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INTRODUCTION

Let G be a connected reductive algebraic group with Lie algebra g. The ground field k is
algebraically closed and of characteristic zero. Fundamental results in invariant theory of
the adjoint representation of G are primarily associated with C. Chevalley and B. Kostant.
Especially, one should distinguish the ”Chevalley restriction theorem” and seminal article
of Kostant [5]. Later, Kostant and Rallis extended these results to the isotropy representa-
tion of a symmetric variety [6]. In 1975, E.B. Vinberg came up with the theory of θ-groups.
This theory generalises and presents in the most natural form invariant-theoretic results
previously known for the adjoint representation and isotropy representations of the sym-
metric varieties.

Let us remind the main construction and results of Vinberg’s article [15]. Let θ ∈ Aut(g)

be a periodic (= finite order) automorphism of g. The order of θ is denoted by |θ|. Fix a
primitive root of unity ζ = |θ|

√
1 and consider the periodic grading (or Z|θ|-grading)

g =
⊕

i∈Z|θ|

gi ,

where gi is the ζ i-eigenspace of θ. In particular, g0 = gθ is the fixed point subalgebra
for θ. Let G0 be the connected subgroup of G with Lie algebra g0. The restriction of the
adjoint representation yields the natural homomorphism G0 → GL(g1). The linear groups
obtained in this way are called θ-groups, and the point is that they have the best possible
invariant-theoretic properties:

• k[g1]
G0 is a polynomial algebra;

• the quotient morphism π : g1 → g1//G0 = Spec(k[g1]
G0) is flat;

• each fibre of π contains finitely many G0-orbits.

It is a natural problem to extend Vinberg’s theory to a more general setting. There can be
several possible ways for doing so. Here are at least two of them:

(a) Determine and investigate a wider class of Lie algebras such that their periodic
automorphisms lead to representations with similar invariant-theoretic properties.
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2 D. PANYUSHEV

(b) Given (g, θ) as above, construct a non-reductive Lie algebra with good invariant-
theoretic properties, using {gi} as building blocks.

These two ways are not mutually exclusive, but in this article we deal with (a). Our
class of Lie algebras consists of Takiff algebras modelled on reductive ones. Although
considerable part of the theory can be developed for arbitrary Takiff algebras, substantial
applications are related to the reductive case.

For a Lie algebra q and m ∈ N, let q〈m〉 denote the Takiff algebra modelled on q. It
is an N-graded Lie algebra of dimension m dim q, with nonzero components of degrees
0, 1, . . . , m−1. (See Section 1 for precise definitions.) Our initial observation is that any
periodic θ ∈ Aut(q) gives rise to an automorphism of q〈m〉 of the same order, denoted θ̂.
The fixed point subalgebra of θ̂, q〈m〉bθ, is a “mixture” of eigenspaces of θ, i.e., its com-
ponent of degree i equals qi, i = 0, 1, . . . , m − 1. Then we consider the representations
of q〈m〉bθ = q〈m〉0 in eigenspaces of θ̂. If q is quadratic (i.e., q ' q∗), then the coadjoint
representation of q〈m〉0 also occurs in this way. Our ultimate goal is to describe several in-
stances in which the algebras of invariants for (q〈m〉0, ad) and (q〈m〉0, ad∗) are polynomial.
(If the explicit formula for q is bulky, then we write Inv(q, ad) (resp. Inv(q, ad∗)) in place of
k[q]q (resp. S(q)q).) Another observation is that, for special values of m, q〈m〉0 is a contrac-
tion of a direct sum of Lie algebras. Namely, q〈n|θ|〉0 is a contraction of nq := q u . . . u q

and q〈n|θ| + 1〉0 is a contraction of nq u q0. These are examples of the so-called quasi-
graded contractions, and for such contractions we establish a rather explicit connection
between invariants of two Lie algebras. For instance, starting from k[nq]nq, we construct
an explicit subalgebra of Inv(q〈nk〉0, ad), denoted L•(k[nq]nq). The graded algebras k[q]q

and L•(k[nq]nq) have the same Poincaré series. The similar subalgebra for the coadjoint
representation is denoted by L•(S(nq)nq).

For q = g reductive, we deal with contractions of reductive algebras and therefore the
theory of θ-groups is also at our disposal. Our main result is

Theorem 0.1. Let θ be a periodic automorphism of g, Oreg the regular nilpotent G-orbit in g, and
n ∈ N arbitrary. Set k = |θ|.

(i) Suppose θ has the property that g0 ∩ Oreg 6= ∅. Then
– L•(k[ng]ng) = Inv(g〈nk〉0, ad) and Inv(g〈nk〉0, ad) is a polynomial algebra of Krull

dimension n·rk g.
– L•(k[ng u g0]

ngug0) = Inv(g〈nk + 1〉0, ad) and Inv(g〈nk + 1〉0, ad) is a polynomial
algebra of Krull dimension n·rk g + rk g0.

(ii) Suppose θ has the property that g1 contains regular semisimple elements of g and Oreg

meets every irreducible component of the nilpotent cone in g1. Then L•(S(ng)ng) =

Inv(g〈nk〉0, ad∗) and Inv(g〈nk〉0, ad∗) is a polynomial algebra of Krull dimension n·rk g.
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The proofs of two parts of this theorem exploit different ideas. Note that g〈nk + 1〉0 is
quadratic and g〈nk〉∗0 ' g〈nk〉1. In particular, in part (ii) we describe the invariants for the
g〈nk〉0-module g〈nk〉1.

The paper is organised as follows. Sections 1 contains generalities on quadratic and
Takiff algebras and on Lie algebra contractions. In Section 2, we introduce quasi-gradings
of Lie algebras and corresponding contractions. We provide a useful construction of
quasi-gradings and study the behaviour of invariants. In Section 3, we consider peri-
odic automorphisms of Takiff algebras and their connection with quasi-graded contrac-
tions. Section 4 is devoted to the proof of Theorem 0.1(i), and in Section 5 we prove The-
orem 0.1(ii). Sections 4 and 5 also contain a number of examples of θ-groups that satisfy
the assumptions of Theorem 0.1. In Section 6, we discuss open problems and directions
for related investigations.

Notation. The nilpotent radical of a Lie algebra q is denoted by Ru(q). The unipotent
radical of an algebraic group Q is Ru(Q). A direct sum of Lie algebras is denoted with u.

Acknowledgements. This work was started during my stay at the Max-Planck-Institut für
Mathematik (Bonn) in Spring 2007. I am grateful to this institution for warm hospitality and

support.

1. PRELIMINARIES

1.1. Quadratic Lie algebras. A Lie algebra q is called quadratic, if there is a q-invariant
symmetric non-degenerate bilinear form on q. Such a form is said to be a scalar product on
q. If B is a scalar product on q, we also say that (q, B) is quadratic.

Suppose that (q, B) is quadratic and θ ∈ Aut(q) is of order k. Assume that B is a an
eigenvector of θ, i.e., B(θ(x), θ(y)) = ζ cB(x, y) for all x, y ∈ q and some c ∈ Zk. Then
B(qi, qj) = 0 unless i + j = c (the equality in Zk). It follows that the dual q0-module for
qi is qc−i. Thus, q0 is not necessarily quadratic unless ζ c = 1. However, we have a weaker
property that the set of q0-modules {qi} is closed with respect to taking duals.

If q is reductive, then B can always be chosen to be θ-invariant, hence c = 0 and q∗
i ' q−i

for all i ∈ Zk. Actually, q0 is again reductive here.

1.2. Generalised Takiff algebras [14]. Let Q be a connected algebraic group with Lie
algebra q. The infinite-dimensional k-vector space q∞ := q ⊗ k[T] has a natural structure
of a graded Lie algebra such that [x⊗Tl, y⊗Tk] = [x, y]⊗Tl+k. Then q>(m) =

⊕

j>m

q⊗Tj is

an ideal of q∞, and q∞/q>(m) is a (generalised) Takiff algebra (modelled on q), denoted q〈m〉.
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Write Q〈m〉 for the corresponding connected algebraic group. Clearly, q〈m〉 is N-graded
and dim q〈m〉 = m dim q. An alternate notation for q〈m〉 used below is

q n q n . . . n q (m factors),

where the consecutive factors from the left to right comes from the subspaces q ⊗ T i,
i = 0, 1, . . . , m − 1. In particular, q〈2〉 = q n q is the usual semi-direct product. The image
of q ⊗ T i in q n q n . . . n q is sometimes denoted by q[i]. We may (and will) represent the
elements of q〈m〉 as vectors:

~x = (x0, x1, . . . , xm−1), where xi ∈ q[i].

Recall that S(q) is the symmetric algebra of q over k and k[q] = S(q∗). For reductive g,
g[0] is a Levi subalgebra of g〈m〉 and Ru(g〈m〉) = 0 n g n · · · n g. It is shown in [14] that
k[g〈m〉]g〈m〉 = k[g〈m〉]G〈m〉 is polynomial. More precisely, there is an explicit procedure for
constructing elements of k[g〈m〉]g〈m〉 from those of k[g]g, which enables us to prove the
polynomiality. The semisimple case with m = 2 was considered by Takiff in 1971. In [11,
Sect. 11], we extend results of [14] to more general Lie algebras and prove that the algebra
k[g〈m〉]Ru(G〈m〉) is also polynomial.

1.3. Contractions. We only consider Lie algebra contractions of the following form. Let
ct : q → q, t ∈ k

×, be a polynomial linear action of k
× on q. That is, c1 = id, ct′ct′′ = ct′t′′ ,

and the matrix entries of ct are polynomials in t. Define the new Lie algebra structure on
the vector space q by

(1.1) [x, y](t) := c−1
t [ct(x), ct(y)].

The corresponding Lie algebra is denoted by q(t). Then q(1) = q and all these algebras are
isomorphic. If limt→0[x, y](t) exists for all x, y ∈ q, then we obtain a new Lie algebra, say s,
which is a contraction of q. To express this fact, we write limt→0 q(t) = s or merely q ; s.
We identify q and s as vector spaces.

There is a relation between invariants of q and s. Let k[q]m ' k[q(t)]m ' k[s]m be the
space of polynomials of degree m and k[q(t)]

q(t)
m the subspace of invariants of the ad-

joint representation of q(t). Then dim k[q(t)]
q(t)
m does not depend on t ∈ k

×. Therefore
limt→0 k[q(t)]

q(t)
m exists in the appropriate Grassmannian and is clearly contained in k[s]sm.

Gathering together components of all degrees, we obtain the subalgebra

lim
t→0

(k[q(t)]
q(t)) ⊂ k[s]s.

It can be described more explicitly, as follows. For F ∈ k[q]qm, set F(t)(x) = F (ct(x)) and
expand F(t) =

∑b

j=a Fj·tj with Fa 6= 0 and Fb 6= 0. We say that Fa (resp. Fb) is the initial
(resp. highest) component for F and write F• (resp. F •) for it. Set L•(k[q]qm) = {F• | F ∈
k[q]qm}.
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Proposition 1.1. Given F ∈ k[q]qm, we have

(i) F(t) ∈ k[q(t)]
q(t)
m for any t ∈ k

×;
(ii) F• ∈ (limt→0 k[q(t)]

q(t)
m ) ⊂ k[s]sm;

(iii) limt→0 k[q(t)]
q(t)
m = L•(k[q]qm).

Proof. (i) Consider the representation of q in k[q]. Let e ∗ (?) denote the operator corre-
sponding to e ∈ q. Then F ∈ k[q]q if and only if e∗F = 0 for any e ∈ q. The corresponding
operator for e ∈ q(t) is denoted by e ∗(t) (?). Note that ct : q → q can be regarded as
isomorphism of Lie algebras q and q(t). Therefore (e ∗(t) F(t))(x) = (ct(e) ∗F )(ct(x)), which
yields the assertion.

(ii) Consider F(t) as a curve in the projectivisation of k[q]m. Then limt→0 F(t) = F•.

(iii) The inclusion ”⊃” is already proved. Hence it suffices to show that dim k[q]qm =

dim L•(k[q]qm). Consider the finite ascending filtration F• of k[q]qm:

k[q]qm = F0 ⊃ · · · ⊃ Fj ⊃ . . . ,

where

Fj := {F ∈ k[q]qm | F(t) =
∑

j>i

Fjt
j}.

Let FN be the last nonzero term of F•. Set Gr(k[q]qm) =
⊕N

i=0 Fi/Fi+1. Then dim k[q]qm =

dim Gr(k[q]qm), and for each i there is a natural linear mapping ϕi : Fi/Fi+1 → L•(k[q]qm),
F + Fi+1 7→ F•. Clearly, each ϕi is injective. Furthermore, ϕi(Fi/Fi+1) consists of poly-
nomials of weight (−i) with respect to the induced action of k

× in k[q]m. Hence, the
subspaces ϕi(Fi/Fi+1) are linearly independent. �

Similar results hold for coadjoint representations and algebras of invariants S(q(t))
q(t). The

only notable difference is that for F ∈ S(q)q one have to take the highest component F •.

2. QUASI-GRADED CONTRACTIONS AND INVARIANTS

A Lie algebra (q, [ , ]) is said to be quasi-graded if there is a vector space decomposition
q =

⊕k−1
i=0 qi such that [qi, qj] ⊂ qi+j whenever i + j 6 k − 1. There are no conditions

on [qi, qj] if i + j > k. The family of subspaces Γ = {qi}k−1
i=0 is said to form a quasi-graded

structure (of order k) on q. Define the new Lie algebra structure, [ , ]Γ, on the vector space

q as follows: for xi ∈ qi, we set [xi, xj]Γ :=





[xi, xj], if i+j 6 k−1;

0, if i+j > k.
. The resulting

N-graded Lie algebra is denoted by CΓ(q) or q0 n q1 n . . . n qk−1. It is a contraction of q
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in the sense of Subsection 1.3. Indeed, for t ∈ k
×, define linear operators ct : q → q by

ct|qi
= ti·id and define q(t) as above. Then

[xi, xj](t) =





[xi, xj], if i+j 6 k−1;

t·(a polynomial expression in t), if i+j > k.

It follows that limt→0 q(t) = CΓ(q). The passage q ; CΓ(q) as well as CΓ(q) itself is called
the Γ-contraction or a quasi-graded contraction of q. We identify q and CΓ(q) as graded vector
spaces.

Example 2.1. Here we provide important examples of quasi-graded structures.

1) Let θ ∈ Aut(q) be of order k. Then the corresponding Zk-grading of q is a quasi-
grading. The quasi-graded contraction associated with θ is said to be cyclic or a Zk-
contraction. It is denoted by Cθ(q).

2) Let h be a subalgebra of q. Suppose that there is an ad(h)-stable subspace m ⊂ q such
that q = h ⊕ m. Then Γ = {h, m} is a quasi-graded structure of order 2 on q. The passage
q ; h n m is called the h-isotropy contraction of q. Here h n m is the semi-direct product of
(the Lie algebra) h and (the h-module) m.

Remark. Any Z2-contraction is an isotropy contraction; Z2-contractions of reductive Lie
algebras have already been considered in [11, § 9] and [12].

There is a natural construction of certain quasi-gradings from periodic gradings.

Lemma 2.2. Suppose θ ∈ Aut(q) is of order k. Let q0 be the corresponding fixed point subalgebra
of q. Then q0 u q has a natural quasi-graded structure of order k + 1. The corresponding quasi-
graded contraction is isomorphic to q0 n q1 n . . . n qk−1 n q0.

Proof. Consider the family of subspaces Γ = {sj}k
j=0 such that s0 = {(x, x) | x ∈ q0} ⊂

q0 u q0 ⊂ q0 u q, si = qi ⊂ q for i = 1, . . . , k− 1, and sk = q0 ⊂ q. Then q0 u q =
⊕k

i=0 si and

(2.1) [si, sj] ⊂





si+j, if i + j 6 k,

si+j−k, if i + j > k + 1.

Therefore Γ is a quasi-grading. Obviously, CΓ(q0 u q) ' q0 n q1 n . . . n qk−1 n q0. �

Remark. The quasi-graded contraction in the lemma is not cyclic.

Below, we explicitly describe a connection between invariants of q and CΓ(q). In the spe-
cial case of Z2-contractions of reductive Lie algebras, such a connection is explained in
[12, Proposition 3.1]. Discussing “invariants of q”, we always mean invariants of the ad-
joint and coadjoint representations, i.e., the algebras k[q]q and S(q)q. If an explicit formula
for q appears to be bulky, we also use notation Inv(q, ad) and Inv(q, ad∗).
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Any quasi-grading Γ = {qi}k−1
i=0 determines a polygrading of S(q). Using the vector

space decomposition q =
⊕k−1

j=0 qj , any F ∈ S(q) can be written as F =
∑

Fi0,i1,...,ik−1
,

where Fi0,i1,...,ik−1
∈
⊗k−1

j=0 Sij (qj). Define a specialisation of this polygrading by

degΓ(Fi0,i1,...,ik−1
) = i1 + 2i2 + · · · + (k − 1)ik−1.

We say that degΓ is the Γ-degree in S(q). Note that the usual degree in S(q) is defined
by deg(Fi0,i1,...,ik−1

) = i0 + i1 + · · · + ik−1. If we refer to homogeneous polynomials, then
the usual degree is meant, unless otherwise stated. If F is homogeneous, then deg(F ) =

deg(gr•F ) = deg(gr•F ). Using the dual decomposition of q∗, one similarly defines the
Γ-degree for polynomials in k[q].

Definition 1. For F ∈ S(q), let gr•F (resp. gr•F ) denote the component of F of the maximal
(resp. minimal) Γ-degree. The same notation applies to F ∈ k[q].

As q and CΓ(q) are identified as vector spaces, each F ∈ S(q) (resp. F ∈ k[q]) can also be
regarded as element of S(CΓ(q)) (resp. k[CΓ(q)]).

Theorem 2.3. Let Γ = {qi}k−1
i=0 be an arbitrary quasi-graded structure on q.

(i) If F ∈ S(q)q, then gr•F ∈ Inv(CΓ(q), ad∗).
(ii) If F ∈ k[q]q, then gr•F ∈ Inv(CΓ(q), ad).

Proof. (i) Let { , } (resp. { , }Γ) denote the Poisson bracket in S(q) (resp. S(CΓ(q))). As is
well-known, F ∈ S(q)q if and only if {x, F} = 0 for any x ∈ q.

If xi ∈ qi, then degΓ(xi) = i. Therefore

degΓ{xi, xj}





= i + j, if i + j < k,

< i + j, if i + j > k.

If degΓ(Fi0,i1,...,ik−1
) = m, then degΓ({xj, Fi0,i1,...,ik−1

}Γ) = m + j. Furthermore, comparing
the commutators in q and CΓ(q) = q0 n . . . n qk−1 shows that

{xj, Fi0,i1,...,ik−1
} = {xj, Fi0,i1,...,ik−1

}Γ + (terms of Γ-degree < j + m).

It follows that {xj, gr•F}Γ is the component of the maximal possible Γ-degree in {xj, F}.
As {xj, F} = 0, we also must have {xj, gr•F}Γ = 0.

(ii) This follows from Proposition 1.1, since gr•F is the initial component of F(t) with
respect to t. �

Remark. Proposition 1.1 can be adapted for obtaining another proof of part (i). In the
context of quasi-graded contractions, we prefer to use notation gr•F in place of F• (and
likewise for gr•F ).
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Recall that L•(k[q]q) := {gr•F | F ∈ k[q]q} is a subalgebra of k[CΓ(q)]CΓ(q), and it follows
from Proposition 1.1(iii) that the graded algebras k[q]q and L•(k[q]q) have equal Poincaré
series. Similarly, L•(S(q)q) is a subalgebra of S(CΓ(q))CΓ(q).

3. PERIODIC AUTOMORPHISMS OF TAKIFF ALGEBRAS AND RELATED CONTRACTIONS

Throughout this section, θ is a periodic automorphism of q and ζ = |θ|
√

1; usually |θ| = k.

Every periodic θ ∈ Aut(q) can be extended to an automorphism of q〈m〉 of the same order.
There are at least two ways for doing so:

θ̂|q[i] = θ;

θ̂|q[i] = ζ−iθ.(3.1)

In both cases, it is easily seen that θ̂ ∈ Aut(q〈m〉). Notice that no relation between m

and |θ| is required! In the first case, the fixed point subalgebra is again a Takiff algebra.
Therefore we only work with the second case, which is certainly more interesting. That
is, from now on, θ̂ is defined by Eq. (3.1). Then the ζ i-eigenspace of θ̂ is

q〈m〉i = qi n qi+1 n . . . n qi+m−1,

where qi is the ζ i-eigenspace of θ and all subscripts are regarded as elements of Z|θ|. In
particular, the fixed point subalgebra for θ̂ is

q〈m〉bθ = q〈m〉0 = q0 n q1 n . . . n qm−1.

If (q, B) is quadratic, then q〈m〉 is also a quadratic Lie algebra. For, we can extend B to
q〈m〉 by letting

(3.2) B̂ (~x, ~y) =

m−1∑

i=0

B (xi, ym−1−i) .

Lemma 3.1. Suppose (q, B) is quadratic and B is a θ-eigenvector with eigenvaue ζ c. Then B̂ is a
θ̂-eigenvector with eigenvalue ζc+1−m.

Proof. This follows from Eq. (3.1) and (3.2). �

Thus, even if a scalar product on q is θ-invariant, then extending it to a Takiff algebra q〈m〉
we may obtain the scalar product with a non-trivial θ̂-eigenvalue. Combining Lemma 3.1
and Subsection 1.1, we obtain

Corollary 3.2. If (q, B) is quadratic and B is a θ-eigenvector with eigenvaue ζ c, then the dual
q〈m〉0-module for q〈m〉i is q〈m〉c+1−m−i. In particular, if c = 0, then both (q0, B |q0) and (q〈nk +

1〉0, B̂), n ∈ N, are also quadratic.
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We are going to study the algebra of invariants for the adjoint and coadjoint representa-
tions of algebras of the form q〈m〉0. Since q〈m〉∗0 ' q〈m〉c+1−m, the coadjoint representation
of q〈m〉0 can also be realised as θ̂-representation.

Let us point out two important cases:

If m = k, then q〈k〉0 = q0 n q1 n . . . n qk−1,

If m = k + 1, then q〈k + 1〉0 = q0 n q1 n . . . n qk−1 n q0.

In the first case, each qi occurs exactly once. Furthermore, if c = 0, then q〈k〉∗0 ' q〈k〉1 and
g〈k + 1〉0 is quadratic. The utility of these (and some other related) cases is that the fixed
point subalgebra for θ̂ appears to be a quasi-graded contraction.

Proposition 3.3. (i) The passage q ; q〈k〉0 is the Zk-contraction associated with θ; (ii) The
passage q0 u q ; q〈k + 1〉bθ = q〈k + 1〉0 is a quasi-graded contraction of order k + 1.

Proof. (i) is obvious; (ii) follows from Lemma 2.2. �

Recall that the cyclic contraction of q associated with θ is denoted by Cθ(q). Therefore
Proposition 3.3(i) can be expressed as the equality Cθ(q) ' q〈|θ|〉bθ. To generalise previous
observations, we need some preparations.

Lemma 3.4. Let θ be a periodic automorphism of q. For any n ∈ N, there is a periodic automor-
phism θ̃ of nq := q u . . . u q (n summands) such that |θ̃| = n|θ|. Furthermore, for any j ∈ Zn|θ|,
we have (nq)j ' qj̄ , where j̄ is the image of j in Z|θ|.

Proof. Let k = |θ| and ζ = k
√

1. Using the Zk-grading q =
⊕

i∈Zk
qi, we consider nq as the

direct sum of spaces n(qi) = qi u . . .uqi. All these spaces are to be θ̃-stable, and we define
θ̃ for each i separately. For (a1, . . . , an) ∈ n(qi), set

θ̃(a1, . . . , an) = (a2, . . . , an, ζ ia1).

Obviously, θ̃ ∈ Aut(nq) and θ̃n|n(qi) = ζ i·id. Hence |θ̃| = nk. To describe the eigenspaces of
θ̃, we choose a primitive root µ = nk

√
1 such that µn = ζ . Write (nq)j for the µj-eigenspace

of θ̃. We claim that

(nq)j = {x, µjx, . . . , µ(n−1)jx | x ∈ qj̄}.
Indeed, let rj denote the right-hand side. It is easily seen that rj ⊂ (nq)j, rj ' qj̄ , and
rj ⊂ n(qj̄). Moreover, for any j ∈ {0, 1, . . . , k − 1}, the sum

∑n−1
l=0 rj+lk is direct (use the

Vandermonde determinant!). Whence nq =
⊕nk−1

j=0 rj, and we are done. �

Our general result on contractions associated with Takiff algebras is

Theorem 3.5. Given a periodic θ ∈ Aut(q) and n ∈ N, consider θ̃ ∈ Aut(nq) as above. Then
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(i) For θ̂ ∈ Aut(q〈n|θ|〉, the fixed point subalgebra q〈n|θ|〉bθ is the cyclic contraction of nq

associated with θ̃, i.e., q〈n|θ|〉bθ ' Ceθ
(nq);

(ii) For θ̂ ∈ Aut(q〈n|θ| + 1〉, the fixed point subalgebra q〈n|θ| + 1〉bθ is a quasi-graded con-
traction (of order nk + 1) of q0 u nq.

Proof. This is an immediate consequence of our previous results. First, we consider the
Znk-grading of nq constructed in Lemma 3.4, which yields (i). For (ii), we endow q0 u nq

with the quasi-graded structure of order nk + 1 using Lemmas 2.2 and 3.4. We also need
the fact that (nq)j ' qj̄ for any j = 0, 1, . . . , nk − 1. �

Corollary 3.6. Let θ̃ be the cyclic permutation of the summands in nq. Then q〈n〉 ' Ceθ
(nq).

Proof. This is the particular case of Theorem 3.5(i) with θ = id and hence θ̂ = id. �

Note that Proposition 3.3 corresponds to the case n = 1 in Theorem 3.5.

Remark 3.7. The Znk-contraction of nq is the N-graded algebra (nq)0n(nq)1n. . .n(nq)nk−1,
but using the isomorphisms (nq)j ' qj̄ we can write it as q〈nk〉bθ = q0 n q1 n . . . n qk−1,
where each qi occurs n times. Yet, one should not forget that different summands qi in the
last expression arise from different subspaces of nq. For future use, we record the fact that
the subalgebra q0 in q〈nk〉bθ or q〈nk + 1〉bθ (the very first summand) corresponds under the
isomorphisms of Lemma 3.4 and Theorem 3.5 to the diagonally embedded subalgebra q0

in n(q0) ⊂ nq or in (n + 1)q0 ⊂ q0 u nq.

Combining Theorems 2.3 and 3.5, we obtain

Theorem 3.8. Let θ ∈ Aut(q) be periodic and n ∈ N. Consider the graded structure of nq and
quasi-graded structure of q0 u nq determined by θ.

(i) If F ∈ Inv(nq, ad∗), then gr•F ∈ Inv(q〈n|θ|〉0, ad∗);
(ii) If F ∈ Inv(nq, ad), then gr•F ∈ Inv(q〈n|θ|〉0, ad).
(iii) If F ∈ Inv(q0 u nq, ad∗), then gr•F ∈ Inv(q〈n|θ| + 1〉0, ad∗);
(iv) If F ∈ Inv(q0 u nq, ad), then gr•F ∈ Inv(q〈n|θ| + 1〉0, ad).

Let us point out possible applications of these procedures. For definiteness, consider
part (ii). Taking each (homogeneous) F ∈ k[nq]nq ' Inv(q, ad)⊗n to gr•F , we obtain the
subalgebra of Inv(q〈n|θ|〉0, ad), which is denoted by L•(k[nq]nq). We know that k[nq]nq and
L•(k[nq]nq) have the same Poincaré series with respect to the usual degree. If one knows
somehow that k[nq]nq and Inv(q〈n|θ|〉0, ad) also have equal Poincaré series, then we obtain
the equality L•(k[nq]nq) = Inv(q〈n|θ|〉0, ad). This sometimes allows us to prove that good
properties of Inv(q, ad) are carried to Inv(q〈nk〉0, ad) over. Instances of such a phenomenon
are discussed in the following sections.
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4. GOOD CASES FOR ADJOINT REPRESENTATIONS

From now on, our initial object is a reductive Lie algebra g (in place of an arbitrary q).
As above, it is assumed that θ ∈ Aut(g) and |θ| = k. If an algebra of invariants appears
to be graded polynomial, then the elements of any set of algebraically independent ho-
mogeneous generators will be referred to as basic invariants. E.g., one can consider basic
invariants in S(g)g = S(g)G or k[g1]

G0 .

Let us start with some remarks concerning the reductive case. We assume that the scalar
product on g is θ-invariant. Hence c = 0 in Corollary 3.2 and g〈nk + 1〉0 is quadratic for
any n ∈ N. Recall that g[0] ' g is a Levi subalgebra of g〈m〉 and Ru(g〈m〉) = 0ngn . . .ng.
Similarly, g0 ⊂ g[0] is a Levi subalgebra of g〈m〉0 and Ru(g〈m〉0) = 0 n g1 n . . . n gm−1.

Let N be the nilpotent cone of g and Oreg ⊂ N the regular nilpotent G-orbit.

Theorem 4.1. Suppose θ has the property that g0 ∩ Oreg 6= ∅ and n ∈ N is arbitrary. Then

(i) L•(k[ng]ng) = Inv(g〈nk〉0, ad) and Inv(g〈nk〉0, ad) is a polynomial algebra of Krull di-
mension n·rk g.

(ii) L•(k[ngug0]
ngug0) = Inv(g〈nk+1〉0, ad) and Inv(g〈nk+1〉0, ad) is a polynomial algebra

of Krull dimension n·rk g + rk g0.

Proof. (i) Consider the chain of Lie algebra contractions:

ng ;

(1)
g〈nk〉0 = g0 n g1 n . . . n gk−1 ;

(2)
g0 n (g1 ⊕ . . . ⊕ gk−1︸ ︷︷ ︸

nk−1

) =: h ,

where “;

(1)
” is constructed in Theorem 3.5(i) and “;

(2)
” stands for the g0-isotropy contrac-

tion of g〈nk〉0. In other words, Ru(g〈nk〉0) is proclaimed to be abelian in h. The direct
passage ng ; h can also be regarded as the g0-isotropy contraction of ng, where g0 is
the diagonally embedded subalgebra g0 ⊂ n(g0) ⊂ ng (cf. Remark 3.7). Consider the
corresponding transformations of algebras of invariants

(4.1) k[ng]ng
; L

(1)
• (k[ng]ng) ↪→ Inv(g〈nk〉0, ad) ; L

(2)
• (Inv(g〈nk〉0, ad)) ↪→ k[h]h.

Here the functor L
(i)
• corresponds to the contraction ;

(i)
and each arrow ”;” preserves

the Poincaré series. By [11, Theorem 6.2], the algebra k[h]h is polynomial. That is, both
extreme algebras are polynomial. Furthermore, the degrees of the basic invariants for
both are the same [11, Theorem 9.5(2)]. (The crucial property is that the Levi subalgebra
g0 ⊂ h arises from the diagonally embedded g0 ⊂ n(g0) ⊂ ng, and therefore a regular
nilpotent element of g0 is still regular in ng.)

The equality for the degrees implies that both embeddings in Eq. (4.1) are actually iso-
morphisms, and all the algebras involved have one and the same Poincaré series. Let
F1, . . . , Fl be the basic invariants in k[h]h. Then there are homogeneous F̃i ∈ k[ng]ng such
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that gr
(2)
• (gr

(1)
• (F̃i)) = Fi for all i. It is then easily seen that {F̃i} and {gr

(1)
• F̃i} must be

algebraically independent. Since deg Fi = deg(gr
(1)
• F̃i), Inv(g〈nk〉0, ad) is freely generated

by the {gr
(1)
• F̃i}’s.

(ii) We begin with the chain of Lie algebra contractions:

g0 u ng ;

(1)
g〈nk + 1〉0 = g0 n g1 n . . . n gk−1 n g0 ;

(2)
g0 n (g1 ⊕ . . . ⊕ gk−1 ⊕ g0︸ ︷︷ ︸

nk

) .

The rest is essentially the same as in part (i). �

The list of θ satisfying the assumption g0 ∩ Oreg 6= ∅ is not long. For simple g, all
possible pairs g ⊃ g0 are pointed out below:

|θ| = 2 : sl2n ⊃ sp2n, sl2n+1 ⊃ so2n+1, so2n ⊃ so2n−1, E6 ⊃ F4;

|θ| = 3 : D4 ⊃ G2.
(4.2)

For semisimple Lie algebras, the only new possibility is the cyclic permutation of sum-
mands in ng, which leads to g〈n〉, cf. Corollary 3.6.

Example 4.2. We give realisations of algebras g〈nk〉0 and g〈nk+1〉0, associated with the list
in (4.2), as centralisers of nilpotent elements. If θ is an involution, then there are only two
eigenspaces, g0 and g1, and we will use the more suggestive notation Lm(g0, g1) in place of
g〈m〉0. For g simple, Lm(g0, g1) is quadratic if and only if m is odd. Irreducible g0-modules
occurring in g1 are depicted by their highest weights. Namely, R(λ) is a simple module
with highest weight λ. The i-th fundamental weight of a simple Lie algebra is denoted by
$i, with the numbering from [16]. We write 1I for the trivial 1-dimensional module. The
symbol zn stands for the n-dimensional centre. Items 1o–4o below provide realisations of
the algebras Lm(g0, g1) associated with the outer involutions of g = slN or glN .

1o. Let e ∈ g̃ = sp2nm be a nilpotent element with partition (2m, 2m, . . . , 2m︸ ︷︷ ︸
n

) =:

((2m)n). Then g̃e ' L2m(son, R(2$1) ⊕ 1I) ' L2m(son, R(2$1)) u zm. Here
son ⊕ (R(2$1) ⊕ 1I) = gln and g̃e is a contraction of m(gln).

2o. Let e ∈ g̃ = son(2m+1) be a nilpotent element with partition ((2m + 1)n). Then
g̃e ' L2m+1(son, R(2$1) ⊕ 1I) ' L2m+1(son, R(2$1)) u zm. Here m(gln) u son ; g̃e.

3o. Let e ∈ g̃ = so4nm be a nilpotent element with partition ((2m)2n). Then g̃e '
L2m(sp2n, R($2) ⊕ 1I) ' L2m(sp2n, R($2)) u zm. Here sp2n ⊕ (R($2) ⊕ 1I) = gl2n and
g̃e is a contraction of m(gl2n).

4o. Let e ∈ g̃ = sp2n(2m+1) be a nilpotent element with partition ((2m + 1)2n). Then
g̃e ' L2m+1(sp2n, R($2) ⊕ 1I) ' L2m+1(sp2n, R($2)) u zm. Here m(gl2n) u sp2n ; g̃e.

5o. Let e ∈ g̃ = so2n+2 be a nilpotent element with partition (3, 12n−1). Then g̃e '
(so2n−1 n R($1)) u ke, where the first summand is a contraction of so2n.
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6o. Let e ∈ g̃ = E7 be a nilpotent element with weighted Dynkin diagram(
2–0–0–0

0

–0–0
)

. Then g̃e = (F4 n R($1)) u ke.

7o. For n = 6, 7, 8, let e ∈ g̃ = En be nilpotent elements with weighted Dynkin di-

agrams

(
2–0–0

0

–0–2
)

,

(
2–2–0–0

0

–0–2
)

,

(
2–2–2–0–0

0

–0–2
)

, respectively. Then g̃e '

(G2nR($1)nR($1)) u zn−4, where the first summand is a Z3-contraction of D4.

Theorem 4.1 applies to items 3o–7o, and to 1o–2o if n is odd. The centralisers in 2o and 4o

are quadratic.

Remark 4.3. If |θ| = 2 and n = 1, then the algebra Inv(g0ng1, ad) is always polynomial and
the basic invariants can explicitly be described [11, Theorem 6.2]. However, the equality
Inv(g0 n g1, ad) = gr•(k[g]g) holds if and only if g0 ∩ Oreg 6= ∅.

5. GOOD CASES FOR COADJOINT REPRESENTATIONS

In this section, we prove a counterpart of Theorem 4.1 for invariants of coadjoint repre-
sentations of g〈nk〉0. To this end, we need some preparations.

The index of a Lie algebra q, ind q, is the minimal dimension of stabilisers of elements
of q∗ with respect to the coadjoint representation. Let q∗

reg be the set of regular elements
of q∗, i.e., those with minimal dimension of the stabiliser. We say that q has the codim–2
(resp. codim–3) property, if codim (q∗ \ q∗reg) > 2 (resp. > 3). Set b(q) = (dim q + ind q)/2.
We will need the following result, which is explicitly stated in [12, Thm. 1.2] and based on
an earlier work of Odesskii-Rubtsov [7].

Theorem 5.1. Suppose q has the codim–2 property and trdeg S(q)q = ind q. Set l = ind q. Let
f1, . . . , fl ∈ S(q)q be arbitrary homogeneous algebraically independent polynomials. Then

(i)
∑l

i=1 deg fi > b(q);
(ii) If

∑l

i=1 deg fi = b(q), then S(q)q is freely generated by f1, . . . , fl and ξ ∈ q∗reg if and
only if (df1)ξ, . . . , (dfl)ξ are linearly independent.

In order to apply this result to algebras g〈nk〉0, we must have the codim–2 property and
know the index of g〈nk〉0.

Given a periodic θ ∈ Aut(g), we have the flat quotient morphism π : g1 → g1//G0 (see
Introduction). The fibre N1 := π−1(π(0)) consists of all nilpotent elements in g1. It can be
reducible; moreover, if |θ| > 3, then some components can be reduced, while some other
not.

Let us say that θ (or the corresponding Zk-grading) is

• S-regular, if g1 contains regular semisimple elements of g;
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• N-regular, if g1 contains regular nilpotent elements of g (i.e., g1 ∩ Oreg 6= ∅);
• very N-regular, if Oreg meets each irreducible component of N1.

Some structure results on S- and N-regular gradings are obtained in [10].

Lemma 5.2. Suppose θ is both S-regular and very N-regular. Then codim (g1 \ (g1 ∩ greg)) > 2.

Proof. Let π−1(β) = Fβ be an arbitrary fibre of π and Oβ the dense G0-orbit in an irre-
ducible component of Fβ. Since dim Fβ = dim N1, the associated cone of Oβ (see [2, § 3]) is
an irreducible component of N1. Then the assumption on N1 implies that Oβ ⊂ greg. In
other words, if O ⊂ g1 is a G0-orbit of maximal dimension, then O ⊂ greg. The assump-
tion on regular semisimple elements shows that a generic fibre of π is a (closed) G0-orbit,
i.e., the whole such fibre belongs to g1 ∩ greg. The union of all other fibres is a proper
subvariety of g1 (actually, it is a divisor). However, the open G0-orbits in all other fibres
belong to greg, too. Hence the complement is of codimension at least 2, as required. �

Proposition 5.3. (i) Suppose that g1 ∩ greg 6= ∅. Then ind g〈nk〉0 = n·rk g.

(ii) If θ is both S-regular and very N-regular, then g〈nk〉0 has the codim–2 property.

Proof. (i) Set q = g〈nk〉0. Then q∗ = g〈nk〉1. Recall that

g〈nk〉0 = g0 n g1 n . . . n gk−1

g〈nk〉1 = g1 n g2 n . . . n g0 (nk factors in both cases)

Take any x ∈ g1 ∩ greg. Write gx
i (resp. gx) for the centraliser of x in gi (resp. g). Then

gx = ⊕k−1
i=0 gx

i and dim gx = rk g. Consider ξ = (x, 0, . . . , 0) as element of q∗. Then the
stabiliser of ξ in q is gx

0 ngx
1 n · · ·ngx

k−1, i.e., we get gx
i inside every component gi occurring

in q . Since each gi occurs n times, dim qξ = n·rk g. Therefore ind q 6 n·rk g. On the other
hand, q is a contraction of ng (Theorem 3.5(i)). Hence ind q > ind (ng) = n·rk g. Notice
that we also proved that if x ∈ g1 ∩ greg, then ξ = (x, 0, . . . , 0) ∈ q∗reg.

(ii) Set g
reg
1 = g1 ∩ greg. By Lemma 5.2, we have codim (g1 \ g

reg
1 ) > 2. Now, let

ξ = (ξ1, ξ2, . . . , ξnk) ∈ q∗, where ξi ∈ gī. We claim that if ξ1 ∈ g
reg
1 , then ξ ∈ q∗reg.

This yields the desired codim–2 property. Hence it suffices to prove the claim. Consider
ξ(t) = (ξ1, tξ2, . . . , t

nk−1ξnk), where t ∈ k. It is easily seen that if (x0, x1, . . . , xnk−1) ∈ qξ(t)

for t 6= 0, then (tnk−1x0, t
nk−2x1, . . . , xnk−1) ∈ qξ. It follows that, for t 6= 0, dim qξ(t) does not

depend on t. Because limt→0 ξ(t) = (ξ1, 0, . . . , 0) ∈ q∗reg, we conclude that all elements ξ(t)

are regular. That is, (ξ1, ξ2, . . . , ξnk) ∈ q∗reg whenever ξ1 ∈ g
reg
1 . �

Example 5.4. It can happen that θ is both S- and N-regular, but not very N-regular. This
may lead to the absence of the codim–2 property for g〈|θ|〉0. Consider g = sp4 and an
automorphism of order 4 such that g0 is a Cartan subalgebra, say t. If α, β are simple
roots with respect to t (α is short), so that 2α + β is the highest root, then g1 is the sum of
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root spaces corresponding to α, β, and −2α−β. Therefore g1 contains regular semisimple
and regular nilpotent elements of g. However, a direct verification shows that the corre-
sponding Z4-contraction does not have the codim–2 property. In this case, N1 has three
irreducible components and Oreg meets only two of them.

Theorem 5.5. Suppose θ is both S-regular and very N-regular and n ∈ N. Then Inv(g〈nk〉0, ad∗)

is a polynomial algebra of Krull dimension n·rk g. Moreover, L•(S(ng)ng) = Inv(g〈nk〉0, ad∗).

Proof. First, assume that n = 1. In view of Theorem 5.1 and Proposition 5.3, it suffices
to show that there are basic invariants F (1), . . . , F (rk g) ∈ S(g)g such that {gr•F (i)} remain
algebraically independent.

Take the basic invariants in S(g)g such that each F (i) is an eigenvector of θ. Let deg F (i) =

di. We want to better understand the structure of gr•F (i). Take e ∈ Oreg ∩ g1. By [5], the
differentials {dF

(i)
e } are linearly independent. In particular, dF

(i)
e 6= 0 for each i. Consider

the polygrading of S(g) corresponding to the decomposition g =
⊕k−1

i=0 gi. We also regard
g1 as the first factor of g〈k〉1 ' g〈k〉∗0. Since g∗

k−1 ' g1 and gk−1 is the last factor of g〈k〉0,
the condition dF

(i)
e 6= 0 implies that F (i) has a nonzero summand of the form

(♣) F
(i)
(0,...,0,di)

or F
(i)
(...,1,...,di−1).

We have k − 1 possibilities for the position of ‘1’ in the second expression, hence totally k

possibilities in (♣). In fact, there is the following precise assertion:

Lemma 5.6. (i) A homogeneous θ-eigenvector F ∈ S(g) can have at most one nonzero summand
of the form (♣); (ii) If this is the case, then gr•F contains that summand.

Proof. (i) This follows from the fact that, for the nonzero summnads F(i0,...,ik−1), i0 + . . . +

ik−1 = deg F and all the sums
∑k−1

j=1 jij have one and the same residue (mod k), which
is determined by the θ-eigenvalue of F . The k possibilities in (♣) just correspond to k

possible eigenvalues.

(ii) If deg F = d and F has the summand F(0,...,0,d), then the latter is clearly gr•F . If F

has the summand F(...,1,...,d−1) (with ‘1’ in position s, 0 6 s 6 k − 2), then the summands
F(i0,...,ik−1) occurring in gr•F should satisfy the relations





∑k−1
j=0 ij = d,

∑k−1
j=1 jij ≡ s + (d − 1)(k − 1) (mod k),

∑k−1
j=1 jij is maximal posiible.

It is not hard to prove that the maximal value of the last sum is s + (d − 1)(k − 1). Hence
one of the solutions is (. . . , 1

s
, . . . , d − 1). �
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It follows from Lemma 5.6(ii) that dF
(i)
e = d(gr•F (i))e. Hence {gr•F (i)} remain alge-

braically independent. This completes the proof of theorem for n = 1.

For arbitrary n ∈ N, we consider θ̃ ∈ Aut(ng) and the eigenspaces (ng)j , which are
described in Lemma 3.4. Here (ng)1 = {(x, µx, . . . , µn−1x) | x ∈ g1}, where µ = nk

√
1,

and we work with e = (e, µe, . . . , µn−1e), which is a regular nilpotent element of ng. We
regard (ng)1 as the first factor in g〈nk〉1 and choose basic invariants in S(ng)ng that are
θ̃-eigenvectors. The rest is the same. �

The property of being “very N-regular” is difficult to check directly. There are, however,
useful sufficient conditions.

For |θ| = 2, all irreducible component of N1 are conjugate with respect to the action of
certain (non-connected) group containing G0, see [6, Theorem 6]. Therefore N-regularity
coincides with very N-regularity. Furthermore, an involution is S-regular if and only if it
is N-regular [1]. Thus, it suffices to assume that g1 ∩ Oreg 6= ∅. Finally, an involution has
the last property if and only if the corresponding Satake diagram has no black nodes.

To state another sufficient condition, we recall that, for g simple, the set of basic invari-
ants in k[g]G contains a unique polynomial of maximal degree. This degree equals the
Coxeter number of g, denoted c(g). Let F

c(g) be such a basic invariant. It is known that
d(Fc(g))e = 0 for any e ∈ N \ Oreg (see a description of the ideal of N \ Oreg in [3, 4.7–4.9]).

Proposition 5.7. Let g be simple. Suppose θ is N-regular and F
c(g)|g1 6≡ 0. If either (i) g0 is

semisimple or (ii) G0 ⊂ SL(g1) and (G0 : g1) is locally free, then θ is very N-regular.

Proof. Since g1 ∩ Oreg 6= ∅, the restriction homomorphism k[g]G → k[g1]
G0 is onto, and

Fc(g)|g1 is a basic invariant in k[g1]
G0 [10, Theorem 3.5]. Let O be a dense G0-orbit in an

irreducible component of N1. In other words, O is a nilpotent G0-orbit of maximal di-
mension. Then in both cases, the differentials of basic invariants in k[g1]

G0 are linearly
independent at any v ∈ O. For (i) (resp. (ii)), we refer to [9, Cor. 5(i)] (resp. [8, Cor. 1]). In
particular, we have d(Fc(g))v 6= 0. Hence v ∈ Oreg. �

Remark. In Example 5.4, the condition that G0 ⊂ SL(g1) is not satisfied.

Here are some other related results:

Proposition 5.8.
(i) If θ is S-regular and the G0-action on g1 is locally free, then θ is N-regular [10, Thm. 4.2(iii)];
(ii) If θ ∈ Int(g) and θ is N-regular, then F

c(g)|g1 6≡ 0 if and only if |θ| divides c(g) [10, Cor. 3.6].

In the rest of the section, we provide examples of S-regular and very N-regular auto-
morphisms and thereby examples where Theorem 5.5 applies.
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Example 5.9. We give some serial examples of S-regular and very N-regular periodic au-
tomorphisms related to classical algebras.

1) The Lie algebra glnk has an automorphism of order k such that g0 = kgln. In more
invariant terms, let Vi be a n-dimensional space, i = 1, . . . , k, and g = gl(V1 ⊕ · · · ⊕ Vk).
Define A ∈ GL(V1 ⊕ · · · ⊕ Vk) by A|Vi

= ζ i·id. Let θ be the inner automorphism of g

determined by A. Then g0 = gl(V1) u . . . u gl(Vk) and g1 =
⊕k

i=1 Hom(Vi, Vi+1), where
Vk+1 = V1. Here dim g1 = kn2. The generic stabiliser in g0 is tn (the diagonally embedded
Cartan subalgebra). Using the matrix realisation, one easily verifies that θ is both S- and
N-regular. A more careful argument shows that N1 has k irreducible components, and
each contains regular nilpotent elements of g. Therefore θ is very N-regular.

2) The algebra D4m+3 has an inner automorphism θ of order 4 such that G0 = Dm+1 ×
Dm+1 × A2m × T1. The corresponding Kac’s diagram is

e ee e e e e e

e

e

e

e

��

HH ��

HH
· · · · · · · · ·1 1

︸ ︷︷ ︸
m+1

︸ ︷︷ ︸
2m

︸ ︷︷ ︸
m+1

We refer to [15, § 8, Prop. 17] for a complete account on Kac’s diagrams of periodic au-
tomorphisms. (Partial explanations are also given in [10, Example 4.5], where we have
drawn black nodes in place of nodes with labels ‘1’.) Here dim g0 = (2m + 1)(4m + 3) and
dim g1 = (2m + 1)(4m + 4). Let us prove that θ is S-regular and very N-regular.

Since c(D4m+3) = 8m+4, |θ| divides it. The representation of G0 in g1 can be read off the
Kac’s diagram. Here g1 is the sum of two simple G0-modules of the same dimension, and
T1 acts with opposite weights on them. Therefore G0 ⊂ SL(g1). One also readily verifies
that the action (G0 : g1) is stable and locally free. Therefore dim c = dim g1 − dim g0 =

2m + 1. For stable θ-groups, the dimension of a generic semisimple G-orbit meeting g1

can be computed as |θ|(dim g1 − dim c) (cf. [10, Prop. 2.1(i)]), which is equal in this case
to dim g − rk g. Hence, θ is S-regular. Combining Proposition 5.7(ii) and 5.8, we then
conclude that θ is very N-regular.

Example 5.10. The following table contains some sporadic examples, mostly for excep-
tional Lie algebras. Here g0 is always semisimple and |θ| divides c(g); ind (θ) denotes the
order of θ in Aut(g)/Int(g). In the last two columns, the dimension of Cartan subspaces
and the generic stabiliser for the g0-module g1 are displayed (this information is borrowed
from [15, § 9]). The G0-action on g1 is locally free if and only if this generic stabiliser is
trivial.

In most cases, the proof is similar to that given in the previous example. The only excep-
tion is the second item for E7, where θ is not an involution and (G0 : g1) is not locally free.
However, in this case N1 appears to be irreducible [4, § 4], hence N-regularity is sufficient.
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g |θ| ind (θ) g0 g1 dim c s

E6 2 1 A5 × A1 R($3) ⊗ R($1) 4 t2

3 1 A2×A2×A2 R($1)⊗R($1)⊗R($1) 3 {0}
2 2 C4 R($4) 6 {0}
4 2 A3 × A1 R(2$1) ⊗ R($1) 2 {0}

E7 2 1 A7 R($4) 7 {0}
3 1 A5 × A2 R($2) ⊗ R($1) 3 t1

E8 2 1 D8 R($7) 8 {0}
3 1 A8 R($3) 4 {0}
5 1 A4 × A4 R($2) ⊗ R($1) 2 {0}

F4 2 1 C3 × A1 R($3) ⊗ R($1) 4 {0}
3 1 A2 × A2 R(2$1) ⊗ R($1) 2 {0}

G2 2 1 A1 × A1 R(3$1) ⊗ R($1) 2 {0}
D4 3 3 A2 R(3$1) 2 {0}

6. SOME REMARKS AND OPEN PROBLEMS

6.1. Invariants of the nilpotent radical. In [11], we explore several instances of repre-
sentations of non-reductive Lie algebras q such that, for certain nilpotent ideal r / q, the
invariants of r are polynomial. This includes the adjoint and coadjoint representations of
q, i.e., the algebras k[q]r or S(q)r. Often, r = Ru(q). This fact was used as a step toward
proving the polynomiality of algebras of q-invariants. (See Theorems 6.2, 7.1, and 11.1 in
loc. cit.)

Similar approach applies to our results in Sections 4 and 5. For instance, in order to de-
scribe Inv(g〈k〉0, ad), one can first consider the algebra of Ru(g〈k〉0)-invariants in k[g〈k〉0],
say A. Under the assumption of Theorem 4.1, it can be shown that A is polynomial,
of Krull dimension dim g0 + (rk g − rk g0). Furthermore, the induced representation of
g0 ' g〈k〉0/Ru(g〈k〉0) in Spec(A) is isomorphic to the adjoint representation of g0 plus the
trivial representation of dimension rk g − rk g0. In this way, one obtains another proof
of polynomiality of Inv(g〈k〉0, ad). The reason for success in this and other similar cases
is that one can explicitly construct a natural set of elements of A (presumable basic in-
variants). Then using Igusa’s lemma (see e.g. [11, Lemma 6.1]), one proves that these
elements are algebraically independent and generate the algebra A. The details will ap-
pear elsewhere.

6.2. Index of fixed point subalgebras. Let us summarise what is known about the index
of algebras g〈m〉0. Recall that |θ| = k.
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Since g〈nk+1〉0 is quadratic, the description of Inv(g〈nk+1〉0, ad) in Theorem 4.1(ii) shows
that ind(g〈nk + 1〉0) = n·rk g + rk g0. That is, index does not change under the contraction
ng u g0 ; g〈nk + 1〉0 whenever g0 ∩ Oreg 6= ∅. (Actually, this equality can be proved if
g0 ∩ greg 6= ∅.) Similarly, if g1 ∩ greg 6= ∅, then ind(g〈nk〉0) = n·rk g (Proposition 5.3).

If |θ| = 2, then we always have ind(g0 n g1) = ind g [11, Corollary 9.4]. The reason is
that here G/G0 is a spherical homogeneous space. From this, it is not hard to deduce that
ind(L2n(g0, g1)) = n·rk g and ind(L2n+1(g0, g1)) = n·rk g + rk g0. (See notation introduced
in Example 4.2.) However, for |θ| > 3, the general answer is not known.

Problem 6.1. Compute ind (g〈nk〉0) and ind (g〈nk + 1〉0) for an arbitrary θ ∈ Aut(g) with
|θ| = k > 3. Is it true that ind(g〈nk + 1〉0) = n·rk g + rk g0 and ind(g〈nk〉0) = n·rk g?

(The existence of contractions ng u g0 ; g〈nk + 1〉0 and ng ; g〈nk〉0 shows that in
both cases the inequality “>” holds.) For instance, consider the outer automorphism of
D4 of order 3 whose fixed point subalgebra is G2. The corresponding Z3-contraction is
q = G2nR($1)nR($1). It occurs in Example 4.2(7o). Here g1 ' R($1) does not contain
regular elements of D4. However, it is not hard to verify that ind q = 4.

6.3. On Poisson-commutative subalgebras. A subalgebra A of S(q) is said to be Poisson-
commutative if {f, g} = 0 for all f, g ∈ A. There is a procedure (the so-called argument
shift method, see e.g. [13]) for constructing “large” Poisson-commutative subalgebras of
S(q), which begins with S(q)q and a ξ ∈ q∗reg. The resulting subalgebra is denoted by
Fξ(S(q)q). It is proved in [13] that if (1) S(q)q is polynomial, (2) the sum of degrees of the
basic invariants of S(q)q equals b(q), and (3) q has the codim–3 property, then Fξ(S(q)q) is
a maximal Poisson-commutative subalgebra for any ξ ∈ q∗

reg. Furthermore, Fξ(S(q)q) is a
polynomial algebra of Krull dimension b(q).

Our goal is to realise when that result applies to algebras g〈m〉0. First of all, Lie algebras
q occurring in Theorems 4.1(ii) and 5.5 satisfy properties (1) and (2). We also proved that
g〈nk〉0 has the codim–2 property (Proposition 5.3(ii)). However, the codim–3 property does
not always holds for g〈nk〉0. But for algebras g〈nk + 1〉0 the situation is better.

Proposition 6.2. Suppose θ has the property that g0 ∩ Oreg 6= ∅. Then g〈nk + 1〉0 has the
codim–3 property.

Proof. The proofs of Lemma 5.2 and Prop. 5.3 can be adapted to this situation. Recall that

g〈nk + 1〉0 ' g〈nk + 1〉∗0 = g0 n g1 n . . . n gk−1 n g0 (nk + 1 factors).

As in Lemma 5.2, we prove that if x ∈ g0 is regular in g0, then it is regular in g. (In doing
so, we use the assumption Oreg ∩ g0 6= ∅ and the fact that the nilpotent cone in g0 is
irreducible.) Then, as in Prop. 5.3, we prove that ξ = (ξ0, ξ1, . . . , ξnk) ∈ (g〈nk + 1〉∗0)reg

whenever ξ0 ∈ (g0)reg. Since codim (g0 \ (g0)reg) = 3, we are done. �
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6.4. Flatness. Although we have found a number of periodic automorphisms of Takiff
algebras such that Inv(g〈m〉0, ad) or Inv(g〈m〉0, ad∗) is polynomial, we do not have sub-
stantial results on the flatness of respective quotient morphisms. Actually, I believe that
the quotient morphisms are flat in the context of Theorems 4.1 and 5.5. Partial affirmative
results for |θ| = 2 are contained in [11, Theorem 9.13] (the adjoint representation of g0ng1)
and [12, Sect. 5] (the coadjoint representation of g0 n g1) .

For the centraliser g̃e from Example 4.2(7o) and its adjoint representation, we can also
prove, using ad hoc methods, that the quotient morphism is flat.
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