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1. Introduction

One of the classical achievements of the combinatorial group theory is the decidability
of the word problem in a finitely generated group with one defining relation [1]. This
result was a corollary of a fundamental statement called Freiheitssatz: Every equation
over a free group is solvable in some extension. For solvable and nilpotent groups, this
complex of problems was studied in [2].

In the context of Lie algebras, similar statements were proved [3]. For associative
algebras, the problem turns to be surprisingly difficult: Over a field of characteristic
zero, the Freiheitssatz was proved in [5], but the question about decidability of the word
problem for an associative algebra with one defining relation remains open. One of the
reasons for this is that the variety of associative algebras, contrary to those of groups or
Lie algebras, is not a Schreier one, that is, a subalgebra of a free associative algebra is not
necessary free. And as a matter of fact, the free algebras of Schreier varieties are usually
more easy to deal with.

In [6], the Freiheitssatz was proved for right-symmetric (pre-Lie) algebras, and in [7]—
for Poisson algebras. In this paper, we consider a modified approach to the proof in [7]
which allows to prove the Freiheitssatz also for generic Poisson algebras.

There is plenty of varieties for which the Freiheitssatz is not true, e.g., so is the variety
of Poisson algebras over a field of positive characteristic. One may find more examples of
this kind in [8], e.g., for Leibniz algebras the Freiheitssatz does not hold (as well as for
every variety of di-algebras in the sense of [9]).

Throughout the paper k denotes a field of characteristic zero.
A generic Poisson algebra (GP-algebra) is a linear space with two operations and one

constant:

(1) associative and commutative product x · y = xy;
(2) anti-commutative bracket {x, y};
(3) multiplicative identity 1, x · 1 = 1 · x = x,

satisfying the Leibniz identity

{x, yz} = {x, y}z + {x, z}y.

These algebras were introduced in [10] in the study of speciality and deformations of
Malcev–Poisson algebras.

Let AC(X) be the free anti-commutative algebra (AC-algebra) generated by a set X
with respect to operation denoted by {·, ·}, and let GP (X) be the free GP-algebra with
a set of generators X. As a linear space, GP (X) is isomorphic to the symmetric algebra
S(AC(X)) [10].
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2 THE FREIHEITSSATZ FOR GENERIC POISSON ALGEBRAS

2. Conditionally closed algebras and the Freiheitssatz

Suppose M is a variety of algebras over a field k. Denote by M(X) the free algebra in
M generated by a set X. For A,B ∈M, the notation A ∗MB stands for the free product
of A and B in M.

If A ∈M then every Ψ ∈ A∗MM(x) may be interpreted as an A-valued function on A.
Moreover, for every extension Ā of A, Ā ∈ M, Ψ(x) is an Ā-valued function on Ā. An
equation of the form Ψ(x) = 0 is solvable over A if there exists an extension Ā ∈ M of
A such that the equation has a solution in Ā. If such a solution can be found in A itself
then Ψ(x) = 0 is said to be solvable in A.

Recall the common definition (see, e.g., [11, 12]): An algebra A is (existentially) al-
gebraically closed if every system of equations which is solvable over A is solvable in A.
Let us restrict this definition to a particular case of one equation: We will say A ∈M to
be existentially closed in M if every equation Ψ(x) ∈ A ∗M M(x) which is solvable in an
appropriate extension Ā of A, Ā ∈M, has a solution in A. This definition is important for
model theory, and it can be an efficient tool for studying algebras provided the principal
question on the solvability of a particular equation is solved.

A stronger property (see [13]) can be stated as follows: An algebra A ∈ M is called
algebraically closed in M if for every Ψ ∈ A ∗M M(x), Ψ /∈ A, the equation Ψ(x) = 0 is
solvable in A. We are going to propose an intermediate definition which is sufficient for
our purpose.

Definition 1. An algebra A ∈M is called conditionally closed in M if for every Ψ(x) ∈
A ∗M M(x) which is not a constant function on A the equation Ψ(x) = 0 is solvable in A.

Every algebraically closed in M algebra is conditionally closed in M. However, there
is plenty of conditionally closed systems that are not algebraically closed in M. For
example, an algebraically closed field is conditionally closed but not algebraically closed
in the variety of all associative algebras. Similarly, such a field may be considered as
a Poisson algebra with respect to trivial bracket, and the Poisson algebra obtained is
conditionally closed but not algebraically closed in the variety of all Poisson algebras.

It is also interesting to compare conditionally closed and existentially closed algebras.
Neither of these notions is a formal generalization of another. For example, let M = As,
the variety of associative algebras, and let A ∈ As be the algebraic closure of the field
k(t). As an algebraically closed field, A is conditionally closed in As, but the equation
[t, x] = 1 has no solution in A although it is solvable in an appropriate extension (e.g.,
in the Makar-Limanov’s skew field [5]). On the other hand, for the same variety As, the
existential algebraic closure (see, e.g., [14, Ch. III]) of quaternions H is not conditionally
closed: Equation ix− xi = 1 has no solution in any extension of H in As.

Suppose M1 and M2 are two varieties of algebras over a field k, and let ω : M1 →M2

be a functor which acts as follows: Given A ∈ M1, A
(ω) ∈ M2 is the same linear space

equipped with new operations expressed in terms of initial operations. For example, one
may consider the classical functor from the variety of associative algebras into the variety
of Lie algebras defined by [x, y] = xy − yx.

Another important example comes from the following settings. Let M1 = Dif2n be
the variety of commutative associative algebras with 2n pairwise commuting derivations
∂i, ∂

′
i, i = 1, . . . , n. Then, given A ∈ Dif2n, the same space equipped with new binary
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operation

(1) {a, b} =
n∑
i=1

∂i(a)∂′i(b)− ∂i(b)∂′i(a), a, b ∈ A,

is known to be a Poisson algebra denoted by A(∂). If we allow the derivations ∂i, ∂
′
i to be

non-commuting then (1) defines on a commutative algebra A a structure of a GP-algebra.
In general, ω may be a functor induced by a morphism of the governing operads.

Functors of this kind were closely studied in [8].

Proposition 1. If an algebra A ∈ M1 is conditionally closed in M1 then A(ω) is condi-
tionally closed in M2.

Note that for algebraically closed algebras this statement does not hold.

Proof. Since ω is a functor, the universal property of the free product implies the existence
of a homomorphism ϕ : A(ω) ∗M2 M2(x)→ (A ∗M1 M1(x))(ω) such that f(a) = ϕ(f)(a) for
all f = f(x) ∈ A(ω) ∗M2 M2(x), a ∈ A(ω).

Therefore, f is not a constant function on A(ω) if and only if ϕ(f) is not a constant
function on A. If A is conditionally closed then there exists a ∈ A such that ϕ(f)(a) = 0
and thus f(a) = 0. �

In some cases, the converse statement is true: If A(ω) is conditionally closed in M2 then
so is A in M1.

Remark 1. Let ω : M1 → M2 be a functor with the following property: If A ∈ M1 and
A(ω) is a subalgebra of C ∈M2 then there exists B ∈M1 such that C = B(ω) and A is a
subalgebra of B. Then A is conditionally closed in M1 provided that A(ω) is conditionally
closed in M2.

Indeed, A(ω) ∗M2 M2(x) is a M2-algebra which contains A(ω). Hence, A(ω) ∗M2 M2(x) =
B(ω) for a M1-algebra B. Therefore, there exists a homomorphism of M1-algebras ψ :
A ∗M1 M1(x) → B such that ψ(a) = a for a ∈ A, ψ(x) = x. Hence, ϕ(ψ(f)) = f for all
f ∈ A ∗M1 M1(x), where ϕ is the homomorphism in the proof of Proposition 1.

Suppose A(ω) is conditionally closed in M2. If f ∈ A ∗M1 M1(x) is not a constant
function on A then so is g = ψ(f) since ϕ(g(a)) = ϕ(g)(a) = f(a) for all a ∈ A. Hence,
there exists a solution of the equation g(x) = 0 in A(ω) which is obviously a solution of
f(x) = 0 in A.

The Freiheitssatz problem for a variety M is to determine whether every nontrivial
equation over the free algebra M(X), X = {x1, x2, . . . }, is solvable over M(X).

It is obviously equivalent to the following question about free algebras: Is the inter-
section of the ideal (f) generated by an element f ∈ M(X ∪ {x}) and the subalgebra
M(X) ⊂M(X ∪ {x}) trivial if f /∈M(X) (i.e., depends on x)? If the answer is positive
for all such f then we say that the Freiheitssatz holds for M.

Lemma 1. Suppose M is a variety of algebras with at least one binary operation · in the
signature such that M(X) = M(x1, x2, . . . ) has no zero divisors with respect to ·. Then,
if for every nonzero polynomial h = h(x1, . . . , xn) ∈ M(X) there exists a conditionally
closed algebra A ∈ M which does not satisfy the polynomial identity h(x1, . . . , xn) = 0
then the Freiheitssatz holds for M.
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Proof. Suppose X = {x1, x2, . . . }, x /∈ X, and let f = f(x, x1, . . . , xn) ∈ M(X ∪ {x}) \
M(X). Then f = f1 + f0, where f1 belongs to the ideal generated by x, f0 ∈M(X).

Assume g ∈ (f) ∩M(X), g 6= 0. Then h = f1 · g 6= 0, hence, there exist a con-
ditionally closed A ∈ M such that h(x, x1, . . . , xn) is not a polynomial identity on
A. Therefore, there exist a, a1, . . . , an ∈ A such that f1(a, a1, . . . , an)g(a1, . . . , an) 6= 0
in A, so f1(a, a1, . . . , an) 6= 0. On the other hand, f1(0, a1, . . . , an) = 0. Therefore,
Ψ(x) = f1(x, a1, . . . , an) is a non-constant function on A. Since A is conditionally
closed, there exists a ∈ A such that Ψ(a) = f1(a, a1, . . . , an) = −f0(a1, . . . , an). Thus,
f(a, a1, . . . , an) = 0 but g(a1, . . . , an) 6= 0 which is impossible if g ∈ (f)/M(X ∪{x}). �

There is a well-known functor ω from the variety As of associative algebras to the
variety Jord of Jordan algebras: Every associative algebra A turns into a Jordan algebra
denoted by A(+) under new product x◦y = xy+yx. A Jordan algebra is said to be special
if it can be embedded into an algebra of the form A(+), A ∈ As. The class of all special
Jordan algebras is not a variety since a homomorphic image of a special Jordan algebra
may not be special. However, the class of all homomorphic images of all special Jordan
algebras is a variety denoted by SJ . The free algebra SJ(X) is obviously the subalgebra
of As(X)(+) generated by X with respect to Jordan product.

Corollary 1. The Freiheitssatz holds for the variety generated by special Jordan algebras.

Proof. Consider the algebraically closed associative noncommutative algebra A from [5].
It is essential that A is a skew field and contains the first Weyl algebra W1. Thus, A
contains free associative algebra in any finite number of generators x1, . . . , xn [4]. The
special Jordan algebra A(+) is conditionally closed by Proposition 1 and contains free
special Jordan algebra SJ(x1, . . . , xn). Therefore, the variety SJ satisfies all conditions
of Lemma 1. �

Note that for the entire variety Jord the Freiheitssatz does not hold [8].

3. Jacobian polynomials in free anti-commutative algebras

In order to prove the Freiheitssatz for a variety M by means of Lemma 1, we have to
construct an algebra in M which is conditionally closed algebra and does not satisfy a
given polynomial identity.

In this section, we discuss technical questions that are used in subsequent sections for
the study of polynomial identities on generic Poisson algebras.

3.1. Preliminaries on AC(X). Let X be a set of generators, and let X∗ stand for the
set of all (nonempty) associative words u in the alphabet X. Denote by X∗∗ the set of
all non-associative words in X. Given a word u ∈ X∗, denote by (u) a non-associative
word obtained from u by some bracketing. We will also use [X∗] to denote the set of all
associative and commutative words in X. Given u ∈ X∗, [u] stands for the commutative
image of u.

Suppose X∗∗ is equipped with a linear order �. A non-associative word u ∈ X∗∗ is
normal if either u = x ∈ X or u = u1u2, where u1 and u2 are normal and u1 ≺ u2.
Obviously, normal words in X∗∗ form a linear basis of the free anti-commutative algebra
AC(X) generated by X (see [15, 16]).

Let us call the elements of AC(X) AC-polynomials. Given u ∈ X∗∗, define deg u to be
the length of u. Thus, we have a well-defined degree function on AC(X).
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Choose a generator xi ∈ X = {x1, . . . , xn} and denote by Vi the subspace of AC(X)
spanned by all nonassociative words linear in xi. Fix a linear order � on X∗∗ such that
any nonassociative word which contains xi is greater than any word without xi (there
exist many linear orders with this property). With respect to such an order, the unique
normal form of a monomial w ∈ Vi is

(2) w = {u1, {u2, . . . {uk, xi} . . . }},

where uj, j = 1, . . . , k, are normal words in the alphabet X \{xi}. The number k is called
xi-height ([17]) of w, let us denote it by ht(w, xi).

Let V0 =
n⋂
i=1

Vi be the space of polylinear AC-polynomials. It is easy to compute

xi-height of a nonassociative word w ∈ V0 just by the number of brackets in w to
the left of xi, assuming { is counted as 1 and } as −1. For example, the x4-height of
{{x1, {{x2, x3}, x4}}, {x5, x6}} is equal to 3.

Denote by M(AC(X)) the algebra of left multiplications on AC(X), i.e., the subalgebra
of EndkAC(X) generated by

ad g : f 7→ {g, f}, f, g ∈ AC(X).

Since the variety AC of anti-commutative algebras is a Schreier one, M(AC(X)) is a free
associative algebra (see [18]). Let U stand for the set of all normal words in X∗∗. It is
easy to see that M(AC(X)) ' As(U) provided that we identify adu with u ∈ U .

Denote by Ui the set of normal words in the alphabet X \{xi}. Then Vi is a 1-generated
free left module over As(Ui): Every word of the form (2) may be presented as

w = W (xi), W = adu1 adu2 . . . aduk,

where u1, . . . , uk ∈ Ui.
Denote by ∗ the involution of As(Ui) given by (u1 . . . uk)

∗ = (−1)kuk . . . u1, uj ∈ Ui.

Definition 2. A linear transformation of Vi defined by the rule

Fi : W (xi) 7→ −W ∗(xi)

is called an xi-flip. Obviously, (Fi)
−1 = Fi.

The set of all flips {F1, . . . , Fn} acts on the space V0 and thus generates a group
F ⊆ GL(V0). Given a normal word u ∈ V0, the orbit Fu consists of AC-monomials
(polynomials of the form εv, v is a nonassociative word, ε = ±1).

Lemma 2. Let w = {x1, {x2, . . . {xn−1, xn} . . . }} ∈ V0. Then

(−1)σ{x1σ, {x2σ, . . . {x(n−1)σ, xnσ} . . . }} ∈ Fw

for every σ ∈ Sn (here (−1)σ stands for the parity of a permutation σ.)

Proof. It is straightforward to compute that

F1(Fiw) = −{xi, {x2, . . . xi−1, {x1, {xi+1, . . . {xn−1, xn} . . . }}}},

i = 2, . . . , n. Since transpositions of the form (1i) generate the entire symmetric group
Sn, the lemma is proved. �
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3.2. Jacobian AC-polynomials. In this section, we describe polylinear AC-polynomials
that have a specific property if considered as elements of the free GP-algebra.

Suppose Ψ(x1, . . . , xn) is an element of the free GP-algebra GP (X), X = {x1, . . . , xn}
which is linear with respect to xn. We will say that Ψ is a derivation with respect to xn if

Ψ(x1, . . . , xn−1, yz) = yΨ(x1, . . . , xn−1, z) + zΨ(x1, . . . , xn−1, y)

in the free GP-algebra GP (x1, . . . , xn−1, y, z).

Definition 3. A polylinear AC-polynomial Ψ = Ψ(x1, . . . , xn) ∈ V0 is said to be a jacobian
if Ψ is a derivation with respect to each variable xi, i = 1, . . . , n. A polylinear element of
GP (X) with the same property is called a jacobian GP-polynomial.

For free Lie algebra considered as a part of the free Poisson algebra, a similar notion was
considered in [17]. Obviously, if n = 2 then C2 = {x1, x2} is a jacobian AC-polynomial. It
was shown in [17] that there are no other jacobian Lie polynomials (up to a multiplicative
constant). However, there exists a jacobian AC-polynomial of degree 3:

J3 = {{x1, x2}, x3}+ {{x2, x3}, x1}+ {{x3, x1}, x2}.
The main purpose of this section is to show that C2 and J3 exhaust all jacobian AC-
polynomials.

For a generic Poisson algebra A, a ∈ A, consider the linear map ad a : x 7→ {a, x},
x ∈ A. The set of all such transformations {ad a | a ∈ A} ⊂ Endk(A) generates a Lie
subalgebra L(A) ⊂ gl (A) = Endk(A)(−).

Given L ∈ L(GP (x1, . . . , xn−1)), one may easily note that L(xn) ∈ GP (x1, . . . , xn)
is a derivation with respect to xn. Indeed, the Leibniz identity implies that adu, u ∈
GP (x1, . . . , xn−1), is a derivation with respect to xn, and the commutator of derivations
is a derivation itself.

Lemma 3. Let Ψ(x1, . . . , xn) ∈ AC(X) ⊂ GP (X) be a polylinear element such that Ψ is
a derivation with respect to xn. Then there exists L ∈ L(AC(X)) such that Ψ = L(xn).

Proof. The algebra of multiplications M(AC(x1, . . . , xn−1)) ' As(Un) contains free Lie
subalgebra L = Lie(Un) ⊂ As(Un)(−) generated by adu for all normal words u ∈ Un.

As L acts on V = AC(x1, . . . , xn−1, y, z), we have the standard L-module structure on
V ⊗ V , given by

a(u⊗ v) = au⊗ v + u⊗ av, a ∈ L, u, v ∈ V.
Since As(Un) = U(L) is the universal enveloping algebra of L, V ⊗ V is also an U(L)-
module given by

a(u⊗ v) =
∑
(a)

a(1)u⊗ a(2)v, a ∈ U(L), u, v ∈ V,

where ∆ : a 7→
∑

(a) a(1) ⊗ a(2) is the standard coproduct in U(L).

An AC-polynomial Ψ(x1, . . . , xn) may be presented as L(xn) for some L ∈ As(Un). By
definition, Ψ is a derivation with respect to xn if and only if

L(u⊗ v) = L(u)⊗ v + u⊗ L(v) ∈ V ⊗ V
for all u, v ∈ V . Since V ⊗ V is a faithful U(L)-module, we obtain ∆(L) = L⊗ 1 + 1⊗L,
thus the Friedrichs Criterion for the Lie elements in As(Un) implies L to be an element
of L, which proves the claim. �
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Define a linear map

D(·, xn; y, z) : V0 → GP (x1, . . . , xn−1, y, z)

as follows: Given w = W (xn), W ∈M(AC(x1, . . . , xn−1)), set

D(w, xn; y, z) = W (yz)− yW (z)− zW (y).

A polylinear AC-polynomial Ψ(x1, . . . , xn) ∈ V0 is a derivation with respect to xn if
and only if D(Ψ, xn; y, z) = 0, or, as we have noticed above, W is primitive (∆(W ) =
1⊗W +W ⊗1). This property of W is homogeneous in As(Un), i.e., W splits into groups
of homogeneous summands W = W1 + · · ·+Wl, where Wi(xn) is again a derivation with
respect to xn.

Remark 2. Suppose Ψ = L(xn) ∈ AC(X) is a polynomial as in Lemma 3, then L ∈
Lie(adu1, . . . , aduk) for some normal words u1, . . . , uk ∈ Un (assume k is minimal).
Then for every i = 1, . . . , k Ψ must contain a term

{ui1 , {ui2 . . . {ui, xn} . . . }},
in which the word ui appears as the last entry.

Without loss of generality, assume L is polylinear with respect to adu1, . . . , aduk. As
an element of the free Lie algebra it may be uniquely written as a linear combination of
wi1,...,ik−1

= [adui1 , [adui2 , . . . , [aduik−1
, adui] . . . ]]. The expansion of such a monomial in

the free associative algebra As(Un) contains unique term adui1 adui2 . . . aduik−1
adui ∈

As(Un) ending with adui. These terms for different wi1,...,ik−1
do not cancel.

Corollary 2. Let Ψ(x1, . . . , xn) ∈ AC(X) be a polylinear AC-polynomial of degree n such
that Ψ is a derivation with respect to xn. Suppose Ψ =

∑
w

αww, w ∈ X∗∗ are normal

words, and
max
w:αw 6=0

ht(w, xn) ≥ max
w:αw 6=0

ht(w, xi), i = 1, . . . , n.

(xn has maximal height in Ψ). Then

max
w:αw 6=0

ht(w, xn) = n− 1

and thus Ψ contains a monomial of the form

w = {x1s, . . . {x(n−1)s, xn} . . . }
for some s ∈ Sn−1.

Proof. Assume k < n − 1 is the maximal height of xn in Ψ, i.e., Ψ contains a summand
of the form {u1, . . . {uk, xn} . . . }, k < n − 1. Then there exists at least one ui whose
degree is greater than 1. Remark 2 implies that Ψ contains a summand αww, where
w = {uj1 , . . . {ujk , xn} . . . }, jk = i, αw 6= 0. Since ht(ui, xj) > 1 for some xj, we have
ht(w, xj) > k, which contradicts to the condition ht(w, xj) ≤ k. Hence, k = n− 1. �

Lemma 4. Suppose Ψ = Ψ(x1, . . . , xn) is a jacobian AC-polynomial. Then Ψ is invariant
with respect to the action of the group F generated by all xi-flips, i = 1, . . . , n.

Proof. Let us fix i ∈ {1, . . . , n}. Without loss of generality we may assume i = n.
By Lemma 3, Ψ = L(xn), where L is a linear operator constructed by commutators of
operators adu, u ∈ Un. The set of all such adu generates an associative subalgebra
U ⊂ EndkVn, U ' As(Un).
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Since Ψ is polylinear (with respect to X), L naturally splits into a sum of operators
presented by polylinear (with respect to Un) elements of U .

Consider the linear transformation τ of U given by

τ : W 7→ −W ∗, W ∈ U .

The map τ acts as an identity on Lie(Un) ⊂ U (−), it follows from the obvious observation
τ([W1,W2]) = [τ(W1), τ(W2)] for W1,W2 ∈ U .

By Definition 2,

Fn(Ψ) = Fn(L(xn)) = τ(L)(xn) = L(xn) = Ψ.

As Ψ is invariant with respect to all flips, we have F(Ψ) = {Ψ}. �

Lemma 5. Suppose U = {u1, . . . , um} is a set, As(U) is the free associative algebra gen-
erated by U , Lie(U) is the free Lie algebra generated by U , Lie(U) ⊂ As(U)(−). Consider

Am =
∑
s∈Sm

(−1)su1s . . . ums.

Then Am ∈ Lie(U) if and only if m = 1 or m = 2.

Proof. For m = 1, 2 it is obvious that Am ∈ Lie(U).
Assume m ≥ 3 and Am ∈ Lie(U). Consider the homomorphism Φ : As(U) → ∧(kU)

given by u 7→ u, where ∧(kU) is the exterior algebra of the linear space spanned by U .
Note that Φ(Am) = m!u1 . . . um 6= 0 in ∧(kU). However, Φ(Lie(U)) ⊂ ∧(kU)(−) is a Lie
subalgebra generated by U . It is easy to see that ∧(kU)(−) is a 3-nilpotent Lie algebra,
so Φ(Lie(U)) does not contain elements of degree m ≥ 3. �

Theorem 1. Let X = {x1, . . . , xn}, and let Ψ = Ψ(x1, . . . , xn) ∈ AC(X) be a jacobian
AC-polynomial. Then either n = 2 and Ψ = αC2, or n = 3 and Ψ = αJ3, where α ∈ k∗.

Proof. By Lemma 4 FΨ = Ψ for every F ∈ F . Without loss of generality we may assume
that xn has the maximal height in Ψ (re-numerate variables if needed). Corollary 2 implies
that Ψ contains a summand of the form αw, where α ∈ k∗, w = {x1s, . . . {x(n−1)s, xn} . . . }
for some s ∈ Sn−1. Without loss of generality, α = 1 and s = id. By Lemma 2, Ψ contains
all monomials obtained from w by all permutations of variables, i.e.,

Ψ =
∑

s∈Sn−1

(−1)s{x1s, . . . {x(n−1)s, xn} . . . }+ Φ(x1, . . . , xn),

where the xn-height of all monomials in Φ is smaller than n − 1. Since all summands of
Ψ with the same xn-height form a derivation with respect to xn, the AC-polynomial

Ψ1 =
∑

s∈Sn−1

(−1)s{x1s, . . . {x(n−1)s, xn} . . . }

must be a derivation with respect to xn. But

Ψ1 = An−1(u1, . . . , un−1)(xn), ui = adxi,

so An−1(u1, . . . , un−1) ∈ Lie(u1, . . . , un−1). By Lemma 5, n− 1 ≤ 2, so n ≤ 3. Obviously,
C2 and J3 are the only jacobian AC-polynomials for n = 2 and n = 3, respectively. �
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4. Identities of generic Poisson algebras

Let A be a GP-algebra, and let f ∈ GP (x1, . . . , xn), f 6= 0. As usual, we say that f is
a polynomial identity on A if for every homomorphism ϕ : GP (x1, . . . , xn)→ A we have
ϕ(f) = 0. In this case we also say that A satisfies the polynomial identity f .

Proposition 2. Suppose a GP-algebra A satisfies a polynomial identity. Then there exists
a polynomial identity Ψ on A which is a jacobian GP-polynomial.

This statement, as well as its proof, is similar to the result by Farkas [17] on polynomial
identities of Poisson algebras.

Proof. The standard linearization procedure (see, e.g., [19, Chapter 1]) allows to assume
that A satisfies a polylinear polynomial identity f ∈ GP (X), X = {x1, . . . , xn}.

As an element of GP (X), f may be uniquely presented as a linear combination of GP-
monomials w = u1 . . . uk, uj ∈ U , where U ⊂ AC(X) is the set of normal words. We
may assume that uj are of degree two or more (if an AC-monomial of degree one appears,
e.g., uj = xi, then one may plug in xi = 1 and obtain a polylinear polynomial identity
without xi). Denote by FHi(w) (the Farkas height) the degree of uj in which the variable
xi occurs, and let FHi(f) be the maximal of FHi(w) among all GP-monomials w that
appear in f with a nonzero coefficient. Finally, set

FH(f) =
n∑
i=1

3FHi(f)

Observe that if f is not a derivation in xi then the derivation difference D(f, xi;xi, xn+1)
is a nonzero polylinear element of GP (X ∪ {xn+1}) which has a smaller Farkas height.
Indeed, for a GP-monomial w from f we have

FHj(D(w, xi;xi, xn+1)) ≤ FHj(w),

FHi(D(w, xi;xi, xn+1)) ≤ FHi(w)− 1,

FHn+1(D(w, xi;xi, xn+1)) ≤ FHi(w)− 1,

which implies

FH(w)− FH(D(w, xi;xi, xn+1)) ≤ 3FHi(w) − 2 · 3FHi(w)−1 > 0.

Obviously, D(f, xi;xi, xn+1) is a polynomial identity on A.
Therefore, after a finite number of steps we obtain a nonzero polynomial identity on A

which is a jacobian GP-polynomial in a larger set of variables X̃ ⊇ X. �

Let us recall the notion of fine grading [17]. First, given a set X, the free anti-
commutative algebra AC(X) carries [X∗]-grading such that u ∈ X∗∗ has weight [u]. Next,
if w = (u1) . . . (un) ∈ GP (X), ui ∈ X∗, then the weight of w is [u1] + · · · + [un] ∈ k[X∗].
As a result,

GP (X) =
⊕

p∈Z+[X∗]\{0}

GPp(X),

where Z+ stands for the set of non-negative integers, GPp(X) is the space spanned by
all generic Poisson monomials of degree p. An element f ∈ GPp(X) is said to be finely
homogeneous.

Proposition 3. A jacobian GP-polynomial Ψ can be presented as a linear combination
of products of jacobian AC-polynomials (on the appropriate set of variables).
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Proof. Let X = {x1, x2, . . . , xn} be a set of variables, and let U = {u1, u2, . . . } be the set of
normal nonassociative words in X (with respect to some ordering), then GP (X) = k[U ].
For Ψ ∈ GP (X), denote by supp(Ψ) all variables from X that appear in Ψ and by
psupp(Ψ) all elements from U that appear in Ψ.

Suppose f ∈ GP (x1, . . . , xn) ⊆ GP (X) is a jacobian GP-polynomial. Without loss
of generality we may assume f to be finely homogeneous and f /∈ AC(X). Proceed by
induction on | psupp(f)|.

Consider a GP-monomial w in f . Since f 6∈ AC(X), there exist ui and w′ 6= 1 for
which w = uiw

′. Write f = uig + h, g, h ∈ GP (X), g 6= 1, where all GP-monomials of h
are not divisible by ui (in k[U ]). Since f is polylinear, supp(g) ∩ supp(ui) = ∅.

Denote by Di a map GP (X)→ GP (X ∪ {y, z}) defined as follows:

Di(Ψ) =

{
D(Ψ, xi; y, z), xi ∈ supp(Ψ),

Ψ, xi /∈ supp(Ψ).

Then Dj(f) = uiDj(g) +Dj(h) = 0 if xj ∈ supp(g).

Consider GP (X∪{y, z}) as a polynomial algebra with a set Ũ of generators including U .
Then ui /∈ psupp(h) and ui /∈ psupp(Dj(h)). Hence, Dj(g) = 0 and g is a jacobian GP-
polynomial.

Let us now fix the deg-lex order on the set [U∗], i.e., commutative monomials in U
are first compared by their length and then lexicographically, assuming u1 < u2 < . . . .
Recall that f = uig + h, where psupp(h) 63 ui, and presented h as h = gp + r, where all
GP-monomials of r are not divisible (in k[U ]) by the leading GP-monomial ḡ of g. Then
f = gq + r, q = ui + p, and psupp(r) 63 ui. In particular, psupp(r) ⊂ psupp(f).

By definition, Dj(f) = gDj(q) + Dj(r) = 0 if xj ∈ supp(q). If Dj(q) 6= 0 then some of
the monomials in Dj(r) are divisible by ḡ. Consider a GP-monomial M of r. Since it is
not divisible by ḡ there is at least one variable ua which appears in ḡ and does not appear
in M . Note that if supp(ub) 63 xi then Di(ub) = ub, and if suppub 3 xi then Di(ub) is a

GP-polynomial of degree two (in k[Ũ ]) in which none of variables belongs to U . Hence,
Dj(M) is not divisible by ua and none of the GP-monomials of Dj(r) is divisible by ḡ.
Therefore, Dj(q) = 0 and q is a jacobian GP-polynomial.

Since a product of two jacobian GP-polynomials is also jacobian (with respect to the
corresponding sets of variables), r = f − gq is a jacobian GP-polynomial. By induction,
the statement holds for r, as well as for g and q. �

Corollary 3. Let F (t1, . . . , tn) ∈ GP (t1, t2, . . . ) be a finely homogeneous jacobian GP-
polynomial. Then F contains a summand αu1 . . . uk, where α ∈ k∗, ui ∈ AC(t1, t2, . . . )
are of the form

{ti1 , ti2} or {ti1 , {ti2 , ti3}}

5. The Freiheitssatz for (generic) Poisson algebras

The following statement is well-known in the theory of differential fields [20, 21]. We will
sketch a proof below in order to make the exposition more convenient for a reader. Recall
that the characteristic of the base field k is assumed to be zero, and that Difn denotes
the variety of commutative associative algebras with n pairwise commuting derivations.

Theorem 2. Every algebra from Difn which is a field can be embedded into an alge-
braically closed algebra in Difn.
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Proof. Let F be a differential field of characteristic zero with a set ∆ = {∂i | i = 1, . . . , n}
of pairwise commuting derivations. Denote by F [x; ∆] = F ∗Difn Difn(x) the set of all
differential polynomials in one variable x over F . Suppose f(x) ∈ F [x; ∆]\F . Then there
exists a differential field K which is an extension of the differential field F such that the
equation f(x) = 0 has a solution in K.

Indeed, differential polynomials F [x; ∆] may be considered as ordinary polynomials in
infinitely many variables

X = {x(i1,...,in) | (i1, . . . , in) ∈ Zn+},

where x(i1,...,in) is identified with ∂i11 . . . ∂
in
n (x). Then the differential ideal I(f ; ∆) gener-

ated by f(x) in F [x; ∆] coincides with the ordinary ideal in F [X] generated by f and all
its derivatives ∂i11 . . . ∂

in
n (f).

Note that if f /∈ F then I(f ; ∆) is proper: One may apply the notion of a charac-
teristic set (see, e.g., [21, Ch. I.10]) or simply note that the set of all derivatives of f is
a Gröbner basis provided that we choose an ordering of monomials in such a way that
highest derivative (leader) is contained in the leading monomial (e.g., rank ordering in
[21, Ch. I.8]). Indeed, if uy is the leading monomial of f (y ∈ X is the leader of f , u is
an ordered monomial in X) then uy(i1,...,in) is the leading monomial of ∂i11 . . . ∂

in
n (f). It

is easy to see that there are no compositions (we follow the terminology of Shirshov [3],
see [22] for details) among f and its derivatives except for the case when uy = yk, but in
the latter case the only series of compositions of intersection of f with itself is obviously
trivial.

Hence, if f /∈ F then I = I(f ; ∆) is proper, and so is its radical
√
I. By the differential

prime decomposition theorem (see, e.g., [20, Ch. 1]), I = p1 ∩ · · · ∩ pk, where pi are prime
differential ideals in F [x; ∆]. In particular, f ∈ p1, and F [x; ∆]/p1 is a differential domain
containing a root x+ p1 of f . Finally, the quotient field of that domain Q(F [x; ∆]/p1) is
the desired differential field.

Therefore, every nontrivial equation over an arbitrary differential field F has a solution
in an extension K of F . If F is infinite then K has the same cardinality as F , so the
standard transfinite induction arguments similar to those applied to ordinary fields show
that F can be embedded into a differential field F̄ ∈ Difn in which every nontrivial
differential polynomial has a root. �

Corollary 4 ([7]). The Freiheitssatz holds for the variety of Poisson algebras.

Proof. Let A2n = k(x1, y1, x2, y2, . . . , xn, yn) be the algebra of (commutative) rational
functions over k, ∂i = ∂xi , ∂

′
i = ∂yi be ordinary partial derivatives with respect to xi, yi,

respectively. As A2n ∈ Dif2n, there exists its algebraically closed extension Ā2n ∈ Dif2n.

Let PSn = A
(∂)
2n be the Poisson algebra defined by (1). Then PSn ⊆ Ā

(∂)
2n , where the latter

is a conditionally closed Poisson algebra by Proposition 1.
It was shown in [17] that for every nonzero Poisson polynomial h = h(x1, . . . , xm),

m ≥ 1, there exists a sufficiently large N such that PSN (and thus Ā
(∂)
2N) does not satisfy

the identity h(x1, . . . , xm) = 0. Lemma 1 implies the claim. �

Let us twist the functor ∂ : Dif2n → Pois in order to obtain a conditionally closed
generic Poisson algebra that does not satisfy a fixed polynomial identity.
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Consider the variety CDifn of commutative differential algebras with pairwise commut-
ing derivations ∂i and constants ci, i = 1, . . . , n, such that ∂i(cj) = δij. Then there exists
a natural forgetful functor ω : CDifn → Difn erasing the information about constants.

In particular, A2n may be considered as an algebra from CDif2n with derivations ∂i =
∂xi , ∂

′
i = ∂yi , and constants ci = xi, c

′
i = yi, i = 1, . . . , n. Moreover, if A2n ⊆ A ∈ Dif2n

then A = B(ω) for an appropriate B ∈ CDif2n. Hence (see Remark 1), for every n ≥ 1

there exists a conditionally closed algebra B̄2n in CDif2n, B̄
(ω)
2n = Ā2n.

Suppose B ∈ CDif2n with derivations ∂i, ∂
′
i and constants ci, c

′
i, i = 1, . . . , n. Let

us consider the following functor τ from CDif2n to the variety NDif2n of commutative
differential algebras with non-commuting derivations ξi, ξ

′
i, i = 1, . . . , n. On the same

space B, define new derivations by

(3)

ξi(a) = c′i+1∂i, i = 1, . . . , n− 1,

ξn(a) = c′1∂n,

ξ′i(a) = ∂′i(a), i = 1, . . . , n,

for a ∈ B. If B is conditionally closed in CDif2n then B(τ) is conditionally closed in
NDif2n.

Finally, define a functor ξ from NDif2n to the variety GP of generic Poisson algebras
by means of

(4) {a, b} =
∑
i≥1

ξi(a)ξ′i(b)− ξi(b)ξ′i(a).

Denote by GPSn the GP-algebra
(
A

(τ)
2n

)(ξ)
.

Proposition 4. For every n ≥ 1 there exists N ≥ 1 such that the GP-algebra GPSm does
not satisfy a polynomial identity of degree n for all m ≥ N .

Proof. Suppose f ∈ GP (t1, t2, . . . ) is a GP-polynomial of degree n which is an identity
on GPSm. By Proposition 2 there also exists a polylinear identity g on GPSm which is a
jacobian GP-polynomial.

Let us split g into finely homogeneous components:

g = g1 + · · ·+ gk,

each gi is a jacobian GP-polynomial (but not an identity on GPSm).
According to Corollary 3, g1 contains a summand αu1 . . . ul, α ∈ k∗,

ui = {ti1 , . . . {timi
, timi+1} . . . }, mi = 1, 2.

Assume m is large enough (e.g., m > 2l), and evaluate the variables in such a way that

timi+1 = yki ,

timi
= xki , timi−1 = xki+1, . . . , ti1 = xki+mi−1,

ki+1 ≥ ki +mi, kl +ml < m.

Then the only summand in g1(t1, . . . , tn) is nonzero, namely, the summand mentioned in
Corollary 3: It turns into αyk1+m1 . . . ykl+ml

6= 0. Other g′is turn into zero.
Hence, g cannot be a polynomial identity on GPSm. �

Theorem 3. The Freiheitssatz holds for the variety of generic Poisson algebras.
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Proof. Given N ≥ 1, GN =
(
B̄

(τ)
2N

)(ξ)
is a conditionally closed algebra in GP by Proposi-

tion 1, and GPSN ⊆ GN . The claim now follows from Proposition 4 and Lemma 1. �
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