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THE GENERALIZED THOM CONJECTURE

ToMAsZ MROWKA, PETER QzSVATH AND BAOZHEN YU

ABSTRACT. We prove the generalized Thom conjecture for embedded surfaces with
non-negative self-intersection using the Seiberg-Witten monopole invariants.

§1. STATEMENT OF THE RESULT

The purpose of this paper is to show how one can exploit the Kahler geometry of
an oriented disk bundle over an oriented 2-manifold of positive Euler class to give
new, somewhat simpler proofs of known results regarding the problem of finding
lower bounds for the minimal genus of surfaces representing homology classes in
four-manifolds.

Let X be a smooth, closed, oriented 4-manifold, § € H2(.X;Z) be some given
two-dimensional homology class. A natural question in 4-manifold topology is to
estimate the minimal genus of any smoothly embedded, oriented surface £ in X
representing S. When X is an algebraic surface and ¥ is a smooth complex curve
C, the canonical class Kx (the first Chern class of the complex cotangent bundle)
determines the genus of C through the adjunction formula:

29(C)-2=C-C+Kyx -C.

In particular, if X = CP?, the genus of a smooth algebraic curve of degree d is
then given by the formula ¢ = (d — 1}{(d — 2)/2. The Thom conjecture, proven
by Kronheimer and Mrowka [KM3] and Morgan, Szabd and Taubes [MST], states
that the genus of an algebraic curve in CP? gives a lower bound for the genus of
any smooth 2-manifold representing the same homology class. Both proofs used
the monopole invariants introduced by Seiberg and Witten [W], closely related to
Donaldson’s polynomial invariants [D].

Given a Riemannian metric on X, a Spin® structure on X gives rise to an aux-
iliary Hermitian line bundle L with first Chern class ¢; (L) = w2(X) mod 2. The
Seiberg-Witten invariants constitute a map from the set of equivalence classes of
Spin® structures on X (covering the coframne bundle) to the integers. Our main
result is:

Theorem 1. Let X be a {-manifold with b¥(X) > 1. Suppose that the Seiberg-
Witten invariant of X 1s non-zero for the Spin°® structure with auziliary line bundle

L. If ¥ is a smoothly embedded, oriented surface representing a homology class S
withe)(L) - S#0and 5.5 >0, then

29(Z) = 2-n2|er(L) - Sl
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where c1(L) - § is the pairing between homology and cohomology classes. O

This theorem also follows from the results in {KM3] for embedded surfaces with
self-intersection number zero and the blow-up formula for the Seiberg-Witten in-
variants [MST]. The purpose of this paper is to prove Theorem 1 without appealing
to the blow-up formula.

When X is a minimal algebraic surface of general type, the only Spin® structures
having non-zero Seiberg-Witten invariants are those with auxiliary line bundles the
canonical line bundle Kx or its inverse; therefore, we have:

Corollary 2. Let X be an minimal algebraic surface of general iype, then the
genus of an algebraic curve with non-negative self-intersection is a lower bound for
the genus of any smoothly embedded 2-manifolds representing the same homology
class. O

Although the problem of estimating the minimal genus of embedded surfaces
in a smooth 4-manifold was studied by many authors, the first inequality similar
to those in Theorem 1 was obtained by Kronheimer and Mrowka in [KM1], which
implies the generalized Thom conjecture for the K'3 surface. Theorem 1 was first
proven by Kronheimer and Mrowka [KM2] as part of their structure theorem of
Donaldson’s polynomial invariants for manifolds of simple type. The immersed
sphere version of Theorem 1 was first proven by Fintushel and Stern [FS] using
their relation for Donaldson’s invariants under rational blow-ups and blow-downs.
A proof of Theorem 1 was also given by Morgan, Szab6 and Taubes [MST] using
the blow-up formula for the Seiberg-Witten invarianis. Corollary 2 was first proven
by Kronheimer [K] using Donaldson’s polynomial invariants for complex surfaces
having a smooth canonical divisor.

We would like to thank the Department of Mathematics at Harvard University
and the Max-Planck Institute for Mathematics for their support and hospitality.
We would also like to thank Gordana Matié for very helpful discussions.

§2. THE SEIBERG-WITTEN INVARIANTS

We briefly review the definition of the Seiberg-Witten invariants. For a more
detailed exposition, we refer to [M].

Let (X, k) be a m-dimensional smooth manifold X with Riemannian metric k,
then h determines the Hodge star operator

= Q¥ (X) 2 Q7R (X)),
where Q% (X) = T(A* (T X)) is the space of differential k-forms. If X is a complex
manifold of dimension m = 2n, L is a Hermitian line bundle over X, then the

action of the operalor *, can be extended to bundle valued complex differential
forms. Following [GH],

£ QPI(X, L) o QPPI(X, L),

where L* 1s the dual line bundle of L. Notice that this is different from the con-
vention in [M].
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We shall be most concerned with Riemannian 4-manifolds. In this case, *2 = 1
on the space of two-forms Q?(X), so the Hodge star operator » decomposes the
space of two-forms into +1 and —1 eigenspaces, denoted by Qi(X) and Q2 (X)
respectively. When X is closed, the second cohomology of (X, k) has a correspond-
ing decomposition into two eigenspaces H%(X,R) = HZ(X,R)® H2(X,R), the
dimensions of which are denoted by *(X) and b~ (X) respectively.

Given a Riemannian 4-manifold (X, h), the set of unit cotangent vectors on
(X, h) gives a principal SO(4) bundle P(X) = P(T*X) = X. The structure group
SO(4) is isomorphic to

(SU(2) x SU(2))/{*1}.

By projecting to the first and second factor in the product SU(2) x SU(2), one gets
homomorphisms r4,r— : SQ(4) — SO(3), such that the associated SO(3) vector
bundles of 7. and r_ are the bundles of self-dual 2-forms /\f;_ (X) and anti-self-dual

2-forms /\2_()(') respectively.
The group Spin®(4) is isomorphic to

(SU(2) x SU(2) x SO(2))/ £ 1,
so we have a group homomorphism
p : Spin®(4) — SO(4).
Corresponding to ry : SO(4) = SO(3), there are homomorphisms
7+ : Spin®(4) — (SU(2) x SO(2))/ £ 1 = U(2),

such that the diagram i
Spin(4) —*— U(2)

P‘l lAd
SO(4) —=— SO(3)

commutes, where Ad is the adjoint representation.
A Spin® structure W on (X, h) consists of a principal SO(2) bundle

p: W — P(X)

together with a free Spin®(4) action on W, such that the Spin°®(4) action on W and
the SO(4) action on P commutes with the projections p.

Notice that the composition W — P(X) — X gives a principal Spin®{4) bundle
W - X.

Given the Spin® structure W, the associated complex vector bundles S* =
W xz, C* are called the bundles of (positive and negative) spinors, and sections
of these bundles are called simply (positive and negative) spinors. There is an iso-
morphism Endc(S*,57) = T*(X) ® C which induces the Clifford multiplication

c:T*(X)® St — 5,
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which is just the restriction of the Clifford multiplication of the Clifford bundle
CUT*X):SY®dS™ — St @ S™. The auziliary line bundle L of the Spin® structure
W is det(St) = det(S™), and the first Chern class of L satisfies ¢;(L) = ws(X)
mod 2. Given a Spin® structure W, the set of all Spin® structures is identified with
H?*(X;Z);given an SO(2) bundle Q over X with first Chern class ¢, (Q) € H*(X;Z),
the corresponding Spin® structure has positive spinor bundles St ® Q, negative
spinor bundle $~ ® Q and auxiliary line bundle L ® Q2.

A Hermitian connection A on L together with the Levi-Civita connection on
(X, h) determine a connection V4 on W — X, hence a connection on St. The
Dirac operator Dy is given by the composition

T(S*) 24 D(T* (X)) @ T(ST) 5 I(S™).

If {e;} is a local orthonormal basis of 7% (X}, {e'} the dual basis, then the Dirac
operator can be locally written as Dy = 3 e* - V.,. The action of /\2(X) on St is
defined by

R . 1. .
p(e'/\eJ)-E=§e’eJ-£,

where £ is a local section of S*, e'e! € CI{T" X) acts as Clifford multiplication.
Under this action, /'\i(X) maps St to itself. We define 7 : S* @ §* = Q7 (X)
by requiring 7(&,(), associated to two positive spinors € and ¢, to be the unique
self-dual two-form with the property that for any other w € Qi(X).

<P(“’)'5,C>=%<%T(f,()>- (1)

Given the Spin‘ structure W on (X,h) with auxiliary line bundle L, let A,
denote the affine space of Hermitian connections on L. Letting the configuration
space be C = Ap x I'(§*) and C* = {(A,¢) € AL x T(ST)|$ # 0}, an element
(A, %) € C, is said to satisfy the Seiberg- Witien monopole equations if

Da() =0
P =ir(y,9);

i.e. if it is in the zero set of the map
S:C— R (X)®T(S™)

defined by
S(A, $) = (Ff —ir($,9), Da(¥))-

The group ¢ = Map(X,S!), acts in a natural way on the configuration space
by letting an element u € G act on AL by conjugating with u?, viewed as a gauge
transformation of L, and letting u act on [(S*) by scalar multiplication. It is
easy to see that G is a symmetry of the solution space $~*(0) (indeed, S is a G-
equivariant map, for the obvious, linear G action on the range), so we can consider
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the moduli space M of solutions to the Seiberg-Witten equations, the quotient
space
M =8"10)/6.

(To set up everything properly, one needs to introduce Sobolev norms on the spaces
mentioned above, see [M] for detail.)

The following properties of M were established in [KM3] for closed Riemannian
four-manifolds (X, h):

(1) M is compact. The virtual dimension of M is

d = Z(c1(L)? - (2x(X) + 3Sign(X))),

| =

where x(X) is the Euler characteristic of X, Sign(X) is the signature of X,
b (X) — b~ (X).

(2) When *(X) > 0, for a generic metric h on X, the moduli vspace M is a
smooth manifold of dimension d contained in C*/G. In particular, if d is
zero, M is just a finite number of points.

(3) M is orientable. The orientation of M is determined by an orientation of
HY(X)® HY(X) ® Hi(X).

When the dimension of M is zero, the Seiberg-Witten invariant is the number
of points in M, counted with sign. When 6%7(X) > I, this is a smooth invariant of
the manifold X. (The invariant can still be defined when the dimension of M is
positive [M].)

When (X, /) is a Kahler surface, the Seiberg-Witten equations can be written
more explicitly. Let K = det A"®(X) = A®°(X) be the canonical line bundle,
then a Spin® structure W with auxiliary line bundle £ is given by (KX ® L)}/2, with
associated spin bundles

st=(\"e N KoL,
s~ =N\"(ke L)
A complex spinor ¢ € ['(ST) can be correspondingly written as a pair
(#°, ¥?) € (Q%° @ Q%2)(K @ L)V/2,
A connection A € Ajp induces a connection B on the bundle of spinors by

coupling it to the Levi-Civita connection Ay induced by h on the canonical bundle
K. Then, the Dirac operator D, : I(St) = [(S™) can be written

200p ® J3) : (A @ Q%) (K @ L)Y/? — Q¥ (i @ L)Y/2. (3)
Letting ® denote the Kahler form on (X, k), and A : QVH{X) = Q%°(X) de-

note contraction with (the dual of) ®, the Seiberg-Witten equations for (A, ¢) =
(A, ¥°, ¥?) can be written
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5311"0 + 32}‘!’2 = O)
0,2 _ 70,2
Fa —.!P L (4)
1
AF =g (I9°1 = [9*)%).
(The additional equation
Fj,o - wﬂ&ﬂ

follows from the fact that A is a Hermitian connection.)

The canonical bundle K is holomorphic, so 8pfp = %Fﬂ'g. If (A, ¢¥°, ¥?) solves
the Seiberg-Witten equations, then

— - 1 - - 1 o
0=0p(0s9" +0pv®) = g FR "4 + 0p059* = S [¥° 1" + 0p039° = 0.

When (X, h) is closed, taking inner product of the last identity with * and
integrating over (X, h), one gets

]- it
2 [ PR [ g =o,
X X
which, by the non-negativity of each term on the right hand side, implies that

|4%119? =0, dgy®=0, dzy*=0.

Unique continuation theorem for elliptic operators implies that either ° or %% must
be identically zero, so Fg,z = 0; hence, by the Newlander-Nirenberg theorem, A
induces a holomorphic structure on L. If $? = 0, then ¥° is a holomorphic section
of (K ® L)'/? satisfying the Kéhler vortex equation
AFa= IO
A= 3 .

The roles of ¢° and P? are symmetric in the following sense: following the
convention in [GH], 8* = — % 0%, where

* QO,Z(I" ® L)l/2 N Q?,D(Kt ® Lt)l/!! o~ QO'O(I{ ® Lt)l/?

is an isomorphism. Hence if ¢° = 0, *$* is a holomorphic section of (K @ L*)/2.
The curvature of L* is —F,, so % satisfies a Kahler vortex equation.

Using the above observations, Kronheimer and Mrowka, Tian and Yau, Morgan
and Friedman, and D. Morrison proved that for a minimal algebraic surface of
general type X, the only Spin® structures having non-zero Seiberg-Witten invariants
are those with auxiliary line bundles Ky or its inverse, see [M].
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§3. STRETCHING THE NECK

Let X be a smooth, closed oriented 4-manifold, £ be a smoothly embedded,
oriented surface of genus g(X) in X representing a nontrivial homology class S =
[X]. Suppose that the self-intersection number of T is

n=5-5>0,

and let N denote a tubular neighborhood of X; then p : ¥ = N = ¥ is an
S!-bundle with first Chern class ¢;(Y) = n.

We briefly outline the arguments which prove Theorem 1. First, we will show
that, by stretching out the metric in a neighborhood of £, there must be a solution
to the Seiberg-Witten equations in a cylindrical-end model for the neighborhood
of . Moreover, this solution will be bounded in a certain sense {(Corollary 5).
Then, by passing to a Kahler model for the neighborhood of ¥, we can reexpress
the Seiberg-Witten equations (Lemma 6) in a more explicit form. The technical
heart of this paper (Proposition 7) then is to exploit this version of the equations
and the boundedness results to prove a vanishing result for part of the spinor (as in
the discussion from the previous section), allowing us to identify bounded solutions
with certain vortices over the Kahler model. This identification will allow us, in
the next section, to prove Theorem 1.

We begin with some notation. Let Ag be a Riemannian metric on the surface I,
with volume V and Hodge star operator *5. Let  be a S'-invariant one form dual
to the S action on Y, such that

dyp= —%TWP'(*I);

then the metric on Y can be chosen to be
h= 1;2 -+ p‘hg.

The manifold X is diffeomorphic to Xg = N U ([0, R) x Y) U (X \ N}, where
the metric on the neck [0, R) X Y is the product metric d¢? + h. As in the study of
Donaldson’s polynomial invariants and [KM3], we will investigate the behavior of
the solutions to the Seiberg-Witten equations on Xp when the length of the neck
R goes to infinity. .

When R goes to infinity, the open manifolds Wr = NU([0, R)x Y) have geometric
limit

W= NU([0,00) xY),
which has a conformally Kahler, cylindrical-end metric g by [KMZ2].

Since the Seiberg-Witten invariant is independent of the metric on X, we can
assume that the restriction of the metric on the manifold Xp to the subset N U
([0, R) x Y') agrees with the restriction of g. Thus we can assume that the scalar
curvature of the manifolds Xg has a uniform bound.

This is important in light of the pointwise estimate proved in [KM3] coming
from the Weitzenbdck formula, which bounds the norm of spinor in a solution to
the Seiberg-Witten equations by the scalar curvature. This estimate is especially
powerful when combined with the following weak compactness result (Lemma 4 of

[KM3]):
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Lemma 3. (Kronheimer-Mrowka) If Z is a compact, oriented Riemannian §-
manifold with boundary equipped with a Spin® structure, and if (A;, ®;) is a se-
quence of solutions on Z with |®;| unformly bounded, then there is a subsequence
{#'} C {i} and gauge transformations g;: such that the sequence {g;/(Air, )} con-
verges in C™,

We collect here two consequences.

Corollary 4. Suppose the Seiberg-Witten invariant of X is non-trivial for the
Spin® structure with auziliary line bundle L, let {R(3)} be a sequence of real numbers
with R({) goes to infinity, (A;, ;) be a solution to the Seiberg- Witten equation on the
manifold Xp(iy. Then there is a subsequence {i'} C {4} und gauge transformations
gi+ defined over Wgyr), such that the sequence {gi+( Ay, 1,[;,-:)|WR“,)] converges in C°
on compact sets to a solution (A, ) on the cylindrical-end manifold (W?°,g).

Proof. This follows from the weak compactness result stated above and a diag-
onal argument, applied to the nested increasing family of compact sets Wgrey C

(We,g). O

Note that the solution (A, ) constructed above has a C%bounded spinor .
This bound, along with weak compactness, allows us to prove a near-periodicity
result for the spinor.

Corollary 5. Consider a solution (A, ) over (W?°,g) with bounded |y|. There is
a sequence of real numbers {T;} with the property that the restriction of the solution
(A, Y)iri—1,1:41)xy 18 uniformly bounded in C.

Proof. We can view the sequence {(A, ¥)|r-1,7+41]xy }ren as a sequence of solu-
tions over [0, 2]x Y with uniformly C° bounded spinor. Then, extract a subsequence
according to Lemma 3.

Putting A into the temporal gauge, we can think of {4,) on the cylindrical
region [0,00) x Y as a path of connections and spinors (Ag(t),¥(1)) in the config-
uration space for the three-manifold Y. The previous result can be interpreted as
saying that there is some point in that configuration space which is an accumulation
point for that path.

As in [KM3], this path is the downward gradient flow for a Chern-Simons type
functional on the configuration space of the three-manifold

1 1
ctu)= [(B-aFs 5 [(A-Baa-B)+3 [ <vDaw>,

where B is some reference connection on L|y. In the proof of Proposition 8 in
[KM3], it is shown that this functional changes by a bounded amount (independent
of R) over each of the tubes [0, R) x Y in the manifolds Wg. It follows then
that for the limiting solution, too, the difference C{A(T), ¢(7)) — C(A(0), ¥(0}))
is bounded independently of 7. 1t is also worth pointing out that in the non-
zero self-intersection case, the Chern-Simons function is actually real-valued, i.e.
independent of the gauge of A, once a base connection B is chosen, since in general

C(“(A’ ‘/))) - C(A’ Y) = 4r? < Cl([’) U [u]a [Y] >,
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where [u] denotes the cohomology class induced by pulling back the volume form
of S'. But any line bundle over Y which extends over ¥ is necessarily a torsion
class, so the above difference must vanish.

As mentioned before, the manifold (W?°, g) has is conformal to a Kahler manifold
(W, ). The latter metric is given by g§ = % g, where the conformal factor is of the
form

02 - e—‘.’mr‘r/V1

for a real function 7 which agrees with the first coordinate on the region [10,00) x Y
of W* (of course, the choice of constant 10 here is arbitrary). Such a metric can be
written down explicitly by describing the Kahler form @ for g. We set

®=—f(t)dtAn-+ (2117”) f()p" Py,

where t is the standard coordinate on the interval (—m, c0), @5 is the Kahler form
of the metric hg on X. Take f to be a smooth, monotone decreasing function on
(—m, 00) satisfying

; l1—cost, when —r<{<—7/2

1ty = { e=27/V  when t > 10,

then the form & is closed, the corresponding metric is positive and can be completed
at ¢t = —r by attaching a copy of L, and that c~2¢ is cylindrical in the region
t > 10. Notice that because the conformal factor is decaying exponentially, g has
finite volume.

Recall (Equation (4)) that the Seiberg-Witten equations have a particularly nice
form on Kahler manifold. We now consider the equations on a metric which 1s
conformal to a Kahler metric g. Let K denote the canonical line bundle of (W°,g),
Ap denote the Levi-Civita connection on K with respect to the Kahler metric g.
Given a Hermitian connection A on L, let denote B denote the connection on
(K ® L)'/? induced by Ag and A.

Rescaling the orthonormal coframe gives an identification between

P(W°.g) = P(W?,g).

Composing with this identification, we get a correspondence between Spin® struc-
tures for (W?,g) and those for (W°,g). In particular, we get an identification
between the bundle of spinors for (W°,g) and the bundle of spinors for (W?,g). In
particular, there is an identification between the Hermitian bundles

St @S5 (W, g) = Q% ((K ® L)V/?), (5)

where the Hermitian metric on the bundle on the right hand side comes from the
Kéahler metric (W°,g).

It is important to notice that the actual bundle identification between the S%
for g and g does not quite preserve the Clifford module structure. Rather, if (6-)
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and (67) denote Clifford multiplication by ¢ € T*(W?°) with respect to the Clifford
module structures for g and g respectively, then we must have

(0) =o(67),

so that if w € Q¥ (W?), then
) = 0* o). ©)

{(In keeping with this notational trend, when comparing metric-dependent objects,
such as the Dirac operator, Clifford multiplication, the map 7, the map p, etc. for
the metric g and g, we will let D, -, 7, p denote these objects for the metric g, and
D, 7, 7 denote the corresponding objects for the metric g.)

With these observations in place, we turn to the proof of the following.

Lemma 6. Solutions (A, ) to the Seiberg- Witten equations for (W, g) correspond,
under the above correspondence, to data

(4,6°,¢%) € A x Q°°((K ® L)'/?) x Q**((K ® L)!/?)
over (W, g), which satisfy the equations

0= Bp(0™%/¢0) + 3 (s~/2?)
Fgﬂ — U—2$0¢2 (7)
AFg = 2072 (18°F ~ 16°17)

Proof. Under the above correspondence, the positive spinor 1 corresponds to the
pair ¢ = (¢° ¢?%), thought of as a positive spinor on (W° g). The first Seiberg-
Witten equation, which says that

is equivalent to the condition that
Da(e™/¢) = 0.

This is a straightforward exercise in the definitions together with the computation
of how the Levi-Civita connection changes under conformal changes of metric. The
computations are done in both [H] and [LM]. Combining this with the complex
interpretation of the Dirac operator Dy for a Kahler manifold, as in Equation (3),
we get the first equation.

The other equations arise from an analysis of how the formula defining the map
7, Equation (1), changes with a conformal change of metric. The claim is, of course,
that

T=0"%7.

This is true because of Equation (6), together with the fact that the norm g induces
on two-forms, which we write by a slight abuse of notation simply as <, >g, differs
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from the norm g induces on the same space <, >, by a factor of o~%. More explicitly,
for any choice of w € Q1 (W°), €, 0 € T(St), we have that

<w, 077 (x,¢) >g =0 <w, 07 F(x,¢) >3
=< o? p(w)x, ¢ >
=< plw)x,¢ > .
O

In the above discussion, we have repeatedly used the identification of the spinors
for g with those for g, hence with differential forms over (W°,g) with values in
(K ® L)'/, But the natural almost-complex structure for (W?,g) is the same as
the complex structure on (W?°,g), so this this latter bundle is naturally identified
with the bundle of forms over (W°,g) with values in (K ® L)}/2. This natural
identification is, of course, not an isometry. Writing a spinor ¢ € ST(W?°,g) as a
form (4%, ¢2), we have that the norm of the spinor

l¥lls+ = ||(¢0,452)”/\?"((14@1()1/9) = ||(U'l¢0,0_3¢2)||/\g-'((L®K)1/=)- (8)

Exploiting this different norm on the space of spinors, along with an argument
along the lines of the vanishing result for the Kahler case outlined in the previous
section, we can prove the following vanshing result.

Proposition 7. A solution (A, ¥) to the Seiberg- Witten equations for (W°, g) with
bounded C! (spinor) norm corresponds to a iriple (A, ¢°, ¢?) as above, with one of
#® or ¢? identically zero. Hence, A determines a holomorphic structure on L.

Proof. Applying 8p to the first equation in 6, and then using the third equation,
we get

0=20850p(c72¢") + dp Op(c™/2¢?)
_ %U—2$u¢2(0_—3/2¢0) + 8505 (c™ %242

- _;_0_—7/2|¢0|2¢2 + 55 5‘3(0—3/2¢2)’ (9)

since dp 0p = %F2’2, because the canonical line bundle K is holomorphic on the
Kahler manifold (W?,§).

We would like to rewrite this equation purely in terms of data for forms on
(W?°,g). In particular, we must reexpress the operator 5" appearing above, as the
adjoint here is taken with respect to the inner product on forms coming from the
Kahler metric (though this was not reflected in our notation).

To do this, recall that the Hodge star operators * and ¥ on the space of p-forms

are related by
T=ot P,

Following [GH], we have 8" = — %3 % on any Kiahler manifold, so that, on the space
of two forms, we have that

Op=—-0"*x0p*.



12 TOMASZ MROWKA, PETER OZSVATH AND BAOZHEN YU

Let
(%, ) € (@@ Q)((K ® L)/?)
be given by
ZO = 0'_1¢0, 22 — 0_--3¢2‘

By Equation (8), we see that the hypothesis of the Proposition implies that the
pair (2%, 2%) is C? bounded with respect to the norm on forms induced by g.

Moreover, by Corollary 5, we see that the C* (in particular, the C') norm of the
restriction of (2%, z%) to the sequence generalized annuli {[7; —1,T: + 1] x Y }ien
is bounded uniformly. The point here is that the Levi-Civita connection for g,
which is used in the the definition of the spinor C* norm, differs from the Levi-
Civita connection for g by a zeroth-order operator whose pointwise norm grows like
|dloga‘|/\1(wa’g), which is evidently uniformly bounded.

Given the above relations, we can rewrite Equation (9) as

S0 207 — Gy (072 B w(0¥22Y) = .

Taking inner product with 6%/222 with respect to the cylindrical metric on two-
forms, and integrating over the compact subset ¢t < T, we get

1/ o] 2%)22% A ¢ 22_/ By (o™ x8p +(09/22%)) A#(¥/227)
2 Jicr r<T

=-1-/ o-|z°|2[22|2*1+-/ a'zl*én*(a‘g/zzz)lz*l
2 Jicr t<T

—/ o2 xdp x(a®222) A w 22
t=T
:]1(T) + IZ(T) =0,

where
I(T) = —j e~ Y24 8p #(622%) A x 2
t=T

= —/ o (o732« By x(c®*2%)) A x 22
t=T

It is now apparent that
lim (1) =0,
I 00

as liMyy00 (1) = 0, and the two forms (=32 % 85 *(c%/222)) and 2* are uniformly
bounded on the t = T; slices.
This forces I1(T'), which is a priori non-negative, to vanish identically; i.e.
z°|z% = 0, +9p x(c®?2%) = 0.
Rewriting the above identities on the Kahler manifold (W?°,g), one gets
8°116%] =0, Bp(e™>2¢%) =0, dp(c™/%¢%) =0.

Unique continuation theorem [DK] implies that one of ¢° and ¢? must be identically
zero. Then Fg'z = 0, so L is a holomorphic line bundle.

The integration-by-parts argument given above works when n > 0. The case of
n = 0 is similar but simpler; we leave it to the reader. O
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§4. PROOF OF THE MAIN THEOREM
Now we are ready to prove Theorem 1 and Corollary 2.

Proof of Theorem 1. Let X be a 4-manifold with 67 (X) > 1 and suppose that the
Seiberg-Witten invariant of X is non-zero for the Spin® structure with auxiliary
line bundle L. Let ¥ be a smoothly embedded, oriented surface representing a
homology class S with ¢;(L) - S # 0 and self-intersection number §-5 = n > 0.
As in Section 3, we study the limiting behavior of solutions to the Seiberg-Witten
equations on the Riemannian manifolds Xp(;y when the length of the neck R(:)
goes to infinity.

Let (Ai, i) be a solution to the Seiberg-Witten equations on XR(i), by propo-
sition 3, we can suppose that (A;, ;) converges in C™ on compact supports to a
solution (A, ¥) on the cylindrical-end manifold (W?,g).

We exclude the case of 1 = 0 as follows. Recall that for our solution, there is a
constant independent of R which bounds the difference

CLA(R), 0) - C(A(0),0) = - | PCYCES / oD

In other words, the closed differential form Fj4 is in LZ(W°). By [APS], iF4/2m
represents a class in the image of HZ(W?®) in H*(W?°), so [iF4/2n) represents a
multiple of [E]. This then forces (iF4/2r) A (iF4/27) to be non-negative, hence
identically zero, because it is also anti-self-dual. In particular, ¢;(L) - § = 0,
violating our assumption.

By Proposition 7, written on the Kahler manifold (W?°,g), (A, ) is given by a
triple (A, ¢°, $%) with one of ¢° or ¢* identically zero, and L is a holomorphic line
bundle. We first assume that ¢° #£ 0, then (4, ¢°) satisfies a modified version of
the Kahler vortex equations:

AFa=z07|4" (10)
F?=0
0=38p(c73/3¢°) (11)

where ¢° € T((K ® L)'/?) is a C%-bounded section.
Equation (10) forces the line bundle to have negative degree on S. Indeed,

/GEAFATFI =-/ u%a-2|¢°|g:1=—/wo %aﬁ|z°|3y,*1 <0.
On the other hand (as in Proposition 5.11 in [KM2]), ¢ is finite-energy, self-dual

closed two-form on W¢ with positive integral over £ C W?, so it must represent a
positive multiple of the Poincaré dual of £. So, it follows that

'/ iAFA¢1=/ IFaAd =2mc (L) -5 <.
‘v a o

In particular, the restriction of the form F4, hence the restriction of ¢9, to & cannot
vanish identically.
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Equation (11) guarantees then that the line bundle (K ® L)!/?|s has a non-zero
holomorphic section. Hence, it must have positive degree. Since topologically K is
isomorphic to Ky ® N*, where Ky is the canonical line bundle for the Riemannian
surface £, N is the normal bundle, we see that

cl(ﬁ’®L)'S=CI(I\"E®N-®L)'S
=29(£)-2-85-S+a(L)-S>0.

Thus, when the solution is given by (A, ¢°,0),
2-2(Z)+5-S<a(l)-S<0.
When the solution is given by (4, 0, $2), the same argument gives
0<e(L)-S<2(%)y-2-5-5.

These two inequalities are eqivalent to the inequality stated in Theorem 1. 0

Proof of Corollary 2. For surfaces of general type, we always have that ¢, (K) - S
is non-negative if the homology class S can be represented by an algebraic curve.
When ¢;(K) - § = 0, the result follws from [KM1]. O
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