(N+). As in n.3.7, we obtain
either

for a11 n ~ N{, 01'

By the proposit.ion 2 d) of n.3A, we have v(N+) < 'ljJJ«C.2,N*_tlI«vo) therefore, there
exists N 2 ~ N; such that for any n ~ N 2 one has

The1'efore, for n ~ Nz it holds

and

The lenuna is proved.

3.9. Finally, we note that the statement of the main lemma is satisfied with
Eßo = K aZ,N"J' E ßa = L oZ ,N2 , Fßo = FßC'iN2 and the diagram (** N 2 ) of n.3.S. The
lnain lemma is completely proved.
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