ON THE COMMUTATOR SUBGROUP OF THE FUNDAMENTAL GROUP OF THE COMPLEMENT TO A PLANE CURVE

Vik. S. KULIKOV

Department of Mathematics Moscow State University of Transport Communications(MIIT) Obraztsova st. 15 101475 Moscow Russia Max-Planck-Institut für Mathematik Gottfried-Claren-Str. 26 53225 Bonn

Germany

,

ON THE COMMUTATOR SUBGROUP OF THE FUNDAMENTAL GROUP OF THE COMPLEMENT TO A PLANE CURVE

VIK. S. KULIKOV

Max-Planck-Institut für Mathematik, Gottfried-Claren Straße 26, D-53225 Bonn

13.03.1996

ABSTRACT. In this article the following theorem is proven. The commutator subgroup of the fundamental group of the complement to an irreducible curve in \mathbb{P}^2 is finitely presented.

0. Let $\overline{D} \subset \mathbb{P}^2$ be a projective algebraic curve. Denote by $\overline{G} = \pi_1(\mathbb{P}^2 \setminus \overline{D})$ the fundamental group of the complement of \overline{D} in \mathbb{P}^2 .

As a real subvariety, \overline{D} is of real codimension 2 in \mathbb{P}^2 . This situation is similar to one in the knot theory: a knot k is of real codimension 2 in the three-dimensional sphere S^3 . It is well known that the set of knots is divided into two parts according to the properties of their groups, that is, the fundamental groups of their complements in S^3 . Denote by $G = \pi_1(S^3 \setminus k)$ the group of a knot k and by N = [G, G] its commutator subgroup. By theorem of Stallings [S], N is a finitely presented group if and only if k is a fibred knot, that is, $S^3 \setminus k$ admits a structure of fibration over S^1 with Seifert surfaces as fibres.

The aim of this short note is to prove the following theorem.

Theorem 1. If $\overline{D} \subset \mathbb{P}^2$ is an irreducible curve, then the commutator subgroup $\overline{N} = [\overline{G}, \overline{G}]$ of $\overline{G} = \pi_1(\mathbb{P}^2 \setminus \overline{D})$ is finitely presented.

Theorem 1 is a simple consequence from the following analog of this theorem in the affine case.

Theorem 2. If $D \subset \mathbb{C}^2$ is an affine irreducible curve such that its projective closure $\overline{D} \subset \mathbb{P}^2$ and the line at infinity $L_{\infty} = \mathbb{P}^2 \setminus \mathbb{C}^2$ meet transversally, then the commutator subgroup N = [G, G] of $G = \pi_1(\mathbb{C}^2 \setminus D)$ is finitely presented.

In [K] it was proven that the commutator subgroup N = [G, G] of $G = \pi_1(\mathbb{C}^2 \setminus D)$ is finitely generated for any irreducible affine curve. To prove Theorems 1 and 2 we essentually base on the ideas and results from [K].

We shall consider more general situation when $\overline{D} = \overline{D}_1 + \cdots + \overline{D}_n$ is a reducible reduced curve.

Typeset by $\mathcal{A}_{\mathcal{M}}S$ -TEX

Let $L_{\infty} \subset \mathbb{P}^2$ be a straight line and define $\mathbb{C}^2 = \mathbb{P}^2 \setminus L_{\infty}$, $D_i = \overline{D}_i \cap \mathbb{C}^2$. By $f_i(x, y) = 0$ denote an equation of D_i , where $f_i(x, y) \in \mathbb{C}[x, y]$ is an irreducible polynomial.

Bу

(1)
$$F: X = \mathbb{C}^2 \setminus D \to \mathbb{C}^* = \mathbb{C} \setminus \{0\}$$

denote the morphism defined by equation

$$z = \prod_{i=1}^{n} f_i(x, y)$$

We shall assume that the following condition is satisfied:

(*) A general fiber $F^{-1}(z) = Y_z$ is connected.

If D is connected in \mathbb{C}^2 , then F satisfies the condition (*).

Theorem 2'. If $\overline{D} = \overline{D}_1 + \cdots + \overline{D}_n \subset \mathbb{P}^2$ and L_{∞} meet transversally and D satisfies the condition (*), then the kernel N of the induced homomorphism F_* : $\pi_1(\mathbb{C}^2 \setminus D) \to \pi_1(\mathbb{C}^*)$ is a finitely presented group.

Theorem 2 is a corollary of Theorem 2', since if D is irreducible, then ker F_* coincides with the commutator subgroup of $\pi_1(\mathbb{C}^2 \setminus \overline{D})$.

Acknowledgement. I would like to thank Max-Planck-Institut für Mathematik (Bonn) for hospitalily and support during the preparation of this paper.

1. Theorem 2 implies Theorem 1. Indeed, consider an irreducible projective curve $\overline{D} \subset \mathbb{P}^2$ and choose a line at infinity $L_{\infty} \subset \mathbb{P}^2$ such that \overline{D} and L_{∞} meet transversally. We have a natural homomorphism

$$i_*: G = \pi_1(\mathbb{C}^2 \setminus D) \to \overline{G} = \pi_1(\mathbb{P}^2 \setminus \overline{D})$$

induced by inclusion $i : \mathbb{C}^2 \setminus D \to \mathbb{P}^2 \setminus \overline{D}$. Obviously, i_* is an epimorphism. By [N], since \overline{D} and L_{∞} meet transversally, the kernel of i_* is an infinite cyclic group generated by a simple circuit around the line at infinity. Denote this generator of ker i_* by γ_{∞} . Since i_* is an epimorphism, the restriction $j : N \to \overline{N} = [\overline{G}, \overline{G}]$ of i_* to N is also epimorphism.

Let f(x, y) = 0 be an equation of D in \mathbb{C}^2 , where f(x, y) is an irreducible polynomial. The polynomial f(x, y) determines a morphism $F : \mathbb{C}^2 \to \mathbb{C}^1$ defined by equation f(x, y) = z such that $D = F^{-1}(0)$ is a fibre over zero. Consider the restriction $\varphi : \mathbb{C}^2 \setminus D \to \mathbb{C}^1 \setminus \{0\} = C^*$ of F to $\mathbb{C}^2 \setminus D$. The induced homomorphism $\varphi_* : G \to \pi_1(\mathbb{C}^*) \simeq \mathbb{Z}$ is an epimorphism, since a general fibre of φ is connected. On the other hand, it is well known that $\pi_1(\mathbb{C}^2 \setminus D)$ is generated by the following geometric generators. By definition, a geometric generator γ is a loop consisting of a path l, a small circuit s around D and a path l^{-1} , where l connects the base point of the fundamental group with a point x close to D, s is a curcle (with positive orientation) lying in a real plane passing frough x and meeting transversally D at a point $y \in D$ which is the center of s. If D is irreducible, then all geometric generators are conjugated to each other. Therefore, the natural epimorphism α : $G \to G/N \simeq H_1(\mathbb{C}^2 \setminus D, \mathbb{Z}) \simeq \mathbb{Z}$, N = [G, G], sends all geometric generators of Gto a generator of \mathbb{Z} . It is easy to see that φ_* also sends all geometric generators of G to a generator of \mathbb{Z} . Hence, φ_* and α coincide. Moreover, the homorphism α allows us to consider G as a semidirect product $G \simeq N \ltimes \mathbb{Z}$. We fix one of the geometric generators, say γ , as a generator of the second factor \mathbb{Z} . Then γ_{∞} can be represented as a product: $\gamma_{\infty} = \nu \gamma^d$, where $d = \deg f(x, y)$ is the degree of the curve D and ν is some element of N. Since the intersection ker $i_* \cap N$ is trivial, the homomorphism $j: N \to \overline{N}$ is an isomorphism.

2.1. Proof of Theorem 2'. Consider the map F defined by (1) and denote by $X = \mathbb{C}^2 \setminus D$ the complement of D. It is well known that there exists a finite subset

$$\{z_1,...,z_n\} \subset \mathbb{C}^n$$

such that

$$F: X \setminus F^{-1}(\{z_1, ..., z_n\}) \to \mathbb{C}^* \setminus \{z_1, ..., z_n\}$$

is a locally trivial C^{∞} -bundle. As in [K], let B_i be a disk of center z_i and radius $r_i \ll 1$, and let ∂B_i be its boundary. Choose two distinct points $z_{i,1}$, $z_{i,2}$ belonging to ∂B_i . The points $z_{i,1}$, $z_{i,2}$ divide ∂B_i into two arcs $\gamma_{i,1}$ and $\gamma_{i,2}$. Choose non-intersecting paths γ_i connecting the points $z_{i,1}$ and $z_{i+1,2}$ ($z_{n+1,2} = z_{1,2}$), and let $\gamma_{i,1}$ be the arc of ∂B_i such that $l_{in} = (\cup \gamma_{i,1}) \cup (\cup \gamma_i)$ is the boundary of a restricted set V containing the origin $o \in \mathbb{C}^1$, and such that $z_i \notin V$ for all $i, 1 \leq i \leq n$ (see Figure 1 in [K]). Let l_{ex} be the boundary of the set $V \cup (\cup B_i)$. Put $T = (\cup B_i) \cup (\cup \gamma_i)$. The set $Z = F^{-1}(T)$ is called a *necklace* of D.

Since T is a retract of C^* and the fibration $F: X \setminus Z \to \mathbb{C}^* \setminus T$ is a locally trivial, we have the following

Proposition 1. [K] If D satisfies the condition (*), then $X = \mathbb{C}^2 \setminus D$ and the necklace Z of D are homotopy equivalent.

Thus $\pi_1(\mathbb{C}^2 \setminus D) \simeq \pi_1(Z)$, moreover, we have the following commutative diagram

If D satisfies the condition (*), then F_* is an epimorphism.

Let $z_0 \in \gamma_n$ be a point and let $Y = F^{-1}(z_0)$ be the fiber over z_0 . The embedding $Y \subset Z$ induces the homomorphism $\psi : \pi_1(Y) \to \pi_1(Z)$. Obviously, $Im \psi \subset \ker F_*$. In [K], it was shown that the following theorem is true.

Theorem 1. If $D \subset \mathbb{C}^2$ satisfies the condition (*), then the following sequence

 $\pi_1(Y) \xrightarrow{\psi} \pi_1(\mathbb{C}^2 \setminus D) \xrightarrow{F_{\bullet}} \mathbb{Z} \longrightarrow 0$

is exact.

Corollary 1. If $D \subset \mathbb{C}^2$ satisfies the condition (*), then $N = \ker F_*$ is a finitely generated group.

Denote by $Z_{ex} = F^{-1}(l_{ex})$ the preimage of l_{ex} . The inclusion $Y \subset Z_{ex} \subset Z$ and the morphism F give rise to the following commutative diagram

The map $F: Z_{ex} \to l_{ex}$ is a locally trivial fibration. Thus all rows in this diagram are exact.

Denote by h_{ex} the diffeomorphism of Y determined by the circuit along l_{ex} .

2.2. We fix a point $y_0 \in Y_0 = Y$. Let $l_i \subset l_{ex}$ be a path joining z_0 with $z_{i,2}$ (we use notations from 2.1) and consisting of the part of γ_n up to the point $z_{1,1}$, the path from $z_{1,1}$ to $z_{1,2}$ along $\gamma_{1,2}$, the path γ_1 , the path from $z_{2,1}$ to $z_{2,2}$ along $\gamma_{2,2}$, and so on up to the point $z_{i,1}$. If we fix local trivializations of the bundle $F: Z_{ex} \to l_{ex}$ over some covering of l_{ex} , then the paths l_i lift uniquely to paths $\bar{l}_i \subset Z_{ex}$ starting at the point y_0 . We denote by y_i the end of the path \bar{l}_i .

Let $\overline{B}_i = F^{-1}(B_i)$. The above paths \overline{l}_i define homomorphisms $\rho_i : \pi_1(\overline{B}_i, y_i) \to \pi_1(Z, y_o)$. We denote by $\psi_i : \pi_1(Y_i, y_i) \to \pi_1(\overline{B}_i, y_i)$ the homomorphism induced by inclusion, where $Y_i = F^{-1}(z_{i,1})$. By Lemma 2 in [K], the homomorphisms ψ_i are epimorphisms.

Since $F: Z_{ex} \to l_{ex}$ is a locally trivial bundle, the above paths l_i define isomorphisms $\alpha_i : \pi_1(Y_i, y_i) \to \pi_1(Y_0, y_0)$. Hence in what follows we shall identify the groups $\pi_1(Y_i, y_i)$ with the group $\pi_1(Y_0, y_0)$. Thus we obtain epimorphisms $\psi_i : \pi_1(Y_0, y_0) \to \pi_1(\overline{B}_i, y_i)$.

2.3. We identify $\pi_1(l_{ex})$ with $\pi_1(T)$ by means of isomorphism induced by inclusion $l_{ex} \subset T$. The exact sequence

$$1 \longrightarrow N \longrightarrow \pi_1(Z, y_0) \xrightarrow{F_\star} \pi_1(T, z_0) \longrightarrow 1$$

defines an infinite cyclic covering $\tilde{g}: \tilde{Z} \to Z$ fitting into a commutative diagram

$$\begin{array}{ccc} \widetilde{Z} & \xrightarrow{F} & \widetilde{T} \\ & & \downarrow^{g} \\ & & \downarrow^{g} \\ & Z & \xrightarrow{F} & T \end{array}$$

in which $g: \widetilde{T} \to T$ is the universal covering. Pick a point $\tilde{y}_0 \in \tilde{g}^{-1}(y_0)$, and let $\tilde{z}_0 = \widetilde{F}(\tilde{y}_0)$. Then $\pi_1(\widetilde{Z}, \tilde{y}_0) = N$.

The space \tilde{T} is a disjoint union of countably many discs $B_{i,j}$, $j \in \mathbb{Z}$, such that $B_{i,j} \subset g^{-1}(B_i)$. These discs are joined by intervals (see Figure 2 in [K]) and form a chain. We number the discs $B_{i,j}$ in the order induced by the order in the chain as is shown on Figure 2. In each interval joining neighboring discs we pick a point \tilde{z}_i (in the interval joining the discs $B_{n,-1}$ and $B_{1,1}$ we take the above point \tilde{z}_0) and number them in order induced by the order in the chain (the point \tilde{z}_0 has the number 0).

We denote by $\widetilde{T}_{kn,mn}$ the "part" of the space \widetilde{T} lying between the points \widetilde{z}_{kn} and \widetilde{z}_{mn} , m > k, where *n* is the number of discs B_i belonging to *T*. Let $\widetilde{Z}_{kn,mn} = \widetilde{F}^{-1}(\widetilde{T}_{kn,mn})$.

Lemma 1. $\pi_1(\widetilde{Z}_{kn,mn})$ is a finitely presented group.

Proof. Let $\tilde{z}_{0,i,j}$ be the center of the disc $B_{i,j}$. Consider a space

$$\widetilde{Z}^0_{kn,mn} = \widetilde{F}^{-1}(\widetilde{T}_{kn,mn} \setminus \bigcup_{i=1}^n \bigcup_{j=k}^m \widetilde{z}_{0,i,j}).$$

Since fibrations $\tilde{F} : \tilde{F}^{-1}(B_{i,j} \setminus \{\tilde{z}_{0,i,j}\}) \to B_{i,j} \setminus \{\tilde{z}_{0,i,j}\}$ are locally trivial C^{∞} bundles over punctured discs with punctured Riemann surfaces as fibres, the fundamental groups $\pi_1(\tilde{F}^{-1}(B_{i,j} \setminus \{\tilde{z}_{0,i,j}\}))$ are finitely presented. Applying Seifert van Kampen theorem, we obtain that $\pi_1(\tilde{Z}^0_{kn,mn})$ is a finitely presented group. The preimage $\tilde{F}^{-1}(\bigcup_{i=1}^n \bigcup_{j=k}^m \tilde{z}_{0,i,j})$ is the union of a finite number of Riemann surfaces and the kernel of the natural epimorphism $\pi_1(\tilde{Z}^0_{kn,mn}) \to \pi_1(\tilde{Z}_{kn,mn})$ is generated by geometric generators which are circuits around these surfaces. Since for each irreducible Riemann surface any two circuits around it are conjugated, we obtain that $\pi_1(\tilde{Z}_{kn,mn})$ is a finitely presented group.

2.4.

Lemma 2. If f(x, y) is reduced and \overline{D} and L_{∞} meet transversally, then $h_{ex}^d = id$, where $d = \deg f(x, y)$

Proof. The morphism F defines a rational map

$$F: \mathbb{P}^2 = \mathbb{C}^2 \cup L_{\infty} \to \mathbb{P}^1 = \mathbb{C}^1 \cup \{\infty\}.$$

Let $\sigma: \overline{\mathbb{P}}^2 \to \mathbb{P}^2$ be a composition of σ -processes such that $\overline{F} = F \cdot \sigma: \overline{\mathbb{P}}^2 \to \mathbb{P}^1$ is a morphism.

The equation $z^d = f(x, y)$ defines a normal projective surface $\widetilde{X}_d \subset \mathbb{P}^3$ and a morphism $\phi_d : \widetilde{X}_d \to \mathbb{P}^2$. The preimage $\phi_d^{-1}(L_\infty) = \overline{Y}_\infty$ is a non-singular curve. Let \overline{X}_d be the normalization of $\overline{\mathbb{P}}^2$ in the field $\mathbb{C}(x, y, z)$ and $\phi_d : \overline{X}_d \to \overline{\mathbb{P}}^2$ the corresponding morphism.

Choose a neighborhood U of the point $\infty \in \mathbb{P}^1$ which is isomorphic to the disc $\Delta = \{ u \in \mathbb{C} \mid | u | \le 1 \}$ (the origin u = 0 corresponds to the point $\infty \in U$) and such that the map $\overline{F}: \overline{F}^{-1}(U \setminus \infty) \to U \setminus \infty$ is a smooth proper morphism. Put $\overline{U} = \overline{F}^{-1}(U)$ and $\widetilde{U} = \phi_{-1}^{d}(\overline{U})$. We obtain the following commutative diagram:

(3)
$$\begin{array}{cccc}
\widetilde{U} & \stackrel{\phi_d}{\longrightarrow} & \overline{U} \\
& & & \downarrow_{\overline{F}_d} & & \downarrow_{\overline{F}} \\
& & \Delta & \stackrel{\psi_d}{\longrightarrow} & U,
\end{array}$$

where ψ_d is defined by equation $u = v^d$ (v is a coordinate in Δ). Since preimage $\overline{F}_d^{-1}(0) = \phi_d^{-1}(L_\infty)$ is a non-degenerate fibre of \overline{F}_d , the monodromy h_d , acting on a general fibre and defined by circuit around the boundary of Δ , is trivial. On the other hand, it follows from commutative diagram (3) that $h_d = h_{ex}^d$. Lemma 2 is proven.

2.5. The following Lemma completes the proof of Theorem 2'.

Lemma 3. If f(x, y) and \overline{D} are as in lemma 2, then $\pi_1(\widetilde{Z}_{kdn,mdn})$ are isomorphic to $\pi_1(\widetilde{Z}_{0,dn})$ for all k and m.

Proof. Let $\tilde{l}_{ex} = g^{-1}(l_{ex})$ and $\tilde{Z}_{ex} = \tilde{g}^{-1}(Z_{ex})$. Then $\tilde{F} : \tilde{Z}_{ex} \to \tilde{l}_{ex}$ is a trivial C^{∞} bundle. Consider fibres $Y_s = \tilde{F}^{-1}(\tilde{z}_s)$ of this bundle. If we choose a trivialization, then we can identify all these fibres, in other words, the choosed trivialization induces diffeomorphisms $\alpha_{i,j} : Y_i \to Y_j$. If $kdn \leq s \leq mdn$, then $Y_s \subset \tilde{Z}_{kdn,mdn}$ and this inclusion induces an epimorphism $\psi_{s,kdn,mdn} : \pi_1(Y_s) \to \pi_1(Z_{kdn,mdn})$ such that if $kdn \leq r \leq mdn$, then $\psi_{s,kdn,mdn}\alpha_{r,s*} = \psi_{r,kdn,mdn}$.

All spaces $\widetilde{Z}_{kdn,(k+1)dn}$, $k \in \mathbb{Z}$, are naturally diffeomorphic to each other, since these spaces are the preimages of d circuits along the necklace T starting at the point z_0 . These diffeomorphisms allow us to identify the fundamental groups $\pi_1(\widetilde{Z}_{kdn,(k+1)dn}) \simeq \pi$ for all k. This identification is compatible with the above identification of the fibres Y_r , that is, the following diagram is commutative:

To obtain $\widetilde{Z}_{0,2dn}$ from $\widetilde{Z}_{0,dn}$ and $\widetilde{Z}_{dn,2dn}$ (similarly, for $\widetilde{Z}_{-2dn,0}$), we must paste these two subspaces of $\widetilde{Z}_{0,2dn}$ along the diffeomorphic fibres $Y_{dn} \subset \widetilde{Z}_{0,dn}$ and $Y_{dn} \subset \widetilde{Z}_{dn,2dn}$. The rule of pasting is defined by monodromy h_{ex}^d . In our case, by Lemma 2, $h_{ex}^d = id$. Applying Seifert - van Kampen theorem, we obtain that there exists an isomorphism $\psi_{0,2} : \pi_1(\widetilde{Z}_{0,dn}) \to \pi_1(\widetilde{Z}_{0,2dn})$ compatible with the epimorphisms α_* . The obvious induction completes the proof of this Lemma.

References

[K] Vic.S. Kulikov, The Alexander polynomials of plane algebraic curves, Russian Acad. Sci. Izv. Math. 42, N. 1 (1994), 67–90.

- [N] M. Nori, Zariski's conjecture and related problems, Ann. Sci. Ec. Norm. Sup. ser. 4 16 (1983), 305-344.
- [S] J.R. Stallings, On fibering certain 3-manifolds, In: Topology of 3-manifolds, Proc. 1961 Top. Inst. Univ. Georgia(ed. M.K. Fort, jr), Englewood Cliffs, N.J.: Prentice Hall. (1962), 95-100.

Chair "Applied Mathematics II", Moscow State University of Transport Communications (MIIT), ul. Obraztsova 15, 101475 Moscow, A-55, Russia. e-mail: victor@olya.ips.ras.ru