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On Complex Projective Hypersurfaces which are Homology- Pn’s‘

by Gottfried Barthel and Alexandru Dimca

Introduction. Taking into account the importance of the complex projective n-space
P, = P,(C) in algebraic geometry and topology, it is obvious that characterizing that.
space by algebro-geometric or topological properties always has been a matter of great
interest. Therefore, it is quite natural to investigate spaces that share some of these
properties. In this paper, we look for hypersurfaces in P,4; with normal or even isolated

singularities that have the integral homology of P, (where n > 2). Such hypersurfaces
will be called homology- Pa’s. Our main results are as follows:

Theorem 1. (Cohomology- P,’s are Hyperplanes.) Let V be a closed subvariety

of dimension dimV = n > 2 in some projective space Py which can be described by a

system of at most N —2 homogeneous polynomials. If the cohomology rings H*(V, Z) and
‘H’(Pn, Z) are isomorphic, then V is a linear subspace of P .

Actually, in the precise statement (see section 1 below), the condition on the cohomology
ring structure is slightly weakened. Note that the condition on the number of defining
equations is always satisfied for complete intersection varieties — and only for these in the
surface case n = 2. As the example of the Veronese surface V' C Py shows, that condition
is sharp, as V can be described by 4 quadratic forms.

Theorem 2. (Examples of Homology- P,’s with Isolated Singularities.) For
any dimension n > 2, degree d > 3, and integer a with 1 £ a < d — 1, we consider the
hypersurface V := V! ; : (fa,0 = 0) in P4, defined by
fa,0(20, 81,0, Ty Tag1) == 202{ T F Tz T+t Tz T
This hypersurface has isolated singularites and satisfies
(i) H(V,Q) = H.(P,,Q) for (a,d) = 1;
(ii) H,(V,Z) = H.(P,,Z) for (a,d) = (a,d—1) = 1.

The proof (in section 2) makes use of results from local singularity theory (monodromy
arguments) and provides examples for the following phenomena that may be of interest in
singularity theory and topology:
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(i) Examples of hypersurface singularities with one-dimensional singular locus and
having the monodromy operator equal to the identity (see section 2, Lemma 2 and Re-
mark). This contrasts the situation for isolated hypersurface singularities, as described by
A’Campo [-].

(ii) Examples of hypersurface singularity links in all dimensions > 3 which are integral
homology spheres (and hence topological spheres), but which are not associated to poly-
nomials of Pham-Brieskorn type (see section 2, Corollary 1). This contrasts the situation
in dimension 2 (see section 3, Appendix).

(iii) Examples of projective hypersurfaces in odd dimensions > 3 with (at most two)
isolated singularities which are topological manifolds (see section 2, Corollary 2). These
varieties have the integral homology and the rational homotopy type of P,, but are not
homotopy equivalent to P, (e.g., by Theorem 1). Again, this contrasts the situation in
dimension 2: By a famous result of Mumford [~], a surface with normal singularities (e.g.,
a two-dimensional hypersurface with isolated singularities) never is a topological manifold.

Note that the hypersurfaces V} ; admit a natural algebraic C*-action, as the affine
equations at (1: 0:0:...:0)and (0 :1:0:...:0) are weighted homogeneous. In
the case of surfaces (i.e., n = 2) with such a C*-action, there are no other examples of
homology planes (see section 3):

Theorem 3. (Classification of Homology- Py’s with C*-Action.) Let V be hy-
persurface in P3 of degree d > 3 which has the integral homology of P, and admits an
algebraic C*-action. Then V is (isomorphic to) V;*; C P3 for a unique integer a satisfying
l1€a<d—-1and(a,d-1)=(a,d)=1.

Examples of homology- P,’s in dimensions n > 3 with singular locus of positive
dimension can be obtained by more elementary methods than in the isolated singularity
case. Such examples will be presented in section 4 (see Theorem 4).

We mention that Theorem 1 in the hypersurface case and some of the examples in
Theorem 2 in the two-dimensional case (namely, the case a = 1, mildly disguised) have
already appeared in [ChDi].

It is a great pleasure for us to thank Ludger Kaup for his stimulating interest. In
particular, section 1 was strongly influenced by him through discussions with one of us.
Moreover, in sections 3 and 4, we closely follow ideas of earlier joint papers of his and the
first-named author. We think it quite appropriate to dedicate this paper to him on his
50t® birthday (with due delay).
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Both authors enjoy(ed) the hospitality of the “Max Planck -Institut fir Mathematik”
in Bonn—the second one during the time when this was written, the first one at some
earlier occasions. It is our pleasure to thank that institution, its members.and staff, and
in particular its director, F. Hirzebruch.

Notations and Conventions: Most of the varieties to be considered in the sequel
are—in suitable affine coordinates—defined by weighted homogeneous (or quasihomoge-
neous) polynomials. Recall that by definition, such a polynomial b(yo,yl, vy Ym) sat-
isfles an identity p(t%yo,t%¥1,...,t"ym) = t¥ - p(yo,¥1,-.-,¥m) for a suitable vector
q = (go,q1,--.,9qm) of integers ¢; and an integer N, the q-degree g-deg(p), so with respect
to the grading of the polynomial algebra Clyo,41,...,ym| given by g-deg(y;) = g;, it is a
homogeneous element of degree q-deg(p) = N. Note that the g;’s are not necessarily posi-
tive. We adopt here the convention to call the g;’s the weights. They are just the weights
of the C*-action on C™*! given by te(y0,¥1,--+,¥m) = (t%yo, t9y1,...,tImy,,) that is
associated to the grading. We always assume that the action is effective or, equivalently,
that the weight vector q is primitive, i.e., gcd{q,q1,...,qm) = 1. We sometimes call p a
q-homogeneous polynomial. The pair (q, g-deg(p)) is called the type of p.

Concerning the notion of “weight”, there are different conventions used in the liter-
ature, especially in the case of a strictly positive grading (i.e., all ¢; > 0, corresponding
to a “good” C*-action). In addition to those discussed in [TRCS: Ch. 7, §1], we mention
the one adopted by Milnor, Orlik, and some others, where the positive rational numbers
wj = q-deg(f)/q; are called weights. Instead, we will call these w; the coweights in the
sequel. To emphasize that we are in the case of a strictly positive grading, we sometintes

call a g-homogeneous polynomial positively weighted homogeneous.

1. Projective Varieties which are Cohomology- P,’s. In this section, we prove
the result mentioned in the introduction above: Cohomology- P,,’s are hyperplanes. The
actual—slightly more general—statement is as follows.

Theorem 1. Let V be a closed subvariety of dimension dimV = n > 2 in some projective
space P n which can be described by a system of at most N — 2 homogeneous polynomials.
If the cohomology group H*(V,Z) is generated (up to torsion) by a class u such that u™
generates H?™(V,Z), then V is a linear subspace of P y.

Proof. Denote with j : V < Py the inclusion mapping and with w € H%(Py) the
canonical generator. Then there is an integer & (w.l.o.g. a > 0) such that j*w = ou and
hence j*w™ = a™u™ holds in H*(V) (up to torsion) and in H2"(V), respectively. By a well
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known property of the degree (see, e.g., [PAG: pp. 171]), we have
(T V) = (W™, 5.[V]) = degV = a”

(where {...,...) denotes the usual pairing, sometimes called “Kronecker product”). In
order to show that a = 1, look at the exact cohomology sequence of the pair (P y,V):

H*(Py)— HY (V) - H}(Py,V).

By Lefschetz duality, the last group is isomorphic to Hay—3(Pnx\ V). As V can be defined
by at most N — 2 equations (f; = 0), the complex manifold Py \ V is the union of at most
N —2 affine open subsets (f; # 0) and hence is topologically (N — 3)-complete (see [FiKpy:
§1 and 2.3] for the definition and for the result). It follows from the theorem stated in
the introduction of [FiKpz] that Hony_3(Px \ V) has no torsion. By the exactness of the
sequence, j*w = au is a generator of H2(V). It follows that « = 1 and hence degV = 1. o

The notion of a topologically ¢g-complete space is modeled after the topological prop-
erties of analytically g-complete spaces. In fact, by a theorem of Hamm [}, an analytically
g-complete complex space of dimension n is of the homotopy type of a CW-complex of
(topological) dimension at most n + ¢. The topological completeness has a much nicer
behaviour and better permanence properfies with respect to standard operations; in par-
ticular, it is a homeomorphy invariant.

2. Projective Hypersurfaces with Isclated Singularities which are Homology-
P.,’s. In this section, we prove Theorem 2 as stated in the introduction. In order to
show that those hypersurfaces V = V2, : (faa = 0) in Pryy (with n > 2) of degree
d > 3 with isolated singularities have the integral homology of P, we first use duality and
monodromy arguments to check that they are rational homology- P,’s (see paragraphs
i)-iii)). In paragraph iv), we state conditions (in terms of Milnor lattices) for a rational
homology- P, with isolated singularities to be an integral homology- P,. Finally, using
results of Milnor, Orlik, and Randell on the monodromy of certain weighted homogeneous

singularities, we show in paragraphs v)-vii) that our examples satisfy these conditions.

i) We begin with a characterization of rational homology- P,’s in terms of the mon-

odromy operator of the defining equation. Let V : (f = 0) be a hypersurface of degree
d>2in Ppys. '

Lemma 1. The following statements are equivalent:
(Cz) HO(V, Q) = H-(Pna Q):
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(B) Let F : (f =1 = 0) ¢ C™? be the Milnor fibre associated to f, and let h% -

H ‘(F,Q) — H *(F,Q) be the monodromy operator. Then all eigenvalues of h} are
different from 1.

Proof. By a reasoning completely analoguous to that of section 1 (replacing Lefschetz by
Alexander), statement (a) is equivalent to the vanishing of H *(Pn+1\ V,Q). This affine
variety Po41 \ V is easily identified with the quotient F'//(hf) (where Ay : F — F is the
geometric monodromy): By the homogeneity of f, the group uq4 of d-th roots of unity acts
freely on F' by multiplication, and the orbit space is P,4; \ V. The action of the standard
generator ¢ := exp(27i/d) of ug on F C C"*? given by (zq,..-,Tns1) = ((Zo, ..., (Tns1)
is the geometric monodromy h¢. Hence, the cohomology under consideration is isomorphic

to H *(F,Q)"7, the fixed part under h%, and the latter is ker(id — A}), the eigenspace of
l.e

ii) To obtain polynomials f(zq,Z1,...,%n,Zn+1) satisfying property (8) above, we
consider first the homogeneous polynomial

i d— d—1 d—1
9 =0d,a(T0,Z1,...,2a) 1= 2gz] *+T125 + ...+ Tpo1Th

of degreed > 3 withn>2and 1<a<d-1.

Lemma 2. The monodromy operator h} associated ‘to g = gd,a is the identity operator if
a and d are coprime (i.e., if ged(a,d) =1).

Proof. We denote with G : (¢ — 1 = 0) the Milnor fibre of g in C**!. We will define a
C*-action on C™*! such that G is invariant and the geometric monodromy &, : G — G
is given by “multiplication” (with respect to that action) by some element \'€ C*. Since
C* is connected, this implies that k, is homotopy equivalent to the identity, thus proving
the lemma.

As g is homogeneous of degree d, the geometric monodromy takes the same nice form
ho(zoy..-12n) = ((Zq,...,{z,) with ( := exp(27i/d) as above. The C*-action will be
given by a vector q = (qo,...,qn) of integral weights ¢; = g-deg(z;). As G is invariant
under that action, q has to be chosen such that g is g-homogeneous with g-deg(g) = 0.
Hence, we have the condition

ag+(d—a)y = a+(d=1)gz = ... = a1 +(d—1)gn =0
which is clearly satisfied by taking ¢, = @, g1 = (1 = d)a, ..., @1 = (1 = d)*"'a and
go = (1—d)*~*(a—d). As a and d are coprime by assumption, we can find an integer b with
ab = 1(modd). Since all weights satisfy ¢; = a (mod d), the element A := exp(27ib/d) has
the required property that Ae(zg,...,2n) = hy(Zo,...,z,) as claimed at the beginning. e
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Remark. Note that the affine hypersurface (¢ = 0) in C™*! has a one-dimensional singular
locus. For isolated hypersurface singularities, the monodromy operator is the identity only

in the case of an odd-dimensional A,-singularity, as follows from the results of A’Campo
[~: Thme. 2.

iii) Using the polynomials ¢ = g4, from above, we now introduce the homogeneous
polynomials f := f4 , that define our hypersurfaces.

Lemma 3. Denote with f := f; , the polynomial

fd,a(IO’zl, S szn’zn+1) = gd,a($0:zla T ,zn) + x:-}-l

and with V := V? , the projective hypersurface (f = 0) in Ppyq. Then V is a rational
homology- P, i.e., we have H, (V] ;,Q) = H,(P,,Q), if a and d are coprime.

Proof. By Lemma 1, it suffices to show that all eigenvalues of the monodromy operator
h% are different from 1 (condition (8)). That follows from Lemma 2: By results of Oka
[-: Thm.1, Cor.2], the Milnor fibre F of f is homotopy equivalent to the join G * uy4
of the Milnor fibres of ¢ and z%_,, and the monodromy operator h} on H(F Q) =

(ﬁ'(G, Q)® I?‘(;.cd, Q)) is induced from the join of the geometric monodromies. Hence,
we have the equality A} = h; ® h'=¢+ ) (generalized Thom-Sebastiani Theorem). As
n+1l

hy = id}}o(c,Q) by Lemma 2 and all eigenvalues of hzzf,ﬂ) on H*(uq, Q) are different from

1, we are done. o

Remark. Any hypersurface V C P,4; that is a rational homology- P, also has the
same rational cohomology ring as P,, so in particular, rational Poincaré duality holds.
If V has isolated singularities, then it follows from L. Kaup’s long exact Poincaré duality
sequence (see the introduction in {Ka,]) that V is a rational homology manifold, i.e., all the
singularities of V' have links that are rational homology spheres (see also [Diz: Cor.(2.9)}).
Moreover, a rational homology- P, has the same rational homotopy type as P, as the
latter is determined by the rational cohomology ring (see [Bab: §2]).

iv) To show that we can actually obtain integral homology- P,’s among these vari-
eties V7 ; , we use results of (Di;]. For an arbitrary hypersurface V C Py with isolated
singularities, [~: Thm. 2.1] says that we get isomorphisms H;(V,Z) = H;(P,,2) & K; for
j =n,n+ 1, where K, denotes the cokernel and I(,.; the kernel of a natural lattice ho-
momorphism ¢y : ; L; — L associated to V C P,4.;. The source of this homomorphism
is the (orthogonal) direct sum of the Milnor lattices L; at the singular points of V; the
target is the reduced Milnor lattice L := L/Rad L of X, the affine cone associated to a
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smooth hyperplane section of V', at the origin. Recall that the Milnor lattice of an iso-
lated affine hypersurface singularity is the integral homology of the corresponding Milnor
fibre, endowed with the intersection form. It is symmetric if the dimension n is even, and
skew-symmetric if n is odd. Note that Hp41(V, Z) is torsion free (see [-: Cor. 2.3]). In the
case where V is a rational homology- P4, it clearly follows that ¢y is a monomorphism
and that its cokernel K, is a finite torsion group of order ([]; det L;) /det L. Note that
the target lattice L is unimodular if n is odd; if n is even, it has determinant +d (see [~:
Rem. 2.4 and Cor. 1.4, 1.5]). Hence, we state the following

Observation: Let V be a rational homology- P,. The following conditions are equivalent:
(a) V is an integral homology- P,; |
(8) the cokernel K, of the lattice homomorphism @y is trivial;
- +d ifn is even,
™) Hdet Li=det L= {:&1 if n is odd.

To check that condition () holds in suitable cases, we have to investigate the singular-
ities of our hypersurfaces V = V! ; more in detail. Denote with o; (fori =0,...,n+1) the
origin of the standard affine coordinate system (z; = 1) on P,4;. The affine equation for
V at ogis fo =zi7° +x1x§-‘ S RT Lt +z;‘,+1, so 0g is always an isolated singular
point. At o1, we have the affine equation f; = z§ +mg_l + :cgzg"l + ot Tag i+ gl
so 0y is a singular point if (and only if) @ > 1. It is easy to see that there are no other
singularities. Hence, condition (vy) takes the following form:

‘Condition: The product of the determinants of the Milnor lattices L; at o; is
1

det Lo - det Ly = { +d ifn is even,

+1 ifn is odd.

Note that both fy and f, are (positively) weighted homogeneous. The explicit weights
can be computed using the formulae given in the next paragraph.

v) Let p(vo,y1,-.-,Ym) be a positively weighted homogeneous polynomial that has an
isolated singularity at the origin. Essentially following Milnor and Orlik [—: §4], we define
the integers

&(p):=dim ker(I — A7), and p(p):=det(I] —h}).

(Actually, our p is the A(1) of Milnor and Orlik, so it agrees with their definition of p if it is
non-zero, the only case of interest.) Obviously, s(p) is the multiplicity of 1 as an eigenvalue
of the monodromy operator, so we have k =0 <= p # 0. Moreover, x(p) is the Betti
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number b,,—;(K) of the singularity link K := (p = 0) N $?™*1, and by one of Milnor’s
classical results [SPCH: Thm. 8.5], the latter is an integral homology sphere if (and only
if) p(p) = £1. Let L(p) denote the Milnor lattice. It follows from the relation between
the intersection form and the “variation operator” (or Seifert form—see Lamotke’s paper
[~: §6, Hauptsatz] or [SDM II: 2.5] for that relation) that +p(p) equals the determinant
det L(p) of the intersection form, so L(p)-is nondegenerate iff £ vanishes.

Now let p' be another positively weighted homogeneous polynomial with an isolated
singularity in a new set of variables. Then the sum p+ p' (sometimes denoted with p& p')
is again weighted homogeneous. (If p has type (q, N) and p’ has type (q¢', N'), then in the
case gcd(N,N') = 1 to be considered below, the type of p® p' is (N'q® N¢,N - N').)
According to Milnor and Orlik [~: §4, Lemma 3|, we have the following formula:

(1) &(p+p)=x(p)-x(p) and p(p+p')=p()*?) . p(p")*® if (N,N')=1
(with 0% :=1).

vi) To apply these formulae to the affine equations f; and f) in our case, we make use
of the following decomposition. For b > 2 and m > 1, denote with p := p; the polynomial

(2) Pb(yo,yla-u ,ym) = yg +yoy'11—1 +. '-+ym—lyg:1 .

Then we have
(3) fo =pi-a(z1,-..,%a) +$i+1 , and  fi =py1(z2,...,7n) + 25 + zlri:+1 .

The polynomial py introduced above belongs to the class of the weighted homogeneous
polynomials p = Pag,ay,...am (Y0, Y11+ -+ ¥m) = Y5 +Yoyi' ~ +.. A Ym—_1yar ! (with ag > 2

and m > 1) investigated by Orlik and Randell in [—: 2]. The type (q,N) of pa,,

k
j=0

R y0ee,0m

is easily expressed by means of the integers ry := [[;_, a; defined in that paper [-: p.
203]: With the alternating sum sy := Z;____l(—l)"‘jrj (=1 —Th1 +Tpp k... £1 =

(1)1 (1 —ag(l =—ay(...(1 —ag-1(1 —ag))...))) for k > 0and s_, =r_; = 1), we have

m
3 — .
N=r, and gp= Skt Tm = Sg—_1° H a; (fork=0,...,m).
Tk j=k+1
In the special case p = p, to consider (with ay = band a; = ... = a, = d—1), the explicit

values are ry = b(d — 1)* and s; = b- (d—'l)h“d_(_l)wl —(=1)* (for k =0,...,m), so the
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type (q,N) of py is given by gx = sg—q - (d —1)™ % and N = b(d — 1)™. Next, we can
apply the formula '

det(t- I —R2) = 6(8) = (t™ — 1) (t™* = 1)~} . ... (¢ = 1)("D7 L (gr=r _p(=D7

for the characteristic polynomial of the integral monodromy operator given by Orlik and

Randall [-: (2.12)]. That yields immediately the multiplicity x(p) of 1 as eigenvalue of the
monodromy operator, namely,

0 ifmis even
4 = ’
®) ~(p) { 1 if m is odd.

vi) In order to apply formula (1) from above to the decomposition (3) of fy and fy,
we need the values of « and p for the “remainder”. Simple direct computation yields

(5) "(Iﬁ+1) =0 and P($:+1) =d
as well as
(6) (2 +2041) =0 and p(zf+ony) =1 if ged(a,d)=1.

We now assume that the condition (a,d — 1) = (a,d) = 1 holds. This allows to apply
formula (1), as the respective degrees V and N’ are coprime. It follows immediately that
we have x(fo) = &(f1) = 0, so both local equations have nondegenerate Milnor lattices L;.
Using (6), the computation of p yields p(f1) =1, so L is always unimodular. By (4) and
(5), we get two different values for p( fy) = * det(Lg), according to the parity of n, namely

[}

d if n is even,

pfo) = { 1 if nis odd.

It follows that the condition of paragraph iv) is satisfied, so V = V}}, has the integral
homology of P,.

That completes the proof of Theorem 2 as stated in the introduction. e e

We mention explicitely the following consequences of the proof, as announced in the
introduction.

Corollary 1. Forn > 3,d > 3, and b > 2, consider the weighted homogeneous polynomials
b= fld'a and k= fzd,b given by

i -1 d—1 d-1 | d
haa(To,. yzn) =28 + 28 4228 4 F 2287t 28

I b d—1 d-1 d=1 d
hd,b(.’l’,‘o,...,.’zn) = IO+I0.T.'1 +$1.'1’.'2 +...+Iﬂ_2$n_1 +$n
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with an isolated singularity at the origin. The corresponding singularity links K and K
are (2n — 1)-dimensional homology spheres (and hence actually topological spheres) if the
following conditions hold:

for fzd,a: n is arbitrary, and a, d — 1, and d are pairwise coprime;

for fzd,b: n is odd, and b and d are coprime.

Proof. With the notations of (2), the polynomials are i‘ld'a =pi-1(z1,...,Tn-1) + 2§ + zd
and kg4 = py(Z0,..-,%n—1) + 2¢. The claim now follows from our computation of p, as
p = =1 implies that the link is a homology sphere (see [SPCH: Lemma 8.3]). — Note
that in general, these equations have fractional coweights, so they are not equivalent to
polynomials of Pham-Brieskorn type. Of course; the construction can be generalized to
yield more examples.

Corollary 2. If the dimensionn > 3 is odd and if the hypersurface V := V7, : (f4,0 = 0)
of the theorem is an integral homology- P,,, then it is a topological manifold. Forn = 3,
that manifold even admits a smooth structure.

Proof. By the previous corollary, the singularities are integral homology manifold points
and hence even topological manifold points. The smooth structure for n = 3 comes from
the non-existence of exotic spheres of (real) dimension 5: if the link K is a homology sphere,
than it is h-cobordant to S5 (see [KeMi:§1]). — Note that these topological manifolds are
not of the same homotopy type as P,, though they have the integral homology and the
rational homotopy type of P,.

3., Normal Homology Planes in P; with C*-action. Our examples V2 ; of homology-
P,’s with isolated singularities constructed in section 2 admit a natural algebraic C*-
action, as their affine equations fy and f; are both weighted homogeneous. Assuming the
existence of such an action, we can give a classification in the case of homology planes, i.e.,
in the two-dimensional case. It turns out that for degree d > 3, the only such surfaces are
our examples V' = V!,. For simplicity, we omit the dimension index n = 2 in this section
and just write V.

Theorem 3. Let V be a normal surface of degree d in P3 which has the same Z-homology
groups as P, (i.e., a homology plane) and which admits an algebraic C*-action. Then V
is one of the following surfaces.

(d=1) V = V; is the projective plane P,;

(d =2) V =V, is the quadratic cone (z? + y* + 22 = 0);

(d > 3) V = V£ for a positive integer a < d — 1 relatively prime to d — 1 and d.

These surfaces are pairwise non homeomorphic.
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Proof. As the quadratic cone is the only surface of degree d = 2 in P; satisfying the assump-
tions, we may restrict to the case d > 3. The C*-action on V is induced from an action on
the ambient space, so in a suitable system (z¢ : z; : z9 : z3) of homogeneous coordinates,
it is of the form tex := (zo : t%'z) : t9%2, : t93z;) for a triple q := (q¢1,¢2,¢3) of integral
weights with ¢; > ¢2 > ¢3 2 0 and ged(q1,92,93) = 1 (e.g., see [Barg: 1.1]). The corre-
sponding affine equation f(1,z,,;, z3) defining V' N(z¢ = 1) is g-(quasi-)homogeneous of
some g-degree N. It is easy to see {e.g., in {Barg: 1.4]) that, up to the only exeption of
the smooth quadric, every normal C*-surface in P; has an elliptic fixed point, i.e., a fixed
point that lies in the closure of every orbit passing through a suitable neighbourhood. By
taking that point as centre of the invariant affine chart (g = 1), we may assume ¢3 > 0
(up to reversing the action, i.e., replacing ¢ by t=?). Then the affine equation f is (posi-
tively) weighted homogeneous of type (q, V) (recall our conventions from the beginning),
and N > d. : '

We note first that this affine equation f is not homogeneous: Otherwise, V' would be
the cone over the smooth plane curve (zy = f = 0) of degree d and hence have the third
Betti number 5;(V) = (d — 1)(d — 2) strictly positive (as d > 2). The proof of the claim
is an easy consequence of the following lemma and Theorem 3A in the appendix to this
section.

Lemma. For a surface V as in Theorem 3, there is a system of homogeneous coordinates
(w:z:y:z) with the following properties:
a) The origin 0 := (1 :0:0: 0) of the affine chart (w = 1) is an elliptic fixed point of
the action;
b) the second integral local homology Hz o at o is trivial;
c) the curve at infinity Voo := V N (w = 0) is a projective line.

Now the second local homology group H; o at o is isomorphic to the first homology of the
corresponding singularity link K, so the latter is an integral homology sphere. Hence, by
Theorem 3A below, the affine equation in the chart (w = 1) of the lemma is z® +y®+2° = 0,
where the exponents a, b, ¢ are pairwise coprime. To complete the proof of the theorem,
we only have to observe that the affine surface defined by a polynomial of Pham-Brieskorn
type has a normal projective closure (i.e., isolated singularities at infinity) if and only if the
two highest exponents differ by at most 1. Assuminga < b < c=4d (wlo.g.) and d > 1,
we must thus have b = d — 1. It follows that V has the equation w%%z® + wy%™! 4+ z¢ =
fia(z,w,y,2) =0. o '

Proof of the Lemma. We may again restrict to the case d > 3. As the affine equation in the

coordinate system (zo = 1) chosen above is not homogeneous, we may apply the results of



G. Barthel, A. Dimca: Hypersurfaces which are Homology- P, ’s 12

[Bar,]. First, by [~: (3.5.4)(1)], we have b2(V') = b3(V') + b2(A) and hence b5(A) = 1 for the
curve A := V N (zp = 0), so A is irreducible. The argument preceeding [—:(3.5.5)] yields
that A is not only homeomorphic to a projective line, but that, interchanging the roles of
zo and z,; if necessary, we may even assume that A actually is a projective line. (Note
that the condition of {—: (2.3.1)] only concerns the affine singularities.) Then [~: (3.5.5)(i)]
yields Ho(V) = Z @ H2,0 and hence Hz o = 0 for the local homology at the affine origin,
so we have proved our claim.

Remark. 1t is easy to see that the surfaces V; of [ChD{| and our V}! are isomorphic. In fact,
after renaming the coordinates for P; so that Vy is defined by w1z 4+ w? + wy?~! + 24,
the linear transformation (w : 2z : y : z) = (w : z —w : y : z) takes Vy into V]. —
The fact that the surfaces V] have the integral homology of the projective plane has been
mentioned in {Bary: 2|.)

Appendix: Weighted Homogeneous Surface Singularity Links that are Homol-
ogy Spheres. In this appendix, we discuss a theorem from two-dimensional singularity
theory. Though a more general statement can be found in the literature, the result is

apparently not widely known. For that reason, the discussion has been included here.

. Theorem 3A. Let p(z,y,2) be a positively weighted homogeneous polynomial with an '
isolated singularity at the origin. Assume that the link K of the singularity is an integral
homology sphere. Then (up to scalar factors), we have p(z,y, z) = z° +y® + z°, where the
exponents a, b, ¢ (which agree with the coweights in that case) are pairwise coprime.

Proof. In the class of weighted homogeneous polynomials with integral coweights, the
result is a special case of Brieskorn’s characterization of homology spheres (see [Bri: 2,
Satz 1]). For a thorough discussion of that class of surface singularity links, we refer to
Milnor’s article {Mil]. To exclude the various classes of weighted homogeneous polynomials
with at least one fractional coweight, we give three arguments.

Maybe the simplest—but also the least illuminating—way is by checking that for
polynomials in these classes, the group H := H;(K) = H, o never vanishes. That group
can be computed using a general formula given by Orlik (see {-: 2.6, 3.3, 3.4]), which is
made explicit in our case as follows: Write the coweights w; of p(z,,z;,23) as reduced
fractions u;/v;. Then the rank x := b;(K) = by o of H is

K

Wy wa Wy w,-wj z W 1

= lem(uy, uq,us) - pry lem(uy, uj) U

k
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To compute the torsion subgroup T of H, introduce the numbers

w,—wi Wi

Kij = — - E'L +1
lem(ui, ;)  ui

and define integers ¢, ¢, and ¢;; by the factorization of the denominators u; as follows:
Let
_ ng(uJ'iuk) u

= .3 j =, d i o= X fi .‘y.,k=1!s
¢ = ged(uy,ug,u3), ¢ S and ¢ ceic; or {4,5,k}={1,2,3}

" (so u; = ccjckcix). Finally, introduce the integers
jCkCy 24

Ct = H ci;j for 1 <1< m:=max{si}.
xij 2l

Then the torsion subgroup is the direct sum of cyclic groups

T2Z/(ct1)BZ/(t)® ... BZ/(tm).

Explicit formulae in terms of the exponents of typical monomials for the different classes
of weighted homogeneous polynomials are listed in [TSCC: pp. 285-286].

The next approach is somewhat more conceptual—in fact, it shows the background
of the formulae above. For every weighted homogeneous surface V' in C® with an isolated
singularity, the link K = VN S2 = (V \ 0)/Rs, is a closed oriented three-dimensional
manifold with a fixed point free S*-action. As such, it has the structure of a Seifert fiber
space (see, e.g., Orlik’s Lecture Notes [SM]). It follows from Seifert’s computation of the
fundamental group [SM: 5.3] that if H,(K) vanishes, then necessarily, the genus g of the
“decomposition surface” K/S! & (V' \ 0)/C” vanishes, the number of exceptional orbits
is at least three (unless K = §% ie., V = C?), and their orders are pairwise coprime
(see [Sei: §12, Satz 12}, where such homology spheres are called “Poincarésche Raume”,
or [OrWay: p. 280]). Now all the exceptional orbits lie in the intersection of V' with the
coordinate hyperplanes (z; = 0). Orlik and Wagreich show in [-2: 3.5] how the orders
of such orbits and the numbers of orbits of a given order can be expressed explicitely in
terms of the type {q, V). From their results, it follows that for weighted homogeneous
polynomials with fractional coweights, the necessary condition for X to be a homology
sphere is never fulfilled.

The most satisfactory argument comes from a result of W. Neumann, and we are
grateful to him for pointing this out to us. If the genus of the decomposition surface
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K/S! vanishes, then the homology group H is a finite abelian group. There is a cor-
responding finite-sheeted unramified covering K’ of K, the “universal abelian covering”,
having H as group of decktransformations. This can be extended to a covering V' — V of
normal weighted homogeneous surfaces, ramified only at the fixed point. By Neumann’s
result [-: Thm.1], that universal abelian covering surface V' is always a complete intersec-
tion Vi, . an : (TN, Mijz® = 0)ja1,.. nv—2 defined by Pham-Brieskorn type polynomials,
where the integers a; are the orders and N is the number of the exceptional orbits of
V. If K is a homology sphere, then, of course, the covering is trivial, i.e., K = K' and
V = V'. Hence, if in the case V C C® under consideration, the link KX is a homology
sphere, then the defining polynomial is of Pham-Brieskorn type z%' + z2% + z2* = 0 and
there are exactly three exceptional orbits, so the exponents a; are pairwise coprime. — An
explicit (and earlier) reference for the characterization of Seifert fibred homology spheres
as complete intersections V,, ., with coprime exponents a; is Theorem 4.1 in the article
by Neumann and Raymond [-]. ‘

4. Homology of “Asymptotically Linear” Hypersurfaces in P,,, with C*-
Action and Examples of Homology- P,’s. In the two-dimensional case, the affine
equation of our examples V2, at oy is z§ + z3~! + 2§, so the leading form (i.e., the
homogeneous part of the highest degree d) is the d-th power of a ¢coordinate function. Ac-
cordingly, the corresponding (reduced) hyperplane section V N(z; = 0) “at infinity” is the
linear subspace (z; = z3 = 0). By the natural good C*-action, the affine part VN (z; = 1)
is contractible. Using singular duality theory, this decomposition into topologically sim-
ple pieces allowed to reduce the homology computation in section 3 to the study of the
singularity link at oy.

This observation leads to a rather straightforward generalization to the higher-dimen-
sional case. For £ = (zy,...,Zn41) (with n > 2), let p(z) be a weighted homogeneous
polynomial of degree d > 2 with an isolated singularity at the affine origin o € C**!
and assume that the leading form is p; = z2_; (up to a non-zero scalar factor). Denote
with p(zo,...,Tn+1) 1= z§ - p(z/z0) the (usual) homogenization of p and with V = V(p) :
(p = 0) C Ppy, the projective closure of the normal affine weighted homogeneous variety
U:(p=0)c C". The (reduced) part at infinity Voo := V\U = VN (zp = 0) is
the projective subvariety (py = 0) of the hyperplane (zo = 0) at infinity that is defined
by the leading form, so it is the linear subspace (zg = z,4+; = 0) = P,_;. (Its points
correspond to the asymptotic directions on U, hence the name “asymptotically linear”.)
The singularities at infinity are in general non-isolated. If the “sub-leading form” p;_, is
not divisible by z,4;, however, they have codimension at least two and are thus normal.
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The projective variety V is invariant under the C*-action on P4, given by te(zg : z; :
oo Tpgpr) = (T 1tz 1 ... t9%+ 2, 1) that extends the natural C*-action on C**! =
(zo = 1) corresponding to the weight vector q of p. The (co-)homology of these projective
hypersurfaces is determined by that of the the affine singularity link. The ring structure
is very similar to that of a hyperplane, i.e., of P,.

Theorem 4. For V as above, the integral cohomology is

H"(V)%{Hk(Pn) fork#n,n+1
H¥P.)® Hyn_t(K) fork=mn,n+1.

Here, K denotes the singularity link K := U N S*"*! at the affine origin o.

The cohomology ring structure is described by the homomorphism j* : H*(P,4,) —
H*(V) induced by inclusion:

o For k # 2n + 2, that mapping is injective. -

o Fork#n,n+1,2n,2n 4+ 2, it is an isomorphism.

¢ Fork =n,n+1, the subgroup j*(H¥*(P,4,)) has a direct complement, namely, ker(:* :
HY¥V) = H¥V,)) & Hyn—i(K), and all cup products with positive-dimensional
classes vanish on that complement.

e For k = 2n, the canonical generator w™ of H?"*(P,4.,) is mapped onto d - u,, where
un € H¥(V) is the canonical generator (dual to the fundamental class).

Complement. If the link K is a rational homology sphere, then V has the rational
cohomology ring and hence also the rational homotopy type of P,,.

That holds in particular for the homology- P,’s in our class, which are obtained in
the obvious manner:

Corollary. If the singularity link K := U N S?"*! at the affine origin o is an integral
homology sphere, the variety V has the integral homology of P .

To give two simple examples, note that K is an integral homology sphere if f is regular
at o or has integral coweights w; which are pairwise coprime. In the first case, the affine
variety V is isomorphic to C", and V is a singular compactification with P,_, as part at
infinity. In the second case, the polynomial p is of the Pham-Brieskora type p(z) = 5 a:;-‘”' .
Of course, there are much more such examples, e.g., those obtained by Pham-Brieskorn
type polynomials satisfying the conditions of [Bri: 2, Satz 1], or by modifying the results
of section 2, Corollary 1.
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Proof of Theorem 4. The result is a rather straightforward application of the “APL”
(Alexander-Poincaré-Lefschetz) type duality theory for singular varieties, as developped
by L. Kaup in his papers [-; 2], and of J. Milnor’s classical results on the topology of
hypersurface singularities in his book {SPCH]. Essentially, the proof follows the lines of
[BaKa: 3.5]. The affine part U = V'\ V;o is either smooth, or it has an isolated singularity
at the origin 0 of C™*!. Hence, the pair (V,Vy) is a “relative variety with isolated
singularities”, so relative (Lefschetz type) duality theory yields a long exact sequence

0— HI(V’ Voo) - H2n—l(U) - HQn—l,O - HZ(T'/, Voo) had Hzn_g(U) - ...
v Hopokd(U) = Hanekrr,0 = HYN(V, Vio) = Hon_i(U) — ...
. = Hl(U) — 7'{1,0 — Hzn(V, Vm) — Ho(U) — Ho,o -0

(see [Kay: Bsp. 2.1, p. 14]), where M, o is the I-th integral local homology at the affine
origin o. As U is contractible, that long exact sequence yields H*(V,V,,) = 0 and breaks
into isomorphisms H*(V, Vo) 2 Han—k+1,0 for 2 < k < 2n — 1. As the affine variety U
is locally near o (and even globally) isomorphic to the open real cone over the singularity
link K, there is an isomorphism H; o = H;_;(K). By [SPCH: Thm. 5.2, p. 45|, an n-
dimensional hypersurface singularity link is (n — 2)-connected, so the homology groups
Hi 0 = Hi_y(K) vanish for | # n,n + 1,2n. It follows that H*(V,V.,) vanishes for all &
with2<k<2n—1landk #n,n+1.

We now consider the long exact cohomology sequence
= BV, Vo) D HH(V) 5 B (Vio) 5 MYV, Vi) — .

of the pair (V, V). The part at infinity Vo := V N (29 = 0) is the linear subspace
(zo = zp41 = 0) 2 P, ;. It follows that the composed map i¥5% : H¥(P,,,) —» H*(V) —
H*(Vy) is an isomorphism of free cyclic groups in all even dimensions & < 2n, whereas
H*(V,) vanishes in all other cases. In particular, the homomorphism i* : H¥(V) —
H¥(V,,) is always split surjective, so the exact cohomology sequence breaks into split
short exact sequences

0= HYV,Vy) = HYV) = HYV,) = 0.

Now the result on the cohomology group structure and on the homomorphism j* follows
easily. .

To prove the vanishing of “higher” cup products on ker (¥ : H¥(V) — H*(Vy)) =
im(rf : H*(V, V) — H¥(V)) for k = n,n + 1, we use again singular duality theory: By
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[Kay: Thm. 2.1, p. 10], the long exact sequences of (V, V) in cohomology and of (V U)
in homology are joined to a “ladder”, i.e., there is a commutative diagram

.— H¥V,Vy,) — HKV) — H* (V) —_— ..

l

= Hont(U) — Honk(V) — Heyk(VVU) — ...

where the vertical arrows are singular duality homomorphisms. Hence, by the contractibil-
ity of U, the image of H¥(V,V,) lies in the kernel of the “absolute” Poincaré duality
homomorphism H*¥(V) — Hyp—(V). That homomorphism is nothing but the cap prod-
uct with the fundamental homology class (see {[BaKa: 2.5]). With the standard relations
between cup and cap product, that proves the result.

The complement is just a restatement of the remark in section 2, paragraph iii). e

Remarks. (i) Most of the results on the {co-)homology of the varieties V are already
contained in [Kagp: Kor. 3.6, 3.7, pp. 502/503] as special case: put » = 0 and interchange
the roles of zy and z,4;. Note that the variety ¢ F},~; occuring there is just P,_;.

(i) It is immediate to see that for 0 < 2k < 2n, the Poincaré duality homomorphism
maps j2*w* onto d-izn—2kln—k, where I, € H2m(Voo) is the canonical generator represented
by {Pm]: With m := n — k, one has jou(j2¥w N [V]) = W N[Vl = wfNd -1, =
Jamizm{d - {n). To see that the image of the Poincaré homomorphism lies in the image of
tam—wherefore the restriction of j3,, to the image is injective—, one uses the analoguous
“ladder” to the one above where the roles of U and V,, are changed.—In the general duality
theory of [Ka1], one has to be careful about supports. If no supports are explicitely noted,
compact supports are understood in homology and closed supports in cohomology. As

these two families agree on the compact varieties V' and V,, there is no problem in our
case.
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