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Abstract
The famous H. Schubert theorem (1949) states that any nontrivial knot

in S3 admits a decomposition into connected sum of prime factors, which are
unique up to order. We prove a similar result for knots in T ×I, where T is a
two-dimensional torus. However, we only consider knots of geometric degree
one, use a different type of connected summation, and take into account the
order of prime factors.
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1 Introduction

Let T be a two-dimensional torus and I = [0, 1]. By a thick torus we mean
a 3-manifold homeomorphic to the product T × I equipped with a fixed
orientation.

Definition 1. A knot in T × I is an oriented simple closed curve K ⊂
Int (T × I). Two knots Ki ⊂ Ti × I, i = 1, 2, are equivalent if there is a
homeomorphism of pairs h : (T1× I, K1) → (T2× I,K2) which takes T1×{0}
to T2 × {0} and preserves orientations of the thick tori and knots.

Definition 2. Let K ⊂ T×I be a knot. A proper annulus A ⊂ T×I is called
vertical if it is isotopic to an annulus of the type c×I, where c is a nontrivial
simple closed curve in T . A vertical annulus A ⊂ T × I is admissible (with
respect to K) if K intersects A transversally at one point. By a vertical multi-
annulus in T×I we mean the disjoint union A = A0∪A1∪· · ·∪An−1 ⊂ T×I
of vertical annuli. A is admissible so are all Ai.

Definition 3. We shall say that a knot K ⊂ T × I is of degree one if T × I
contains an admissible annulus.

Let Ki ⊂ Ti × I, 0 ≤ i ≤ n − 1, be a collection of n ≥ 2 degree one
knots in thick tori. Choose admissible annuli Ai ⊂ Ti × I. For each i we
cut Ti × I along Ai and get a thick annulus Mi ≈ Ai × [0, 1] with two copies
A′

i = Ai × {0}, A′′
i = Ai × {1} of Ai in ∂Mi. The annuli are joined by the
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Figure 1: Circular connected sum

oriented arc li = K ∩ Mi. We assume that the initial and terminal points
of li lie in A′

i and A′′
i respectively. For each i choose a homeomorphism

hi : A′′
i → A′

i+1 which reverses the induced orientations of the annuli, takes
A′′

i ∩ (T × {0}) to A′
i ∩ (T × {0}), and takes the terminal point of li to the

initial point of li+1 (indices are taken modulo n).

Definition 4. The knot K = K0#cK1#c . . . #cKn−1 ⊂ T × I obtained by
gluing together the pairs (Mi, li) along hi is called a circular connected sum
of Ki. Admissible annuli in T × I obtained by identifying A′′

i with A′
i+1 are

denoted Ri, 0 ≤ i ≤ n− 1. See Fig. 1 for n = 2.

The circular connected sum of degree one knots may depend on the choice
of the annuli Ai ⊂ Ti× I used for the construction. However, if Ai are fixed,
then K and the admissible multi-annulus R = R0 ∪ R1 ∪ · · · ∪ Rn−1 are
uniquely determined. In turn, K and R determine Ki and Ai. Suppose we
are considering a circular connected sum K0#cK1 of two knots such that one
of them is horizontal, (i.e., isotopic to a simple closed curve in a middle torus
Ti × {∗}). Then the sum K0#cK1 is equivalent to the second knot. Such a
summation is called trivial.

Definition 5. A nonhorizontal degree one knot K ⊂ T × I is called prime if
it cannot be represented as a nontrivial circular connected sum of two other
knots.

Let K be a degree one knot in T × I. Suppose there is a 3-ball B ⊂ T × I
such that l = K ∩B is a knotted arc in B. Replacing l by an unknotted arc
l1 ⊂ B with the same endpoints, we get a new degree one knot K1 ⊂ T × I.

Definition 6. We shall say that K1 is obtained from K by cutting off a local
knot and that K is obtained from K1 by inserting a local knot.

Note that the exact place for the insertion, i.e., a ball B ⊂ T×I such that
l1 = K1 ∩B is an unknotted arc, is not important. Indeed, B can be moved
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by an isotopy of pairs ht : (T × I, K1) → (T × I, K1) to any other position
along K1. This fact is well-known in the classical knot theory, where it is
used for proving commutativity of connected sum operation.

Definition 7. A degree one nonhorizontal knot K in T ×I is called essential
if it does not contain local knots. K is called almost horizontal if it can be
obtained from a horizontal knot in T × I by inserting local knots.

One can easily see that inserting local knots is equivalent to taking circular
connected sums with the corresponding almost horizontal knots. It follows
that almost horizontal summands of a circular connected sum can be shifted
to any position, for example, one may write them at the end of the sum.

Theorem 1. Any nonhorizontal degree one knot K can be represented as a
circular connected sum

K = K0#cK1#c . . . #cKn−1#cL0#cL1#c . . . #cLm−1,

where Ki are essential and Lj are almost horizontal prime knots. The sum-
mands Ki are uniquely determined up to cyclic permutation while the sum-
mands Lj are uniquely determined up to any permutation.

For knotted theta-curves in S3 and in arbitrary 3-manifolds similar prime
decomposition theorems, which take into account the order of prime factors,
can be found in [4, 2]

2 Properties of admissible annuli

Definition 8. Let K ⊂ T × I be a degree one knot and R = R0 ∪R1 ∪ · · · ∪
Rn−1 ⊂ T × I, n ≥ 2, an admissible multi-annulus. Then a vertical multi-
annulus C ⊂ T × I is called tight (with respect to R) if either C ∩R = ∅ or
the following holds:

1. C ∩ R consists of radial arcs of the annuli.

2. These arcs decompose C into strips (embedded rectangles) such that the
lateral sides of each strip lie in different annuli of R.

Definition 9. Let K ⊂ T × I be a degree one knot and C ⊂ T × I a vertical
multi-annulus such that K intersects C transversally. Then the weight w(C)
of C is the number of points in K ∩ C.
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Figure 2: Removing trivial circles

Lemma 1. Let K ⊂ T × I be a degree one knot and R = R0 ∪ R1 ∪
· · · ∪Rn−1, n ≥ 2, an admissible multi-annulus. Then for any vertical multi-
annulus C ⊂ T × I there is an isotopy ht : T × I → T × I, 0 ≤ t ≤ 1, such
that h0(C) = C, the multi-annulus C′ = h1(C) is tight, and w(C) ≥ w(C′).
Moreover, if K is essential and C is admissible, ht may be chosen so as to
be invariant on K, i.e., ht(K) = K for all t.

Proof. We may assume that C and R are in general position. Then any
connected component of C∩R is one of the following curves: a trivial circle,
a trivial arc, a nontrivial circle, or a radial arc. Our goal is to remove all
curves of the first three types and some curves of the last type.

Step 1. Suppose C∩R contains a trivial circle U ⊂ Ri. Using an innermost
disc argument, we may assume that U bounds a disc D ⊂ Ri ⊂ R such that
D ∩ C = U . Denote by D1 the disc bounded by U in Cj ⊂ C. Then D ∪D1

is a sphere bounding a ball B ⊂ T × I. We use B for constructing an isotopy
ht which moves D1 to the other side of Ri and C to a new multi-annulus C′,
thus annihilating U and maybe some other circles in C∩R. See Fig. 2. Since
Ri is admissible, K ∩D is either empty or consists of one point. In the latter
case K ∩D1 6= ∅. It follows that in both cases w(C′) ≤ w(C).

Suppose C is admissible. Then either l = K ∩ B is empty or l is an arc.
If K is essential, then l is unknotted. Therefore ht may be chosen so as to be
invariant on K. Further on we will assume that K contains no trivial circles.

Step 2. All trivial arcs in C ∩ R can be removed just in the same way as
above, using an outermost arc argument and half-discs bounded by trivial
arcs and arcs in ∂(T × I) instead of discs. Further we assume that C ∩ R
contains no trivial arc.

Step 3. Suppose that C intersects an annulus Ri of R along nontrivial
circles, which decompose it into smaller annuli. Then Ri contains two out-
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Figure 3: Removing nontrivial circles

ermost annuli, each bounded by a circle in C ∩ Ri and a circle in ∂(T × I).
Since Ri is admissible, at least one of them (denote it R̄) has with K no
common points. The circle U = ∂R̄ ∩ C cuts off an annulus C̄ ⊂ Cj ⊂ C
having a boundary circle in the same torus of ∂(T × I) as R̄. Then R̄ ∪ C̄
together with an annulus in ∂(T × I) bound in T × I a solid torus V . We use
V for constructing an isotopy ht : T × I → T × I which moves C̄ to the other
side of R̄ and C to a new multi-annulus C′, thus annihilating U and maybe
some other circles in C ∩ R. Clearly w(C′) ≤ w(C). If C is admissible, then
V ∩ K = ∅, since R̄ ∩ K = ∅. Therefore we may construct ht such that it
keeps K fixed. See Fig. 3. In order to get a 3-dimensional illustration, rotate
it around the axis shown at the bottom of the figure).

Step 4. Suppose that C ∩ R consists of radial arcs. They decompose C
and R into strips. If C is not tight, then there are strips P ⊂ Cj ⊂ C and
Q ⊂ Ri ⊂ R such that they have common lateral sides and P ∪Q cuts off a
3-ball B from T × I. We use B for constructing an isotopy of T × I which
moves P to the other side of Ri and Cj to a new annulus C ′

j, thus annihilating
two or more radial arcs of C ∩ R. Clearly w(C′) ≤ w(C). If K is essential
and C is admissible, we use the same argument as in Step 1 for constructing
an isotopy which is invariant on K.

Let K ⊂ T × I be a degree one knot and R, R′ ⊂ T × I be disjoint
admissible annuli. They decompose T × I into two parts Mi ≈ R× [0, 1], i =
1, 2. We shall say that R, R′ are parallel in (T × I,K) if for at least one i
the arc K ∩Mi is trivial in Mi, i.e., has the form {∗} × [0, 1].

Lemma 2. Let K ⊂ T × I be a degree one essential knot and R = R0 ∪
R1 ∪ · · · ∪ Rn−1, n ≥ 2, an admissible multi-annulus such that at least two
annuli of R are not parallel in (T × I,K). Then for any admissible multi-
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Figure 4: Removing radial arcs

annulus C ⊂ T × I there is an isotopy ht : T × I → T × I, 0 ≤ t ≤ 1, such
that h0(C) = C, ht is invariant on K, and the multi-annulus C′ = h1(C) is
disjoint with R.

Proof. By Lemma 1 we may assume that C is tight. We claim that C∩R = ∅.
On the contrary, assume that C intersects R. Then C consists of strips such
that each strip P joins two neighboring annuli Ri, Ri+1 ⊂ R and lies in
the thick annulus Mi between them. Note that P cuts Mi into a ball. If
K ∩ P = ∅, then the arc li = K ∩Mi is contained in this ball. Since K is
essential, li is unknotted. Thus Ri, Ri+1 are parallel and the pair (Mi, li) is
trivial, i.e., homeomorphic to (Ri × [0, 1], {∗} × [0, 1]).

Recall that C is admissible. It follows that K intersects only one strip.
Therefore, only one thick annulus between neighboring annuli may be non-
trivial, but then its complement in T × I consists of trivial regions and thus
is also trivial. This contradicts our assumption that R contains nonparallel
annuli.

Remark 1. Suppose that an essential knot K ⊂ T × I is nonprime. Then
any two admissible annuli in T × I are isotopic in T × I. Indeed, since
K is nonprime, T × I contains a pair of disjoint admissible annuli R′, R′′

which are not parallel in (T × I,K). In fact we can take any pair of annuli
decomposing K into a nontrivial circular connected sum. Let C ⊂ T × I be
another admissible annulus. By Lemma 2 C isotopic in (T × I,K) to an
annulus which is disjoint with R′ and thus is isotopic to R′. Note that the
assumption that K be nonprime is essential. See Fig. 5 for a knot having
two nonisotopic admissible annuli R0, R1.

Lemma 3. Let K ⊂ T × I be an essential knot and R = R0 ∪ R1 ∪ · · · ∪
Rn−1, n ≥ 2, an admissible multi-annulus in T ×I such that no two annuli of
R are parallel in (T × I,K). Suppose that an annulus C ⊂ T × I intersects
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Figure 5: Two nonisotopic admissible annuli

K transversally and the base circles C ∩ (T × {0}) and R ∩ (T × {0}) of C
and R are not homotopic in T × {0}. Then n ≤ w(C).

Proof. By Lemma 1 we may transform C into a tight position without in-
creasing its weight. Since the base circles of C and R are not homotopic,
C ∩R is a nonempty collection of radial arc, which decompose C and R into
strips. Note that K must intersect each strip of C in any region of T × I
between two neighboring annuli. Otherwise the region would be trivial and
the annuli parallel. Since any region contains at least one strip intersecting
K, we may conclude that n ≤ w(C).

3 Proof of the main theorem

Let a nonhorizontal degree one knot K be given. First we cut off all local
knots. By [3] and Theorem 7 of [1], any knot K in a 3-manifold without
nonseparating 2-spheres contains only finitely many local knots, which are
uniquely determined by K. Therefore the set of almost horizontal summands
Lj of K is finite and these summands are unique up to order. Further on we
shall assume that K does not contain local knots, i.e., is essential.

Let us prove that a prime decomposition of K does exist. If K is prime, we
are done. Suppose K is not prime. Then among all decompositions of K into
circular connected sums we take a decomposition K = K0#cK1#c . . . #cKn−1

having the maximal number n of summands. Clearly n ≥ 2.
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We claim that all Ki are prime. Let R = R0∪R1∪· · ·∪Rn−1 ⊂ T×I be the
admissible multi-annulus corresponding to that decomposition. The annuli
of R split T × I into thick annuli Mi ≈ Ri × [0, 1]. On the contrary, suppose
that for some i the knot Ki ⊂ Ti × I is not prime. Then Ti × I contains
a pair of disjoint admissible annuli R′, R′′ such that they are not parallel in
(Ti × I, Ki). Consider the admissible multi-annulus R′ ∪ R′′ ⊂ Ti × I and
the annulus Ai ⊂ Ti × I used for constructing the circular connected sum.
According to Lemma 2 we may assume that R′, R′′ are disjoint with Ai and
thus can be considered as annuli in the thick annulus Mi between Ri and
Ri+1. Since R′, R′′ are not parallel in (Ti× I, Ki), at least one of them is not
parallel to Ri or Ri+1. This contradicts our assumption that n is maximal.

Let us prove that the summands of a prime decomposition of K into
a circular connected sum are unique up to cyclic permutation. Let K =
K0#cK1#c . . . #cKn−1, K = K ′

0#cK
′
1#c . . . #cK

′
m−1 be two representations

and R = R0 ∪R1 ∪ · · · ∪Rn−1, R′ = R′
0 ∪R′

1 ∪ · · · ∪R′
m−1 the corresponding

admissible multi-annuli in T × I. By Lemma 2 we may assume that R∩R′ =
∅. It follows that any annulus R′

j lies in a thick annulus Mi between two
neighboring annuli Ri and Ri+1. Since Ki is prime, R′

j must be parallel to
exactly one of them. Similarly, any annulus of R is parallel to exactly one
annulus of R′. We may conclude that m = n and that after an appropriate
isotopic deformation of R we get R = R′. Therefore both decompositions
have the same set of prime summands. Their orderings are determined by
K, so may differ only by a cyclic permutation.
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