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Since the discovery of the Jones polynomial and its far reaching generalizations it appeared

that many of these new invariants can be obtained by so called state sums, associated to a

diagram of the liIlL These state sums have in common that they are built up by a very high

number of summands.

In this paper we introduce astate surn for knots in realline bundles over non-simply connected

surfaces in a very simple and effective way. This leads to a new invariant for a certain dass

of links in the three-sphere. The invariant is a secondary invariant for the linking number

and is used to obtain an estimate from below for a generalized unlmotting number.

A conjugacy invariant for braids is another application of the new state sumo We use this to

show that the exchange move for braids, introduced by Birman & Menasco, indeed changes

the conjugacy class of the braid in many cases. This conjugacy invariant can also ofien be

used to show very quickly that a given braid (and for a pure braid even all of its powers)

is not conjugate to any positive braid.

Combining our invariant with technique~ of Birman & Menasco and Morton we prove that

there are infinitely rnany pairwise non-conjugate presentations of the unlmot as (the closure

of) a braid with four strings, which are a11 irreducible, i.e. none of them is conjugate to a

stabilization of a braid with three strings. Hence, braid presentations of the unlmot are as

complicated as they could only be.
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§ 1. The basic construction

Let F 2 be a non-simply connected smooth surface (not necessarily compact or orientable)

and let 11 : E ~ p2 be arealline bundle with orientable total space E. We fix an orientation

of E. Let ]( f.-...+. E be an oriented knot in general position with respect to ]J, i.e. p(]{)

is a connected immersed curve with ordinary double points as the only singularities. The

projection p induces, as usual, a diagram of !{ in F2. A writhe w(q) = ±1 is we11-defined

in each double point q of p(K). Far this we choose an orientation of the fibre Eq = p-l(q).
This detennines the undercross and the overcross for the two branches of ]{ intersecting Eq .

Definition 1. w(q) = -1 if the three-frame (undercross, overcross,fibre E rJ ) agrees with the

orientation 01 E and 'W ( q) = -I olherwise (see Fig. 1).

Lemma 1. The definition of the writhe is correct.

Proof: If we reverse the orientation of Eq then the undercross and the overcross interchange

and, hence, the writhe hasn't changed.

Let [p(I{)] denote the homology class in H 1 (F 2; Z) represented by p(j(). We distinguish

two cases.



Case I: (Wl (p2), [P(K)]) =1 mod 2, i.e. p(I() is one-sided immersed in p2. (Here WI (p2)
denotes the first Stiefel-Whitney dass of the tangent bundle of p2.)

Let q E p(K) be a crossing. We spUt the curve p(K)in q with respect to the orientation
(see Fig. 2) and obtain two oriented curves on p2. Exactly one of them is again one-sided

immersed in p2. We denote by ~(q) the dass in HI (p2; Z)represented by this curve. Let H
denote the free Z-module generated by BI (p2; Z).

Definition 2. The small state sum iVR E H is defined by the sum over all crossings fJ

WI( = L:: w(q)~(q) - (L:: W(q)) [P(J()J.
q q

Case 11. (Wl (p2), [P(I()]) =0 mod 2.

Let q E p( !() be a erossing. We again split p( J() at q with respeet to the orientation of

p(I{). Tbere are again two eases: Either both resulting curves are one-sided immersed in F 2

or both are two-sided immersed. We consider only those crossings q for which the second
possibility occurs aud call them crossings of type 11. We orient p2 aIong p(I(). lIi erossings

of type 11 this detennines a well-defined orientation of F 2 . Together with the orientation of

E this detennines an orientation of Eq . Hence, the overcross and the undercross of !( in q

are now determined invariantly. Tbe point is, that we ean now distinguish the two eurves

which result from the splitting of p(K) at q. Let ~+ (q) denote the class in H I ( p2; Z) w hich is

represented by the curve which comes from the undereross and goes to the overeross at q1 and

let correspondingly, ~-(q) denate the dass represented by the other curve (see Fig. 3). Let

H denote the free Z-module generated by HI(p2; Z) /[P(I{)l={O} (i.e. we have in HI(p2; z)
identified just two elements, namely the dass represented by p(K) with the O-element.)

Definition 3. The small state sum WJ( E H is defined as the element which is induced by

the sum over all crossings q oj type 11

H1K = L:: w(q)€+(q) - ( L:: W(q)) {O}.
fj of type 11 () of type 11

Theorem 1. I-VK is an isotopy invariant of !{ c........;. E in each of the both cases.

Proof: We consider ease 11. (The proof in case I is similar and is therefare omiued.) We

have to check the invarianee of lVI\" under the oriented Reidemeister moves of type I, II and

m as in the ease of the trivial bundle over R2 (see Fig. 4). This is in fact sufficient, because
the Reidemeister moves correspond to the generical singularities of any one-parameter family

of projeetions of a curve into a sulface.

The invariance under moves of type 111 (Le. passing a tripIe point in the projection) is evident,

because the writhe w(q) is invariant and the dass ~+(q) doesn't change under a homotopy
of the corresponding curve on p2.

Under a move of type 11 (Le. passing a tae-node in the projeetion) a pair of crossings q and

r! appears or disappears. As easily seen, q and c! are either both of type 11 or both not,

w(q) = -w(r!) and ~+(q) = €+(c!) (see Fig. 3).

Consequently, l'VI\ doesn't change.
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A move of type I (i.e. passing a cusp in the projection) adds or eliminates always a crossing q
oftype 11. The crossing q always contributes a summand ofthe form w(q){O} or w(q) [P(]()J.
But we have identified {O} with [P(I{)J and hence the last term in the definition of l'VI\
compensates the change under a move of type I. The theorem is proved.

In the following we will be only interested in the case of orientable surfaces F2" Hence, the

bundle E is trivial and all crossings are of type IL

:The most important property of IVK is its very simple "skein relation". Let q E p(I() be a
crossing and let ]{+ and J(_ denote the associated knots as usual (see, e.g. [10]).

(1)

This follows immediately from the definition, because a crossing change interchanges

Consequently, if we make a crossing change in a crossing q for which both ~+ (q) and ~- (q)
are not zero then IVK changes. Hence, it is not an invariant of regular homotopy of JC

Remark: In the definitions and results of this paragraph we could have replaced the homology

"classes (, ~+, (- by the free homotopy classes of the corresponding curves on p2. But we

make 00 use from this in this paper.

§_ 2. A secondary link invariant

Let L be an oriented non-trivial fibred knot aod let rp : S3 " L --t SI be the fibration, i.e. <p

is a smooth map without singularities and induces an open book structure near L (see, e.g.

[14]). As well-known, 'P is unique up to isotopy. Let E be the infinite cyclic covering of

S3 " L corresponding to a meridian of L. ep lifts to a smooth function rp : E -+ R snd, hence,

E has a product structure F 2 x R1 where F 2 is the fiber sUIface of!.p. The action of the group

of deck transformations is generated by the monodromy

T : p2 --t F 2 (see, e.g. [14]).

This defines a projection p : E - F 2 which is unique up (0 iso(opy and up to composition

with the action of Tm, 111 E z~ on p2" We fix such a projection p"

Let now ]( <......;. S3 , L be an oriented knot such that the linking number lk(I(, L) = O. The

knot J( lifts to a closed curve j( t--+ E" We apply Definition 3 to p : j"( --+ F 2 and obtain

a small state SUfi lVi\." E H of the form

B/ -. = "a"'1]' where a" E Z" 0 andI\. L..J 'r r, r

jeI

the 1]i are distinct elements in H 1( p: Z) (where we have identified the class [p (j'()] with 0).

Proposition 1. The unordered set of non-zero integers {ai} iE! is an isotopy invariant
of !{ U L t--+ 53.

We denote this invariant by vFKUL "
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Proof: Wj{ is an isotopy invariant of !( '-+ E for the fixed projection p as follows from

Theorem 1. Choosing another projection]l sends Wk to 2: ai( r;n17i) for a fixed m. Here we
iEI

had to identify r;n [p (k)1= [pI (k)] with o. Hut r~n acts as an isomorphism on BI (p2; z)
and, hence, the r~T/i are distinct for distinct i. It follows that the unordered set of coefficients

{ad iEI remains invariant @

§ 3. A generalized unknotting number

Let Lu !{ '-+ S3 be an oriented link of two components. We assurne that L is a non-trivial

fibred knot Let p2 be a fibre surface for L.

Let ht , t E [0,1], be a regular homotopy of !( in S3 " L such that ho = K, h l is embedded

in F 2 and ht , t E (0, 1) l is an embedding except for a finite number of values of t where it
has an ordinary self-intersection (see, eg.[6]).

Definition 4. The minimalnumber 0/ self-intersections among all such homotopies ht is called

the unknotting number of !( with respect to L and denoted by 'UL(J{). If therejs no such

homotopy at all we set UL(!() = 00.

Remark. If we take for L the trivial knot in some ball B3 '-+ 53 such that B3 n !( = fjJ

then uL(I() is the usual unknotting number.

If the linking number lk(L,l() i- 0 then UL(!{) = 00, because ht C 53 " Land, evidently,

lk (ht, L = 8P2) = O. Therefore we assume in the sequel that Ik(L, J() = 0.

Let q E hto be a self-intersection point. Let "(+ (q) and ,- (q) denote the (unordered) oriented

loops obtained from hto by splitting hto at q with respect to the orientation. We distinguish

two cases' for the self-intersection q :

Typ I. Ik (L, , +(q)) = Ik (L, , - (q)) = 0
Typ II. lk(L,,+(q)) :I 0, lk(L,,-(q)) i- 0.

Definition 5. The self·intersections of type I are called essential. In anaJogy to Definition 4

we denote their minimal number by ul(I().

Clearly, 'Ur (!() 2:: 'ur (!().

Let Hl1\UL = {a;} iEI be the isotopy invariant of ]( U L <........;. S3 defined in the previous

paragraph.

Proposition 2. 'UrJ ]() 2:: 1/22: lai I·
iEf

Proof: If hl '-+ F2 then the lift hl '-+ F2 x {const.} '-+ E. Consequently, p(h l ) has no

double points at all and VVh1UL = 4>.

Let hto have a self-intersection q. We consider how lVhtUL changes for t passing through to.
The litt hto has a self-intersection exactly if q is essential. Let (+ (ij) and (- (ij) be the classes

corresponding to the double point ij E hto (cf. § 1). It follows form the "skein relation"

(1) that Wh,UL does not change if ~+(!]) =C( <]) (= [p(ii t )1)~ If ~+(c]~ "I C{!]) "I 0 then

exactly two numbers aj, aj E l'VhtUL change by ±l and if ~ (q) = {-(q) :I 0 then exactly

one number ai changes by ±2. Consequently, there has to be at least 1/2 L lail essential
iEI

self-intersections in ht in order to make l'VhIUL = q; for t = 1.
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§ 4. A conjugacy invariant ror braids

The conjugacy problem for the braid groups was solved by Garside [8]. However, his

algorithm is to too complex to be applicable in practice (see also [1], [2], [7], [9]). So

it is very useful to find simple invariants.

Let Bn be the braid group of braids of n strings (see [3]). We represent the closure of a braid

" ß E B n as an oriented link /3 in R3 = {(x, 9, z)} which does not intersect the z-axis and

~intersects each plane containing the z-axis transversely. As weIl known , there is a one-to­
one correspondence between conjugacy classes in Bn and isotopy classes of closed n-braids

in the complement of the z-axis (see [11]). Setting E = R3 " {z - axis}, F 2 = R2 " {O}
and p(x, 9, z) = (X,9) we can define the invariant H1ß. But because we are interested only

in conjugacy of braids, no Reidemeister moves of type I occur and we do not need the

correction term in the definition of lIVß' It is also convenient to define the invariant as a

Laurent polynomial.

A naturally oriented meridian 7n of the z-axis represents a generator of H 1 (R2 " {O}) ~ Z.

Here the orientation is chosen in such a way that [ß] = n[n1]. We assurne that /J is a knot.

Let {+(q) = n+(q)[m] and {-(q) = n-:-(q)[m] for any crossing q of ß, where {+(q) and
{-(q) are defined as in seetion 1. Here n+(q) and n-(q) are positive integers and. clearly,

n+(q) + n-(q) = n. Hence, they are in fact an ordered splitting of the string number n

associated to the crossing q.

Definition 6. The invariant vV,a(x) E Z [Xl x-I], where x is a variable, is defined as the sum

o.ver all crossings q (or letters in a word representing ß)

vl1,a (x) = L W ( q)X n+(q) - n - (q) .

q

Proposition 3. 1V,a(x) is a conjugacy invariant of ß E Bn and has the foltowing properties:

i) Hl,a(x) is asymmetrie Laurent polynomial, j.~.

ii) the maximal degree of monomials

111aX degll1,a(x) ::; n - 2

Ui) if ß is conjugate to a positive braid (i.e. ODe which can be represented

by a word using only the standard generators al aud not their inverses) then

max deg W,6(x) = n - 2 aud alt coefficients are non-negative.

iv) 1/ll,6(1) is equal to the exponent sum e(ß).

Remark. As weIl known, every homomorphism of Bn into an abelian group factors
through the homomorphism e : B n --; l given by e(ß). The map into the abelian group
llVß : B n ~ Z [x, x-I] is not a homomorphism but it is weIl defined on conjugacy classes in

Bn . Together with property iv) this shows that 1/\1,6 is a refinement of e.

Proof: Invariance follows directly from Theorem 1 and the remark in front of Definition 5.

ü) and iv) follow immediately from the definition. To prove i) we notice that according to (1)
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a crossing change changes IIVß(.7:) by asymmetrie polynomial. With crossing changes and

conjugations every braid ß E B n (such that ß is a knot) can be transformed into the braid

On = 0"10"2 . .. O"n-l. A direct caleulation shows WÖn (x) = x
n

-
2 + x n

-
4 + ... + x 4- n + x 2-

n

and, hence, IVß(x) is always symmetrie. ©

Let ßbe a positive braid. Eaeh" erossing eontributes to vlt~ß(x) a monomial with coefficient +1

and, hence, 00 eoefficient of ~Vß(x) is negative. It is an elementary geometrical fact (which

we will not prove) that there are always two crossings q, q' such that ln+(q) - n-(q)l =
In+(q') - n-(q')1 = n - 2. Tbe contributions of these erossings can not cancel because a11

other crossings contribute monomials with positive coefficients too. The proposition is proved.

Example.

ß = alCT2a31a2a4(T510"4(T30"il(]g E B6.

IVß(x) = 4x2 + 1 + 4.7:-2 and, consequently, ß is not conjugate to aoy positive braid.

lllß( x) ean be cakulated by hand in a few minutes!

Remarks: 1. It seems to be difficult to extend It~ß(.'L) to a knot invariant because-it behaves

unpredietable under stabilization (i.e. the second Markov move [3]).

2. In a fortheoming joint paper with C.-F. Bödigheimer we extend l{t~ß(x) to a conjugacy

invariant for hyperelliptie mapping dass groups.

§ 5. Characteristic classes for the group of pure braids

Let S : Bn --+ ~n be the projeetion of the braid group onto the symmetrie group, induced by

the additional relations 0"[ = 1. Let {adi=l, ... ,(n-l)! be the set of all elements of maximal
eycle length (n - 1) in ~n. To eaeh Gi corresponds a unique positive braid of exponent surn
(n - 1) in S-l(O'i). We denote this braid by O'j tao. (The closure Oj of each O'j represents

the unknot).

Let Pn C Bn be the subgroup of pure braids, Le. braids which induce the trivial permutation

in the symmetrie group (see [3]).

Definition 7. The dass H't E Hl(Pll ;Z(.r±lJ):i = 1. ... :(n -1)!. is defined by Hlj(ß) =

Y'llo;ß(x)-Y'li6 ;(:C) for .d E Pn •

Lemma 2. The definition o[ YVj is correct.

Proof: O';ß is a knot for ß E Pn and, hence, lVa;ß(x) is defined."'For any braid I E B n (such

that S(1') = 1) the eontribution of a crossing to lVi (x) is the same as the contribution of the

same erossing to W,'ß( x) for any ß E Pn · For lVi only the crossings in ß give contributions
and, consequently, VVi is a homomorphism into the additive group of Laurent polynomials.

Q
Tbe following lemma is proved with the same arguments.

Lemma 3. Let ß E P'l' The unordered set {vVj(ß)} i=1,. .. ,(1l-1)! is a conjugacy invariant 0/

ß in B n .

Remarks: 1. It would be interesting to find out how the classes lVi are related to each other.

Are they really different?

6



2. H1(Pn; Z) ~ Z and the map Pn -. H1(Pn;Z) is given by ß ~ e(ß), where e(ß)
is the exponent sum of ß. IVi(ß) evaluated at x == 1 is just e(ß). Consequently, the set

{Wi(ß)} i=ll... ,(n-l)! can be considered as a refinement of the abelian invariant e(ß)·

Proposition 4. Let ß E Pn. If at least one ofthe polynomials lVj(ß) has a negative coefficient

then none ofthe braids ßm, 'm- any positive integer, is conjugate in Pn 10 a positive braid. Ij

all of the polynomials H'i(ß) have a negative coefficient then none 0/ the braids ßm, m- any

positive integer, is conjugate in ·Bn to a positive braid.
\

Proof: l'Vi(ßm) == m vVj(ß) and, hence, Hij(ßm) has a negative coefficient. Tbe proposition

follows then from Lemma 3 and Proposition 3 iü). @

§ 6. Exchange moves and conjugacy classes

Birman and Menasco introduced an important new move for closed braids in order to avoid

stabilization in the study of link types as elose<! braids [4]. Following them we call this move

exchange move. It is illustrated in Fig. 5.

One strand is weighted with a positive integer n, so the whole braid ß belangs to B n +2. The

JY and Y· are braids in Bn+1. We denote' the n new negative crossings (i.e. after the move)

which are nearest before the box )( by PI, ... 1 Pn, and we denote the n new crossings just

behind the box by ql," . 1 qn'

Definition 8. Let /J be a knot. The de/ect .6.(x) E Z [x±I] 0/ the exchange move is defined by

ß(x) = t (xn+(q;)-n-(q;) + xn-(q;)-n+(q;))

1=1- t (xn+(p;)-n-(p;) + xn-(p;)-n+(p;»).

,=1

Repeated applicatians of the exchange move create infinitely many presentations of the same

link type as a (n + ~) - braid.

Proposition 5. I/ 6.(x) =t 0 then all braids obtained /rom ß by repeated applications 0/ the

exchange move are pairwise non conjugate.

Proof: Changing a11 crossings PI:· ... Pli' (Jl, .... 'in we obtain a braid conjugate to /3.

Consequently, with respect to Cl) the exchange move adds ~(J:) to l'liß(:r) and k times
rePeated applications add k . ~(x). The proposition follows then from Proposition 3. ©
Example 1. As weil known, the number of pairwise non conjugate presentations of a link as

a 3-braid is always finite (see [13]). So the simplest examples should be 4-braids.

Setting in Fig. 5 n == 2, JY = al a2, 1'~ == a2 we obtain presentations of the unknot. Let

ß( n/.) denote the braid which is the result of applying .,n times the exchange move to ß. An
easy calculation shows

IIV~ == 2x2 - 1 + 2x-2 +m.6.(x)ß(m) . ,

where

Consequently, all ß(111) are pairwise non-conjugate.
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Example 2. The first examples of infinitely many pairwise non-conjugate presentations of

the unmot as a braid with four strings where obtained by Morton [11]. For his examples

one obtains

and, hence, all the braids ,Bi are non-conjugate to all the braids ß(m,) from Example 1.

§ 7. Irreducible braid presentations of the unknot

If a braid ß E Bn is conjugate to ')'(1;~1 ~ for some / E Bn- 1 then ß is said to be reducible.
So, one ean pass from ß to f without using Markov moves which increase the string index
(cf. [1], [5], [12], [15]). Tbe examples of the previous paragraph are all redueible. Morton
[12] gave the first example of an irreducible presentation of the unknot as a hraid with four
strings. In this paragraph we use Mortons approach (whieh uses an idea of Rudolph [15] and
Casson) to show that there are infinitely many such presentation.

Theorem 2. The braids

have unknotted closure aod are pairwise non-conjugate. The braids ßn for Tl, =4 mod

5 are aU irreducible.

Proof: Tbe starting point is Mortons example

ß is irredueible and has unknotted closure. We take the are a and push it through the hatched
region in its previous position (see Fig. 6). This is an isotopy of the knot The resulting braid
has the same exponent surn as ß and will be our braid ,60' It allows some kind of exchange
move, narnely rotating the are 0: around the first three strings. An easy calculation shows that
the defect of this move ~ (:r) == O. Therefore we make a "partial exchange move", namely
rotating the arc Cl' only around the seeond and third strings (see Fig. 7). Iterating this move

leads to the braids ßn. The defect of this move .ß(x) = 4 - 2x2 - 2x-2 , and, hence, all the

braids ßn are pairwise non-conjugate. ©
Following Morton [12] we consider the representation

A direct calculation shows

tr( 6(ßn)) = 140n2 + l06n + 22.
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If ßn is redueible then it follows from the elassifieation up to conjugacy of the presentations

of the unknot in B3 that either

tr(4)(ßu)) = 3 + c2 + cd - d2

or

( ac db)for same

or

E 5L(2, Z) (cf. [12]). Consequently, either

4n + 1 == (2c + (/)2 mod 5

2c2 + 4n + 4 =(2a - c/ mod 5.

An easy analysis shows that exaetly for n =4 mod 5 none of the bolb cases is possible.

This completes the proof.

Remark. The trace tr is clearly a eonjugacy invariant and, henee, it shows again that the
braids ßn are pairwise non-conjugate. But tr doesn 't behave additively under iteration of the
move in difference to the defect ~(x), and, henee, the ealeulation of tr is more tedious.

§ 8. An equivalence relation for braided surfaces

A positive band in the braid group Bn is a conjugate of one of the standard generators,

and a negative band is the inverse of a positive band. Eaeh representation of a braid as

a product of bands yields a handle deeomposition of a certain ribbon surfaee in the 4-ball

bounded by the corresponding closed braid. These surfaces are called braided surfaees. They

were introdueed and studied by Rudolph in the beautiful paper [15]. Following Rudolph, let

b = (b(l), ... , b(k)), where each b(i) is a positive or negative band in B n , denote a band

representation of the braid ß = b( 1) ... b( k) E Bu . There are four natural operations that
relate different band representations of the same braid ß.

I. Iffor somej b(j)b(j + 1) = 1 E B" then b~ (b(l): ... : b(j - I), b(j + 1), ... I b(k))
is called an elementary contraction.

II. The opposite operation to I, called elementary expansion.

m. b~ (b( 1), , b(j - 1) I b(j )b(j + 1)b(j )-I, b( j ), b(j + 2), ... ) a forward slide.

IV. b H (b(l), ,b(j -l),b(j + l),b(j + l)-l b(j)b(j + l),b(j + 2), ...) a back-

ward slide (this move is opposite to m).

A theorem of Rudolph says, that two band representations of ß in Eu may always be joined
by a finite sequence in which adjacent band representations differ by one of the four moves
above [15].

Let 5 : B n ~ Ln be the projection onto the symmetrie group.

Definition 9. A handle sUde is ealled permutation preserving if it doesn' t change the im­

age 0/ the handle in the symmetrie group, ;.e. tor [onvard sUdes 5(b(j)b(j + l)b(j)-l) =
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S(b(j + 1)) andfor backward sUdes S(b(j + l)-lb(j)b(j + 1)) = S(b(j)). Two band repre­

sentations (ar braided surjaces) are called permutation preserving equivalent ifthey can be

joined by a finite sequence in which adjacent band representations differ by move 0/ type I or
1/ or apermutation preserving slide 0/ type 111 or IV or a conjugation by bands in B n .

Every band b(j) is of the form aaf1a-1, a E Bn1 i E {1 , ... 1 n - I}. We call the af1 the

centre of the band.

Definition 10. Let /3 be a knot. The invariant 1fb(:C) E Z(xJ is defined as the sum over the

centres p 0/ all bands b(j) 0/ the band representation b 0/ ß

l fb(.'L') = L w(p )x1n+(p)-n- (p)l.

p

Proposition 6. Vb(X) is invariant under permutation preserving equivalence.

proor: The images in the plane of the braid obtained by splitting the centre of a band b(j)
and of the braid obtained by splitting the centre of the 'adjaceot band b(j)-l are the same.
Consequently, the moves I and 11 don 't change Vb( x).

Let p be the centre of a band b(j) and let p be the centre of the resulting band
b(j + 1)-lb(j)b(j + 1) after a handle slide. The braid obtained by splitting p is identical
to the braid obtained by splitting p'.

Let q be the centre of the band b(j + 1) before the handle slide and let q' be the centre of the
resulting band b(j + 1) after the (now assumed) permutation preserving handle slide. Clearly,

In+(q) - n-(q)1 is detennined by s(b(l) ... b(j - l)b(j)b(j + 2) ... b(k)) up to conjugation
in En . Analogous, jn+(q') - n-(q')1 is deterrnined by

S (b( 1) ... b(j - 1) (b(j + 1)-1 b(j )b(j + 1)) b(j + 2) ... b( k)) .

But S(b(j)) = S(b(j + l)-lb(j)b(j + 1)) and, consequently, In+(q) - n-(q)1 = In+(q') ­

n-(q')I. An example easily shows that n+(q) - /1,-(q) = n-(q) - T,,+(r!) and, hence, taking

the absolute value of n+(q) - n-(q) in the definition of Vb(x) is really necessary. The rest
of the proof is the same as the proof of Theorem 1. ©

11-2
Let Vb(X) = :L ai.Ti~ ai E I. For any band representation biet l\ll denote the associated

i=O
braided surface. The Euler characteristic X(l\lt) = 1! - k1 where k is the number of bands
(compare (15]).

Proposition 7. Let b' be any band representation which is permutation preserving equivalent
n-2

to the band representation b o/,ß E Eu (ß is a knot). Then X(lYI~) ::; n - 2: la;J.
i=O

0-2
Proof: vii (:r) =Vb( x) and the proposition follows from the evident inequality k' 2: 2:: I(Li I

i=ü
(because each band contributes only a monomial ±xi into Vii (x) ). ©
Remark. It would be very interesting to compare Vb( x) with \111 (x) for band representations
b and b' of ß which are not pennutation preserving equivalent. This problem seems to be of
the same son as Remark 1 in paragraph 4.
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