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THE HO~1EOivIORPHIS~vl TYPES OF CONTRACTIBLE PLANAR
POLYHEDRA

Hans-Joachin1 Baues and Antonio Quintero

Abstract. Invariants are cOllstructed to classi(y all homeomorphism types of COll·

tractihle planar polyhedra.. This result reHes Oll a. new classification of cont.ractible

2-ma,nifolds via" cyclic Calltor sets".

A polyhedron i5 planar if it achnits an eInbedcling into the plane R2. In
this paper we classify all cont.ractible planar polyhedra. In part.iclllar, 10­
cally finite t.rees and cont.ractible 2-Il1anifolds are such polyhedra. vVe show
that contractible 2-Inanifolds are classified by "cyc1ic Cantor sets" and 1.ha1.

hOineo1l10rphisIl1 types of contractible planar polyhedra are in 1-1 corres­
pondence with cquivalence c1asses of "Cantorian t.rees". A Cantorian trcc
esscntially is a tree Cl,nd a collcction of cyclic Cantor sets. .

Brown-ß/lesser [B-ß/l] c1assi fied all 2-111anifolds by using :, a.bstract 2-lnanifold
diagraIl1S':. However, such diagrall1S even for contractiblc 2-111anifolds are
quite intricate and therefore we replace then1 by the natural nation of a cy­
c1ie Cantor set. \·Ve give S0I11C exatnples of eontraetible planar polyhedra
defined by the universal cover of 2-diInensional polyhedra and we decribe
their Clssociated Cantorian trees.

In the Iit.erature very little is known on the classifieat.ion of hOlneOI110r­
phisIl1 types of polyhedra. vVhitt.lesey ([vVl], [\>V2], [\N3) classifies t.he ho­
IneoInOrphisI11 types of finite 2-din1ensional polybedra. Our classification here
seelns to be the first. in t.he l1terature cansidering a. c1a'>s of infinite polyhedra
which need not. t.o be nlanifolds.

§1 On t.he clClssification of contrae1.ible 2-dinlensional Il1anifolds



\Ve consider contractible 2-diInensional iopological manifolds AI. It. is
o

weil known that. Al is the open llnit disk D2~ R2 if t.he bOllndary is elnpty.

~/loreover J\1 is the closed llnit. disk D 2 in R2 if 111 is c0I11pad.. The1'e are,

however, further exalnples of such I11a.nifolds which are obtained f1'0111 D 2

by 1'eI11oving a closed subset of the bOllndary aD 2• \Ve show that hOlneo­

Illo1'phisIll types of cont1'actible topological 2-I11a.nifolds f:. D 2, R2 are in 1-1
correspondence wit.h "cyclic Cantor sets" .

A Cant.o!" set C is a cOlnpact tot.a.lly disconnect.ed olct.1'izable space. 'vVe
always aSSlllne that. C is non-eIllpty. Each Cantor set 1s h0111eOlnOrphic to

a subspace of the classica.l "nliddle third" Cant.or space of the real line R.

An orde1'ed Cant.o!' set C = (C, ::;) is a Cantor set C toget.her with a t.otal

ordering ::; such that tbe topology given by t.he ordering coincides with t.he

topology of C. Here the basic open sets of t.he topology of the ordering ~

are the "open int.ervals ll C(a, h) = {:t E C; a < :1; < b} for a, b E C. Let

C[a,b] = {x E C;a ~ x ~ h} be the "closecl interval". Since Cis cOlllpact
we kllow that the Inaxill1l111 rnax E C and t.he 11linilnun rnin E C are defined

so that C = C[l1u:n, rnllx]. A closed subset of an ordered Cant.or set is aga.in

an ordered Cant.or set..

(1.1 ) Definit ion: A SIll all closed interval inan ordel'ecl C an tor set. Cis

an interval C[a, b] with C((I" b) = 0 and a < b. Two o1'dered Cantor sets C
and C' are cyclic equivaleut. if there exist sInall closed intel'vals C[(I,l b] a,nd

C'[0. ' , b'] sllch that the1'e are order preservi ng hOlneoll10rphisl11S

'1/)1 : C[m'in, 0] ~ C'[b', HU1.X]

and

't/J2 : C[b l '111,0.,7:] ~ C'[l'ni'l'" 0 ' ]

Let. .ljJ : C ~ C' be t.he hOllleolll0rphistn given by the union of 'l/JI a.ndt/J2' The

cyclic equivalence dass of C, C, is ca.lleel a, cyclic ordereel Ca.ntor set.. The

opposit.e -C of C is represent.ed by (C, ~OP) where we define a~oPb if a.nd

only if b~ a. The cyclic Cantor set C is the equi va.lencc dass {C, -c }.
As usual a 1-1 correspondence is a function which is inject.ive and sUl'jec­

tive.

(1.2) Theorenl: There is n 1-1 correspondence between homeornorphisln
types 0/ contraetib/e 2-dim ension 0/ maniJolds f:. D2

, R2 nur! cyclic Canto.,.
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sets. Given n. cycHc Canto'!' set C rep'1'esented by (C, ::;) we cun choose an
order prcserving embedding CeR with CeR c R U 00 = 8n 2 a.nti we
obtain (J. contl'adible 2-uwnifold by t.he complem.ent. D2

- C. The 1- J co.,..,.es-

pondence ca.."."ies C to the homeomorphism type of D2 - C. The inverse 0/
the con-espondence i::; de8c1'ibed in theo."e'!n (1. (j)

\Ve relnark that there .is CL silnilar 1-1 cor.respondence between orient.a­
tion preserving hOlneolll0rphisI11 types of contractible orient.ed 2-rnanifolds
#- D2, R2 and cyclic ordered Cant.or sets.

For a cont.ra.ctible 2-1l1anifolel #- D2
, R2 we consieler the diagralll

(1.3)
e

&(l\I) = { 7rn(ol\l) ~ End(EJi\1) -4 End(AI) }

Here 7ro is t.he set. of pa.t.h cOIllponents anel End is t.he spa.ce of Freuelenthal
ends [F]. The tllap e is defined by ,7: E End(e(x)), and E is induced by the
inclusion aAI C JH. ~lloreover an orienta.t.ion of 1\tf yields t.he section () of
e since aN! is a disjoint union of orient.ed open int.erva.ls in R, 0 carries t.he
pat.h cOlllponent C ~ (-ooa, ooa) of 01\1 to +ooa. The diagralll (1.3) leads
to t.he following not.ion of Cant.or diagrallls.

(1.4) Definition: A Cantor diagranl

e '
E~I~C

o
consists of a. CantoI' set. C, cOl.lntable sets E and 1 anel fllI1ctions E, e, anel 0
such that 0 is a sect.ion of e anel e is surjective anel t.wo t.o one. The iIuage of
E is elense in C. An iSOInOl'phisIU betweell Cantor diagrarlls is a eliagran1

wit.h oe = eßl ßa = ao, '{t = Eß, for which 0' anel ß are hiject.ions and '{ is
a hOIueoIllorphislll.

It. is easy to check that (1.3) is a Cantor diagranl anel t.hat the iSOIllorphislu
t.ype of (1.3) is weil definecI by t.he hOllleolnOrphist11 type of !vI.
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(1.5) Definition: Let (C,::;) be an orclerecl Cantor set.. \Ve clefine the
Cantor diagralll

D( C, ::;) ={ E :::=:; I ~ C }
a

as folIows. \rVe introduce the "outside int.erval" [1n.ax, rnin] of (C,.:s;) which
is not an interval of C, given by the Inaxinlun anel the Inininlun of C in
reverse order. In case C consists of a single point there are no sma11 closed
int.erva.ls hut. the outside interval is still defined with ',nax = 'nün. Let E
be the set consisl,ing of the outside int.erval and 0.11 slllaU c10sed intcrvaJs in
(C, ::;). Let. I be the elisjoint union of all houndary sets fJL with LEE. The
lTIap e is clefined by e(x) = L if and only if :1; E fJL. The nlap E is the union
of all inclusions aLe C. ~10reover the section 0 of e co.rries [.,.11.0.:[., '1nin] 'to
nti.,.t E J anel carrics a sIllall interval C[n., b] E E to b E J.

-
(1.6) Theorem: Thc fundion whieh ca1Ties a cye/ie Cant.or set C
rep'l'esen ter! by (C, ::;) fo fhe isonto'''phis'IH e/ass) D(C) J 01 fhe Cant01' dia­
grant D(C, ::;) is weil defin.ed andinject.ive. k/ol'cover fhe eorrespondence in
The01'em (J .2) ca,.ries the homeontorphism lype oj a conJradible 2-11UIUijold

A1 =j:. D2
: R2 10 th e eye/ie Canlor set Cfor which D( C, ::;)is isolnorphie to

E(Ai) .

(1.7) Reulark: Brown-rvlesser [B-t\1] classifieel hOlllconlorphislll types of
0.11 2-nla.nifolds by "abst.ract. 2-1l1an ifolcl clia.gralTIS" whieh are actually equiva­
lellt to Cantor dia.granls above if oue cOllsidel's only contractible 2-Tllo.nifolels
=j:. D2 , R2 • However the realiza.bility condit.ion fot' such clia.granls (in par­
tiClI1ar (i),(ii),(iii) on page 393 of [B-MD is fairly coolplicated even in t.hc
case of contl'actible 2-lnanifolds. In this case we can replace the realizability
condition of Brown-Nlesser by the fol1owing corolla.ry of (1.6)

(1.8) Corollary: A Cantor diagra1f! D 8alisfies D ~ [(lV)) jor (J con­

tracfible 2-mr!:!zijoltl 1"1 #- D2 , R2 iJ (lntl only il thereis (J eyclic Ganl.or set C
with D E D(C).

This rea.lizability condition via orderecl Cantor sets could be generalized
to obtain an alternat.ive rea1iza.bility conelition for the II abstract 2-lnanifold

diagrallls" of Brown-t\1esser in the case of arbitrary 2-111anifolcls. Vle consider

the followillg exalllpies of cOlltractible 2-lnanifolcls.
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(2.9) Example: Let kl be a discrete and closed sllbset of the plane
aud let X M be the universal covering space of R2 - U(M) where U(J\1) is a

o

slnall open lleighbourhood of lvI. Moreovcl', let. N be Cl finite subset of D 2,

and let )(iV be the universal covering space ofD2 - U (JV). Then X M , X;" are
contractible 2-rnanifolds. n/loreover aillnanifolds X M, ~)(;., wi 1,h #J\1, #lV 2: 2
are of the same hOlneOlnOl'phislll type corresponding via (1.2) to the cyclic

Cantor set C where C is the whole "nliddlc thil'd" Cantor spa,ce.

§2 Cantorian trees.

\,Ve here define the notion of Cantorian t.rees. Equivalence classes of such
trees are in 1 - 1 correspondence wit.h honlcomorphisrl1 types of contractible
planar polyhedra f= D 2 , R2

• This is t.he rnain theorCITI of this paper.

Vole use the following notation. Let (C ~) be an ordered Cantor set and
let D(C,:S) = {E, I, C, e, 0, c} be defined as in (1.5). For LEE we have
8(L) E ()L anel we define 8' (L) E 8L by {B'(L)} = aL - {O(L)}. An interval
1[0, b] in 1 with -00 ~ (l < b ~ 00 is the subset {:1; E 1; a ~ :1; ~ b}. In the
following we only use t.hc special illterva.1s Z[O, 11] with 0 < b ~ 00, Z[-oo,O],
anel 1[-00,00]. A sequcnce 8 in (C,~) is a collection ofelelnents Li E E
where i is an elenlent in a special int.erval 1[0., b] such that for i, i + 1 E Z[o, b]

we also write S' = 8(0.,b). The subset of C consisting of the points O(L i )

°with i E 1[0, b] anel 'I: < b is ca.lled the interlor S of 8. iVloreover, let. 151 with
°Sc 151 c C be the set of a.ll elelnents B(Li),O'(L i ) with 'l E 1[o.:b].

An ol'del'ed Ca.nt.or set with sequences (C, ~,S) is a.n ol'del'cd Cantor set
(C, ~) togethel' with a set of sequences S in (C,~) satisfying

°S n15'1 = 0, S, S' E Sand S f= S'

The opposite (C, 5: 0P , SOP) of (C, 5:, S) iH the ol'dered Cantor set witlt sequen­
ces given by thc opposlte orderillg of C alld by SOP = {SOP j SES} where
8°P is the canonical reverse sequence in (C, ~OP) detenl1ined by 8.

Thc interior of S is the subset of C given by the disjoint union

5
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/-in./.:( t; T)

jT

Clearly the interiOI' of sop coincides with the interior of S. Let 1/; ; (C,'::;)
~ (C','::;) be a cyc1ic equi valence as in (1.1). Then -Ij; carries a sequence S
in (C,'::;) to a seqllence 1/)5' in (C','::;) so that for ..t/JS = {1/;5; S' E S} one

o
has the bijection of interion:; 1/; ; S ~ (1/;S)O induced by the homeolnorphisIll

1/; ; C ~ C'.
An equi va.lence 1/; : (C,'::; S) ~ (C','::;: S') is either a. cyc1ic egui valence

1/; : (C, .::;) ~ (C', .::;) 01' a cyelie equivalencc 'Ij; : (C, .::;) ~ (C', ,::;oP) such that
S' = 1/JS 01' S' = (4)S)OP

(2.1) Definition: A Cantorian tree T i5 a tuple

T = (T, P, A, a,A)

where T is a t1'ec , P and Aare subsets of vertices of T, thaI, is A, P C TO,
and \\'here 17 IS a funct.ion whieh canies t E P t.o an ordered Cantor set with
sequences a(t) = (Cl, .::;, SI) as above. rvloreover A is a collect.ion of bijeetions

o

At : St ~ 11>11.1.:(1,; T); t E P

As usua1 linJ.:(t; T) i5 t.he subset of vertices of T which are connected with t
by an edge. \·Ve aSSllllle t.hat. TO is counta.ble anel that. T - P is locally finite.

l\1oreover A n P = 0, and

aEA, thcn link(a;T)nP-=j=0,

t E P, then link( t; T) c A

Note that this is equiva.lent. to A = U{ l-ink(tj T), t E P}.

Two Can1.orian trees, T anel T', are equivalen1. if there exist.s a homeo­
nlorphislll

T ; (T, P, A) ~ (T', P', A')

together with a collection ofequivalenccs 1/;t: a(l) ~ a'(T(l)) for /, E P such
tha.t. the diagranl

o

St

j~,
o '\~(t)

ST(t) ----'--'-_a l-ink(T( t); T')

6



COIlUTIutes for a.11 t. E P. Not.ice that if T = P = {*} is a. point. then the
equivalence dass of the Cantorian tree is just a cydic Cantor set.

(2.2) Theorem: 1'h eFe is (J 1-/ corre.':'ponden ce be t.we en horn eornorph ism
t.ypcs 0/ contractible planor polyherlra =I=- D2, R2 und equivalence clas8es 0/
Cantorian trees.

The 1-1 correspondence in this theoren1 yields for each Cantol'ian tree T
the contractible planar polyhedron X(T) constructed as folIows. For each

I. E P we choose a contractible 2-Il1ani fold 1\1, associa.t.ed to Ct by (1. 2); tha.t.
is J'It = D2

- Ct . vVe define for t E P the open cone

C(S,) c D2
- C,

o 0

Here G(St) consist.s of all points AX, x E SI C Ct C fJD2
, A E [0,1) C R. For

t E T let sta'l'( t; T) be t.he subtree of T generated by {t} U linke L; T). Then
At defines a hOllleOlllorphis1l1

- 0 0

At : sta'l' (t; T) ~ G(St)
o

where star (1.; T) i5 the open star.
Now ){ (T) i5 the union of T allel all 2-tnanifolels D 2

- Ch t. E P, where we
o _

idelltify x Esta'l' (I.; T) c T with At ( x) E D2
- Ct for t E P. NIore precisely

){(T) i8 the Pl1ShOl1t

o

UtEP star (/·i T) ---. UtEP D2
- Ct

j j
T-----· X(T)

in the cat.egory of topological spaces, where "U" denotes the disjoint union.
As part of t,heorenl (2.2) WC, in particl1lar, obt.ain t.he following result.

(2.3) Theorem: Let){ be a contradible planar =I=- D 2
, R2

• Tlten there
exists ahorn eO'1l1orphism X ~ X (T) where T is a Cantorian tree.

(2.4) Exalnple: For t.he convenience of the reader we describe the fo­
llowing exaIl1ple which illustrates the Cantorian tree associated to a contrac­
tible planar polyhedroll. Let ){ be the following subset. of R2

,

)( = R X {O}U{(:c,Y) E R2 1(a:,y) =I=- (:3t, 1), aTu! (x -3/.)2 +y2 :s 1;1. E Z}

7
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Then the Cant.OriaIl tree 7 forX is given ClS folIows. Thc trec T = R is
the real line and P = 3Z, A = Z - 3Z. ~lloreover for a11 t E P we have
a(t) = (C,'::;, S) where C = {-I, 0, J} and where S = {5} consist.s of thc
single sequence 5 = (Lo,L t ,L2 ) with Lo = [0,1], LI = [1,-1] thc outside
int.erval, L2 = [-1,0], allel O(Lo) = 1, O(Ld = -1, O(L 2 ) = O. We have
o 0

S= {-l,l}, and At: S~ link(t;T) carrics'-l t.o i-I anel 11.0 t+ 1 with
l E 3Z = P.

(2.5) Notation: A) Für any set. 1\1 we define the il'f-tree T[iVl] generated
by 1\1 as fo11ows. The set of vertices is the free nlonoid genera.t.ed by 1\1,
tha.1. is T [kf] 0 = Ai{on (1\1 ). The cdges are 0.11 po.i rs of verbces of 1. he fornl
(0, ax) with a E 1H on( 1\1),;J; E 1\1. Here ax i8 defined by thc 111111tiplico.t.ion
in 1\1on(1\1). Let 0 be the enlpty word in 1\1 on.(1\1) which is the 1.1nit..

B) Given a tree T and I..~ E N we deRne the tree (1 / J,,~)T to be the tree
obto.ined by introducing k - 1 subdivisioll points in eo.ch eeIge of T.

(2.6) Exatnples: Let){ be the universal covering space of thc space

Vle describe the Ca,nt.orian 1.ree T wit.h )( = )((7) as folIows. Let T bc the
tree T = (1/2)T[1\1) wit.h il'f = Z - {O} given by notat.ion in (2.5). Let P be
the set of vert.iees in T[ 1\1] and let A be the set of subdivision points denoted
by (1/2)(0., ax). For eaeh l. E P let Ct = C be the ordereel Cantor set

c = {O,:3} U {1 / '11" :3 - 1/'11,; n E N} C R

Thc set St = S of sequcllees in C consists of tbc single sequence S of intervals

L j , j E Z[-oo, 00], with

[l/u + l,l/n]
[1,2]
[3 - 1/n,3 - l/n + 1]

J =-n

j=O
J = n

where n E N. Here the interior is

o

S= {l/n, 3 -l/n;n E N} C C

8
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and for tE P = ~/lon(Z - {O}) we define

o
.At : S = {l/n, 3 -1/n; n. E N} ~ link:(tj T)

as follows. Fot t = 0 we have

hnJ.~(0;T) = {1/2(0, 'In); 'In E 1\1} = AI = Z - {O}

anel for J, =j:. 0 with J, = a'ln, rn. E 1\1, we get

li 11. k(t; T) = {1 /2 ((J: t)} U {I /2 (t: hn), rn E 1\1} = Z

where 1/2( (l, t) corresponds to 0 E Z. Choosing order prcserving bijcct.ions
o

Z - {O} ~ S ~ Z we obtalIl .At ahove. This completes the definition of the
Cant.orian t.ree T.

(2.7) Example: Let X be the uni,:crsal, coverlTlg spacc of the space

Let T be the

T = (I /3)T[lV] with lV = (lH - {O}) U (1\1' - {O})

where 1\1 anel 1\1' are two copies of Z. Let P be the set of vertices of T[lV] and

let A be t.he set of subdivisclion points denoted by 1/3( u, (Lx) and 2/3(0, ax).
For each t E P let Ct = C be the ordercd CatIt,or set

C = {O,3} U {±l/n, ;3 ± l/n;n E N} eR

The set St = S of sequences in C consists of two sequences 5,5' given as

rollows. Let S be t.he same sequence ClS in (2.6) and let S' be given by the

interva.ls Lj, j E Z[-oo, 00], with

{

[3 +, 1/('11, + 1)13,+ 1/'11] J = -n
Lj = (uw:Z: 1 'm'iu] j = 0

(-l/n,-l/(n+l)] J=n

where n E N. Here tHaX = 4 allel ol.'ln = -1 yicld t.he outside interval. Now

the interior of S is

o
S = {±1/ n, ~~ ± 1/n; n, E N} C C

9



and for t. E P = 111on( lV) we detine

o

At : S = {±l/n,:3 ± I/n; Tl~ E N} ~ lin"~(t; T)

as folIows. For t. = 0 we have

Hn k(0; T) = {I /3(0, Tl) ; Tl E lV} = 1'/

a.nel for t =I- 0 with t = an, n E lV, we get

hn.k(t; T) = {2r1 (a, t)} U {I /3 (t ,I.n ) ,Tl E lV} = lVt

wit.h
r {AI U (AI' - {O}) t. = n:m, 'm E 1\'1 - {O}

l\t =
(1\1 - {O}) U AI' t = nm', rH' E 1\1' - {O}

Here 2/3(a, t.) corresponds to 0 E 111 and 0' E 1\1' respectively. \·Ve choose a.n
order preserving bijection E : Z = Z - {O} \vhich inchlces lVt = JV by E U 1
anel 1 U E respectively.

Let ..\0 bc thc elisjoint union of t.he unique order preserving bijections

{1In. j Tl E N} = [- cx), -1] C 1\1, {3 - I/n; n E N} = [1, CX) J c 1\1

{3 + 1/'11; n E N} = [-00, -1] C Af', {-I/n; Tl E N} = [1,00] C kf'

Then At is the composit.ion

This cOlllpletes the definition of the Cant.orian t.ree T.

§3 Contractible 2-manifolds

"vVe here prove thc results in §l. \Ve neecl the following lenlIl1ö.S. Let. [0,1]
dellote t.he ullit interval in R.

(3.1) Lemlna: For each ordered Cnuto1' set (C,::;) ihere is an o'rde'r
preser'/Jing em,hedding C C [0, 1] which carries nl,in to 0 und HHIX to 1.

Proof: As G is Hausdorff ancl totally disconnectecl we can find t.wo disjoint
open anel c10sed subsets Ao, anel Al wit.h rninC E Ao, t11.axG E At a.nd

10



C = Ao U Al' Since Al is an ordered Cantor set t.ake Cl = {x E Ci x 2:
rninA 1 }. As Ao n Al = 0, it. is casily checked that. Cl is an open anel

closed subset of C. Then Co = C - Cl is an ordcred Cant.or set.. Notice

t.hat. 'Hl:inA t = rninC1 . [u addition r/1.axCo E Ao, anel -rHaxCo < lninC1 .

:Nforeover, P = C(nulxCo, 111.1:nC1] is a sIllall int.erval in C. \,Ve can repeat.

this procedure inside both Co anel Cl if Co, Cl i {*} ,and we get two disjoint.

decOInpositions Co = Co,o U CO,l' CI = C 1,0 U C1,1 a.nel two sIllaU int.ervals

Po = C[nlGXCo,o, nl'inCo,d, anel PI = C[nl(J:tC1,0, 'lninC1,1]' \,Vhen Co = {*}
we take Co,o = Go anel GO,l = 0. Sirnilarly for Cl.

VVe deRne inductively two farnilies of intervals in C (n 2: 1)

{Pi 1 ,12, ... ,171_l)i(-i.l,·i2 , ... ,in-d E {O,l}n-l}

such tha.t PiI ,ih .,,1
71
-l C Gil ,1:. ,... ,1 n -l is t.he slnall interval

when G11 ,1:., ... ,1 71 _l ::j:. {*}. Otherwise we deHne C1J,12, ... ,1 71 _l,0 = C11 ,12, ... ,1 71 -1'

Ci1 ,12, ... ,l71 _l,1 = 0, anel PlI ,1:" ... ,1'1-1 = 0. F'urthennore, the above int.ervals
satisfy t.he following pl'opert.ies

00

(2) C = U{ C11 ,12, ... ,i n _ 1 ,i 71 ; (il, ·':2, ... , ,,: 11 ) E {O, l}fl}
n=1

?vloreover, each eleInent.:1: E C defillcs a. ullique sequeIlce (if, 'i~, ... ,'i~ 1 ••• ) E
{O, l}N with {x} = noo

n _ l C'i s i S i:1:
- 1':"···' 'I

By using this fact, we define the functioll f : G ----t [0, 1] by

00 ').ix

f(x) = L -:
n=l 3

If.1: < Y a.re t.wo elell1ents in C, ta.ke '110 = nW:t:{'II,jX,y E Cil,i2, ... ,i71_I,i71 }.

Then .7: E C'i1 ,12, ... ,i'l0_I'O' anel y E Gi1 ,i2 , ... ,1 no-l ,1' Thcreforc

')

f(y) - J(x) > --- -. - ano+1

00 2

L 3n
'11 = 'Ilo +2
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This shows tha.t J is an order preserving Inap. It is clear [rOln the definition

that fCrninC) =°anel J(rnaxC) = 1.
q.e.d.

(3.2) Lemma: Let (C,'::;) ([nd (C','::;) be onJcl'ed Can/.or sels and let
rf> : C -+ C' be a honwolnorphism with rf>(n1,1>n) = rnin and 4>(rn.ax) = 'max J

and such that for each SJ1Hlll inJerval C[a, b] in C also C'[ t/J( a), t/J( b)] 'IS a small
inf.cTI)(J.[ in C'. Then t/Jis an order preserving hOTneOl1l01'phisJ1L

Proof: 1]sing (3.1) wc can aSSlllne that C and C' are c10sed subspaces

of the unit interval [0, 1], anel also that nl.'inC = ',ninC' = 0 a.s weIl as
m,(I.xC = rnaxC' = 1. Fllrthernl0re, the slna,1l int.erva.ls C[a, b] elefine c10seel
intervals [a, b] C [0,1] such t.hat [0, b] n C = {o, b}. Silni larly für C'. Since
the hOlneolllorphislll ci> carries C[a,b] 1,0 C'[ci>(a),ci>(h)], we ca,n ext.end ci> t.o a
bijection J: [0, 1] -+ [0, 1] by setting ~(AO + (1 - A)b) = Ac/>(a) + (] - A)</>( b)
in each int.erval [a:b] (0'::; A'::; 1).

\Ve shall next show that J is actua.lly a. hOlncOIllorphislll of [0, 1] onto
itself. A13 J(O) = 0, and ~(]) = 1 it is dear that J is an order pre­
senTing hOllleOlnOrphisl11, anel hence cf; : C -;. C' will be an oreler ~re­

senring hOllleoIllorphislTI By cOTnpactlless, \\'e ollly need 1,0 check that rf> is

continuolls. Let. {~I:n} be a seqllence in [0,1] converging to Xa. vVe c1ainl

that. ~(Xn) converges 1.0 ~(xa). By cOInpactness, it. sllfflces to check that
any convergent subsequence {~(x nk )} o[ {~(x n)} converges to J( xa). As­
SUllle {J(x nk )} converges to '!J, and asslllne in addition that C(c/>(aa),c/>(ba)]
is a slnall illterval which cOllt.ains illfillit.ely InallY elelllents of {J(:l:nk)}'
as ~ is a biject.ioll we gct a subsequcllcc of {:r: nk } in the closed interval

raa, ho] C [0,1]. Therefore J(xo) = y since the restriction JI[a,bj obviously
is a hOlneonlorphisll1. Ot.herwise, we can aSSllI11C without loss of genera.lity
that there exists an infinite faInily of slnall intervals {C'[ rf>( ak), rf>( bd]} such
tha.t c/>(ak) .::; ~(Xnk) ::; rf>(bd in [0,1]. ßIIoreover, we ca,n also ~"Stllne that
t.he sequences {Ibk - akl} aud {If(h k ) - c/>(ak)l} converge to 0. Then one
can rea.dily check when J.~ -t 00, lirn{bk } = Hm.{a x } = /i.,n{xnl;} = x, and
h.,.n {f( bk )} = h,n. {4>(ad} = h.,.n. {J( J:nl;)} = y. Since C is closecl in [0: 1], one
gets x E C, and thc continuity of f yielels J(:I;) = f(.7:) = y.

q.e.d.

(3.3) Proof of (1.6): Let Canel !" be cyclic Cantor sets represented by

C = (C:'::;): anel J{ = (J{,'::;) respect.ively. '·Ve ha.ve 1,0 show that D(C) =
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D(K) iInplies C=K. The iSOInOrphisnl is given by t.he eliagratn

ß

~E' /'~ J{
-J ---r;;-t

where rows are defined by (C,:S) and (I{,:::;) rcspectively, see (1.5). A priOI'i
t.he bijection a carries t.he out.side interval [nu/x, rnin] not t.o t.he outside in­
terval. Let [([a, b] = n([rnox, nün]). Then there exists a cyclic equivalen:.e

J{ ~ J(' such t.hat. a = rnin[C anel b = rnaxJ{'. Since Ie also represents T(
we therefore ean replaee [( by J('. Henee we eau aSSUlne t.hat 0' above earries
the outside int.erval t.o t.he outside int.erval This ilnplies that. the horneornor­

phisIll 1 satisfies the aSlllnptions in (:3.2) a.nel henee 1 is an order preserving

iSOITIOrphisrTI which a.gain yields a cyclic equi valence C ~ !(, t.herefore C= I~'.

The second part of (1.6) is an easy consequence of the definit.ion of t.he

correspondence in (1.2) which carries C to the 2-tnanifold 1)2 - C for which

E(D 2 - C) = D(C) as can be readily seen.
q.e.d.

(3.4) ProDf of the injectivity in (1.2): First, we have 1.0 show that the

construct.ion of /)2 - C yields a weIl denned correspondence in (1.2). That
is, the homeOInorphislll t.ype of D2 - C only depenels on the cyclic Cantor

set. C. Assunle that (C',::;) is another ordered Cantor set which is cyclic
equivalent to (C, ::;). By (1.1) we can find sInall intervals C[0., b] anel C'[a', b' ]
such that we have C[nlin, a] = C/[ll, rn.a:z:], anel C[b, 'ma:1:] = C/[nlin, 0.

/
]. Let.

'tf; : C ----t C' denote the obvious hOIlleornorphisIll defined by l.he equalities
above

We now cOllsider 8 1 = R U 00 orienteel by the usual ordering of R. By
using (3.1) we ca.u asslune 1.ho.1. C allel C' are en1bedded in R C 81 by an order
preserving elnbedding. The hOlneOlnOrphist11 1.jJ above cau be ex1.ellded to an
orient.o.tion preserving hOlneon10rphis1l1 .J : 8 1

----t 8 1 by settillg '~([(l, 11]) =
[nu/.x, rnin] a,nd ~([rn(l:c,m.J>n.]) = [a', b']. Here t.he intervals [rnax, rnin.] C SI

are defined by the orientatioll of 8 1•



Sinlilarly we can get an orientation reversing hOlneOITIOrphis111 51 ~ 51
when (C',::;) is cyclic equiva.len t to (C ::;oP). Thus the correspondence (1.2)
is weIl definecl. By (1.6) we know that t.his correspondence is injective.

q.e.d.

In order t.o show the sllrject.ivit.y in (1.2) we sha11 need the following
lellllna whose proof is a consequ€nce of t.he triangulability or 2-Inanifolds
([1\/10; 8.3]) which allows us to choose suit.able increasing seqllences of regular
neighbourhoods.

(3.5) Lemma: GivclI 0 non-compad 2-ruauzfold i\1 tllere exists an in­
creasing sequ.ence i\1i C lH i+1 U~ 1) 01 compaet conneded 2-'11ulnifolds with
M = U{ A1i ; 'i 2: I}, und cach c!ousllre 1\1i+I - l\li is a family of disjoint
2-nlunifolrls.

In addition, fo.,. each non-compact cornpon ent C C fJi\1 J each 110n-t rivial
interseet.ion 1\1i n C is an are in al\1ii mutthe interscet.ions lvIi nNfi+1 - 1\1i
is n. Jamily oJ disjoinl arcs. Furlhermo,.c, Ij 1\1 is conJraetible the 2-nuul1folds
l\li (J1'e 2-disks.

(3.6) Proof of the surjectivity in (1.2): Let 1\1 be a contraet.ible non­

cOInpact 2-rnanifold "# D2, R2. \-\Te choose an orientat.ion on 1\1, allel so each
COlllponent C c al\1 is an orient.ed copy (-ooc, ooc) of R. \,Ve assunlC tha.t
al\! ha.'3 a.1. least two cOIllponellts. Otherwise kl is hotncOInorphic to the

half-space R~, auel C= {*}.
Take a sequence 1\'/1 C A12... as in (3 ..5). Let Ci denote the fanlily of all

the COInponents of ai"! which t11eet 1\1j • It is obvions that Ci C Ci+1 • On the
other hand, let Bi denote the fatnily of ares whose union is the clousure

\Ve fix a cOInponent Co C 8iH with Co n 1\11 "# 0. Since each 1\1i is a 2-disk,
the orienta.t.ion of J\1 anel the cOlnponent Co define conlpati ble "clockwise"
orderings Oll Ci which gi ve a total ordering on UCi - {Co}. 1\'loreover, this
orclering satisfics the following conditiotl (A).

(A) "Given C E Ci there exist exactly two components Cl, C2 E Ci - l such
that C lies between Cl and C2 in the clockwise ordering of Ci"

The orderings we have already defineel yielel a t.otal ordering ::; on the sets
of ends {±ooc} of the COInponen t.s of 81\1. Narnely: we define :S as follows

a) ooco < ±ooc < -ooco for a11 C #- Co
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b) -OOc < OOc for all C i- Co
c) OOc < -ooCI if C precedes Cf in the above ordering on UCi - {Co}
We now eInbed Co in t.he l-sphcre SI = 8D 2 by an orientatioll preser-

ving eInbedding 'ljJo : Co -+ SI. \Ve can aSSUllle SI - 'ljJo( Co) = [0,1] with
'!/Jo( -ooco) = 1 and '!/Jo(ooco) = 0. V·.,Te extend '!/Ja to an orientation preserving
elnbeelding '!/JI : U{C; C E Cl} -+ SI by etnbedding cach C in [0, 1] according
to the orderillg in CI - {Co}. In addition, we define 'f/Jl sat.isfying the rollowillg
extra condition

(B) :: If C, Cf E Cl, and [ooc, -ooCI] is a small interval in the sense of
(1.1) then '1jJ1(00C) = '!/J 1( - 00CI) ."

Assulne we have aJrea,dy defined an orientation preserving crnbcdding

which follows the "clockwise ll ordering of Ci anel such that 'lj;j verifies condition
(B) for Ci' By using (A) we can now extend '1/.\ to an enlbcdding 'ljJi+I with
the s;une propert.ies. In this way we can inductively defitlc an enlbedeling
'l/; : 81\1 -+ SI verifying (B) for all Ci. By construction SI - 1f;( ol'vJ) is a
totally disconnected conlpact subspace os SI, anel so it is a Cantor set.

We extend 'ljJ Lo an ernbedding 6 : DAl U {r; r E BI} -+ D2 with the
o

condition that. ~l (r) E D 2 for each are r. These arcs t.oget.her the cOIllponents
in Cl defilles a 2-disk in D 2

, and we hOllleornorphically lllap MI to that disk
by exteneling ~l' So, \ve have deHned an eInbedeling hl : lvII U EJi'1 -+ D2 .

o

Let. DTJ C Dr2 C ... be a sequence of 2-disks in D2 with radii r n = n~l'

AssllIne we have const.ructed a elnbedding

with the following two Pl'opcl'ties: (i) hk extends hk-I, anel (ii) D rk _ 1 C
o 0

hk (Jllk ) C D2.
\Ve extend hk to hk+I as folIows. It. is not hard Lo find an extension of hk

o

such that ~k+1(in/.f) C D2
, anel ~k+ 1 (r) n (hk (1\1k) n D;k) = 0. Since

A1k+l - Alk is a finite set of disjoint closed 2-disks whose boundaries are
disjointly etnbedded by ~k+l' ane call easily definc an extension hk+I of ~k+I
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disjointly elllbedded by ~k+ 1, Olle call easily defille an extenslon hk+ 1 of ~k+l

which verifies conditions (i) and (ii) above. Therefore t.he union of all the

elnbeddings hk yields an elnbedding h : 1\1 -t D2
• extending the enlbedding

'tP : aAl -t D 2 rvloreover, by condition (ii) above we have h(Al) = D 2 - J{

where ]( = 8 1
- 'I/;( aAl) i8 a Ca.ntor set. Hence t.he correspondencc in (1.2)

i8 sUl'jective.
q.e.d.

§4 Contractible planar polyhedra

In this section we discuss SOIne properties of contractible planar polyhedra

and we prove theoreIll (2.3) and tohen theorenl (2.2). For the convenience of

the reader wc first descl'ibe notat.ions and sorne basic fact.s Oll polyhedra allel

planar polyhedra..

\\Te recall that for a.ny planar polyhedron X = IJ{I it. is always possible
to choose an ernbedcling h : )( -t R2 which is linear on cach sirnplex of thc
triangulation J{ (see [ß10j 10.1:3]). A polyhedron )( = I/{j i8 said to be purely
n-dirnensional if each point 1; E )( belongs to S0J11C n-silnplex of J{. We also
recall that an n-dilnensional polyhedron )( = I/{ I is said to be strongly

connected if given two n-sitnplices 0', T in !( there exists a finite sequence

0' = 0'0,0'1, ..• (1k = T of '11-s1lnplices such that (1j n (1j-l is a C0111l110n '11 -I-face
(1 ~ 'i ~ Ii:). In genera.l, the notio11 of strongly cOI1I1ected COlllpollent, 1\//(1, of
a.n n-silnplex (1 E J( can be easily given for any n-ditnensional polyhedron.

~1oreover, it is straightforwardly checked that 1\1(1 is a purely n-clinlensional

subcOlnplex of J{. In addition we have (see [~vl i 5.3.3] for a proof):

(4.1) Proposition: A ny n-dimensional polyhedroll )( = IJ{ I can be de­
c(nl1posed ns nunion 0/ lwo subpolyhedl'a 4X" = R(){) U L(4\;) whereR(){) is

tlte union of ull strou!Jly conuected componcnts l\tL:r ~ .){. Furlhe1"'more R(X)
is purely n-dimensiona.l} und d1:-rrl-L(){) :s; n - 1 wilh di,n(J\I(1 n J\t/(1/) :s; Tl - 2
and di'ln( 1\1(1 n L( 4~)) ~ n - 2 for every pair 0/ n-8implic(~s (1,0" E J\~.

The sl>ng'lllar part of X 1:8 the union S(~~) = L(){) U Oe\'") whe're O(~){) =
U{ Al(1 n IV!/7J; (Y, a ' E !{}. A'!oreover Ihe abo·oe decomposil.ion only depenrls on

the homeomorphism type 0/ ){ .
\Vith the notation of (4.1) we have the following properties for planar

polyhedra.
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(4.2) Proposition: Lel ); = 1](1 be a connected plana.r polyhedron. Then
t.he foll01m:ng st.atements hold fOT each sl"I'ongly connected contponcnt Mn ~ X

o
(1) /vIn is a 2-pseudowauifold whose inteTio7' 1\1(r -i.5 (J 2-manifold.
(2) FoT' each l\Ja ) 1\1a n S'(~\'") ~ (JA/er'
In addil,ion) if); is simply conneeted then X is contractible and the I.hree

further sintem.ents below hold
(3) Each Aln is a 2-manifold
(4) Two points x, y E A1(1 n S'(~\'") can not be joi'ned outside Nlu '

(5) Each component 01 the graph S(.\'") is a t1't~e.

'vVe recall tha.i. an n-pseudOlnauifold is a strongly connected purely '17­

dinlensional polyhedron )( = IJ{ 1such that any (n. - I )-sinlplex of J{ is the

face of at nl0st two n-sinlplices of J{. The boundary of )(, ax, is the union
of all the ('17 - 1)-sinlplices which are cont.a.ined in exactly one n-silnplex of

o
J{. The difference )(= .\'" - D.\'" is ca.lled the interior of ~\'". It. is a weil known

fact that any I-pseudOlnanifold is a l-Inanifold.

Given x E 11<1, thc star of x in 1<, sta'I'(;r; J<), is the subcOInplex of J(
generated by the set {O' E I{; x E ]{}. And the link of :r; in }{ is the

subconlplex of star(x; [() denot.ed by

hnlt:(xj /{) = {r E ]{; r < (J wit.h ;r; E a - r}

It. is a basic fact. that star(x; J{) is a. cone over hnk(x; J{). ~/loreover,

ir X = IJ{I is a. n-pSeUdOIl1allifold, hnk(x; /\') is an (n - I )-pseudotnanifold
(with boundary if x E fJ~)().

(4.3) Prüoe üe (4.2): As a. Silllpic consequence of the Jordan Curve
o

Theorenl ([tvlo; §8]) it. follows t.hat. hnlt:(x; 1\1(T) = Si when x EJ\1(1' This

yields (1) and (2). Since); is planar the hOlnology groups Hi(X) a.re trivial

for 'l~ 2: 2. So, it fo11ow8 frolll the \Vhitehead Theorcnl ([M; 8.3.10] ) that.

~\'" is cont.ractible if X is sirnply connectcd. Moreover, as )( is 2-dimensional

the inclusions kl(T S; ~\'" inchlce injeet,ions 7T"I(A1(T'*) ----1 7T"1(){,*), and so each

component 1\1n is siDlply connected a.nd tohen contractible. By using the

Jordan Curve Theorenl it. is not hard to check t.hat t.he contractibility of 1\1(T
o

inlplies that Bkl(T is a l-Illanifold. This yields (:3) since AIa is al ready a 2-

Inanifold by (1). Filla.11y (4) follows froDl arglllnents sirnilar to Van Kalnpen's
TheoreIl1; and (5) is obviollS. q.e.d.
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(4.4) Remark: For a cont.ractible plana.r polyhedron )( such that A1q = R2

for SOllle 2-sitnplex a, we Ileccssarily have){ = .fl.1q = R2. Thcrefore if )( =J. R2

each 1\1a i8 a 2-nutnifold with boundary.

Star1.ing \'·:ith a planar polyhedron )( ~ R2
: by "t.hickcning" the singular

set S(~\') S; )( it is possihle 1.0 defitle a planar 2-pseudolllanifold A'!(X) ~ R2

such that )( S; l\I(~xr) i8 a. proper strong defonnation retract. \,Ve recall
that. a continuOU8 1l1ap .f : ~X" ----7 Y is proper when f-l(J\~) i8 a cOlllpact
for each cornpact subset J( S; Y. ivloreover when all t.he cOlnponents Aifa
are 2-tnanifolds, J\t[(~xr) turns to be a 2-rnanifold. In part.icl1lar, according to
4.2(3) if X i8 con1.ractible 1\tf(){) i8 a. contractible planar 2-1l1allifold. And
by (3.5) it. is not hard to find a proper elnbedding Al (~\;) ~ R2

. \Ve ca.n also
use (3.5) to deRne a tree T ~ A1(X) such t.hat J\1(X) is in fact a regular
neighbourhood of T. As consequences of these observations we can no\\' state

(4.5) Proposition: Any plana.,. contradible polyhedroll can be properly
enlbedd(~d in R2 •

(4.6) Proposition: Any plana.,. contrac/.ible polyhedron lws fhe proper
h01flotopy type 0/ a t.l'f~e.

(4.7) Relnark: Obviously (4.5) eloes not hold for a.ny planar polyhedron,
as the following graph shows

\Ve now finish this section with the proofs of (2.3) and (2.2)

(4.8) On the definition in (2.2): The polyhedron ~xr(T) dcfincd in §2
is in fact. a contractible planar polyhedron. The contract.ibility follows frOl11
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the push out. const.ruction of )( (T) since 0.11 the 2-1nanifolds D 2 - Ct involved
are contractible.

'Ne now define an elnbedding ~\'(T) in R2
. "\Te can aSSlllne that P =f 0

since ot.hcl'wise A = 0 anel 4\'(T) = T is Cl, locally finite trec. Let ta E Ta. \\Te
take t o a.s the root vcrtex of T, and l.his inc!tlces a partial ordering in TO by
t.aking v ::; w when v appears in the uniquc path IW going fronl 'W 1.0 f,o. In
addition, the paths Iv induce a height. funct.ion h : Ta -+ N where h(v) is the
nlllllber of vertices in IV' Using the funet,ion h we can deRne induc1.ively an
Clnbedding ~ : _\'(T) -+ R2 as folIows. Lct Tn be thc finit.e Cant.orian subtree
generated by the set of vel'tices {v ETa; h(v) ~ n}. Asslllne we have al ready
defined an etnbedding ~H : ){ (Tn ) -+ R2

•

In order to ex1.end ~n 1.0 a.n enlbeelding ~n+l : ~~(~+1) -+ R2 we consider
a11 ver1.ices v E Ta wi1.h h.(v) = n + 1. Let 'w v be the uniql1e vertex wi1.h

W v ::; v anel h(wv ) = n. If v E Ta - P we can easily define an extension ~n+l

of ~n t.o t.he edge (wv , v) in such a way tha.1. when '/) E A a.nd W tI E P then

~n = (n+l1 sinee in 1.his case (w v , v) ~ D2 - Gw " and ~n is al ready defined on
D2

- Gw". If v E P thell W v nccessarily belongs to A, and we GUt extend (n
1,0 an etllbedding ~n+l of .\"" (J:,+d U ])2 - Cl!' Tberefore the union ~ = Ufn
defines a planar elnbedding of ~~(T). By the pl1sh out const.ructioll of .;«(T)
it. dear t.hat :((T) ~ _\'(7') when T anel T' a.re t.wo equivalent. Cant.orian
1.rees.

q.e.d.

In this way t.he funetion 'if; : T I---? _~(T) is a weil defined fUIlction whieh
carries equivalence classes of Cantorian trees 1.0 hOlllcolllorphislll types of

contrCletible planar polyhedra. =f D 2
, R2. 'vVe now proceed 1.0 show t.hai. 'Ij; i8

a 1-1 correspondence.

(4.9) Proof of (2.3) (surjectivity in (2.2) ): Let)[ be any eontraetible

planar polyhedron #- D2 ,R2
. According 1.0 (4.1) and (4.2) we can write

.\"" = R()[) U SC\'") where R,C\'") i5 a union of eontractlble 2-I11itnifolds {Alo }.

IV[oreover, by (4.4) we kIlow t.hat ok/a i= 0 for each CL By using (1.2) we

ean identify 1\10 with D2
- Co for sotne cyelie Ca.nt.or set Ga' Furthennore,

by (3.6) ea.eh eOlnponent. of oA1o is ident.ificd wit.h a. 5111al1 int.erval of Co
(including t.he "outside interval").

For a. stnall interval Co [(f, 11], let H~,b be the corresponding cOlllponellt of
o

Dl'le,. 'vVe cOllsider the iIlt.ersectioIls S~,b= fl':,b n SC\'") and for each 0' the
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000

union Sc. = U{ S~,b }. Now we take S~,b =S~,b u{ (], bL anel Sc. = US~,b' Then
we define tbe Cantol'ian t1'ee

T = (T, P, A, (T, B)

o

whel'e T is tlle tl'ee consisting of the union of the cones C(SO) and the singular
o

set S'()(). The set. of vel'tices A cOllsists of 0.11 poiuts in U S°, a.nel tolle set
o

P consists of all t.he cone points tc. E C(SO). The fUIlction (j is given by
a(tc.) = (Co, SCO). There 18 now an obviolls way of elefining AC\' anel it is easily
checked fronl the definition of )( (7) that )( (7) s:=: )(.

q.e.d.

(4.10) Proof of the injectivity in (2.2): Asslline we have a. hOlne0l110r­

ph1slnj: ~)((Ti) ---7 ~X"(12) between t.woCant.orian trecs7i = (Ti, Pi, Ai,(fi, Ad,
(i = I, 2). For each vert.ex 1,j E Pi we have an ordered Cantol' set (Ct;:::;)

o

with (fi(td = (Cti )St;). If e't; = Ct;- St;, then the definition of ~X"(7i) shows

tho.t thc strong connccted cOlllponents of thc polyhedl'on ~\'(1i) are t11e 2­
Inanifolds D2 - C't;. By definition of D2

- Ct; (see (1.2)), thc ordering on

e't; defines an orient.ation on rJ(D2 - e't;). ~vloreove1', the sl1udl intervals of

C"ti can be identified with the connectecl C0l11pOnent.s Il ~ ß(D 2
- C't;). In

addition, each illtersection S()((7i)) n H 15 deternlined by the sequences in

O"i( ti)'
On thc othe1' hand, the topological invariance of tlle decolllpositiol1 in

(4.1) ilnplies that the gi ven hOlneorIlo1'phisnl f iuchlces a. hOtneOlll01'phisl11 of

paus

for each vertex "t E PI' Fllrt.hennore, the function 1. 1 1-7 .~(l.d deH nes a. 1-1
correspondence .~ : PI ----1' P2' If ft1 is an orientation preserving (reversing)

hOmeOl1101'phisl11, tohen ff} inchlces an order preserving (reversing, respecti­

vely) hOll1eOll101'ph1sIn

\Ve now proceed t.o define an h0111COlliOrphisrll
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as folIows. 'vVe define T IPI = s on, Pt. Next we shall defi ne T in the set.

Each point a E HnJ.:(tt; Td is ident.ified by BI 1,0 a point ]Ja in ccrtain sequence
o 0 0

S~St. As it was rernarked above we have S= !f n 8()((~)) for a unique

cOInponent. H ~ iJ( D2
- C' tl ), and since t.he given hOtneOlnorphisIll f verifies

f(S'(.Y(~))) = S()((72)) we can define T(n) = 0Af(Pa)),a E At. The
extension of TIPt U Al t.o U{staT(t.t;Td;t 1 E Pt} is the canonica.l linear
extension. Finally, we define T = f hetwcen the singula.r sets

Hence T actua.lly defines a hOIneOtnorphislll hetween t.he Ca,lltorian trees

1i.
q.e.d.
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