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THE HOMEOMORPHISM TYPES OF CONTRACTIBLE PLANAR
POLYHEDRA

Hans-Joachim Baues and Antonio Quintero

Abstract. Invariants are constructed to classify all homeomorphism types of con-
tractible planar polyhedra. This result relies on a new classification of contractible
2-manifolds via "cyclic Cantor sets”,

A polyhedron is planar if it admits an embedding into the plane R®. In
this paper we classily all contractible planar polyhedra. In particular, lo-
cally finite trees and contractible 2-manifolds are such polyhedra. We show
that contractible 2-manifolds are classified by ”cyclic Cantor sets” and that
homeomorphism types of contractible planar polyhedra are in 1-1 corres-
pondence with equivalence classes of "Cantorian trees”. A Cantorian tree
essentially is a tree and a collection of cyclic Cantor sets. _

Brown-Messer [B-M]| classified all 2-manifolds by using *abstract 2-manifold
diagrams”. However, such diagrams even for contractible 2-manifolds are
quite intricate and therefore we replace them by the natural notion of a cy-
clic Cantor set. We give some examples of contractible planar polyhedra
defined by the universal cover of 2-dimensional polyhedra and we decribe
their associated Cantorian trees.

In the literature very little is known on the classification of homeomor-
phism types of polyhedra. Whittlesey ([W1], [W2], [W3) classifies the ho-
meomorphism types of finite 2-dimensional polyhedra. Our classification here
seems to be the first in the literature considering a class of infinite polyhedra
which need not to be manifolds.

§1 On the classification of contractible 2-dimensional manifolds




We consider contractible 2-dimensional topological manifolds M. It is
[}

well known that M is the open unit disk D*= R? if the boundary is empty.
Moreover M is the closed unit disk D? in R? if M is compact. There are,
however, further examples of such manifolds which are obtained from D?
by removing a closed subset of the boundary dD? We show that homeo-
morphism types of contractible topological 2-manifolds # D%, R? are in 1-1
correspondence with "cyclic Cantor sets”.

A Cantor set C is a compact totally disconnected metrizable space. We
always assume that C is non-empty. Each Cantor set is homeomorphic to
a subspace of the classical "middle third” Cantor space of the real line R.
An _ordered Cantor set C = (C, <) is a Cantor set C together with a total
ordering < such that the topology given by the ordering coincides with the
topology of €. Here the basic open sets of the topology of the ordering <
are the "open intervals” C(a,b) = {z € C;a < x < b} for a,b € C. Let
Cla,b] = {z € C;a < = < b} be the "closed interval”. Since C is compact
we know that the maximun maz € C and the minimun min € C are defined
so that C = C[min, maz]. A closed subset of an ordered Cantor set is again
an ordered Cantor set.

(1.1) Definition: A small closed interval in an ordered Cantor set C' is
an interval Cla,b) with C(a,d) = 0 and « < b. Two ordered Cantor sets C
and C' are cyclic equivalent if there exist small closed intervals Cla,b] and
C'[a’, ¥} such that there are order preserving homeomorphisms

1 : Cimin,a] =2 C'[V, maz]
and
thy 1 Clbymaz] = C'[min, a’)

Let ¢ : C = C’ be the homeomorphism given by the union of 1, and ;. The
cyclic equivalence class of C, C, is called a cyclic ordered Cantor set. The
opposite —C of C is represented by (C, <) where we define a<°®b if and

only if b < a. The cyclic Cantor set C is the equivalence class {C, —C }.

As usual a 1-1 correspondence is a function which is injective and surjec-
tive.

(1.2) Theorem: There is a 1-1 correspondence between homeomorphism
types of contractible 2-dimensional manifolds # D* R? and cyclic Cantor
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sets. Given a cyclic Cantor set C represented by (C, <) we can choose an
order preserving embedding C C R with C C R C RU oo = 9D?* and we
obtain a contractible 2-manifold by the complement D* = C. The 1-1 corres-
pondence carries C to the homeomorphism type of D?* — C. The inverse of
the correspondence is described in theorem (1.0)

We remark that there is a similar 1-1 correspondence between orienta-
tion preserving homeomorphism types of contractible oriented 2-manifolds
# D? R? and cyclic ordered Cantor sets.

For a contractible 2-manifold # D?, R? we consider the diagram

(1.3) E(M) = { 7o(dM) == End(dM) = End(M) )

Here 7 1s the set of path components and Fnd is the space of Frendenthal
ends [F]. The map e is defined by @ € End(e(z)), and € is induced by the
inclusion dM C M. Moreover an orientation of M yields the section 8 of
e since M is a disjoint union of oriented open intervals in R, # carries the
path component C = (—oo¢, o0¢) of dM to +oo¢. The diagram (1.3) leads
to the following notion of Cantor diagrams.

(1.4) Definition: A Cantor diagram

[+ .
consists of a Cantor set C, countable sets I and I and functions ¢, e, and

such that 0 is a section of e and e is surjective and two to one. The image of
¢ is dense in C. An isomorphism between Cantor diagrams is a diagram

C
]w
C

!

IE

EI

J

with ae = e, 86 = fa, ve = €f3, for which « and § are bijections and ¥ is
a homeomorphism.

< o

€
—
8
€
——p

!

<[ |-

It is easy to check that (1.3) is a Cantor diagram and that the isomorphism
type of (1.3) is well defined by the homeomorphism type of M.
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(1.5) Definition: Let (C, <) be an ordered Cantor set. We define the
Cantor diagram

DIC.S)y={BEST-—=-C )

as follows. We introduce the outside interval” [maz,min] of (C, <) which
is not an interval of C, given by the maximun and the mininun of C in
reverse order. In case C consists of a single point there are no small closed
intervals but the outside interval is still defined with maz = min. Let £
be the set consisting of the outside interval and all small closed intervals in
(C, <). Let I be the disjoint union of all houndary sets L with L € E. The
map e is defined by e(z) = L if and only if # € 9L. The map € is the union
of all inclusions L C C. Moreover the section 8 of e carries [mazx, min] to
min € I and carries a small interval C[a,b] e kEtobel.

(1.6) Theorem: The function which carries a cyclic Cantor set %
represented by (C,<) to the isomorphism class, D(E‘), of the Cantor dia-
gram D(C, <) is well defined and injective. Moreover the correspondence in
Theorem (1.2) carries the homeomorphisin type of a contractible 2-mantfold
M # D? R? to the cyclic Cantor set % for which D(C, <) is isomorphic to
E(M).

(1.7) Remark: Brown-Messer [B-M] classified homeomorphism types of
all 2-manifolds by "abstract 2-manifold diagrams” which are actually equiva-
lent to Cantor diagrams above if one considers only contractible 2-manifolds
# D? R? . However the realizability condition for such diagrams (in par-
ticular (i),(ii),(1ii) on page 393 of [B-M]) is fairly complicated even in the
case of contractible 2-manifolds. In this case we can replace the realizability
condition of Brown-Messer by the following corollary of (1.6)

(1.8) Corollary: A Cantor diagram D satisfies D = E(M) for a con-
tractible 2-manifold M # D*,R? if and only if there is a cyclic Cantor set C
with D € D(C).

This realizability condition via ordered Cantor sets could be generalized
to obtain an alternative realizability condition for the abstract 2-manifold
diagrams” of Brown-Messer in the case of arbitrary 2-manifolds. We consider
the following examples of contractible 2-manifolds.



(2.9) Example: Let M be a discrete and closed subset of the plane
and let Xjp; be the universal covering space of R* — U(M) where U(M) is a

small open neighbourhood of M. Moreover, let. N be a finite subset of D2,
and let X} be the universal covering space of D? —UU(N). Then X, X are
contractible 2-manifolds. Moreover all manifolds Xas, X'}y with #M, #N > 2
are of the same homeomorphism type corresponding via (1.2) to the cyclic

Cantor set ¢ where C is the whole "middle third” Cantor space.

§2 Cantorian trees.

We here define the notion of Cantorian trees. Equivalence classes of such
trees are in 1 — 1 correspondence with homeomorphism types of contractible
planar polyhedra # D? R? This is the main theorem of this paper.

We use the following notation. Let (C' <) be an ordered Cantor set and
let D(C, <) = {FE,I,C,e,0,¢} be defined as in (1.5). For L € F we have
6(L) € 0L and we define &'(L) € OL by {#'(L)} = AL — {0(L)}. An interval
Z[a,b] in Z with —oo < a < b < oo is the subset {z € Z;a < < b}. In the
following we only use the special intervals Z[0, 5] with 0 < b < oo, Z[—00,0],
and Z[—o00,00]. A sequence S in (C, <) is a collection of ¢lements L; € F
where 7 is an element in a special interval Z[a, 8] such that for i,74+1 € Z{a, 8]

O(Li) = 6'(Lipr)
we also write S = S(a,b). The subset of C consisting of the points 8(L;)

with ¢+ € Z[a, b} and ¢ < b is called the interior S of S. Moreover, let |S| with

Sc |S] C C be the set of all elements 8(L;), #'(L;) with ¢ € Z[a, b)].
An ordered Cantor set with sequences (C, <,8) is an ordered Cantor set
(C, <) together with a set of sequences S in (C, <) satisfying

OIS =0, 5,8 €S and S#§

The opposite (C, <7, 8) of (C, <, 8) is the ordered Cantor set with sequen-
ces given by the opposite ordering of C' and by §° = {97;§ € S} where
5°P is the canonical reverse sequence in (C, <°?) determined by S.

The interjor of § is the subset of C given by the disjoint union

5= {5;5 € 8}
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Clearly the interior of §° coincides with the interior of §. Let ¢ : (C, <)
= (C', <) be a cyclic equivalence as in (1.1). Then 1 carries a sequence S
in (C, <) to a sequence S in (C’, <) so that for $§ = {¥5;5 € S} one
has the bijection of interiors 2 : § = (¢8)° induced by the homeomorphism
Y. C =

An equivalence ¢ : (C,< §) = (€, £, 8') is either a cyclic equivalence
P (C, <) = (€', <) or a cyclic equivalence ¢ : (C, <) = (C’, <°P) such that
S'=9YS or § = (4pS)°P

(2.1) Definition: A Cantorian tree 7 is a tuple
T=(T, P, A, 0,})

where T is a tree, P and A are subsets of vertices of T, that is A, P C T°,
and where o is a function which carries t € P to an ordered Cantor set with
sequences o(t) = (C;, <, S;) as above. Moreover A is a collection of bijections

A S = link(t;T), teP

As usual bink(t; T) is the subset of vertices of T' which are connected with ¢
by an edge. We assume that T is countable and that T — P is locally finite.
Moreover AN P = §, and

a € A, then link(a;T)N P # ¢,

i€ P, then link(t;T)C A
Note that this is equivalent to A = U{link(t;T),t € P}.

Two Cantorian trees, 7 and 7', are equivalent if there exists a homeo-
morphism

T (T, P A) = (T, P, A')

together with a collection of equivalences ¥, : o(t) = o'(7(¢)) for ¢ € P such

that the diagram
0 At

link(t;T)

Sty — link(7(t);T")
6



commutes for all £ € P. Notice that if 7' = P = {x} is a point then the
equivalence class of the Cantorian tree is just a cyclic Cantor set.

(2.2) Theorem: There is a I-1 correspondence between homeomorphism

types of contractible planar polyhedra # D?* R? and equivalence clusses of
Cantorian trees.

The 1-1 correspondence in this theorem yields for each Cantorian tree 7
the contractible planar polyhedron X(7) constructed as follows. For each

t € P we choose a contractible 2-manifold M, associated to C; by (1.2); that
is M; = D* — C,. We define for t € P the open cone

C(8:) c D* - C,

Here C(g‘,) consists of all points Az, z € S, cCc dD* X e[0,1) C R. For
t € T let star(t;T) be the subtree of T generated by {t} U link({;T). Then
A; defines a homeomorphism

X : star (t,7T) = C(g’t)
where sfar (t;T) is the open star.
Now X(7) is the union of 7" and all 2-manifolds D*—C, t € P, where we

identify = estar (;T) C T with X(x) € D* — C, for t € P. More precisely
X(7T) 1s the pushout

Usep star (6;T) Liep D2 — C,

7 X(7)
in the category of topological spaces, where | J” denotes the disjoint union.
As part of theorem (2.2} we, in particular, obtain the following result.

(2.3) Theorem: Let X be a coniraclible planar # D* R?. Then there
ezists @ homeomorphism X = X(7T) where T is a Cantorian tree.

(2.4) Example: For the convenience of the reader we describe the fo-
llowing example which illustrates the Cantorian tree associated to a contrac-
tible planar polyhedron. Let X be the following subset of R?,

X =R x {0} | {(z,y) € R?|(=,y) # (3t,1), and (z — M+t < Litel)



Then the Cantorian tree 7 for X is given as follows. The tree T = R is
the real line and P = 3Z, A = Z — 3Z. Moreover for all t € P we have
o(t) = (C,<,8) where C = {-1,0,1} and where § = {S} consists of the
single sequence S = (Lo, Ly, L) with Ly = [0,1], £L; = [1,—1] the outside
interval, L, = [-1,0], and O(Ly) = 1, O(L;) = =1, 6(L;) = 0. We have
§= {=1,1}, and X, : §’£‘ link(t;T) carries —1 tot — 1 and 1 to £ + 1 with
te3Z =P

(2.5) Notation: A) For any set M we define the M-tree T[M] generated
by M as follows. The set of vertices is the free monoid generated by M,
that is T[M]® = Mon(M). The edges are all pairs of vertices of the form
(a,az) with a € Mon(M),z € M. Here az is defined by the multiplication
in Mon(M). Let @ be the empty word in Mon(M) which is the unit.

B) Given a tree T and k € N we define the tree (1/k)T to be the tree
obtained by introducing & — 1 subdivision points in each edge of T

(2.6) Examples: Let X be the universal covering space of the space

We describe the Cantorian tree 7 with X = X(7) as follows. Let 7" be the
tree T = (1/2)T[M] with M = Z — {0} given by notation in (2.5). Let P be
the set of vertices in T[M] and let A be the set of subdivision points denoted
by (1/2){a,az). For each t € P let C; = C be the ordered Cantor set

C={0,3}u{l/n, 3—1/m;neN}CR

The set §; = § of sequences in C consists of the single sequence S of intervals
L;, j € Z[—00,00], with

[1/n+1,1/0] ji=-n
L; =< [1,2] 7=0
[3-1/n,3-1/n4+1] j=n

where n € N. Here the interior is

S= {1/n, 3—1/n;neN}CC



and for t € P = Mon(Z — {0}) we define
A8 =1{1/n, 3—1/n;n €N} link(t;T)
as follows. Fot t = # we have
link(0; Ty = {1/2(8,m);me M} =M =7 - {0}
and for £ # @ with t = am, m € M, we get
bak(t;T) = {1/2(a, 1)} U{1/2(t,tm),m e M} =1

where 1/2(a,t) corresponds to ( € Z. Choosing order preserving bijections
Z - {0} @ § =7 we obtain A\, above. This completes the definition of the
Cantorian tree 7.

(2.7) Example: Let X be the universal covering space of the space

We describe the Cantorian tree 7 with X = X(7) as follows. Let T be the
tree

T = (1/3)T[N] with N = (M — {0})u (M —{0})
where M and M’ are two copies of Z. Let P be the set of vertices of T{N] and

let A be the set of subdivisdion points denoted by 1/3(«, az) and 2/3(a, az).
For each t € P let C; = C be the ordered Cauntor set

C={0,3}U{xl/n, 3£1/m;neN} CR

The set S = S of sequences in C consists of two sequences S, 5 given as
follows. Let S be the same sequence as in (2.6) and let 5" be given by the
intervals L', j € Z[—co, 0], with

[naz, min] j=0
[-1/n,=1/(n++1)] j=n

where n € N. Here max = 4 and min = —1 yield the outside interval. Now
the intertor of § is

{ B+1/(n+1),34+1/n] j=-n
L’ =

S = {£1/n, 3£ 1/n;neN} CC

9
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and for t € P = Mon(N) we define
A 8= {£1/n,3%1/n;n € N} = link(t;T)
as follows. For ¢ = @ we have
ink(;7) = {1/3(,n);ne N} = N
and for ¢ # @ with t = an, n € N, we get
link(1;T) = {2/3(a, )} U {1/3(¢, tn),n € N} = N,
with

N = MU(M' -{0}) t=am, me M- {0}
Pl (M = {0 UM t=am!, m' € M - {0}

Here 2/3(a,t) corresponds to 0 € M and 0' € M’ respectively. We choose an
order preserving bijection € : Z = Z — {0} which induces N; = N by eU 1
and 1 U € respectively.

Let Ap be the disjoint union of the unique order preserving bijections

{t/n;neN} ={—00,—-1]C M, {3—-1/n;neN}=][l,0]C M
{3+1/n;n €N} =[-c0,-1]C M, {-1/n;n €N} =][l,00]C M
Then A; is the composition
M: 822N =N, = link(;T)

This completes the definition of the Cantorian tree 7.

§3 Contractible 2-manifolds

We here prove the results in §1. We need the following lemmas. Let [0, 1]
denote the unit interval in R.

(3.1) Lemma:  For each ordered Cantor set (C, <) there is an order
preserving embedding C C (0, 1] which carries min to 0 and maz to 1.

Proof: As C is Hausdorff and totally disconnected we can find two disjoint
open and closed subsets Agy, and A, with wninC € Ay, mazC € A, and
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C = ApU A,. Since A, is an ordered Cantor set take C, = {z € C;z >
minA;}. As Ag N Ay, = @, it is easily checked that C; is an open and
closed subset of C. Then Cy = C — C; is an ordered Cantor set. Notice
that minA; = minC,. In addition mazCy € A, and mazCy < minC}.
Moreover, P = C[mazCo, min(}| is a small interval in C. We can repeat
this procedure inside both Cy and Cy if Cp, Cy # {*}, and we get two disjoint
decompositions Cy = Coo U Cyy, €1 = Cy1oU €, and two small intervals
Py = ClmaazCop, minCs ], and Py = C[maxCi o, minCy,]. When Cp = {*}
we take Coo = Cp and Cpy = 8. Similarly for Cj.
We define inductively two families of intervals in C (n > 1)

{C'il,ig....,in; (il: i?a e :7:11) € {0) 1}11}

{Pil,iz ..... fn—]); ("ilaiZu- - ain—l) € {0: 1}11—1}

such that 7 ;, .., CCi 4 is the small interval

"viﬂ—l
C[-ma:::C,-l‘,-2'“.',-”_1,0, m‘i‘”'cil,im---,in—lJ]

when C i i, # {*}. Otherwise we define Ci 4, i 10 = Ciyigines
Cirizinan = 8, and Py, .., = 0. Furthermore, the above intervals
satisfy the following properties

M -_— . . -
(1) Cihfa,n-.in-lyﬂ U Cil,fnyn-,"n-l,l - 011,12»’-«'%-1

(2) C‘ = U{ C’il,ig,...,i”_l,in; (7:1: i‘Za ey "'n) € {0: 1}’1}

n=1
Moreover, each element 2 € C defines a unique sequence (:7,43,...,12,...) €

{0, I}N “"itu]l {.T} = ﬂ:;l C‘ir,ir iz

1320 n

By using this fact, we define the function f: C — [0,1] by

2

T
T

=
&
1
R
2|

If z < y are two elements in C, take ng = max{m;z,y € Ci iy _in_yin }
Then 2 € Ci, ;... in,_1.0, and y € C 4, 1. Therefore

||||||||| 1:nc,—lv
2 © 2 2 1 1
Ho) = Je) 2 3oy — Z+23—" T 3o+l 3notl  3notl
n=ng



This shows that f is an order preserving map. It is clear from the definition
that f(mnC) =0 and f(mazC) = 1.
q.e.d.

(3.2) Lemma: Let (C,<) and (C',<) be ordered Canlor sels and let
¢ C — C' be a homeomorphism with ¢(min) = min and ¢(maz) = mac,
and such that for each small interval Cla,b] in C also C'[¢(a), ¢(b)] is a small

interval in C'. Then ¢ is an order preserving homeomorphism.

Proof: Using (3.1) we can assume that C and €' are closed subspaces
of the unit interval [0,1], and also that minC = minC’ = 0 as well as
mazC = mazC’ = 1. Furthermore, the small intervals C[a, b] define closed
intervals [a,b] C [0,1] such that [¢,b] N C = {a,b}. Similarly for C’. Since
the homeomorphism ¢ carries Cla, b] to C'[¢(a), #(b)], we can extend ¢ to a
bijection @ : [0,1] — [0,1] by setting ¢(ra + (1 — A)b) = Ag(a) + (1 — A)g(b)
in each interval [a,b] (0 < A < 1).

We shall next show that ¢ is actually a homeomorphism of [0,1] onto
itself.  As q~3(0) = 0, and c;g(l) = 1 it is clear that g;ﬁ is an order pre-
serving homeomorphism, and hence ¢ : C — €' will be an order pre-
serving homeomorphism By compactness, we only need to check that ¢ is
continuous. Let {z,} be a sequence in [0,1] converging to z5. We claim
that ¢(z,) converges to ¢(zo). By compactness, it suffices to check that
any convergent subsequence {@(z,,)} of {¢(z.)} converges to ¢(wzo). As-
sume {¢(z,, )} converges to y, and assume in addition that C[é(ao), ¢(bo)]
1s a small interval which contains infinitely many elements of {cﬁ(a:nk)},
as ¢ is a bijection we get a subsequence of {w,,} in the closed interval
[ag, ba] C [0,1]. Therefore qg(:cu) = y since the restriction &S[ﬂ,b] obviously
is a homeomorphism. Otherwise, we can assume without loss of generality
that there exists an infinite family of small intervals {C'[¢(ax), #(bs)]} such
that ¢(az) < ¢(zn,) < B(br) in 0,1]. Moreover, we can also assume that
the sequences {|by — ai|} and {|¢(bs) — ¢(ax}|} converge to 0. Then one
can readily check when & — oo, lim{l} = lim{a;} = lim{x,, } = =, and
lim{g(be)} = im{¢(ay)} = l'/im{qzyﬁ(a:nk)} = y. Since C is closed in [0, 1], one
gets z € C, and the continuity of ¢ yields qg(r) =¢(z)=vy.

q.e.d.

(3.3) Proof of (1.6): Let C and K be cyclic Cantor sets represented by

C = (C,<), and K = (K, <) respectively. We have to show that D(C) =

12
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D( K’) implies C=K. The isomorphism is given by the diagram

E% | -5 C

ECS IS K
where rows are defined by (C, <) and (K, <) respectively, see (1.5). A priori
the bijection « carries the outside interval [maz, min] not to the outside in-
terval. Let K[a,b] = o([maz,min]). Then there exists a cyclic equivalence
K 2 K’ such that @ = minK’ and b = mazK”’. Since K also represents K
we therefore can replace K by K’. Hence we can assume that o above carries
the outside interval to the outside interval. This implies that the homeomor-
phism 7 satisfies the asumptions in (3.2) and hence « is an order preserving

isomorphism which again yields a cyclic equivalence C' = K, therefore O=K'.

The second part of (1.6) is an easy consequence of the definition of the
correspondence in (1.2) which carries ¢ to the 2-manifold D? — C for which
E(D*— C) = D(C) as can be readily seen.

q.e.d.
(3.4) Proof of the injectivity in (1.2): First, we have to show that the

construction of D? — C yields a well defined correspondence in (1.2). That
is, the homeomorphism type of D? — C only depends on the cyclic Cantor

set. C'. Assume that (C’, <) is another ordered Cantor set which is cyclic
equivalent to (C, <). By (1.1) we can find small intervals C[a, b] and C'[d’, ¥]
such that we have C[min,a] = C'[l/, maz], and C[b,maz] = C’'[min,«']. Let
¥ : C — (' denote the obvious homeomorphism defined by the equalities
above

We now consider 8 = R U oo oriented by the usual ordering of R. By
using (3.1) we can assume that C and C” are embedded in R ¢ S by an order
preserving embedding. The homeomorphism ¥ above can be extended to an
orientation preserving homeomorphism i+ S' — ST by setting ¢([a, b)) =
[maz, min] and ll;([m,a..n, min]) = la’, ¥']. Here the intervals [mnaz,min] C S!
are defined by the orientation of S!.

13



Similarly we can get an orientation reversing homeomorphism S! = §!
¥ g B p
(1.2

when (C’; <) is cyclic equivalent to (C' <°P). Thus the correspondence (1.2)
is well defined. By (1.6) we know that this correspondence is injective.
q.e.d.

In order to show the surjectivity in (1.2) we shall need the following
lemma whose proof i1s a consequence of the triangulability of 2-manifolds
([Mo; 8.3]) which allows us to choose suitable increasing sequences of regular
neighbourhoods.

(3.5) Lemma: Given a non-compact 2-manifold M there exists an in-
creasing sequence M; C My (i 2> 1) of compact connected 2-manifolds with
M = U{M;;7 > 1}, and each clousure My, — M; is a family of disjoint
2-manifolds.

In addition, for each non-compact component C C M, each non-trivial
intersection M; N C is an arc in OM;, and the inlersections M; " My, — M;
is a family of disjoint arcs. Furthermore, if M is contractible the 2-manifolds
M; are 2-disks.

(3.6) Proof of the surjectivity in (1.2): Let M be a contractible non-
compact 2-manifold # D? R% We choose an orientation on M, and so each
component C' C M is an oriented copy (—oog,00¢) of R. We assume that
OM has at least two components. Otherwise M is homeomorphic to the
half-space R%, and C'= {*}.

Take a sequence My C M, ... as in (3.5). Let C; denote the family of all
the components of dM which meet M;. It is obvious that C; C C;4y. On the
other hand, let B; denote the family of arcs whose union is the clousure

BM,- - U{C, Ce Cl} = A’[, N ﬁ/f,'+1 - A’I,

We fix a component. Co C M with Co N M7 # @. Since each M; is a 2-disk,
the orientation of M and the component Cy define compatible ”clockwise”
orderings on C; which give a total ordering on UC; — {Co}. Moreover, this
ordering satisfics the following condition (A).
(A) "Given C € C; there exist, exactly two components Cy, Cy € C;—; such
that C lies between C; and Cj in the clockwise ordering of C;”
The orderings we have already defined yield a total ordering < on the sets
of ends {£ooc} of the components of M. Namely, we define < as follows
a) 0og, < toog < —oog, for all C # C

14



b) —oog < oo¢ for all C # Cy

¢c) cog < —oog if C precedes C' in the above ordering on JC; — {Cp}

We now embed Cy in the 1-sphere S' = dD? by an orientation preser-
ving embedding o : Co — S'. We can assume S! ~ f9(Co) = [0, 1] with
Po(—00c,) = 1 and ¥g(co¢,) = 0. We extend 1 to an orientation preserving
embedding ¢, : U{C;C € C,} — S! by embedding each C in [0, 1] according
to the ordering in C; —{Cy}. In addition, we define ¢, satisfying the lollowing
extra condition

(B) ”If C,C" € Cy, and [0o¢, —00¢+] is a small interval in the sense of

(1.1) then 9 (oco¢) = ¥1(—o0¢r).”
Assume we have already defined an orientation preserving embedding

v (G, C e} — 8

which follows the ”clockwise” ordering of C; and such that «; verifies condition
(B) for C;. By using (A) we can now extend ¥; to an embedding v;,; with
the same properties. In this way we can inductively define an embedding
2 OM — S? verifying (B) for all C;. By construction S' — ¢(dM) is a
totally disconnected compact subspace os S', and so it is a Cantor set.

We extend % to an embedding ¢ : OM U {T;I" € By} — D? with the

(2]
condition that & (I') € D? for each arc I". These arcs together the components
in C; defines a 2-disk in D? and we homeomorphically map M; to that disk
by extending £;. So, we have defined an embedding Ay : My U M — D2.

o
Let D,, C D,, C ... be a sequence of 2-disks in D? with radii +, = .

n+1
Assume we have constructed a embedding
hy : My UOM — D?

with the following two properties: (i) hy extends hy_y, and (i) D, _, C

h.k(ﬂ}k) C D2
We extend hy to hyyq as follows. It is not hard to find an extension of Ay

£k+] : A’IJ\ U 0}‘/[ U {F, I € Bk+l} ad D2

such that &y (intl') C D? and & (T) N (he(Mi) 0 D2 ) = 0. Since
My — M is a finite set of disjoint closed 2-disks whose boundaries are
disjointly embedded by &4, one can easily define an extension hgy; of €y
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disjointly embedded by £, 1, one can easily define an extension hgy of &4y
which verifies conditions (i) and (ii) above. Therefore the union of all the
embeddings hj yields an embedding h : M — D?. extending the embedding
¢ : OM — D? Moreover, by condition (ii) above we have h(M) = D? — K
where K’ = S' — ¢»(0M) is a Cantor set. Hence the correspondence in (1.2)
1s surjective.

q.e.d.

§4 Contractible planar polyhedra

In this section we discuss some properties of contractible planar polyhedra
and we prove theorem (2.3) and then theorem (2.2). For the convenience of
the reader we first describe notations and some basic facts on polyhedra and
planar polyhedra.

We recall that for any planar polyhedron X = |K| it is always possible
to choose an embedding A : X — R? which is linear on each simplex of the
triangulation A (see [Mo; 10.13]). A polyhedron X = |K| is said to be purely
n-dimensional if each point 2 € X belongs to some n-simplex of K. We also
recall that an n-dimensional polyhedron X = |K| is said to be strongly
connected if given two n-simplices o, 7 in A there exists a finite sequence
o = 0y,01,...0, = T of n-simplices such that o;No;_; is a common n —1-face
(1 <¢ < k). In general, the notion of strongly connected compounent, M, of
an n-simplex ¢ € K can be easily given for any n-dimensional polyhedron.
Moreover, it is straightforwardly checked that M, is a purely n-dimensional
subcomplex of KA. In addition we have (see [M; 5.3.3] for a prool):

(4.1) Proposition:  Any n-dimensional polyhedron X = |K| can be de-
composed as a union of lwo subpolyhedra X = R(X)U L(X) where R(X) s
the union of all strongly connected components M, C X. Furthermore R(X)
is purely n-dimensional, and dimL(X) < n —1 with dim{(M,NM,) < n—-2
and dim(M, N L(X)) <n —2 for every pair of n-simplices 0,0' € K.

The singular part of X is the union S(X) = L(X)UO(X) where O(X) =
U{M, N M,;0,0' € K}. Moreover the above decomposilion only depends on
the homeomorphism type of X.

With the notation of (4.1) we have the following properties for planar
polyhedra.
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(4.2) Proposition: Let X = |K| be a connected planar polyhedron. Then
the following statements hold for each strongly connected component M, C X

(1) M, is a 2-pseudomanifold whose inlerior j\fl',, is a 2-manifold.

(2) For each M,, M, NS(X) C doM,.

In addition, if X is simply connected then X is contractible and the three
further statements below hold

(3) Each M, is a 2-manifold

(4) Two points x,y € M, N S(X) can not be joined outside M,.

(5) Each component of the graph S(X) is a tree.

We recall that an n-psendomanifold is a strongly connected purely n-
dimensional polyhedron X = || such that any (n — 1)-simplex of K is the
face of at most two n-simplices of A". The boundary of X, 90X, is the union
of all the (n — 1)-simplices which are contained in exactly one n-simplex of

K. The difference X’: X — 0X is called the interior of X. It is a well known
fact that any 1-pseudomanifold is a 1-manifold.

Given z € K|, the star of z in K, star(z; K'), is the subcomplex of K
generated by the set {o € K; = € K}. And the link of & in K is the
subcomplex of star(x; K) denoted by

link(z; K)={r €R; r<ocwithx€o—r7}

It is a basic fact that ster(z; K') is a cone over link(z; K'). Moreover,
if X = |K|is a n-pseudomanifold, link(z; K) is an (n — 1)-pseudomanifold
(with boundary if z € 9X).

(4.3) Proof of (4.2):  As a simple consequence of the Jordan Curve

Theorem ([Mo; §3]) it follows that link(z; M,) = S' when = EJ\/OIU. This
yields (1) and (2). Since X is planar the homology groups H;(X) are trivial
for i 2 2. So, it follows {rom the Whitehead Theorem ([M; 8.3.10] ) that
X 1s contractible if X is simply connected. Moreover, as X is 2-dimensional
the inclusions M, C X induce injections m(M,,*) — m(X, ), and so each
component M, is simply connected and then contractible. By using the
Jordan Curve Theorem it is not hard to check that the contractibility of M,

2]
imphes that dM, is a l-manifold. This yields (3) since M, is already a 2-
manifold by (1). Finally (4) follows from arguments similar to Van Kampen'’s
Theorem; and (5) is obvious. q.e.d.
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(4.4) Remark: For a contractible planar polyhedron X such that M, = R?
for some 2-simplex o, we necessarily have X = M, = R®. Therelore if X' # R?
each M, is a 2-manifold with boundary.

Starting with a planar polyhedron X C R?*, by "thickening” the singular
set S(X) C X it is possible to define a planar 2-pseudomanifold M(X) C R?
such that X C M(X) is a proper strong deformation retract. We recall
that a continuous map f : X — Y is proper when f~'(A’) is a compact
for each compact subset K C Y. Moreover when all the components M,
are 2-manifolds, M(X') turns to be a 2-manifold. In particular, according to
4.2(3) if X is contractible M(X') is a contractible planar 2-manifold. And
by (3.5) it is not hard to find a proper embedding M(X) C R%. We can also
use (3.5) to define a tree T C M(X) such that M(X) is in fact a regular
neighbourhood of T'. As consequences of these observations we can now state

(4.5) Proposition:  Any planar contractible polyhedron can be properly
embedded in R?.

(4.6) Proposition:  Any planar contractible polyhedron has the proper
homotopy lype of a tree.

(4.7) Remark: Obviously (4.5) does not hold for any planar polyhedron,
as the following graph shows

,F

Fan)

We now finish this section with the proofs of (2.3) and (2.2)

(4.8) On the definition in (2.2): The polyhedron X{(7) defined in §2
is in fact a contractible planar polyhedron. The contractibility follows from
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the push out construction of X (7) since all the 2-manifolds D? — C, involved
are contractible.

We now define an embedding X(7) in R®. We can assume that P # §
since otherwise A = @ and X (7T ) =T is a locally finite trec. Let t, € T°. We
take 1o as the root vertex of 7', and this induces a partial ordering in T hy
taking v < w when v appears in the unique path 7, going from w to #y. In
addition, the paths 7, induce a height function £ : T7° — N where A(v) is the
number of vertices in «,. Using the function h we can define inductively an
embedding £ : X(7) — R? as follows. Let 7, be the finite Cantorian subtree
generated by the set of vertices {v € T h(v) < n}. Assuine we have already
defined an embedding &, : X(7,) — R

In order 1o extend £, to an embedding €,41 : X(7,41) — R? we consider
all vertices v € T° with h(v) = n 4+ 1. Let w, be the unique vertex with
w, < v and h(w,) =n. [fve T~ P we can easily define an extension £,4,
of £, to the edge (w,,v) in such a way that when v € A and w, € P then
&n = Euqr, since in this case (w,,v) C D*— C,, and ¢, is already defined on
D? - C,,. If v € P then w, necessarily belongs to A, and we can extend &,
to an embedding &,4, of X(7,.1) U D* — C,. Therefore the union & = UE,
defines a planar embedding of X(7). By the push out construction of X(7)
it clear that X(7) = X(7') when 7 and 7' are two equivalent Cantorian
trees.

q.e.d.

In this way the function ¥ : 7 — X(7T) is a well defined function which
carries equivalence classes of Cantorian trees to homeomorphism types of
contractible planar polyhedra # D?* R%*. We now proceed to show that ¢ is
a 1-1 correspondence.

(4.9) Proof of (2.3) (surjectivity in (2.2)): Let X be any contractible
planar polyhedron # D? R?%. According to (4.1) and (4.2) we can write
X = R(X)US(X) where R(X) is a union of contractible 2-manifolds {M,}.
Moreover, by (4.4) we know that dM, # @ for each a. By using (1.2) we

can identify M, with D? — C, for some cyclic Cantor set, C,. Furthermore,
by (3.6) each component of dM, is identified with a small interval of C,
(including the "outside interval”).

For a small interval Co[a,b], let HZ, be the corresponding component of

o
JOM,. We consider the intersections Sgy= Hg, N S(X) and for each o the
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union §0: e S(:f‘b }. Now we take 8¢, =57, U{a, b}, and §* = JS2,. Then

we define the Cantorian tree

T=(T,P,A, 0,0

[
where T is the tree consisting of the union of the cones C(8§%) and the singular
2]
set S{X). The set of vertices A consists of all points in [J 8§, and the set

P consists of all the cone points t, € C(8%). The function ¢ is given by
o(te) = (Co,8%). There is now an obvious way of defining A, and it is easily
checked from the definition of X (7) that X{(7) = X.

q.e.d.

(4.10) Proof of the injectivity in (2.2): Assume we have a homeomor-
phism f : X(7;) — X(7:) between two Cantorian trees 7; = (T}, P, Ai, 00, A;)
(+ = 1, 2). For each vertex #; € P; we have an ordered Cantor set (C},, <)
2]

with o;(t;) = (Cy,, Sy,). If Cy, = C;— Sy, then the definition of X(7;) shows
that the strong connected components of the polyhedron X(7;) are the 2-
manifolds D? — C';;. By definition of D? — C,, (see (1.2)), the ordering on
C’;. defines an orientation on d(D? — C’;;). Moreover, the small intervals of
C';, can be identified with the connected components H C 3(D? — C',.). In
addition, each intersection S(X(7;)) N H is determined by the sequences in
J;(t,').

On the other hand, the topological invariance of the decomposition in
(4.1) implies that the given homeomorphism f induces a homeomorphism of

)

pairs
fi, (D*=C' , S(X(T))ND*-C"y)) — (DZ—C's(tl), ‘S'(X('E))ODQ—C'SM))

for each vertex #y € P. Furthermore, the function t; — s(f;) defines a 1-1
correspondence s : P, — FP,. If f,, 1s an orientation preserving (reversing)
homeomorphism, then f; induces an order preserving (reversing, respecti-
vely) homeomorphism

ffl : (Cf-HSH) - (Cs(h):SS(h))'
We now proceed to define an homeomorphism

7”371=(T13P1:A1) '—’7'2=(712:P2:A2)
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as follows. We define 7|P; = s on P;. Next we shall define 7 in the set

A[ = U{ IHIA('l, rf’l); f.] € ir‘l }
Each point a € link(ty; 1) is identified by 8, to a point p, in certain sequence

50‘§§1. As it was remarked above we have §= H N S{X(7T:)) for a unique
component H C 9(D?*— ("), and since the given homeomorphism f verifies
FIS(X(T1))) = S(X(T2)) we can define 7(a) = 0(f(p.)),a € A;. The
extension of 7|P, U A, to U{star(t;;T1);ty € P} is the canonical linear
extension. Finally, we define 7 = f between the singular sets

(\’ =71, — U{ sfal T !,’ € P } (7 =1, 2)

Hence 7 actually defines a homeomorphism between the Cantorian trees
7.
q.e.d.
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