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SURFACE FIBRATIONS OF NON-POSITIVE CURVATURE

F.E.A. Johnson

§ 0: Introduction:

lt is widely believed that the Whitehead group Wh(G) of a torsion free group is zero.

In [16], Waldhausen set up a purely algebraic machine which showed this is true in some

cases. However, Waldhausen's programme runs into difficulties as soon as non-Noetherian

amalgamations are encountered, with the consequence that same very obvious geometrically

defined groups cannot be dealt with by this method; in particular, Waldhausen's method

breaks down on an arbitrary product of surface groups

G = Kl x····· xKm

Ki = 1rdSurface of genus 9i ~ 2).

More recently, in a remarkable senes of papers which make extensive and highly ingenious use

of dynamics and differential geometry, F.T. Farrell and L.E. Jones have circumvented many

of the apparent difficulties which arise frorn a purely algebraic approach. Their theorem is

Theorem (Farrell - Jones [7]): Let M be a closed connected Riemannian manifold having
nonpositive sectional curvature. Then

In particular, the Farrell-Jones Theorem shows immediately that Wh (G) = 0 when G

is a product of Surface groups, by using its geometrical representation as a group of n1otions

of a product of hyperbolic planes. However, if instead of taking direct products one takes

iterated extensions one obtains tbe class of so called "poly Surface" groups (see §4) which

are geometrically interesting but algebraically recalcitrant.

In this paper we single out a subclass of "slrongly poly Surface groups" and sho\v.

Theorem A: 1f G is a strongly poly Surface group then Wh (G) = O.

Dur proof makes direct use of the Farrell-Iones Theorem. We first prove

Theorem B: If G is a strongly poly Surface group then there is a smooth closed Riemannian

manifold Xc of nonpositive (sectional) curvature such that 7r] (Xc) = G.
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Clearly the Farrell~Jones Theorem and Theorem B immediately imply Theorenl A.

It is easy to show that in general a poly Surface grou~ is not a discrete cocompact

lattice in a semisimple Ue group. Thus the universal covers Xc which arise in Theorem B

are not symmetrie spaces. Theorem B is therefore of some purely geometrie interest in that

it provides a new class of simply connected complete Riemannian manifolds of nonpositive

curvature which admit a discrete cocompaet group of isometries (see, e.g [4] [6]).

Poly-surface groups have arisen in other contexts. The examples of Atiyah [1] and

Kodaira [13] whieh established non multiplicativity of the signature are also poly Surface. In

§4 we show directly that Wh(G)=O when G is the fundamental group of an Atiyah~Kodaira

manifold.

The paper is arranged as follows: in §1 we review the Earle-Eells theory of Teichmüller

spaee. This not only makes the task of bundle classification easier, but is essential in the

later construction of nonpositive curvature metrics. Dur constmction of nonpositive curvature

metries is in §2, and the applications to Whitehead torsion in §3.

It is a pleasure to be able to thank Professor Hirzebruch and all the staff at the Max~

Planck-Institut for their hospitality and help.

§ 1: Classification of Surface bundles:

Throughout this paper we shall be dealing with smooth closed orientable surfaces.

Although our primary concern is with geometry, it is technically convenient to parametrize

things by means of the fundamental group. Thus let K denote the Surface graup with

presentation

K = (Xl,," ,Xg , YJ, ... , Yg : tr XiYiXi-lli- l )
1=1

and let E K be a fixed smooth closed orientable surface with 1r1 (E K) = !(; the genus 9 \vill

be taken invariably to be at least two. Diff(EK) will denote the graup of diffeomarphisms

of EK, topologized with the 0 00 topology, and <p : Diff(EI() ~ Out (K) the natural

homomorphism to the group, Out (K), of outer automorphisms of K. A theorem of Baer

[2] asserts that <p is surjective and that Ker (<p) is precisely Diff 0 (EK), the identity

component in Diff(EK)' We record this fact thus:

Proposition 1.1 (Baer [2]): There is a natural isomorphism
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We now recall the salient features of the theory of Earle and Eells [5], which, for our
purposes, be summarized conveniently as follows:

Let C(E K ) denote the set of all Riemannian metrics on EK which have constant
curvature equal to -1; with the Coo topology, C(EK) has the structure of a smooth
contractible Frechet manifold. There an action of Diff(EK) on C(EI() given by

C (EK) x Diff (EK) ~ C (EK)

(v, ep) ~ ep*(v).

This action is effective and proper, and its restrietion to Diff 0 ( EK) is free; moreover,

the quotient C(EK ) / Diff 0 ( EK ) may be identified with the classieal Teichmüller spaee

T (E K ). In partieular, C(EK ) / Diff0 (EK) is eontractible, since we are insisting that 9 2: 2.

We now have a principal fibre bundle

Diffo(EK) ~ C(Eg)

!
T(EK)

with connected group, in which base T (EK) and total space C(EK) are contractible; from
this follows immediately the analogue for diffeomorphisms of the theorem of Hamstrom [8].

Theorem 1~ (Earle..Eells [5]): Diffo(EK) is contractible.

Now, on making the identification

Out (K) ;; Diff(EK )/Diffo(EK)

there is an induced action
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whieh is effective and proper]y discontinuous, and whose quotient T (EK ) / Out (K ) is the

classieal Riemann moduli space. This last action coincides with that of Kravetz. [14].

By the Uniformization Theorem, the spaee C(EK ) is diffeomorphic to the space

M(EK) of smooth eomplex structures on EK. The reader will observe that we have departed

slightly from [5] in employing C (Ex) in preference to its diffeomorph M (~K).

The above theory gives us an algebraic description of smooth bundles with fibre E l\.

Observe that the classifying spaee funetor G I-io BG preserves homotopy equivalences [3].
Tbus BDiff 0 ( EK) is also contraetible, and from the fibration

BDiffo(EK) -7 BDiff(EK)

!
BOut (K)

it follows that

Proposition 1.3: The induced map

Bcp : BDiff(EK) -7 BOut (K)

is a homotopy equivalence.

Let BEK(X) denote the set of smooth equivalence classes of smooth bundles with

fibre EK over a smooth, connected manifold X. Standard approximation arguments show

that BEK(X) is naturally equivalent to the set of based homotopy elasses [X, BDiff(EI';:)},

whieh, by (1.3), is isomorphie to [X, BOut (K)]. However, Out (K) is discrete so that

[X, BOut (K)] ;; Homcroups( ,q(X), Out (I()). Thus we have

Theorem 1.4: There is a natural bijection

for any smooth connected manifold X.
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We now compare this classification with that of congruence classes of group extensions.

For any discrete group Q, let (! (K, Q) denote the set of congruence classes of extensions

of the f~rm

l~K~?~Q~l.

Since 9 ;:: 2, K has trivial centre, so that (! (1(, Q) is naturally equivalent to

HornGraups (Q, Out (K)). (See, for example, [15] Chapter IV). We may express our fin al

result as folIows; (Compare [10]).

Theorem 1.5: Let XQ be a smooth connected mani{old with 7rl (XQ) = Q. Then there are
natural equivalences

where BEK(XQ) is the set o{ smooth equivalence classes o{ smooth EK bundles over XQ,
and lr (1(, Q) is the set o{ congruence classes o{ extensions o{ K by Q.

§2: A construction für metrics of nonpositive curvature:

The construction assurnes its simplest form for a direct producL Let J1. be a Riemannian

metric on a smooth manifold X. For any smooth function f : X ~ C (EK) we define a

Riemannian metric {f, JL] on ~K x X; let 7r : ~K X X ~ X denote the projection map,

giving rise to the following exaet sequence of vector bundles over EK x X :

E = (0 ~ Ker (T7r) ~ T (~K x X) ~ 7r*(TX) ~ 0).

If v : 7r* (TX) ~ TX is the bundle map over 7r which is the identity on fibres, and

if, for same base point * E EI;;, Ti : TX ~ T(EK x X) is the induced tangent map of the

inclusion i : X ~ EK X X, i(x) = (*, x), then a = (Ti) 0 v : 7r*(TX) ~ T (Ei( x X)
is a right splitting of E, yielding a total splitting.

(2.1) ha : T(EK x X) -=; Ker (T7f) EB 7r*(TX).
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Ta define a Riemannian metric on T (EK x X) it suffices to define Riemannian metries
on Ker(T1r), 1r*(TX) separately and take the orthogonal direct sumo First we define a
Riemannian metric [f) on Ker(T1r); for this, choose a smooth function

Ta simplify notation, we temporarily suppress !( and write E = EK. For each x E X,
I( x) gives a Riemannian metric

I(x) : TE x TE -+ R;
E

that is,

for each sEE. However, Ker(T7T')(3
l
X) = TE s , so we have a Riemannian metrie

[I] : Ker (T1r) x Ker (T1r) -+ R
ExX

by

[/](~,x) = I( x)~ : TE~ x Tr.~ -+ R.

As a metric on 7T' *(TX) we take the pullback "-rr* (J.l ) of the given metric jt, and
define [I, Il] to be the orthogonal direct surn

[I, J-t] = [I] 1- 1r* (J-t( (T7r)))
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under tbe identification

T (~K x X) ;; Ker (T7f) EB 7f*(TX)

given by (2.1). Tbe following is now easy to check.

Theorem 2.2: 1[ (X, fL) is a Riemannian mani[old o[ nonpositive eurvature then Jor any
smooth [unetion I : X ~ C(~K), [I, /-L] is a Riemannian metrie o[ nonpositive eurvature

on ~K x X.

We now investigate how to refine this construction to apply to fibre bundles rather than

direct products. We begin witb a smooth fibre bundle with fibre ~K.

{

~K ~ E}
e= 17r

X

We first pass to the principal Diff(~K);

.. {Diff(~K) ~ E}
e= 1 ,

X

and tben to associated C (~K) bundle

The fibre of [ is contractible, so that e admits a section, I, say.
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However, a section f of edefines exactly a Riemannian metric (fl on Ker (T7f)

f = (0 -+ Ker (T7r) ~ TE -+ 7r*(TXI -+ 0)).

As in the case of a direet produet, ( splits. If f-l is ametrie on T X then [I, f-l] = [/l1.7r. (I" )
defines a Riemannian metrie on TE. Moreover [/, f-l] has nonpositive eurvature provided

f-l does. We have proved;

Theorem 2.3: Let

be a smooth bundle with fibre EK in which the base space X is a closed manifold admitting
a Riemannian metric o[ nonpositive curvature; then E also admits a Riemannian metric o[

nonpositive cu1Vature.

§3: Vanishing of the Whitehead group for strongly poly Surface grollps:

If C is a dass of abstract groups, a group G is said to be a poly - C - g1'OUp when

there exists a filtration 9 = (Gr )O:5r:5n on G by subgroups Gr such that

(i) {I} = Go C G, C ... C Gn = G.
(H) G r <l G r + 1 and G r+1/G E e of each T, 0 < 7' :S n - 1. G is said to be

~trongly poly - C when, in raddition ,

(üi) Gr <] G for each r.

It follows easily that a strongly poly- C group G(n) length n is constructed as an

extension.

1 ~ ]( ~ G(n) -+ G(n - 1) -+ 1

where G( n - 1) is a strongly poly- C group of length n - 1.
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In eertain cases the restrietion of being strongly poly C is not exeessive; in particular,

this is true when C = SURFACE = {7rdE) : E c10sed orieniable sur face 0/ genus ~ 2}.

As we have shown elsewhere [9] [10].

Proposition 3.1 Every poly-Surface group contains a stro1Jgly poly Surface subgroup 0/ finite

index.

Theorem 3.2: 11 G is a strongly poly Surface group then there is a smooth closed Riemannian

manilold Xc 01 nonpositive (sectional) curvature such that 1Tl (Xc) = G.

Proof: To any strongly poly Surface group G we ean associate a canonical smooth model

Xc of homotopy type K (G, 1). Tbe procedure is, briefly, as follows (see also [9],[10]: if

G is a Surface group, we let XG be the surface such that 1Tl (Xq) = G. If G is a strongly

poly Surface group of length n, defined by an extension.

1-tK-tG-tH-t1.

in which K is a Surface group and H is strongly poly Surface of length n - 1, then by

(1.5), we may realize G as the fundamental group of a smooth fibre bundle

where X H is the canonical model, previously constructed, for H. However, it is eIear from

(2.3) that at each stage of the construction, X H admits a metric of nonpositive curvature, so

that, by (2.3), Xc also admits a metric of nonpositive curvature. 0

As a Corollary we get

Theorem 3.3: If G is a strongly poly Surface group then Wh (G) = O.

Since every poly-Surface group contains a strongly poly Surface subgroup of finite

index we obtain

Corollary 3.4: If G is a poly-Surface group then G contains a subgroup Go of finite index

such that Wh (Go) = O.
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The class of poly Surface groups is a subclass of Waldhausen's generalized free prod­

ucts. However, except for the very lowest dimensional examples, Waldhausen's vanishing

criterion does not apply to them because of difficulties arising from "non-Noetherian amal­

gamations". In particular, (3.3) does not follow from Waldhausen's results.

§4: The examples of Atiyah and Kodaira:

By a Kodaira fibration we mean a holomorphic mapping p : E ~ X where E is a

nonsingular connected projective algebraic surface X is a nonsingular projective algebraic

curve, and p is Coo locally trivial but not holomorphically locally trivial; that is, if E

denotes a typical fibre, E describes a variation of complex structure on E, parametrized by

X. It is known ([11]) that the genus of the algebraie eurve E must be at least three.

In [1], [13] Atiyah and Kodaira separately described examples of such objects having

the additional property that sign (E) f. O.

We will show

Theorem 4.1:

Let E be the total space of a Kodaira fibration. Then E admits a Riemannian metric

of nonpositive eurvature.

Proof: Choose * E X and put E = p-l (*). Let E be the covering of E with

Observe that there is a diffeomorphism h: E ~ E x X. Tbe complex structure on E lifts

to one on Ewhich, by transport of structure via h, we may interpret as a complex structure

on E x Xl ·or, altematively, as a smooth mapping j : X ~ M (E), where M (E) is the

space of smooth complex structures on E.

Making the previously observed identification between M (E) and C(E), \\'e now

have a smooth map j : X ~ M (E). Let jJ. be a lifting to X of a Riemannian metrie

I--" of constant negative eurvature on X. Thus we obtain a metde [1, p.] of nonpositive

curvature on E x X. By transport of structure from h we see that E also admits ametrie

of nonpositive curvature. Finally, it is easy to see that the construction is ?Tl (X) equivariant,

so that E = EI?TI(X) also admi~ a metde of nonpositive curvature D.

Corollary 4.2: Let E be the total space of a Kodaira fibratioll. Thell Wh (?Tl (E)) = O.
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