ONE GROUP-THEORETIC PROPERTY OF THE RAMIFICATION FILTRATION

Victor A. Abrashkin

\ldots.

Max-Planck-Institut
für Mathematik
Gottfried-Claren-Str. 26
53225 Bonn

Germany

Germany

ONE GROUP-THEORETIC PROPERTY OF THE RAMIFICATION FILTRATION

Victor A. Abrashkin

Abstract

Let $\Gamma(p)$ be the Galois group of a maximal p-extension of a complete discrete valuation field with perfect residue field of characteristic $p>0$. If $v_{0}>\mathbf{- 1}$ and $\Gamma(p)^{\left(v_{0}\right)}$ is the ramification subgroup of $\Gamma(p)$ in upper numbering, we prove that any closed but not open finitely generated subgroup of the quotient $\Gamma(p) / \Gamma(p)^{\left(v_{0}\right)}$ is a free pro-p-group. In particular, this quotient does not have non-trivial torsion and non-trivially commuting elements.

1. The statement of the main theorem.

Let K be a complete discrete valuation field with perfect residue field k of characteristic $p>0$. Choose a separable closure $K_{\text {sep }}$ of K and denote by $K(p)$ the maximal p-extension of K in $K_{\text {sep }}$.

If $\Gamma=\operatorname{Gal}\left(K_{\text {sep }} / K\right)$ and $\left\{\Gamma^{(v)}\right\}_{v \geq 0}$ is the ramification filtration of Γ in upper numbering, cf. [Se, Ch.III], we have the induced filtration $\left\{\Gamma(p)^{(v)}\right\}_{v \geq 0}$ of the group $\Gamma(p)=\operatorname{Gal}(K(p) / K)$. We note that for $-1<v \leqslant 1, \Gamma(p)^{(v)}=I(p)$ is the inertia subgroup of $\Gamma(p)$, i.e. $K(p)^{I(p)}$ is the maximal unramified extension $K(p)_{\mathrm{ur}}$ of K in $K(p)$.

Consider a real number $v_{0}>-1$ and a closed subgroup H of $\Gamma(p)$ such that $H \supset \Gamma(p)^{\left(v_{0}\right)}$. If $\tilde{H}=H / \Gamma(p)^{\left(v_{0}\right)}$, then \widetilde{H} is a closed subgroup of $\Gamma(p) / \Gamma(p)^{\left(v_{0}\right)}$. We use the notation $d(\widetilde{H})=\operatorname{rk}_{\mathbf{Z} / p \mathbf{Z}}\left(\widetilde{H} / \widetilde{H}^{p}[\widetilde{H}, \widetilde{H}]\right)$ for the minimal number of topological generators of the pro-p-group \widetilde{H}.

If $-1<v_{0} \leqslant 1$, then $\Gamma(p) / \Gamma(p)^{\left(v_{0}\right)}$ is a free pro- p-group, because it coincides with the Galois group of the maximal p-extension of the residue field k. So, in this case \widetilde{H} is a free pro- p-group.

Suppose that $v_{0}>1$ and \widetilde{H} is an open subgroup in $\Gamma(p) / \Gamma(p)^{\left(v_{0}\right)}$. Then H is an open subgroup in $\Gamma(p), K_{H}:=K(p)^{H}$ is a finite extension of $K, H=\Gamma_{K_{H}}(p)$ is the Galois group of the maximal p-extension $K(p)$ of K_{H}, and $\Gamma(p)^{\left(v_{0}\right)}=\Gamma_{K_{H}}(p)^{\left(v_{0 H}\right)}$ with $v_{0 H}=\psi_{K_{H} / K}\left(v_{0}\right)$, where $\psi_{K_{H} / K}$ is the inverse to the Herbrandt's function of the extension K_{H} / K. So, in this case the study of the group \widetilde{H} is equivalent to the study of the group $\Gamma(p) / \Gamma(p)^{\left(v_{0}\right)}$. This group is very far from to be a free pro- p-group: if k is finite then the number of its relations is infinite, cf. [Go] (but it has finitely many generators).

In this paper we consider almost the opposite situation. The main result can be stated as follows.

[^0]Theorem. If $v_{0}>-1$ and \tilde{H} is a closed but not open subgroup of the pro-p-group $\Gamma(p) / \Gamma(p)^{\left(v_{0}\right)}$, then \tilde{H} is a free pro- p-group.

We have noted already that for $v_{0} \leqslant 1$ this theorem holds because in this case the group $\Gamma(p) / \Gamma(p)^{\left(v_{0}\right)}$ is itself a free pro-p-group. So, in the proof of the above theorem (cf. nn. 2 and 3 below) we can assume that $v_{0}>1$.

Corollary 1. a) If $v_{0}>-1$ and k is infinite, then any finitely generated closed pro- p-subgroup \widetilde{H} of $\Gamma(p) / \Gamma(p)^{\left(v_{0}\right)}$ is a free pro-p-group.
b) Any finitely generated closed pro-p-subgroup of $I(p) / \Gamma(p)^{\left(v_{0}\right)}$, where $v_{0}>1$, is a free pro-p-group.

Proof. The part a) follows from the above theorem, because here any open subgroup of $\Gamma(p) / \Gamma(p)^{\left(v_{0}\right)}$ has infinitely many generators and therefore, \tilde{H} is not open. The part b) is a special case of the part a), where K is replaced by the p-adic completion $\widehat{K I}_{(p)}$ ur of its maximal unramified p-extension, because the residue field of $\widehat{K(p)}$ ur isfinfinite.
Corollary 2. The group $\Gamma(p) / \Gamma(p)^{\left(v_{0}\right)}$ does not have non-trivial torsion and nontrivially commuting elements.

Proof. We can assume that $v_{0}>1$. Then for any open subgroup $\widetilde{H} \subset \Gamma(p) / \Gamma(p)^{\left(v_{0}\right)}$ we have $d(\widetilde{H}) \geq 2$. Therefore, if \widetilde{H} is closed in $\Gamma(p) / \Gamma(p)^{\left(v_{0}\right)}$ and $d(\widetilde{H})=1$, then \widetilde{H} is pro-p-free. Clearly, this is equivalent to the absence of non-trivial torsion.

The existence of non-trivially commuting elements is equivalent to the existence of a closed commutative subgroup $\widetilde{H} \subset \Gamma(p) / \Gamma(p)^{\left(v_{0}\right)}$ such that $d(\widetilde{H})=2$. Our theorem implies that \widetilde{H} is an open subgroup, so we can assume that $\widetilde{H}=\Gamma(p) / \Gamma(p)^{\left(v_{0}\right)}$, where v_{0} is still >1 (cf. proposition 1 c) of n.3.1.1 below). Then $d(\tilde{H})=2$ if and only if $k \simeq \mathbb{F}_{p}$ and $v_{0} \leq 2$. Consider the set $\widetilde{H}^{p}=\left\{h^{p} \mid h \in \widetilde{H}\right\}$. Then \widetilde{H}^{p} is a commutative subgroup of \widetilde{H} (because \widetilde{H} is commutative), $\left(\widetilde{H}: \widetilde{H}^{p}\right)=p^{2}$ and $d\left(\widetilde{H}^{p}\right)=2$ (because \widetilde{H} has no torsion). Therefore, $\widetilde{H}^{p}=\Gamma_{K_{1}}(p) / \Gamma_{K_{1}}(p)^{\left(v_{1}\right)}$, where K_{1} is an extension of K of degree p^{2} and $v_{1}=\psi_{K_{1} / K}\left(v_{0}\right)>1$. It is easy to see that $\left[k_{1}: \mathbb{F}_{p}\right]=p$, where k_{1} is the residue field of K_{1}. This gives the contradiction $2=d\left(\widetilde{H}^{p}\right) \geq 2 p$. The corollary is proved.

The above corollary gives that: a) if $\tau \notin \Gamma(p)^{\left(v_{0}\right)}$, then for any $n \in \mathbb{N}, \tau^{p^{n}} \notin$ $\Gamma(p)^{\left(v_{0}\right)}$; b) if $\tau_{1}, \tau_{2} \notin \Gamma(p)^{\left(v_{0}\right)}$, but the commutator $\left(\tau_{1}, \tau_{2}\right) \in \Gamma(p)^{\left(v_{0}\right)}$, then for some $a \in \mathbb{Z}_{p}$, we have either $\tau_{1}=\tau_{2}^{a}$, or $\tau_{2}=\tau_{1}^{a}$. These properties mean that the ramification filtration does not have any relation to the p-central filtration of the group $\Gamma(p)$. One can find indication to such phenomena in the paper of E.Mauss [Ma]. In fact our theorem means that the group $\Gamma(p) / \Gamma(p)^{\left(v_{0}\right)}$ does not have "simple" relations, e.g. there is no relations which can be expressed in terms of any proper subset of some minimal set of generators of the group $\Gamma(p) / \Gamma(p)^{\left(v_{0}\right)}$. In the characteristic p case these relations modulo the subgroup of commutators of order $\geq p$ were described in terms of generators of the group $\Gamma(p)$ in the papers [Ab1-3].

Let $I=\bigcup_{v>0} \Gamma^{(v)}$ be the higher ramification subgroup in Γ. The following analogue of the main theorem holds for the ramification filtration of the Galois group Γ.

Corollary 3. If $v_{0}>0$ and a group $\widetilde{H} \subset I / \Gamma^{\left(v_{0}\right)}$ is a finitely generated pro-p-group, then \widetilde{H} is pro-p-free (in particular, $I / \Gamma^{\left(v_{0}\right)}$ does not have torsion and non-trivial commuting elements).
Proof. Let $K_{\text {tr }}$ be the maximal tamely ramified extension of K in $K_{\text {sep }}$. Then $K_{\mathrm{tr}}=\underset{\alpha \in \mathcal{A}}{\lim } K_{\alpha}$, where $\left\{K_{\alpha} \mid \alpha \in \mathcal{A}\right\}$ is the set of all finite tamely ramified Galois extension of K in $K_{\text {sep }}$. We shall provide the above notation with a lower index α, if the notation is related to the field K_{α}. Clearly, the family of groups $\left\{I_{\alpha}(p) \mid \alpha \in\right.$ $\mathcal{A}\}$ is a projective system induced by the projective system of the Galois groups $\Gamma_{\alpha}, \alpha \in \mathcal{A}$, and

$$
I=\lim _{\overleftarrow{\alpha} \in \mathcal{A}} I_{\alpha}(p) .
$$

Using simplest functorial properties of the ramification filtration it is easy to see that we have a natural projective system $\left\{\Gamma_{\alpha}(p)^{\left(e_{\alpha} v_{0}\right)} \mid \alpha \in \mathcal{A}\right\}$, where $e_{\alpha}=e\left(K_{\alpha} / K\right)$遗 the relative ramification index of the extension K_{α} / K, and we have 1

$$
\Gamma^{\left(v_{0}\right)}={\underset{\alpha \in \mathcal{A}}{ }}_{\lim _{\alpha \in} \Gamma_{\alpha}(p)^{\left(e_{\alpha} v_{0}\right)}}
$$

Therefore,

$$
\widetilde{H} \subset \lim _{\alpha \in \mathcal{A}} I_{\alpha}(p) / \Gamma_{\alpha}(p)^{\left(e_{\alpha} v_{0}\right)} .
$$

If pr_{α} is projection of the above projective limit to its component with the index α, then $\widetilde{H}_{\alpha}:=\operatorname{pr}_{\alpha}(\tilde{H})$ is a pro- p-free group by the above corollary 1 b$)$. Clearly, there exists $\alpha_{0} \in \mathcal{A}$ such that $d(\widetilde{H})=d\left(\widetilde{H}_{\alpha_{0}}\right)$ therefore, $\left.\mathrm{pr}_{\alpha_{0}}\right|_{\tilde{H}}$ is an isomorphism, and \widetilde{H} is a pro- p-free group. The corollary is proved.

2. Proof of the theorem.

2.1. Let $\left\{K_{\alpha} \mid \alpha \in \mathcal{A}\right\}$ be the family of all finite Galois extensions of K in $K(p)$. \mathcal{A} is a filtered set (for $\alpha_{1}, \alpha_{2} \in \mathcal{A}, \alpha_{1} \geq \alpha_{2}$ means that $K_{\alpha_{1}} \supset K_{\alpha_{2}}$), and $\Gamma(p)=\lim _{\alpha \in \mathcal{A}} \Gamma_{\alpha}$, where $\Gamma_{\alpha}=\operatorname{Gal}\left(K_{\alpha} / K\right)$ for $\alpha \in \mathcal{A}$.

Consider the fields tower $K \subset K_{\alpha}^{H} \subset K_{\alpha}^{\left(v_{0}\right)} \subset K_{\alpha}$, where $\alpha \in \mathcal{A}$ and $K_{\alpha}^{\left(v_{0}\right)}$ is the subfield of K_{α} fixed by $\Gamma^{\left(v_{0}\right)}$. Then $\widetilde{H}=\lim _{\alpha \in \mathcal{A}} \widetilde{H}_{\alpha}$, where $\widetilde{H}_{\alpha}=\operatorname{Gal}\left(K_{\alpha}^{\left(v_{0}\right)} / K_{\alpha}^{H}\right)$.

If $\alpha \in \mathcal{A}$, then the natural projection $\operatorname{pr}_{\alpha}: \widetilde{H} \longrightarrow \widetilde{H}_{\alpha}$ is a group epimorphism. If $\alpha_{1}, \alpha_{2} \in \mathcal{A}$ and $\alpha_{1} \geq \alpha_{2}$, then the connecting morphism

$$
\operatorname{pr}_{\alpha_{1} \alpha_{2}}: \tilde{H}_{\alpha_{1}} \longrightarrow \widetilde{H}_{\alpha_{2}}
$$

is uniquely defined by the relation $\mathrm{pr}_{\alpha_{2}}=\operatorname{pr}_{\alpha_{1}} \circ \operatorname{pr}_{\alpha_{1} \alpha_{2}}$.
Consider a free pro- \boldsymbol{p}-group \mathcal{G} with an epimorphic map of pro-p-groups

$$
j: \mathcal{G} \longrightarrow \widetilde{H}
$$

such that the induced morphism $\bar{j}: \mathcal{G} / \mathcal{G}^{p}[\mathcal{G}, \mathcal{G}] \longrightarrow \widetilde{H} / \widetilde{H}^{p}[\tilde{H}, \tilde{H}]$ is an isomorphism.

Let $\mathcal{G}=\underset{\beta \in \mathcal{B}}{\lim _{\underset{\beta}{ }} \mathcal{G}_{\beta}}$, where $\left\{\mathcal{G}_{\beta}\right\}_{\beta \in \mathcal{B}}$ is a projective system of finite p-groups and all projections $\operatorname{pr}_{\beta}: \mathcal{G} \longrightarrow \mathcal{G}_{\beta}$ are group epimorphisms.

The morphism of pro- p-groups j can be given by the following data:
(j1) a map $\iota: \mathcal{A} \longrightarrow \mathcal{B}$ such that $\iota\left(\alpha_{1}\right) \geq \iota\left(\alpha_{2}\right)$, where $\alpha_{1}, \alpha_{2} \in \mathcal{A}$ and $\alpha_{1} \geq \alpha_{2}$;
(j2) group epimorphisms $j_{\alpha}: \mathcal{G}_{\iota(\alpha)} \longrightarrow \widetilde{H}_{\alpha}$, where $\alpha \in \mathcal{A}$;
(j3) if $\alpha_{1}, \alpha_{2} \in \mathcal{A}$ and $\alpha_{1} \geq \alpha_{2}$, then the following diagram is commutative

$$
\begin{aligned}
& \mathcal{G}_{\iota\left(\alpha_{1}\right)} \xrightarrow{j_{\alpha_{1}}} \widetilde{H}_{\alpha_{1}} \\
& \operatorname{pr}_{\iota\left(\alpha_{1}\right) \iota\left(\alpha_{2}\right)} \downarrow \\
& \mathcal{G}_{\iota\left(\alpha_{2}\right)} \xrightarrow{\operatorname{pr}_{\alpha_{1} \alpha_{2}}} \downarrow \\
& \widetilde{H}_{\alpha_{2}}
\end{aligned}
$$

If If $\alpha \in \mathcal{A}$ and $\beta \in \mathcal{B}$ is such that $\beta \geq \iota(\alpha)$, define $j_{\beta \alpha} \in \operatorname{Hom}\left(\mathcal{G}_{\beta}, \widetilde{H}_{\alpha}\right)$ as the conmposition $j_{\beta \alpha x}=\operatorname{pr}_{\beta \iota(\alpha)} \circ j_{\alpha}$. Then the property (j 3) can be stated in the following form:
${ }^{u}\left(\mathrm{j} 3^{\prime}\right)$ if $\alpha_{1}, \alpha_{2} \in \mathcal{A}$ and $\beta_{1}, \beta_{2} \in \mathcal{B}$ are such that $\alpha_{1} \geq \alpha_{2}, \beta_{1} \geq \iota\left(\alpha_{1}\right), \beta_{2} \geq \iota\left(\alpha_{2}\right)$ and $\beta_{1} \geq \beta_{2}$, then the following diagram is commutative:

2.2. Let \mathcal{A}_{1} be the subset of \mathcal{A} consisting of $\alpha \in \mathcal{A}$ such that

$$
\mathrm{rk}_{\mathbf{Z} / p \mathbf{Z}}\left(\widetilde{H}_{\alpha} / \widetilde{H}_{\alpha}^{p}\left[\widetilde{H}_{\alpha}, \widetilde{H}_{\alpha \alpha}\right]\right)=d(\tilde{H})
$$

i.e. the projection pr_{α} induces the isomorphism

$$
\overline{\mathrm{pr}}{ }_{\alpha}: \widetilde{H} / \widetilde{H}^{p}[\widetilde{H}, \widetilde{H}] \longrightarrow \widetilde{H}_{\alpha} / \widetilde{H}_{\alpha}^{p}\left[\tilde{H}_{\alpha}, \widetilde{H}_{\alpha}\right]
$$

Clearly, \mathcal{A}_{1} is a cofinal subset in \mathcal{A}.
For $\alpha \in \mathcal{A}_{1}$, consider the fields tower from n.2.1

$$
K \subset K_{\alpha}^{H} \subset K_{\alpha}^{\left(v_{0}\right)} \subset K_{\alpha}
$$

The following lemma will be proved in n .3 below. We use all notation from n.2.1.

The main lemma.

If $\alpha \in \mathcal{A}_{1}$ and $\beta \geq \iota(\alpha)$, then there exist finite extensions $E_{\beta \alpha}$ of K_{α}^{H} and $F_{\beta \alpha}$ of $E_{\beta \alpha}^{\prime}:=E_{\beta \alpha} K_{\alpha}^{\left(v_{0}\right)}$ such that
(a) $E_{\beta_{\alpha}} \subset K(p)^{H}$ and therefore, we have the natural group isomorphism

$$
f_{\beta \alpha}: \widetilde{H}_{\alpha} \longrightarrow \operatorname{Gal}\left(E_{\beta \alpha}^{\prime} / E_{\beta \alpha}\right) ;
$$

(b) $F_{\beta \alpha}$ is a Galois extension over $E_{\beta \alpha}$ and there exists a group isomorphism $g_{\beta \alpha}$ such that the following diagram is commutative

(here the right vertical arrow is the natural projection);
(c) $F_{\beta \alpha}$ is contained in the subfield $K(p)^{\left(v_{0}\right)}$ of $K(p)$ fixed by the $\operatorname{group} \Gamma(p)^{\left(v_{0}\right)}$.
2.3. For $\alpha \in \mathcal{A}_{1}$ and $\beta \geq \iota(\alpha)$, consider the fields $E_{\beta \alpha}, E_{\beta \alpha}^{\prime}$ and $F_{\beta \alpha}$ from the above lemma. Denote by $D_{\beta \alpha}$ the normal closure of $F_{\beta \alpha}$ over K (in $K(p)$). Then $\overrightarrow{T h}$ here exists $\gamma \in \mathcal{A}$ such that $K_{\gamma}=D_{\beta \alpha}$, and we have the following commutative diagram in the category of finite extensions of the field K :

$$
\begin{array}{ccccc}
K_{\alpha}^{H} & \subset & K_{\alpha}^{\left(v_{0}\right)} & \subset & K_{\alpha} \\
\cap & \cap & \cap & & \\
E_{\beta \alpha} & \subset & E_{\beta \alpha}^{\prime} & \subset & F_{\beta \alpha} \\
\cap & & & \cap \\
K_{\gamma}^{H} & \subset & K_{\gamma}^{\left(v_{0}\right)} & = & K_{\gamma}^{\left(v_{0}\right)}=K_{\gamma}=D_{\beta \alpha}
\end{array}
$$

Note that $F_{\beta \alpha}$ is a Galois extension of $E_{\beta \alpha}, E_{\beta \alpha} \subset K(p)^{H}, F_{\beta \alpha} \subset K(p)^{\left(v_{0}\right)}$ and therefore, we have the natural group homomorphism

$$
h_{\beta \alpha}: \widetilde{H} \longrightarrow \operatorname{Gal}\left(F_{\beta \alpha} / E_{\beta \alpha}\right)
$$

such that $h_{\beta_{\alpha}} \circ g_{\beta \alpha}^{-1} \circ j_{\beta_{\alpha}}=\operatorname{pr}_{\alpha}$. Because $\alpha \in \mathcal{A}_{1}$ and $\beta \geq \iota(\alpha)$, the minimal numbers of generators for the groups $\widetilde{H}, \widetilde{H}_{\alpha}$ and \mathcal{G}_{β} coincide. Therefore, $h_{\beta \alpha} \circ g_{\beta \alpha}^{-1}$ is epimorphic, and we obtain that

$$
h_{\beta \alpha}(\tilde{H})=g_{\beta \alpha}\left(\mathcal{G}_{\beta}\right)=\operatorname{Gal}\left(F_{\beta \alpha} / E_{\beta \alpha}\right) .
$$

This gives $F_{\beta \alpha}^{H}=E_{\beta \alpha}$ and thus, the fields $F_{\beta \alpha}$ and K_{γ}^{H} are linearly disjoint over $E_{\beta \alpha}$ and we have the group epimorphism

$$
i_{\gamma \beta \alpha}: \widetilde{H}_{\gamma} \longrightarrow \operatorname{Gal}\left(F_{\beta \alpha} / E_{\beta \alpha}\right) \xrightarrow{g_{\beta \alpha}^{-1}} \mathcal{G}_{\beta}
$$

such that $\mathrm{pr}_{\gamma \alpha}=i_{\gamma \beta \alpha} \circ j_{\beta \alpha}$.
2.4. Consider the set

$$
\mathcal{C}=\left\{(\beta, \alpha) \in \mathcal{B} \times \mathcal{A}_{1} \mid \alpha \in \mathcal{A}_{1}, \beta \geq \iota(\alpha)\right\}
$$

Clearly, \mathcal{C} is a filtered set.

If $(\beta, \alpha) \in \mathcal{C}$, consider the set

$$
I_{(\beta, \alpha)}=\left\{i \in \operatorname{Hom}_{\text {cont }}\left(\tilde{H}, \mathcal{G}_{\beta}\right) \mid \operatorname{pr}_{\alpha}=i \circ j_{\beta \alpha}\right\}
$$

This set is finite (because \tilde{H} is finitely generated) and non-empty (cf. n.2.3). The property ($\mathrm{j} 3^{\prime}$) of n.2.1 gives that $\left\{I_{(\beta, \alpha)}\right\}_{(\beta, \alpha) \in \mathcal{C}}$ is a projective system and therefore, its projective limit $I \neq \emptyset$.

Take $i \in I$.
For any $\alpha \in \mathcal{A}_{1}$, the set

$$
\mathcal{B}_{\alpha}=\{\beta \in \mathcal{B} \mid(\beta, \alpha) \in \mathcal{C}\}=\{\beta \in \mathcal{B} \mid \beta \geq \iota(\alpha)\}
$$

is cofinal in \mathcal{B}. Therefore, for any $\alpha \in \mathcal{A}_{1}$, the collection

虽 giv

morphism of pro-p-groups $i_{\alpha}: \tilde{G}$ such that $\mathrm{pr}_{\alpha}=i_{\alpha} \rho j \circ \mathrm{pr}_{\alpha}$
*The property ($\mathrm{j} 3^{\prime}$) gives that i_{α} does not depend on $\alpha \in \mathcal{A}_{1}$. So, $i=\underset{\alpha \in \mathcal{A}_{1}}{\lim _{\alpha}} i_{\alpha} \in$ $\operatorname{Hom}_{\text {cont }}(\widetilde{H}, \mathcal{G})$ and satisfies the identity $i \circ j=\mathrm{id}_{\tilde{H}}$.

Clearly, i is injective. But $\bar{i}=i \bmod \widetilde{H}^{p}[\widetilde{H}, \widetilde{H}]=\bar{j}^{-1}$ is an isomorphism. So, i is surjective and \widetilde{H} is a pro-p-free group (isomorphic to \mathcal{G}).

The theorem is proved.

3. Proof of the main lemma.

As we have noted in $n .1$ we can assume that $v_{0}>1$.

3.1. Preliminaries.

3.1.1. The largest ramification numbers. Let L be a complete discrete valuation field with perfect residue field of characteristic $p>0$. We recall some general facts from the higher ramification theory, cf. [$\mathrm{Se}, \mathrm{Ch} . \mathrm{III}]$.

If E / L is a finite Galois extension, $\Gamma_{E / L}=\operatorname{Gal}(E / L)$, and O_{E} is the valuation ring of the field E then for any $x>-1$, we have the ramification subgroup

$$
\Gamma_{E / L, x}=\left\{\tau \in \Gamma_{E / L} \mid v_{E}(\tau a-a) \geq x+1 \forall a \in O_{E}\right\},
$$

where v_{E} is the valuation of E such that $v_{E}\left(E^{*}\right)=\mathbb{Z}$. This gives the ramification filtration $\left\{\Gamma_{E / L, x}\right\}_{x \geq 0}$ of the group $\Gamma_{E / L}$ in lower numbering. This filtration is a decreasing left-continuous filtration of normal subgroups; for $-1<x \leq 0, \Gamma_{E / L, x}$ is the ramification subgroup; and for $0<x \leq 1, \Gamma_{E / L, x}$ is the higher ramification subgroup of the group $\Gamma_{E / L}$.

The Herbrandt's function of the extension E / L is defined for all $x \geq 0$ by the expression

$$
\varphi_{E / L}(x)=\int_{0}^{x}\left(\Gamma_{E / L, 0}: \Gamma_{E / L, t}\right)^{-1} \mathrm{~d} t
$$

For $-1<x<0, \varphi_{E / L}(x)=x$ by definition. Then $\varphi_{E / L}(x)$ is an increasing continuous piece-linear function, $\varphi_{E / L}(0)=0$, and for a sufficiently large x, one
has that $\varphi^{\prime}(x)=e(E / L)^{-1}$, where $e(E / L)$ is the ramification index of the extension E / L.

Set $\Gamma_{E / L}^{(v)}=\Gamma_{E / L, x}$, if $x>-1$ and $v=\varphi_{E / L}(x)$. This gives the ramification filtration of $\Gamma_{E / L}$ in upper numbering. If E_{1} is a Galois extension of L and $E \subset E_{1}$ then the natural projection $\Gamma_{E_{1} / L} \longrightarrow \Gamma_{E / L}$ induces for any $v \geq 0$ the group epimorphism $\Gamma_{E_{1} / L}^{(v)} \longrightarrow \Gamma_{E / L}^{(v)}$. Taking projective limit with respect to these epimorphisms we obtain the ramification filtration $\left\{\Gamma_{L}^{(v)}\right\}_{v \geq 0}$ of the group $\Gamma_{L}=\operatorname{Gal}\left(L_{\text {sep }} / L\right)$ in upper numbering.

The Herbrandt's function satisfies the composition property:
if \dot{E} / L and E_{1} / L are finite Galois extensions such that $E \subset E_{1}$, then for any $x>-1$, one has

$$
\varphi_{E_{1} / L}(x)=\varphi_{E / L}\left(\varphi_{E_{1} / E}(x)\right)
$$

The definition of the Herbrandt's function $\varphi_{E / L}$ can be uniquely extended to The case of arbitrary finite separable extensions E / L under the requirement that the composition property should hold for arbitrary tower of finite extensions $L \subset$ $\dot{E} \subset E_{1}$, cf. [De].

Let $\psi_{E / L}$ be the inverse function for $\varphi_{E / L}$. This function is also an increasing piece-linear function satisfying the composition property:
if $L \subset E \subset E_{1}$ is a fields tower of finite extensions, then for any $x>-1$, one has

$$
\psi_{E_{1} / L}(x)=\psi_{E_{1} / E}\left(\psi_{E / L}(x)\right)
$$

If E / L is a finite extension such that $e(E / L)>1$, then the set of edge points of the graph of the function $\varphi_{E / L}(x)$ is not empty and we denote by $(x(E / L), v(E / L))$ the coordinates of the last edge point. If $e(E / L)=1$, we set $(x(E / L), v(E / L))=$ $(-1,-1)$. We have the following properties.

Proposition 1. If $L \subset E \subset E_{1}$ is a tower of finite extensions, then:
a) the group $\Gamma_{L}^{(v)}$, where $v>-1$, acts trivially on E, if and only if $v>v(E / L)$;
b) $v\left(E_{1} / L\right)=\max \left\{v(E / L), \varphi_{E / L}\left(v\left(E_{1} / E\right)\right)\right\}$;
c) if $v \geq v(E / L)$, then $\Gamma_{L}^{(v)}=\Gamma_{E}^{\left(\psi_{E / L}(v)\right)}$.

The above property a) follows directly from definitions, the property b) follows from the composition property. To prove c) let us consider an arbitrary finite Galois extension E_{2} of L such that $E_{2} \supset E$. It is sufficient to verify that

$$
\Gamma_{E_{2} / L}^{(v)}=\Gamma_{E_{2} / E}^{\left(\psi_{E / L}(v)\right)}
$$

For any $x \geqslant 0$, the equality $\Gamma_{E_{2} / E} \cap \Gamma_{E_{2} / L, x}=\Gamma_{E_{2} / E, x}$ follows directly from the definition of the lower numbering of the ramification filtration. Take $x=\psi_{E_{2} / L}(v)$ then $\Gamma_{E_{2} / L, x} \subset \Gamma_{E_{2} / E}$ (cf. n. a)) and therefore, $\Gamma_{E_{2} / L, x}=\Gamma_{E_{2} / E, x}$. It remains only to note that by the composition property we have $\varphi_{E_{2} / E}(x)=\psi_{E / L}(v)$, i.e. $\Gamma_{E_{2} / E, x}=\Gamma_{E_{2} / E}^{\left(\psi_{E / L}(v)\right)}$. The proposition is proved.

We note that, if E is contained in the maximal p-extension $L(p)$ of L, then either $v(E / L) \geq 1$, or E / L is an unramified extension. So, if $\Gamma_{L}(p)=\operatorname{Gal}(L(p) / L)$, then for $-1<v \leq 1, \Gamma_{L}(p)^{(v)}=\Gamma_{L}(p)^{(1)}$ is the ramification subgroup of $\Gamma_{L}(p)$.

Proposition 2. Let E and L_{1} be finite extensions of L in $L(p)$. Then

$$
\varphi_{E / L}\left(v\left(L_{1} E / E\right)\right) \leq v\left(L_{1} / L\right) .
$$

Proof. Let $[E: L]=p^{n_{E}}$ and $\left[L_{1}: L\right]=p^{n_{1}}$, where $n_{E}, n_{1} \in \mathbb{Z}_{\geq 0}$.
The cases $n_{E}=0$ or $n_{1}=0$ can be easily considered, so we can assume that $n_{E}, n_{1} \in \mathbb{N}$. Let $v_{E}=v(E / L)$ and $v_{1}=v\left(L_{1} / L\right)$.

Assume that $n_{E}=n_{1}=1$. Clearly, $v\left(L_{1} E / L\right)=\max \left\{v_{E}, v_{1}\right\}$.
If $v_{1} \geq v_{E}$, we have by the proposition 1 b) that

$$
v_{1}=v\left(L_{1} E / L\right)=\max \left\{v_{E}, \varphi_{E / L}\left(v\left(L_{1} E / E\right)\right)\right\}
$$

therefore, $v_{1} \geq \varphi_{E / L}\left(v\left(L_{1} E / E\right)\right)$ and we obtain the formula of our proposition.
13 Consider the case $v_{1}<v_{E}$. The equality $\varphi_{L_{1} E / L}=\varphi_{L_{1} E / E} \circ \varphi_{E / L}$ gives that the values of the function $\varphi_{L_{1} E / L}$ in its edge points equal $\varphi_{E / L}\left(v\left(L_{1} E / L\right)\right)$ and v_{E}. The equality $\varphi_{L_{1} E / L}=\varphi_{L_{1} E / L_{1}} \circ \varphi_{L_{1} / L}$ gives that the values of this function in its edge points equal v_{1} and $\varphi_{L_{1} / L}\left(v\left(L_{1} E / L_{1}\right)\right)$. Now the inequality $v_{1}<v_{E}$ implies that $v_{1}=\varphi_{E / L}\left(v\left(L_{1} E / E\right)\right)$. So, the case $n_{E}=n_{1}=1$ is completely considered.

Let $n_{1}=1$ and $n_{E}>1$.
In this case there exists a field E^{\prime} such that $L \subsetneq E^{\prime} \subseteq E$. By induction we can assume that our proposition is proved for the triples of fields $\left(E^{\prime}, L_{1}, L\right)$ and $\left(E, E^{\prime}, L_{1} E^{\prime}\right)$. Then

$$
\varphi_{E / L}\left(v\left(L_{1} E / E\right)\right)=\varphi_{E^{\prime} / L}\left(\varphi_{E / E^{\prime}}\left(v\left(L_{1} E / E\right)\right)\right) \leq \varphi_{E^{\prime} / L}\left(v\left(L_{1} E^{\prime} / E^{\prime}\right)\right) \leq v\left(L_{1} / L\right)
$$

and the case $n_{1}=1$ and $n_{E}>1$ is considered.
Assume that $n_{1}>1$ and n_{E} is an arbitrary natural number.
Consider the field L_{2} such that $L \subsetneq L_{2} \subsetneq L_{1}$. By induction we can assume that our proposition is proved for the triples $\left(E, L_{2}, L\right)$ and (E, L_{1}, L_{2}). Applying also the composition property of the Herbrandt's function and the above proposition 1 we obtain that

$$
\begin{gathered}
\varphi_{E / L}\left(v\left(L_{1} E / E\right)\right)=\max \left\{\varphi_{E / L}\left(v\left(L_{2} E / E\right)\right), \varphi_{L_{2} E / E}\left(v\left(L_{1} E / L_{2} E\right)\right)\right\} \leq \\
\max \left\{v\left(L_{2} / L\right), \varphi_{L_{2} / L}\left(v\left(L_{1} / L_{2}\right)\right)\right\}=v\left(L_{1} / L\right)
\end{gathered}
$$

The proposition is proved.

3.1.2. A property of the field of norms functor.

We use basic properties of the field of norms functor, cf. [Wtb].
Let E be a complete discrete valuation field of characteristic 0 with perfect residue field k of characteristic $p>0$ and absolute ramification index $e(E)$. Choose an algebraic closure \bar{E} of E, a uniformizing element $\pi \in E$, and a sequence $\left\{\pi_{n}\right\}_{n \geq 0}$ of elements of \bar{E} such that $\pi_{0}=\pi$ and $\pi_{n+1}^{p}=\pi_{n}$ for all $n \geq 0$.

If $E_{n}=E\left(\pi_{n}\right)$ for $n \geq 0$, and $\widetilde{E}=\underset{\longrightarrow}{\lim E_{n}}$, then \widetilde{E} is an arithmetically profinite extension of E. Consider its field of norms $\mathcal{X}_{E}(\widetilde{E})=\mathcal{E}$. Then \mathcal{E} is a complete
discrete valuation field of characteristic p and its residue field can be canonically identified with k.

If \widetilde{L} is a finite extension of \widetilde{E} in \bar{E}, then \widetilde{L} is an arithmetically profinite extension of E and its field of norms $\mathcal{X}_{E}(\widetilde{L})$ is a separable finite extension of \mathcal{E}. The correspondence $\widetilde{L} \mapsto \mathcal{X}_{E}(\widetilde{L})$ induces an equivalence of the category of algebraic extensions of \widetilde{E} and the category of separable extensions of its field of norms \mathcal{E}. Therefore, we can choose a separable closure of \mathcal{E} in the form $\mathcal{E}_{\text {se }_{p}}=\mathcal{X}_{E}(\bar{E})$ and obtain the following identification:

$$
\mathcal{G}_{\mathcal{E}}:=\operatorname{Gal}\left(\mathcal{E}_{\text {sep }} / \mathcal{E}\right)=\operatorname{Gal}(\bar{E} / \tilde{E}) \subset \Gamma_{E}=\operatorname{Gal}(\bar{E} / E) .
$$

The (infinite) extension \tilde{E} / E has the Herbrandt's function

$$
\varphi_{\tilde{E} / E}=\lim _{n \rightarrow \infty}\left(\varphi_{n} \circ \cdots \circ \varphi_{1}\right),
$$

$$
\varphi_{n}(x)= \begin{cases}x, & \text { for } 0 \leq x \leq e^{*}\left(E_{n}\right) \\ e^{*}\left(E_{n}\right)+\left(x-e^{*}\left(E_{n}\right)\right) / p, & \text { for } x \geq e^{*}\left(E_{n}\right)\end{cases}
$$

and $e^{*}\left(E_{n}\right)=p^{n} e^{*}(E)$ with $e^{*}(E)=p e(E) /(p-1)$. The above identification $\mathcal{G}_{\mathcal{E}} \subset \Gamma_{E}$ is compatible with ramification filtrations: for any $v>-1$,

$$
\mathcal{G}_{\mathcal{E}}^{(v)}=\mathcal{G}_{\mathcal{E}} \cap \Gamma_{E}^{\left(\varphi_{\widetilde{E} / E}(v)\right)} .
$$

One can verify that $\mathcal{G}_{\mathcal{E}} \Gamma_{E}^{\left(e^{*}(E)\right)}=\Gamma_{E}$ and therefore, the embedding $\mathcal{G}_{\mathcal{E}} \subset \Gamma_{E}$ induces an isomorphism

$$
\mathcal{G}_{\mathcal{E}} / \mathcal{G}_{\mathcal{E}}^{\left(e^{\bullet}(E)\right)} \simeq \Gamma_{E} / \Gamma_{E}^{\left(e^{*}(E)\right)} .
$$

This gives the following proposition.
Proposition. If L is a finite extension of E and $\widetilde{L}=L \widetilde{E}$, then the correspondence

$$
L \mapsto \tilde{\mathcal{X}}_{\tilde{E}}(L):=\mathcal{X}_{E}(\widetilde{L})
$$

induces an equivalence of the category of algebraic extensions L / E such that $v(L / E)<e^{*}(E)$ and the category of separable extensions $\mathcal{L} / \mathcal{E}$ such that $v(\mathcal{L} / \mathcal{E})<$ $e^{*}(E)$.

Remark. If $[L: E]<\infty, v(L / E)<e^{*}(E)$ and $\mathcal{L}=\mathcal{X}_{\widetilde{E}}(L)$, then we have the equality of Herbrandt's functions $\varphi_{L / E}=\varphi_{\mathcal{L} / \mathcal{E}}$.

3.1.3. An application of the Artin-Schreier theory.

Let K_{1} be a complete discrete valuation field with perfect residue field k_{1} of characteristic $p>0$. Choose a maximal p-extension $K_{1}(p)$ of K_{1} and denote by $F\left(K_{1}\right)$ the category of separable extensions of the field K_{1} in $K_{1}(p)$ (if $L_{1}, L_{2} \in$ $F\left(K_{1}\right)$ and $L_{1} \subset L_{2}$, then $\operatorname{Hom}_{F\left(K_{1}\right)}\left(L_{1}, L_{2}\right)$ contains only one element - the embedding of L_{1} into L_{2}; if $L_{1} \not \subset L_{2}$, then $\operatorname{Hom}_{F\left(K_{1}\right)}\left(L_{1}, L_{2}\right)=\emptyset$).

We use the notation $e\left(K_{1}\right)$ for the absolute ramification index of the field K_{1} if it has characteristic 0 and define $e\left(K_{1}\right)=\infty$ if char $K_{1}=p$. In the both cases we set $e^{*}\left(K_{1}\right)=p e\left(K_{1}\right) /(p-1)$.

Let $v_{1}, v_{1}^{\prime} \in \mathbb{R}$ be such that $1 \leq v_{1}^{\prime}<v_{1} \leq e^{*}\left(K_{1}\right)$. Consider the \mathbb{F}_{p}-linear space

$$
V\left(k_{1}, v_{1}^{\prime}, v_{1}\right)=\underset{a \in\left[v_{1}^{\prime}, v_{1}\right)_{p}}{\oplus}\left(k_{1}\right)_{a}
$$

where $\left[v_{1}^{\prime}, v_{1}\right)_{p}=\left\{n \in \mathbb{N} \mid v_{1}^{\prime} \leq n<v_{1},(n, p)=1\right\}$.
Denote by $S\left(k_{1}, v_{1}^{\prime}, v_{1}\right)$ the category of finite dimensional linear subspaces of $V\left(k_{1}, v_{1}^{\prime}, v_{1}\right)$ (here we have also for any 2 objects V_{1} and V_{2} of this category, that $\operatorname{Hom}_{S\left(k_{1}, v_{1}^{\prime}, v_{1}\right)}\left(V_{1}, V_{2}\right)=\emptyset$ if $V_{1} \not \subset V_{2}$, otherwise the set $\operatorname{Hom}_{S\left(k_{1}, v_{1}^{\prime}, v_{1}\right)}\left(V_{1}, V_{2}\right)$ consists only of one element -- the embedding $V_{1} \subset V_{2}$).
Proposition 1. There exists a fully faithful functor
8

$$
\mathcal{F}: S\left(k_{1}, v_{1}^{\prime}, v_{1}\right) \longrightarrow F\left(K_{1}\right)
$$

sỉch that for any $L \in S\left(k_{1}, v_{1}^{\prime}, v_{1}\right)$ one has
a) $\mathcal{F}(L)$ is a finite Galois extension of K_{1} and there exists a natural identification $\operatorname{Gal}\left(\mathcal{F}(L) / K_{1}\right)=\widehat{L}:=\operatorname{Hom}\left(L, \mathbb{F}_{p}\right)$;
b) If $L \neq 0$, then $v_{1}^{\prime} \leq v\left(\mathcal{F}(L) / K_{1}\right)<v_{1}$.

Proof. Consider first the case char $K_{1}=p$.
If σ is Frobenius and $\Gamma_{K_{1}}(p)=\operatorname{Gal}\left(K_{1}(p) / K_{1}\right)$, then one has the natural identification of the Artin-Schreier theory $K_{1} /(\sigma-\mathrm{id}) K_{1}=\operatorname{Hom}\left(\Gamma_{K_{1}}(p), \mathbb{F}_{p}\right)$.

Choose a uniformizer t_{1} of K_{1} and consider the identification of $V\left(k_{1}, v_{1}^{\prime}, v_{1}\right)$ with a linear subspace of $K_{1} /(\sigma-\mathrm{id}) K_{1}$ induced by the correspondence

$$
\left\{\alpha_{a}\right\}_{a \in\left[v_{1}^{\prime}, v_{1}\right)_{p}} \mapsto\left(\sum_{a \in\left[v_{1}^{\prime}, v_{1}\right)_{p}} \alpha_{a} t_{1}^{-a}\right) \bmod (\sigma-\mathrm{id}) K_{1} .
$$

If $L \in S\left(k_{1}, v_{1}^{\prime}, v_{1}\right)$ is an \mathbb{F}_{p}-linear subspace of $V\left(k_{1}, v_{1}^{\prime}, v_{1}\right)$, then we set $\mathcal{F}(L)=$ $K_{1}(p)^{H(L)}$, where

$$
H(L)=\bigcap_{l \in L} \operatorname{Ker} l \subset \Gamma_{K_{1}}(p),
$$

and elements $l \in L$ are considered as elements of the group $\operatorname{Hom}\left(\Gamma_{K_{1}}(p), \mathbb{F}_{p}\right)$ by the use of the above identifications

$$
V\left(k_{1}, v_{1}^{\prime}, v_{1}\right) \subset K_{1} /(\sigma-\mathrm{id}) K_{1}=\operatorname{Hom}\left(\Gamma_{K_{1}}(p), \mathbb{F}_{p}\right)
$$

It is easy to see that the correspondence $L \mapsto \mathcal{F}(L)$ determines a functor which satisfies the properties of our proposition. We note that this functor depends only on the choice of a uniformizer t_{1} in the field K_{1}.

If char $K_{1}=0$, we choose a uniformizer $\pi_{0} \in K_{1}$, a sequence $\pi_{n} \in K_{1 \text { sep }} \supset$ $K_{1}(p)$, such that $\pi_{n+1}^{p}=\pi_{n}$ for all $n \in \mathbb{Z} \geqslant 0$, and construct the functor $\tilde{\mathcal{X}}_{\tilde{K}_{1}}$ from n.3.1.2. If t_{1} is the uniformizing element of the field $\mathcal{K}_{1}=\widetilde{\mathcal{X}}_{\widetilde{K}_{1}}\left(K_{1}\right)$, which corresponds to the sequence $\left\{\pi_{n}\right\}_{n \geqslant 0}, \mathcal{F}^{\prime}$ is the above constructed functor for the
field \mathcal{K}_{1} and its uniformizer t_{1}, and $\widetilde{\mathcal{X}}_{\tilde{K}_{1}}$ is the functor from n .3.1.2, then the functor $\mathcal{F}=\mathcal{F}^{\prime} \circ \widetilde{\mathcal{X}}_{\widetilde{K}_{1}}^{1}$ satisfies the properties of our proposition. The proposition is proved.

We shall apply the above proposition in the following situation.
Suppose that $1<v_{1} \leq e^{*}\left(K_{1}\right), H_{1}$ is a closed subgroup of $\Gamma_{K_{1}}(p)$ containing the ramification subgroup $\Gamma_{K_{1}}(p)^{\left(v_{1}\right)}, \widetilde{H}_{1}=H_{1} / \Gamma_{K_{1}}(p)^{\left(v_{1}\right)}$ and $d\left(\widetilde{H}_{1}\right)$ is the minimal number of topological generators of the group \widetilde{H}_{1}.

Proposition 2. If $1 \leq v_{1}^{\prime}<v_{1}\left(\leqslant e^{*}\left(K_{1}\right)\right)$ and $\operatorname{dim}_{\mathbf{F}_{p}} V\left(k_{1}, v_{1}^{\prime}, v_{1}\right)>d\left(\widetilde{H}_{1}\right)$, then there exists an extension K_{2} of K_{1} of degree p such that $K_{2} \subset K_{1}(p)^{H_{1}}$ and $v\left(K_{2} / K_{1}\right) \geq v_{1}^{\prime}$.
Proof. In the notation of the above proposition 1 consider the field $E_{1}=\mathcal{F}(L)$, where $L \in S\left(k_{1}, v_{1}^{\prime}, v_{1}\right)$ is such that $\operatorname{dim}_{\mathbf{F}_{p}} L>d\left(\widetilde{H}_{1}\right)$. Then $v_{1}^{\prime} \leq v\left(E_{1} / K_{1}\right)<v_{1}$. So, if

$$
\frac{\text { No, it }}{\square} \quad f: \Gamma_{K_{1}}(p) \longrightarrow \operatorname{Gal}\left(E_{1} / K_{1}\right)=\widehat{L}
$$

is the natural projection, then $\Gamma_{K_{1}}(p)^{\left(v_{1}\right)} \subset \operatorname{Ker} f$ and $d\left(f\left(H_{1}\right)\right) \leq d\left(\tilde{H}_{1}\right)$. Therefore, $f\left(H_{1}\right)$ is a proper subgroup of \widehat{L} and there exists a subextension K_{2} of $E_{1}^{f\left(H_{1}\right)}$ over K_{1} such that $\left[K_{2}: K_{1}\right]=p$. The proposition is proved.

3.2. The field $K_{\alpha 1}$.

As earlier, consider for $\alpha \in \mathcal{A}_{1}$, the fields tower

$$
K \subset K_{\alpha}^{H} \subset K_{\alpha}^{\left(v_{0}\right)} \subset K_{\alpha}
$$

Denote by $C(\tilde{H})$ a positive real number such that for any $r>0$ the interval $(r, r+C(\widetilde{H}))$ contains at least $d(\widetilde{H})+1$ prime to p integers.
Proposition. There exists a finite extension $K_{\alpha 1}$ of K_{α}^{H} in $K(p)^{H}$ such that

$$
\min \left\{\psi_{K_{\alpha 1} / K}\left(v_{0}\right), e^{*}\left(K_{\alpha 1}\right)\right\}>C(\widetilde{H})+1
$$

Proof.

3.2.1. Prove first that there exists an infinite fields tower

$$
K_{\alpha}^{H}=K_{\alpha 0,0} \subset K_{\alpha 0,1} \subset \cdots \subset K_{\alpha 0, n} \subset \cdots
$$

such that for any $n \in \mathbb{N}$, we have $\left[K_{\alpha 0, n}: K_{\alpha 0, n-1}\right]=p$ and $K_{\alpha 0, n} \subset K(p)^{H}$.
Indeed, let $n_{0} \in \mathbb{Z}_{\geq 0}$ and assume that we have constructed such fields $K_{\alpha 0, n}$ for $n \leqslant n_{0}$. Because $\bar{K}_{\alpha 0, n_{0}} \subset K(p)^{H}$, we have $H \subset \Gamma_{n_{0}}=\operatorname{Gal}\left(K(p) / K_{\alpha 0, n_{0}}\right)$. Because $\left[K_{\alpha 0, n_{0}}: K\right]<\infty$ and H is not open subgroup of $\Gamma(p)$, we have $H \neq \Gamma_{n_{0}}$ and therefore, $H_{n_{0}}:=H \Gamma_{n_{0}}^{p}\left[\Gamma_{n_{0}}, \Gamma_{n_{0}}\right] \subsetneq \Gamma_{n_{0}}$. Let $E_{n_{0}}=K(p)^{H_{n_{0}}}$. Then $E_{n_{0}}$ is a non-trivial abelian extension of $K_{\alpha 0, n_{0}}$ in $K(p)^{H}$. Clearly, there exists the field $K_{\alpha 0, n_{0}+1}$ such that $K_{\alpha 0, n_{0}} \subset K_{\alpha 0, n_{0}+1} \subset E_{n_{0}}$ and $\left[K_{\alpha 0, n_{0}+1}: K_{\alpha 0, n_{0}}\right]=p$.
3.2.2. We want to prove here that the fields tower $K_{\alpha 0, n}, n \geqslant 0$, from n.3.2.1 can be chosen in such a way that for almost all $n \in \mathbb{N}$, the field $K_{\alpha 0, n}$ is totally ramified over $K_{\alpha 0, n-1}$.

Denote by $K_{\alpha 0, n}^{\prime}, n \geqslant 0$, the fields tower from n.3.2.1. If this tower does not satisfy the above condition, then there exists $n_{0} \geqslant 0$ such that the residue field k_{1} of $K_{\alpha 0, n_{0}}^{\prime}$ contains more that $p^{d(\tilde{H})}$ elements (recall that $d(\widetilde{H})$ is the minimal number of topological generators of the pro-p-group $\left.\widetilde{H}=H / \Gamma(p)^{\left(v_{0}\right)}\right)$.

For $0 \leqslant n \leqslant n_{0}$ set $K_{\alpha 0, n}=K_{\alpha 0, n}^{\prime}$. Let $n_{1} \in \mathbb{Z} \geqslant 0$ be such that $n_{1} \geqslant n_{0}$ and assume that we have consructed for $n_{0}<n \leqslant n_{1}$, the fields $K_{\alpha 0, n}$ such that for $0<n \leqslant n_{1}$ we have $\left[K_{\alpha 0, n}: K_{\alpha 0, n-1}\right.$] $=p, K_{\alpha 0, n} \subset K(p)^{H}$ and for $n_{0}<n \leqslant n_{1}$, $v\left(K_{\alpha 0, n} / K_{\alpha 0, n-1}\right) \geqslant 1$ (i.e. $K_{\alpha 0, n}$ is totally ramified over $K_{\alpha 0, n-1}$).

Let $K_{1}=K_{\alpha 0, n_{1}}, v_{1}=\min \left\{\psi_{K_{1} / K}\left(v_{0}\right), e^{*}\left(K_{1}\right)\right\}$ and $H_{1}=H \Gamma_{1}^{\left(v_{1}\right)}$, where $\Gamma_{1}=\operatorname{Gal}\left(K(p) / K_{1}\right)$. We note that k_{1} is the residue field of $K_{1}, v_{1}>1$ and $\operatorname{dim}_{\mathbf{F}_{p}} V\left(k_{1}, 1, v_{1}\right) \geqslant \operatorname{dim}_{\mathbf{F}_{p}} k_{1}>d(\tilde{H})(\mathrm{cf} . \quad$ the notation of n.3.1.3). Because $K_{1} \subset K(p)^{H}$ and $H \supset \Gamma(p)^{\left(v_{0}\right)}$, we have $v\left(K_{1} / K\right)<v_{0}$ and therefore, $\Gamma(p)^{\left(v_{0}\right)}=$ $\Gamma_{1}^{\left(\psi_{K_{1} / K}\left(v_{0}\right)\right)}$ (cf. proposition 1 of n.3.1.1). Because $v_{1} \leqslant \psi_{K_{1} / K}\left(v_{0}\right)$, we have $\Gamma_{1}^{i\left(\psi_{K_{1} / K}\left(v_{0}\right)\right)} \subset \Gamma_{1}^{\left(v_{1}\right)}$ and therefore, there exists the natural group epimorphism
4

$$
\widetilde{H}=H / \Gamma(p)^{\left(v_{0}\right)} \longrightarrow H / H \cap \Gamma_{1}^{\left(v_{1}\right)}=H_{1} / \Gamma_{1}^{\left(v_{1}\right)}:=\widetilde{H}_{1} .
$$

This gives $d(\widetilde{H}) \geqslant d\left(\widetilde{H}_{1}\right)$. So, we can apply the proposition 2 of n.3.1.3 to obtain the field extension K_{2} / K_{1} of relative degree p such that $K_{2} \subset K(p)^{H_{1}}$ and $v\left(K_{2} / K_{1}\right) \geq$ 1. Because $H_{1} \supset H$ we can take $K_{\alpha 0, n_{1}+1}=K_{2}$.
3.2.3. By the above arguments, we can consider the fields tower $K_{\alpha 0, n}, n \geqslant 0$, from n.3.2.1 such that the set $\left\{n \in \mathbb{Z}_{\geqslant 0} \mid v\left(K_{\alpha 0, n+1} / K_{\alpha 0, n}\right) \geqslant 1\right\}$ is infinite. Clearly, the properties $\psi_{K_{\alpha 0, n} / K}\left(v_{0}\right) \rightarrow+\infty$ and $e^{*}\left(K_{\alpha 0, n}\right) \rightarrow+\infty$ for $n \rightarrow \infty$ will imply the statement of our proposition.

We note first that if $v_{n}^{*}:=v\left(K_{\alpha 0, n+1} / K_{\alpha 0, n}\right)<1$, then $v_{n}^{*}=-1$, i.e. $K_{\alpha 0, n+1}$ is unramified over $K_{\alpha 0, n}$. In this case we have $\psi_{K_{\alpha 0, n+1} / K}=\psi_{K_{\alpha 0, n} / K}$ and $e^{*}\left(K_{\alpha 0, n+1}\right)=e^{*}\left(K_{\alpha 0, n}\right)$. If $v_{n}^{*} \geqslant 1$, then by the composition property of the Herbrandt function we have

$$
\psi_{K_{\alpha 0, n+1} / K}(x)= \begin{cases}\psi_{K_{\alpha 0, n} / K}(x), & \text { for } \psi_{K_{\alpha 0, n} / K}(x)<v_{n}^{*} \\ v_{n}^{*}+p\left(\psi_{K_{\alpha 0, n} / K}(x)-v_{n}^{*}\right), & \text { for } \psi_{K_{\alpha 0, n} / K}(x) \geqslant v_{n}^{*}\end{cases}
$$

and $e^{*}\left(K_{\alpha 0, n+1}\right)=p e^{*}\left(K_{\alpha 0, n}\right)$.
The property $e^{*}\left(K_{\alpha 0, n}\right) \rightarrow+\infty$ for $n \rightarrow \infty$, is obvious.
For any $n \in \mathbb{Z}_{\geqslant 0}$ by proposition 1 b) of n.3.1.1, we have

$$
\varphi_{K_{\alpha 0, n} / K}\left(v_{n}^{*}\right) \leqslant v\left(K_{\alpha 0, n+1} / K\right)<v_{0}
$$

Therefore, $v_{n}^{*}<\psi_{K_{\alpha 0, n} / K}\left(v_{0}\right)$. So, if we set $\psi_{n}=\psi_{K_{\alpha 0, n} / K}\left(v_{0}\right)$, then

$$
\psi_{n+1}= \begin{cases}\psi_{n}, & \text { if } v_{n}^{*}=-1 \\ v_{n}^{*}+p\left(\psi_{n}-v_{n}^{*}\right), & \text { if } v_{n}^{*} \geqslant 1\end{cases}
$$

Note that in the second case we have $v_{n}^{*} \in \mathbb{N}, v_{n}^{*}<\psi_{n}$ and $\psi_{n+1}>\psi_{n}$. Consider the strictly increasing sequence $\left\{\psi_{m}^{*}\right\}_{m \in \mathbf{N}}$ of all elements of the set $\left\{\psi_{n} \mid n \in \mathbb{Z} \geqslant 0\right\}$.

This sequence is infinite by the choice of the fields tower $K_{\alpha 0, n}, n \geqslant 0$ (cf. n.3.2.2), and it is sufficient to prove that $\psi_{m}^{*} \rightarrow+\infty$ if $m \rightarrow \infty$.

For $x \in \mathbb{R}$, set $\{\{x\}\}=\min \{x-n \mid n \in \mathbb{Z}, n<x\}$.
For any $m \in \mathbb{N}$, we have

$$
\psi_{m+1}^{*}-\psi_{m}^{*}=(p-1)\left(\psi_{m}^{*}-v_{n(m)}^{*}\right)
$$

where $n(m) \in \mathbb{Z}_{\geqslant 0}$ is such that $\psi_{m}^{*}=\psi_{n(m)}$ and $\psi_{m+1}^{*}=\psi_{n(m)+1}$. Therefore,

$$
\psi_{m+1}^{*}-\psi_{m}^{*} \geqslant(p-1)\left\{\left\{\psi_{m}^{*}\right\}\right\}
$$

for any $m \in \mathbb{N}$. So,

$$
\psi_{m}^{*} \geqslant(p-1) \sum_{1 \leqslant n<m}\left\{\left\{\psi_{n}^{*}\right\}\right\}=(p-1) \sum_{1 \leqslant n<m}\left\{\left\{p^{n-1} \psi_{1}^{*}\right\}\right\} \rightarrow+\infty,
$$

9
when $m \rightarrow \infty$. The proposition is proved.
3.3. The fields $K_{\alpha 1, n}$ and $L_{c 1, n}, n \geq 0$.
3.3.1. Consider the field $K_{\mathrm{ol} 1}$ given by proposition of n.3.2. Let

$$
v_{0}^{\prime}=\varphi_{K_{\alpha 1} / K}\left(\psi_{K_{\alpha 1} / K}\left(v_{0}\right)-1\right)
$$

and let

$$
v_{0}^{*}=\max \left\{v_{0}^{\prime}, v\left(K_{\alpha}^{\left(v_{0}\right)} / K\right), v\left(K_{\alpha 1} / K\right)\right\} .
$$

We note that $v_{0}^{*}<v_{0}$ and $\psi_{K_{\alpha 1} / K}\left(v_{0}^{*}\right)>C(\widetilde{H})$.
Proposition. There exists a fields tower

$$
K_{\alpha 1,0}:=K_{\alpha 1} \subset K_{\alpha 1,1} \subset \cdots \subset K_{\alpha 1, n} \subset \cdots
$$

where for all $n \in \mathbb{N}$ it holds
a) $\left[K_{\alpha 1, n}: K_{\alpha 1, n-1}\right]=p$ and $K_{\alpha 1, n} \subset K(p)^{H}$;
b) if $v^{(n)}=v\left(K_{\alpha 1, n} / K_{\alpha 1, n-1}\right)$ and $A_{n}=\min \left\{\psi_{K_{\alpha 1, n-1} / K}\left(v_{0}^{*}\right), e^{*}\left(K_{\alpha 1, n-1}\right)\right\}$, then $v^{(n)} \in\left(A_{n}-C(\widetilde{H}), A_{n}\right)$.
Proof. We use induction on n. Let $n_{0} \in \mathbb{N}$ and assume that such fields are constructed for $0 \leqslant n<n_{0}$. We note that for all $0<n \leqslant n_{0}$, we have $A_{n} \geqslant A_{1}>C(\widetilde{H})$ and therefore, the interval $\left(A_{n}-C(\widetilde{H}), A_{n}\right)$ contains at least $d(\widetilde{H})+1$ integers prime to p.

Set $K_{1}=K_{\alpha 1, n_{0}-1}$ and $H_{1}=H \Gamma_{1}^{\left(A_{n_{0}}\right)}$, where $\Gamma_{1}=\operatorname{Gal}\left(K(p) / K_{1}\right)$. If k_{1} is the residue field of $K_{1}, v_{1}=A_{n_{0}}$ and $v_{1}^{\prime}=\left[A_{n_{0}}-C(\widetilde{H})\right]+1$, then $v_{1}^{\prime} \geqslant 1$ and $\operatorname{dim}_{\mathbf{F}_{p}} V\left(k_{1}, v_{1}^{\prime}, v_{1}\right)>d(\tilde{H})$. As in n.3.2.2 we obtain now that $v\left(K_{1} / K\right)<v_{0}$, $\Gamma(p)^{\left(v_{0}\right)}=\Gamma_{1}^{\left(\psi_{K_{1} / K}\left(v_{0}\right)\right)} \subset \Gamma_{1}^{\left(A_{n_{0}}\right)}$ (because $\left.A_{n_{0}} \leqslant \psi_{K_{\alpha 1, n_{0}-1} / K}\left(v_{0}\right)\right)$, we have the natural group epimorphism

$$
\widetilde{H}=H / \Gamma(p)^{\left(v_{0}\right)} \longrightarrow H / H \cap \Gamma_{1}^{\left(A_{n_{0}}\right)}=H_{1} / \Gamma_{1}^{\left(A_{n_{0}}\right)}:=\widetilde{H}_{1}
$$

and therefore, $d(\widetilde{H}) \geqslant d\left(\widetilde{H}_{1}\right)$.
So, the proposition 2 of n.3.1.3 gives the extension K_{2} / K_{1} such that $\left[K_{2}: K_{1}\right]=$ $p, A_{n_{0}}>v\left(K_{2} / K_{1}\right) \geqslant v_{1}^{\prime}>A_{n_{0}}-C(\widetilde{H})$ and $K_{2} \subset K(p)^{H_{1}} \subset K(p)^{H}$.

Clearly, we can take $K_{2}=K_{\alpha 1, n_{0}}$. The proposition is proved.
3.3.2. Consider the fields tower $K_{\alpha 1, n}, n \geqslant 0$, from the above proposition. Set $L_{\alpha 1, n}=K_{\alpha}^{\left(v_{0}\right)} K_{\alpha 1, n}$ for all $n \in \mathbb{Z}_{\geqslant 0}$. Because $K(p)^{H}$ and $K_{\alpha}^{\left(v_{0}\right)}$ are linearly disjoint over K_{α}^{H}, we have for all $n \geq 0$ the natural isomorphism

$$
\widetilde{H}_{\alpha}=\operatorname{Gal}\left(K_{\alpha}^{\left(v_{0}\right)} / K_{\alpha}^{H}\right) \simeq \operatorname{Gal}\left(L_{\alpha 1, n} / K_{\alpha 1, n}\right)
$$

Proposition. If v_{0}^{*} is the real number from n.3.3.1, then for all $n \in \mathbb{Z} \geqslant 0$, we have $v\left(L_{\alpha 1, n} / K\right) \leqslant v_{0}^{*}$.

Proof. Because

$$
v\left(L_{\alpha 1, n} / K\right)=\max \left\{v\left(K_{\alpha}^{\left(v_{0}\right)} / K\right), v\left(K_{\alpha 1, n} / K\right)\right\}
$$

it is sufficient to prove that $v\left(K_{\alpha 1, n} / K\right) \leqslant v_{0}^{*}$.
We can assume by induction that $v\left(K_{\alpha 1, n-1} / K\right) \leqslant v_{0}^{*}$ for some $n \in \mathbb{N}$. Then

$$
v\left(K_{\alpha 1, n} / K\right)=\max \left\{v\left(K_{\alpha 1, n-1} / K\right), \varphi_{K_{\alpha 1, n-1} / K}\left(v^{(n)}\right)\right\}
$$

where $v^{(n)}=v\left(K_{\alpha 1, n} / K_{\alpha 1, n-1}\right)<A_{n} \leqslant \psi_{K_{\alpha 1, n-1} / K}\left(v_{0}^{*}\right)$ and therefore,

$$
\varphi_{K_{\alpha 1, n-1} / K}\left(v^{(n)}\right)<v_{0}^{*} .
$$

The proposition is proved.
3.3.3. In the above notation we have the following proposition.

Proposition. If $v_{n}=v\left(L_{\alpha 1, n} / K_{\alpha 1, n}\right)$ and $e_{n}=e\left(K_{\alpha 1, n} / K_{\alpha}^{H}\right)$, then

$$
\lim _{n \rightarrow \infty}\left(v_{n} / e_{n}\right)=0
$$

Proof. By the proposition 2 of n.3.1.1 we have

$$
v\left(L_{\alpha 1, n} / K_{\alpha 1, n}\right) \leqslant \psi_{K_{\alpha 1, n} / K_{\alpha 1,0}}\left(v\left(L_{\alpha 1,0} / K_{\alpha 1,0}\right)\right)
$$

and by proposition 1 b) of n . 3.1.1 it holds

$$
\varphi_{K_{\alpha 1,0} / K}\left(v\left(L_{\alpha 1,0} / K_{\alpha 1,0}\right)\right) \leqslant v\left(L_{\alpha 1,0} / K\right) \leqslant v_{0}^{*} .
$$

Therefore, $v\left(L_{\alpha 1, n} / K_{\alpha 1, n}\right) \leqslant \psi_{n}:=\psi_{K_{\alpha 1, n} / K}\left(v_{0}^{*}\right)$ and it is sufficient to prove that $\lim _{n \rightarrow \infty}\left(\psi_{n} / e_{n}\right)=0$.

Prove first that there exists $n_{0} \in \mathbb{Z} \geqslant 0$ such that $\psi_{n_{0}}<e^{*}\left(K_{\alpha 1, n_{0}}\right)$.

If such n_{0} does not exist we have for all $n \in \mathbb{Z}_{\geqslant 0}$, that $\psi_{n} \geqslant e^{*}\left(K_{\alpha 1, n}\right)=$ $p^{n} e^{*}\left(K_{\alpha 1,0}\right)$ and $A_{n+1}=e^{*}\left(K_{\alpha 1, n}\right)$. Therefore,

$$
\psi_{n+1}=\psi_{K_{\alpha 1, n+1} / K_{\alpha 1, n}}\left(\psi_{n}\right)=v^{(n+1)}+p\left(\psi_{n}-v^{(n+1)}\right)
$$

because $\psi_{n} \geqslant e^{*}\left(K_{\alpha 1, n}\right)$ and $v^{(n+1)}<A_{n+1}$. Using the inequalities $v^{(n+1)}>$ $A_{n+1}-C(\widetilde{H})$ we obtain for any $n \in \mathbb{Z}_{\geqslant 0}$, that

$$
\begin{gathered}
\psi_{n+1} \leqslant p^{n+1} \psi_{0}-\left(p^{n+1}-p^{n}\right)\left(e^{*}\left(K_{\alpha 1,0}\right)-C(\tilde{H})\right)-\cdots-(p-1)\left(e^{*}\left(K_{\alpha 1, n}\right)-C(\tilde{H})\right)= \\
p^{n+1}\left(\psi_{0}+C(\tilde{H})\left(1-p^{-n-1}\right)-(n+1) e^{*}\left(K_{\alpha 1,0}\right)\left(1-p^{-1}\right)\right)
\end{gathered}
$$

This gives the contradiction, because the right-hand side of the above equality tends to $-\infty$, if $n \rightarrow \infty$.
Let $n_{0} \in \mathbb{Z}_{\geqslant 0}$ be such that $\psi_{n_{0}}<e^{*}\left(K_{\alpha 1, n_{0}}\right)$. Then for any $n \geqslant n_{0}$, we have also $\psi_{n}<e^{*}\left(K_{\alpha 1, n}\right)$, because for any n, it holds

$$
\psi_{n+1}=\max \left\{\psi_{n}, v^{(n+1)}+p\left(\psi_{n}-v^{(n+1)}\right)\right\} \leqslant p \psi_{n}
$$

Prove that for any $n \geqslant n_{0}$,

$$
\begin{equation*}
\psi_{n+1}-\psi_{n}<(p-1) C(\tilde{H}) \tag{1}
\end{equation*}
$$

Indeed, if $\psi_{n} \leqslant v^{(n+1)}$, then

$$
\psi_{n+1}=\psi_{K_{\alpha 1, n+1} / K_{\alpha 1, n}}\left(\psi_{n}\right)=\psi_{n}
$$

and the inequality (1) holds. If $\psi_{n}>v^{(n+1)}$, then

$$
\psi_{n+1}=v^{(n+1)}+p\left(\psi_{n}-v^{(n+1)}\right)
$$

But $\psi_{n}=A_{n+1}, v^{(n+1)}>A_{n+1}-C(\widetilde{H})$ and

$$
\psi_{n+1}-\psi_{n}=(p-1)\left(\psi_{n}-v^{(n+1)}\right)<(p-1) C(\tilde{H})
$$

The inequality (1) is proved.
Therefore, for any $n \geqslant n_{0}$, we have

$$
\psi_{n_{0}} \leqslant \psi_{n}<(p-1) C(\widetilde{H})\left(n-n_{0}\right)+\psi_{n_{0}}
$$

and because $e_{n}=p^{n-n_{0}} e_{n_{0}}$, this implies obviously that $\psi_{n} / e_{n} \rightarrow 0$, if $n \rightarrow \infty$. The proposition is proved.

3.4. The fields $K_{\alpha 2, n}$ and $L_{\alpha 2, n}, n \geq 0$.

Proposition 1. There exists a tower of finite extensions of the field K_{α}^{H} in $K(p)^{H}$ of relative degree p

$$
K_{\alpha 2,0} \subset K_{\alpha 2,1} \subset \cdots \subset K_{\alpha 2, n} \subset \ldots
$$

such that if for $n \geq 0$ we set $L_{\alpha 2, n}=K_{\alpha 2, n} K_{\alpha}^{\left(v_{0}\right)}, v_{\alpha 2, n}=v\left(L_{\alpha 2, n} / K\right), v_{\alpha, n}=$ $v\left(L_{\alpha 2, n} / K_{\alpha 2, n}\right), v^{(n+1)}=v\left(K_{\alpha 2, n+1} / K_{\alpha 2, n}\right)$, and $e_{\alpha 2, n}=e\left(K_{\alpha 2, n} / K\right)$, then

$$
\begin{equation*}
v_{\alpha 2, n}+\frac{p}{(p-1) e_{\alpha 2, n}}\left(\frac{v_{\alpha, n}}{p-1}+C(\tilde{H})+1\right)<v_{0} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\frac{v_{\alpha, n}}{e_{\alpha 2,0}}+\frac{(p-1)(C(\tilde{H})+1)}{p e_{\alpha 2,0}} \leqslant 1 \tag{2}
\end{equation*}
$$

9

$$
\begin{equation*}
v^{(n+1)}>p v_{\alpha, n} /(p-1) . \tag{3}
\end{equation*}
$$

Proof. Consider the fields tower $K_{\alpha 1, n}, n \geqslant 0$, from n.3.3.1. The propositions of nn. 3.3.2 and 3.3.3 imply the existence of a sufficiently large $N_{1} \in \mathbb{N}$ such that if $K_{\alpha 2,0}:=K_{\alpha 1, N_{1}}$ then the properties (1) and (2) hold for $n=0$.

We use induction on $n \geq 0$. Assume that the fields $K_{\alpha 2, n}$ are constructed for all $n \leq N$, where $N \in \mathbb{Z}, N \geq 0$.

Lemma.

$$
\varphi_{K_{\alpha 2, N} / K}\left(\frac{p v_{\alpha, N}}{p-1}+C(\widetilde{H})+1\right)+\frac{1}{(p-1) e_{\alpha 2, N}}\left(\frac{v_{\alpha, N}}{p-1}+C(\widetilde{H})+1\right)<v_{0}
$$

Proof. Let $x=\max \left\{x\left(K_{\alpha 2, N} / K\right), v_{\alpha, N}\right\}$, then $\varphi_{K_{\alpha 2, N} / K}(x)=v_{\alpha 2, N}$, cf. proposition 1 b) of n.3.1.1.

If $p v_{\alpha, N} /(p-1)+C(\tilde{H})+1 \leqslant x$, then

$$
\varphi_{K_{\alpha 2, N} / K}\left(p v_{\alpha, N} /(p-1)+C(\tilde{H})+1\right) \leq \varphi_{K_{\alpha 2, N} / K}(x)=v_{\alpha 2, N} .
$$

If $p v_{\alpha, N} /(p-1)+C(\tilde{H})+1>x$, then

$$
\varphi_{K_{\alpha} 2, N} / K\left(\frac{p v_{\alpha, N}}{p-1}+C(\widetilde{H})+1\right)=\varphi_{K_{\alpha 2, N} / K}(x)+\frac{p v_{\alpha, N} /(p-1)+C(\widetilde{H})+1-x}{e_{\alpha 2, N}}
$$

(we use that if $x>x\left(K_{\alpha 2, N} / K\right)$, then $\left.\varphi_{K_{\alpha 2, N} / K}^{\prime}(x)=e_{\alpha 2, N}^{-1}\right)$

$$
\leqslant v_{\alpha 2, N}+\frac{1}{e_{\alpha 2, N}}\left(\frac{v_{\alpha, N}}{p-1}+C(\widetilde{H})+1\right)
$$

(this follows from the inequality $x \geq v_{\alpha, N}$).
In the both cases the inequality of our lemma is implied now by the property (1) for $n=N$.

The lemma is proved.
Set $K_{\alpha 2, N}=K_{1}, \Gamma_{1}=\operatorname{Gal}\left(K(p) / K_{1}\right)$ and $v_{1}=p v_{\alpha, N} /(p-1)+C(\tilde{H})+1$.
We note that the property (2) for $n=N$ gives that $v_{1} \leqslant e^{*}\left(K_{\alpha 2,0}\right) \leqslant e^{*}\left(K_{\alpha 2, N}\right)$. Because by the property (1) it holds $v\left(K_{1} / K\right)=v_{\alpha 2, N}<v_{0}$, we can apply the proposition 1 c) of n .3 .1 .1 and the inequality $\varphi_{K_{1} / K}\left(v_{1}\right)<v_{0}$ (cf. the above lemma) to obtain

$$
\Gamma(p)^{\left(v_{0}\right)}=\Gamma_{1}^{\left(\psi_{K_{1} / \kappa}\left(v_{0}\right)\right)} \subset \Gamma_{1}^{\left(v_{1}\right)}
$$

Therefore, if $H_{1}=H \Gamma_{1}^{\left(v_{1}\right)}$, then we have the natural group epimorphism

$$
\widetilde{H}=H / \Gamma(p)^{\left(v_{0}\right)} \longrightarrow H / H \cap \Gamma_{1}^{\left(v_{1}\right)}=H_{1} / \Gamma_{1}^{\left(v_{1}\right)}:=\widetilde{H}_{1},
$$

and therefore, $d\left(\widetilde{H}_{1}\right) \leqslant d(\widetilde{H})$.
Now we can apply the proposition 2 of $n .3 .1 .3$ with the above chosen K_{1}, v_{1}, H_{1} and $v_{1}^{\prime}=p v_{\alpha, N} /(p-1)+1$ to obtain the extension K_{2} of degree p over K_{1} such that $K_{2} \subset K(p)^{H_{1}} \subset K(p)^{H}$ and $v\left(K_{2} / K_{1}\right) \geqslant p v_{\alpha, N} /(p-1)+1$. If we set $\tilde{K}_{2}=K_{\alpha 2, N+1}$, then the property (3) is satisfied for $n=N$.

By the proposition 2 of n.3.1.1 we have the inequality $v_{\alpha, N+1} \leqslant \psi_{K_{2} / K_{1}}\left(v_{\alpha, N}\right)$. But $\psi_{K_{2} / K_{1}}\left(v_{\alpha, N}\right)=v_{\alpha, N}$, because $v_{\alpha, N}<p v_{\alpha_{1}, N} /(p-1)+1 \leqslant v\left(K_{2} / K_{1}\right)$. Therefore, $v_{\alpha, N+1} \leqslant v_{\alpha, N}$ and the property (2) holds for $n=N+1$.

Because $v\left(K_{2} / K_{1}\right)=v^{(N+1)} \geqslant p v_{\alpha, N} /(p-1)+1 \geqslant 1$, we have $e_{\alpha 2, N+1}=p e_{\alpha 2, N}$. By the above construction of the field $K_{\alpha 2, N+1}$ and the property 1 b) of n.3.1.1, we have

$$
v_{\alpha 2, N+1}=\max \left\{v_{\alpha 2, N}, \varphi_{K_{\alpha 2, N} / K}\left(v^{(N+1)}\right)\right\} .
$$

Therefore, the property (1) for $n=N+1$ follows from the inequality of the above lemma.

The proposition is proved.
We use the above construction to obtain the following proposition.
Proposition 2. For any $\alpha \in \mathcal{A}_{1}$, there exists a commutative diagram in the category of finite extensions of the field K :

$$
\begin{array}{ccccccccc}
K_{\alpha}^{H} & \subset & K_{\alpha 2,0} & \subset & \ldots & \subset & K_{\alpha 2, n} & \subset & \ldots \\
\cap & & \cap & & & & \cap & & \\
K_{\alpha}^{\left(v_{0}\right)} & \subset & L_{\alpha 2,0} & \subset & \ldots & \subset & L_{\alpha 2, n} & \subset & \ldots
\end{array}
$$

such that for any $n \in \mathbb{Z}_{\geqslant 0}$ it holds:
a) $K_{\alpha 2, n} \subset K(p)^{H}, L_{\alpha 2, n}=K_{\alpha}^{\left(v_{0}\right)} K_{\alpha 2, n}$ and the natural map

$$
\operatorname{Gal}\left(L_{\alpha 2, n} / K_{\alpha 2, n}\right) \longrightarrow \widetilde{H}_{\alpha}=\operatorname{Gal}\left(K_{\alpha}^{\left(v_{0}\right)} / K_{\alpha}^{H}\right)
$$

is an isomorphism;
b) $\left[K_{\alpha 2, n+1}: K_{\alpha 2, n}\right]=p$ and $v^{(n+1)}:=v\left(K_{\alpha 2, n+1} / K_{\alpha 2, n}\right)>p v_{\alpha, n} /(p-1)$, where $v_{\alpha, n}=v\left(L_{\alpha 2, n} / K_{\alpha 2, n}\right)$;
c) $v\left(L_{\alpha 2, n} / K_{\alpha 2,0}\right)<e^{*}\left(K_{\alpha 2,0}\right)$;
d) $v^{(n+1)} \leqslant v^{\left(N^{*}\right)}$ for some $N^{*} \in \mathbb{N}$, and $\varphi_{K_{\alpha 2, N^{*}-1 / K}\left(v^{\left(N^{*}\right)}\right)<v_{0} \text {. } ~}$

Proof. Consider the fields tower $K_{\alpha 2, n}, n \geqslant 0$, from the above proposition 1. Obviously, the statements a) and b) hold for this tower.

For any $n \in \mathbb{N}$, we have
$v^{(n)}=v\left(K_{\alpha 2, n} / K_{\alpha 2, n-1}\right)<p v_{\alpha, n} /(p-1)+C(\tilde{H})+1 \leqslant p \epsilon_{\alpha 2,0} /(p-1) \leqslant e^{*}\left(K_{\alpha 2,0}\right)$.
Applying the proposition 1 b) of $n .3 .1 .1$ we obtain that

$$
v\left(K_{\alpha 2, n} / K_{\alpha 2,0}\right) \leqslant \max \left\{v^{(m)} \mid 1 \leqslant m \leqslant n\right\}<e^{*}\left(K_{\alpha 2,0}\right)
$$

Because $v\left(L_{\alpha 2,0} / K_{\alpha 2,0}\right)=v_{\alpha, 0}<p v_{\alpha, 0} /(p-1)+C(\widetilde{H})+1<e^{*}\left(K_{\alpha 2,0}\right)$ and $L_{\alpha 2, n}=$ $L_{\alpha 2,0}{ }^{\prime} K_{\alpha 2, n}$ we obtain the statement c).

Because all $v^{(n)}$ belong to \mathbb{N} and are less than $p e_{\alpha 2,0} /(p-1)$, the set $\left\{v^{(n)} \mid n \in \mathbb{N}\right\}$ has the maximal element $v^{\left(N^{*}\right)}$, where $N^{*} \in \mathbb{N}$. By the proposition 1 b) of n.3.1.1 we have also

$$
\varphi_{K_{\alpha 2, N^{*}-1} / K}\left(v^{\left(N^{*}\right)}\right) \leqslant v\left(K_{\alpha 2, N^{*}} / K\right) \leqslant v_{\alpha 2, N^{*}}<v_{0} .
$$

The proposition is proved.
3.5. In this section we prove an auxiliary proposition in the case char $K=p$.

As earlier, $K \subset K_{1} \subset L_{1}$ is a tower of finite extensions in $K(p)$ and $v_{1}=$ $v\left(L_{1} / K_{1}\right) \geq 1$. Consider an extension K_{2} of degree p over K_{1} in $K(p)$ such that $v^{*}=v\left(K_{2} / K_{1}\right)>p v_{1} /(p-1)$.

Obviously, K_{2} and L_{1} are linearly disjoint over K_{1}. Therefore, if $L_{2}=L_{1} K_{2}$ then $\left[L_{2}: K_{2}\right]=\left[L_{1}: K_{1}\right]$. In fact, we have the following more strong statement:
Proposition. With the above notation and assumptions there exist field isomorphisms $f: K_{1} \longrightarrow K_{2}$ and $g: L_{1} \longrightarrow L_{2}$ such that $\left.g\right|_{K_{1}}=f$.

Proof. If E is one of the fields $K_{1}, K_{2}, L_{1}, L_{2}$, denote by O_{E} its valuation ring.
Lemma 1. There exist uniformizing elements t_{1} in K_{1} and t_{2} in K_{2} such that

$$
t_{1} \equiv t_{2}^{p} \bmod t_{2}^{p+v^{*}(p-1)} O_{K_{2}}
$$

Proof of lemma. If k_{1} is the residue field of K_{1} and t is its uniformiser, then $K_{1}=$ $k_{1}((t))$. By the Artin-Schreier theory, $K_{2}=K_{1}(T)$, where $T^{p}-T=a \in K_{1}$ and $a=\alpha t^{v^{*}}+($ higher terms $), \alpha \in k_{1}^{*}$.

Set $\alpha_{1}=\sigma^{-1}\left(\alpha^{-1}\right)$ (where σ is Frobenius) and $\alpha_{1} T=T_{1}$, then

$$
\begin{equation*}
T_{1}^{p}\left(1-\alpha_{1}^{\sigma-1} T_{1}^{1-p}\right)=t^{-v^{*}} \varepsilon \tag{*}
\end{equation*}
$$

where $\varepsilon \in k_{1}[[t]]$ is a principal unit.
Clearly, there exists a uniformizer t_{0} of K_{1} such that $t^{-v^{*}} \varepsilon=t_{0}^{-v^{*}}$. Now the relation (*) implies that $T_{1}=t_{2}^{-v^{*}}$, where t_{2} is a uniformizer of K_{2}, and can be rewritten in the following form

$$
t_{2}^{p}\left(1-\alpha_{1}^{\sigma-1} t_{2}^{v^{*}(p-1)}\right)^{-1 / v^{*}}=\beta t_{0}
$$

where $\beta \in k_{1}$ is such that $\beta^{v^{*}}=1$. This gives $t_{2}^{p} \equiv t_{1} \bmod t_{2}^{p+v^{*}(p-1)}$, where $t_{1}=\beta t_{0}$ is a uniformizer of K_{1}. The lemma is proved.

Let

$$
P=P(X)=X^{r}+\sum_{1 \leq i \leq r} a_{i} X^{r-i} \in O_{K_{1}}[X]
$$

be the characteristic polynomial of some generator of the valuation ring $O_{L_{1}}$ of the field L_{1} over the valuation ring $O_{K_{1}}$ of the field K_{1}.

The proof of the following statement can be found in [De].
Lemma 2. If $y \in K_{\text {sep }}$ is such that $v_{K_{1}}(P(y))>1+v_{1}$, then there exists $\theta \in K_{\text {sep }}$ such that $P(\theta)=0$ and $v_{K_{1}}(y-\theta)>v_{K_{1}}\left(y-\theta^{\prime}\right)$, where $\theta^{\prime} \in K_{\text {sep }}, \theta^{\prime} \neq \theta$, and $P\left(\theta^{\prime}\right)=0$.
Remark. If $\tau \in \operatorname{Gal}\left(K_{\text {sep }} / K_{1}\right) \subset \Gamma$ and $\tau y=y$, then $\tau \theta=\theta$. Therefore, $\theta \in K_{1}(y)$. We use uniformizing elements t_{1} and t_{2} from the lemma 1 for identifications $K_{1}=k_{1}\left(\left(t_{1}\right)\right)$ and $K_{2}=k_{1}\left(\left(t_{2}\right)\right)$ and define the isomorphism $f: K_{1} \longrightarrow K_{2}$ by the following conditions: $f\left(t_{1}\right)=t_{2}$ and $\left.f\right|_{k_{1}}=\sigma^{-1}$, where σ is Frobenius.

+ Consider the extension \widetilde{L}_{2} of K_{2} in $K(p)$ generated by some root θ_{2} of the polynomial

$$
f_{*} P=X^{r}+\sum_{1 \leq i \leq r} f\left(a_{i}\right) X^{r-i} \in O_{K_{2}}[X] .
$$

If θ_{2} is a root of $f_{*} P$ in $K(p)$, then

$$
P\left(\theta_{2}^{p}\right)=P\left(\theta_{2}^{p}\right)-\sigma\left(\left(f_{*} P\right)\left(\theta_{2}\right)\right)=\sum_{1 \leq i \leq r}\left(a_{i}\left(t_{1}\right)-a_{i}\left(t_{2}^{p}\right)\right) \theta_{2}^{p(r-i)}
$$

and by lemma 1

$$
v_{K_{1}}\left(P\left(\theta_{2}^{p}\right)\right) \geqslant \frac{1}{p}\left(p+v^{*}(p-1)\right)>1+v_{1} .
$$

Now lemma 2 gives the existence of $\theta \in K_{1}\left(\theta_{2}^{p}\right) \subset \widetilde{L}_{2}$ such that $P(\theta)=0$. Therefore, $L_{1} \subset \widetilde{L}_{2}, L_{1} K_{2}=\widetilde{L}_{2}$ and the correspondence $\theta \mapsto \theta_{2}$ gives the extension of f to the isomorphism $g: L_{1} \longrightarrow \widetilde{L}_{2}=L_{2}$.

The proposition is proved.
3.6. The fields $\mathcal{K}_{\alpha n}$ and $\mathcal{L}_{\alpha n}, n \geq 0$.

Assume first that char $K=0$.
In this case one can apply considerations of $n .3 .3$ to construct for the field $K_{\alpha 2,0}$ its infinite extension $\widetilde{K}_{\alpha 2,0}$ in $K_{\text {sep }}$, consider the complete discrete valuation field $\mathcal{K}_{\alpha 0}=\mathcal{X}_{K_{\alpha 2,0}}\left(\widetilde{K}_{\alpha 2,0}\right)$ of characteristic p, and the equivalence $\widetilde{\mathcal{X}}_{0}:=\widetilde{\mathcal{X}}_{\widetilde{K}_{\alpha 2,0}}$ of the category of algebraic extensions $L / K_{\alpha 2,0}$ such that $v\left(L / K_{\alpha 2,0}\right)<e^{*}\left(K_{\alpha 2,0}\right)$ and the category of separable extensions $\mathcal{L} / \mathcal{K}_{\alpha 2,0}$ such that $v\left(\mathcal{L} / \mathcal{K}_{\alpha 0}\right)<e^{*}\left(K_{\alpha 2,0}\right)$.

If $\widetilde{\mathcal{X}}_{0}\left(K_{\alpha 2, n}\right)=\mathcal{K}_{\alpha n}$ and $\widetilde{\mathcal{X}}_{0}\left(L_{\alpha 2, n}\right)=\mathcal{L}_{\alpha n}$ for $n \geq 0$, then we obtain the following commutative diagram of complete discrete valuation fields of characteristic p and their embeddings:

$$
\begin{array}{ccccccc}
\mathcal{K}_{\alpha 0} & \subset & \ldots & \subset & \mathcal{K}_{\alpha n} & \subset & \ldots \\
\cap & & & & \cap & & \\
\mathcal{L}_{\alpha 0} & \subset & \ldots & \subset & \mathcal{L}_{\alpha n} & \subset & \ldots
\end{array}
$$

such that for any $n \geq 0, \mathcal{L}_{\alpha n}=\mathcal{L}_{\alpha 0} \mathcal{K}_{\alpha n}$. Note that the functor $\widetilde{\mathcal{X}}_{0}$ induces the identifications

$$
\operatorname{Gal}\left(\mathcal{L}_{\alpha n} / \mathcal{K}_{\alpha n}\right)=\operatorname{Gal}\left(L_{\alpha 2, n} / K_{\alpha 2, n}\right) .
$$

Because the equivalence $\widetilde{\mathcal{X}}_{0}$ is compatible with ramification filtrations we have also for $n \geq 1$, that

$$
v\left(\mathcal{K}_{\alpha, n} / \mathcal{K}_{\alpha, n-1}\right)=v^{(n)}>p v_{\alpha, n-1} /(p-1)
$$

where $v_{\alpha, n-1}=v\left(\mathcal{L}_{\alpha, n-1} / \mathcal{K}_{\alpha, n-1}\right)$.
If the case char $K=p$ we have the same result by setting $\mathcal{K}_{\alpha n}=K_{\alpha 2, n}$ and $\mathcal{L}_{\alpha n}=L_{\alpha 2, n}$ for all $n \geq 0$.

With the above notation we obtain from the above proposition of $n .3 .5$ the following proposition.

Proposition. For $n \geq 0$ there exist field isomorphisms $i_{n}: \mathcal{K}_{\alpha 0} \longrightarrow \mathcal{K}_{\alpha n}$ and $j_{n}: \mathcal{L}_{\alpha 0} \longrightarrow \mathcal{L}_{\alpha n}$ such that $\left.j_{n}\right|_{\mathcal{K}_{\alpha 0}}=i_{n}$, i.e. j_{n} is a prolongation of i_{n}.
3.7. Because the Galois group of a maximal p-extension of the field $\mathcal{K}_{\alpha 0}$ is prop free and $d\left(\mathcal{G}_{\beta}\right)=d\left(\widetilde{H}_{\alpha}\right)$ (indeed, $d(\widetilde{H})=d(\mathcal{G}) \geqslant d\left(\mathcal{G}_{\beta}\right) \geqslant d\left(\widetilde{H}_{\alpha}\right)=d(\widetilde{H})$), there exists a Galois extension $\mathcal{F}_{\beta \alpha 0}$ of $\mathcal{K}_{\alpha 0}$ such that $\mathcal{F}_{\beta \alpha 0} \supset \mathcal{L}_{\alpha 0}$ and there exists a group isomorphism $\tilde{g}_{\beta \alpha 0}$ such that the following diagram is commutative:
$\left(*_{0}\right)$

where $\tilde{f}_{\alpha 0}$ is induced by identifications

$$
\widetilde{H}_{\alpha} \longrightarrow \operatorname{Gal}\left(L_{\alpha 2,0} / K_{\alpha 2,0}\right) \longrightarrow \operatorname{Gal}\left(\mathcal{L}_{\alpha 0} / \mathcal{K}_{\alpha 0}\right)
$$

and the right vertical arrow is the natural projection.
If $n \geq 0$, consider a prolongation of the isomorphism $j_{n}: \mathcal{L}_{\alpha 0} \longrightarrow \mathcal{L}_{\alpha n}$ from n.3.6 to an isomorphism of separable closures

$$
\bar{j}_{n}: \widetilde{\mathcal{X}}_{0}(\bar{K})=\mathcal{K}_{\alpha 0, \text { sep }} \longrightarrow \mathcal{K}_{\alpha n, \text { sep }}=\mathcal{K}_{\alpha 0, \text { sep }}
$$

and let $\mathcal{F}_{\beta \alpha n}=\bar{j}_{n}\left(\mathcal{F}_{\beta \alpha 0}\right)$.
Then $\mathcal{F}_{\beta \alpha n} \supset \mathcal{L}_{\alpha n} \supset \mathcal{K}_{\alpha n}$ and $v\left(\mathcal{F}_{\beta \alpha n} / \mathcal{K}_{\alpha n}\right)=v\left(\mathcal{F}_{\beta \alpha 0} / \mathcal{K}_{\alpha 0}\right)=v_{\beta \alpha 0}$ does not depend on n.

By the use of the above prolongations $\bar{j}_{n}, n \geqslant 0$, we obtain the following commutative diagrams:
$\left(*_{n}\right)$

where the right vertical arrow is the natural projection, $\tilde{g}_{\beta \alpha n}$ and $\tilde{f}_{\alpha n}$ are group isomorphisms.

Lemma. There exists $N_{1} \geq 0$ such that for $n \geq N_{1}$, we have

$$
v\left(\mathcal{F}_{\beta \alpha n} / \mathcal{K}_{\alpha 0}\right)<e^{*}\left(K_{\alpha 2,0}\right)
$$

Proof. If $n \geq 0$, then

$$
v\left(\mathcal{F}_{\beta \alpha n} / \mathcal{K}_{\alpha 0}\right)=\max \left\{v\left(\mathcal{K}_{\alpha n} / \mathcal{K}_{\alpha 0}\right), \varphi_{\mathcal{K}_{\alpha n} / \mathcal{K}_{\alpha 0}}\left(v_{\beta \alpha 0}\right)\right\}
$$

Clearly (cf. proposition 2 of n.3.4),

$$
v\left(\mathcal{K}_{\alpha n} / \mathcal{K}_{\alpha 0}\right)=v\left(K_{\alpha 2, n} / K_{\alpha 2,0}\right) \leqslant v\left(L_{\alpha 2, n} / K_{\alpha 2,0}\right)<e^{*}\left(K_{\alpha 2,0}\right)
$$

For all $n \in \mathbb{N}$, the natural number $N^{*} \in \mathbb{N}$ from n.3.4 and any $x \geqslant 0$, we have

$$
\varphi_{\mathcal{K}_{\alpha n} / \mathcal{K}_{\alpha, n-1}}(x) \leqslant \varphi^{*}(x)
$$

where

$$
\varphi^{*}(x)=\varphi \mathcal{K}_{\alpha, N^{*}} / \mathcal{K}_{\alpha, N^{*}-1}(x)= \begin{cases}x, & \text { for } 0 \leqslant x \leqslant v^{\left(N^{*}\right)} \\ v^{\left(N^{*}\right)}+\left(x-v^{\left(N^{*}\right)}\right) / p, & \text { for } x>v^{\left(N^{*}\right)}\end{cases}
$$

By the composition property, we have $\varphi_{\mathcal{K}_{\alpha n} / \mathcal{K}_{\alpha, 0}}\left(v_{\beta \alpha 0}\right) \leqslant \varphi^{*(n)}\left(v_{\beta \alpha 0}\right)$, where $\varphi^{*(n)}$ is the n-th iteration of the function φ^{*}. It is easy to see that:

1) if $v_{\beta \alpha 0} \leqslant v^{\left(N^{*}\right)}$, then $\varphi^{*(n)}\left(v_{\beta \alpha 0}\right) \leqslant v^{\left(N^{*}\right)}$;
2) if $v_{\beta \alpha 0}>v^{\left(N^{*}\right)}$, then $\varphi^{*(n)}\left(v_{\beta \alpha 0}\right) \underset{n \rightarrow \infty}{\longrightarrow} v^{\left(N^{*}\right)}$.

Because $v^{\left(N^{*}\right)}<e^{*}\left(K_{\alpha 2,0}\right)$ (cf. the beginning of the proof of proposition 2 of n.3.4), the above properties 1) and 2) imply the existence of $N_{1} \in \mathbb{N}$ such that

$$
\varphi^{*(n)}\left(v_{\beta \alpha 0}\right)<e^{*}\left(K_{\alpha 2,0}\right)
$$

for all $n \geqslant N_{1}$. Clearly, this gives the statement of our lemma.
3.8. If char $K=0$, then by the lemma of n.3.7, we can apply the inverse equivalence $\widetilde{\mathcal{X}}_{0}^{-1}$ to obtain the following commutative diagrams for all $n \geq N_{1}$ from the above diagrams $\left(*_{n}\right)$ of n.3.7:

where $\widetilde{\mathcal{X}}_{0}\left(F_{\beta \alpha n}\right)=\mathcal{F}_{\beta \alpha n}, f_{\alpha n}$ is the natural identification, $g_{\beta \alpha n}$ is a group isomorphism, and the vertical arrow is the natural projection.

The same result holds also in the characteristic p case, if we take identical functor instead of $\widetilde{\mathcal{X}}_{0}^{-1}$.

Lemma. There exists $N_{2} \geq N_{1}$ such that for all $n \geq N_{2}$, we have

$$
v\left(F_{\beta \alpha n} / K\right)<v_{0} .
$$

Proof. Let $N_{1}^{*}=\max \left\{N_{1}, N^{*}-1\right\}$.
If $n \geqslant N_{1}^{*}$, then

$$
v\left(F_{\beta \alpha n} / K\right)=\max \left\{v\left(K_{\alpha 2, N_{1}^{*}} / K\right), \varphi_{K_{\alpha 2, N_{i}^{*}} / K}\left(v\left(F_{\beta \alpha n} / K_{\alpha 2, N_{1}^{*}}\right)\right)\right\} .
$$

We know that $v\left(K_{\alpha 2, N_{i}} / K\right)<v_{0}$.
By proposition 1 b) of n.3.1.1, we have

$$
\hat{\psi}\left(F_{\beta \alpha n} / K_{\alpha 2, N_{i}^{*}}\right)=v\left(\mathcal{F}_{\beta \alpha n} / \mathcal{K}_{\alpha N_{i}^{*}}\right)=\max \left\{v\left(\mathcal{K}_{\alpha n} / \mathcal{K}_{\alpha N_{i}^{*}}\right), \varphi_{\mathcal{K}_{\alpha n} / \mathcal{K}_{\alpha N_{i}}}\left(v_{\beta \alpha 0}\right)\right\} .
$$

Clearly, for all $n \geqslant N_{1}^{*}$, we have $v\left(\mathcal{K}_{\alpha n} / \mathcal{K}_{\alpha N_{1}^{*}}\right) \leqslant v^{\left(N^{*}\right)}$. As in n.3.7, we obtain either

$$
\varphi_{\mathcal{K}_{\alpha n} / \mathcal{K}_{\alpha N_{i}^{*}}}\left(v_{\beta \alpha 0}\right) \leqslant v^{\left(N^{*}\right)}
$$

for all $n \geqslant N_{1}^{*}$, or

$$
\varphi_{\mathcal{K}_{\alpha n} / \mathcal{K}_{\alpha N_{1}^{*}}}\left(v_{\beta \alpha 0}\right) \underset{n \rightarrow \infty}{\longrightarrow} v^{\left(N^{*}\right)} .
$$

By the proposition 2 d) of n .3 .4 , we have $v^{\left(N^{*}\right)}<\psi_{K_{\alpha 2, N^{*}-1 / K}}\left(v_{0}\right)$ therefore, there exists $N_{2} \geqslant N_{1}^{*}$ such that for any $n \geqslant N_{2}$ one has

$$
\varphi \mathcal{K}_{\alpha n} / \mathcal{K}_{\alpha N_{1}^{*}}\left(v_{\beta \alpha 0}\right)<\psi_{K_{\alpha 2, N^{*}-1} / K}\left(v_{0}\right) .
$$

Therefore, for $n \geqslant N_{2}$ it holds

$$
v\left(F_{\beta \alpha n} / K_{\alpha 2, N^{*}}\right)<\psi_{K_{\alpha 2, N^{*}-1} / K}\left(v_{0}\right)
$$

and

$$
\begin{gathered}
\varphi_{K_{\alpha 2, N_{1}^{*}} / K}\left(v\left(F_{\beta \alpha n} / K_{\alpha 2, N_{i}^{*}}\right)\right)<\varphi_{K_{\alpha 2, N_{i}^{*}} / K}\left(\psi_{K_{\alpha 2, N^{*}-1} / K}\left(v_{0}\right)\right) \leqslant \\
\varphi_{K_{\alpha 2, N^{*}-1} / K}\left(\varphi_{K_{\alpha 2, N_{i}} / K_{\alpha 2, N^{*}-1}}\left(\psi_{K_{\alpha 2, N^{*}-1} / K}\left(v_{0}\right)\right)\right) \leqslant \\
\varphi_{K_{\alpha 2, N^{*}-1} / K}\left(\psi_{K_{\alpha 2, N^{*}-1} / K}\left(v_{0}\right)\right)=v_{0} .
\end{gathered}
$$

The lemma is proved.
3.9. Finally, we note that the statement of the main lemma is satisfied with $E_{\beta \alpha}=K_{\alpha 2, N_{2}}, E_{\beta \alpha}^{\prime}=L_{\alpha 2, N_{2}}, F_{\beta \alpha}=F_{\beta \alpha N_{2}}$ and the diagram ($*^{* N_{2}}$) of n.3.8. The main lemma is completely proved.

References

[Ab1] V.A.Abrashkin, Ramification filtration of the Galois group of a local field, Proceedings of the St. Petersburg Mathematical Society III. Amer. Math. Soc. Transl. Ser. 2, Vol. 166, Amer. Math. Soc., Providence, RI, 1995.
[Ab2] V.A. Abrashkin, Ramification filtration of the Galois group of a local field. II, Proceeding of Steklov Math. Inst. 208 (1995).
[Ab3] V.A.Abrashkin, Ramification filtration of the Galois group of a local field. III, Preprint MPI 96-103.
[De] P.Deligne, Les corps locaux de caracterisque p, limites de corps locaux de caracterisque 0 ., Representations des groups reductifs sur un corps local. Travaux en Cours., Paris:Hermann. 1984, p. 120-157.
[Go] N.L.Gordeev, Infinity of the number of relations in the Galois group of the maximal pextension of a local field with bounded ramification, Izvestia AN SSSR., Ser. Matem. 45 (1981), 592-607.
[Ma] E.Maus, Relationen in Verzweigungsgruppen, J. reine ang. Math. 258 (1973), 23-50.
[Se] J.-P. Serre, Corps locaux, Hermann, Paris, 1968.
[Wtb] J.-P. Wintenberger, Le corps des normes de certaines extensions infinies des corps locaux;
application, Ann. Sci. Ec. Norm. Super., IV. Ser 16 (1983), 59-89.
Steklov Math. Inst., Vavilova 42, Moscow 117 966, Russia
E-mail address: victor@abrvic.mian.su

Arbeitsgruppe "Algebraische Geometrie und Zahlentheorie", Jagerstr. 10/11, Berlin 10 117, Germany

E-mail address: abrvic@zahlen.ag-berlin.mpg.de

[^0]: The author expresses his deep gratitude for the hospitality to the Arbeitsgruppe "Algebraische Geometrie und Zahlentheorie" (Max-Planck-Gesellschaft, Berlin), where this paper was written.

