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MODULI OF HYPER-KÄHLERlAN MANIFOLDS I.

("Filling in" problem and tbe construction of rnQduli space)

Andrey N. Toclorov

#O.INTRODUCTION.

It is a weil known fact that if X is a compact complex simply connected Kähler manifold

with

Cl(X)=O

then

x=nx.xny.
J J

where

a) for each j

dim cHO (Xj'0 2)=1

and if rPj is a non-zero holomorphic two form on Xj' then at each point XEXj it is a non

degenerate, Le. if .

then

det( <pjl u )Ef(U,ot)

Such manifolds we will call Hyper-Kählerian.

b) For each i and

O<p<n=dimCYi dimCHO(Yi,nP)=O

and HO(y. ,nn) is spanned by a holomorphic n-form Wy· (n,O) which has no zeroes.
1 i

This fact is due to Calabi and Bogomolov. See [3]. An elegant proof based on Yau's

solution of Calabi conjecture was given by M. L. Michelson. See [16].

The purpose of this article is to study the moduli space of the so callecl marked algebraic

Hyper-Kä hlerian manifold s.

Definition. A tripie

(X,11 '·· .. ''Yb jL)
2

will be callecl a marked algebraic Hyper-Kählerian manifold if X is a Hyper-Kählerian
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manifold

is a basis of H2(X,Z) and L is the imaginary part of Badge metrie on X a.s a class of

cohomology.

The aim of this article is to prove that the moduli space of marked polarized Hyper

KähJer manifolds exists and up to a component is isomorphie to

SO(2,b2 -3)jSO(2)xSO(b2 -2)

where

b2=dimRH2(X,R).

The content of this article is the following:

In #1 we introduce the basic definitions aod notations

In #2 we prove the following Theorem:

THEOREM 1.

Suppose that:

7r*:$*-D*

is a family of non-singular Hyper-Kählerian manifolds such that:

a) ;r*:$* -D* has a trivial monodromy o.n H2(Xt ,l)

b) $CpNxD*

! !
D*=D*

Then there exists a family

;r:$-D

such that all its fihres are non-singular Hyper-Kählerian manifolds and we. have

S;* C 9;

1 1
D* C D

( here D={tl tEe and Itl <1})
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where

The idea of the proof of THEOREM l.

First step.

We need ta prave that the family $*-D* can be embedded iuta a family '\I-Uo, where

U°= u\.A, U is a polycylinder and .A is a cm plex aJ?-alytic su bspace in U. Moreover U has

dimension equal to dime H1(Xt ,nt) -1 and CU - UO
i5 the maximal subfamily in tyhe Kuranishl

family for which the polarization dass L is of type (1,1).

Second step.

For any tEUO we can define the isometrie deformations with respeet to Yau's metric

corresponding to Land take the union of aB these deformations. It is easy to see that they

form an open set in the the Kuranishi space. From the definition of ~n isometrie deformation it

follows that the group SO(3) acts on them. Now if we change the complex structures on

$*-D*
simultaniously with an element

AESO(3)

we will get another family

$A-DA
which is not in "general" complex analytie one. The main point lS that we ean find

AESO(3) such that the family

$A-DA
ean be prolonged to a smooth family of Hyper·Kählerian manifolds 95A -- DA' Le. all the fibres

of SbA - DA are smooth Hyper-Kählerian manifolds. From this result it is not so diffieult to

get THEOREM l.

In #3 we prove the following Theorem:

THEOREM 2.

There exists a universal family of marked polarized algebraic Hyper-Kählerian manifolds:

The construction follows Burns and Rapoport. See [5}.

We have the so called period map:

P:3Jl(L' ) -P(H2(X,Z)0C)
·'Yl····'Yb2

pet):=e···,f wte2,O), ... )
lj
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where wt(2,O) is the unique up to a constant holomorphic two-form on Xt =;r-l(t). From

Bogomolov's result, that there are 00 obstructioßs to deformations and Local ToreIli the<?rem

we get that the irreclucible component 9Jl(L;"Yl, .. ,"Yb ) is a non-singular manifold and
2

dimC!lJl(L' ) =b')-2, where bry=dimCH2(X,C)
·1'1···,1'b

2
" ..

From Griffith's theory of variation of Hadge structures we get that:

P:ml(L;1'l'."1'b ) -SO(2,b2 -2)/SQ(2)xSO(b2 -2)Cl?(H2(X,1)0C)
2

is a local isomorphism. See [2].

The second part of this article

"M0 DULI 0 F HYPER- KÄ HLERIAN MANIFOLDS II".

contains #4.

In #4 we prove THEOREM 3.

THEOREM 3. The period map
?

P:!D1(L' )-P(H-(X,Z)~C)
,1'1·",1'b

2

is an embedding up to a component of

Theorem 3 is a- positive answer to the so called global Torelli problem, aod is in some

aspects a generalization of the theorem of Piatetsk.i-Shapiro and Shafarevich about K3

surfaces. See [20].
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Ideas and methods of the proof of THEOREM 3.

In order to prove Theorem 3 we need to compatify partially the family

to a family

by adding singular Hyper-Kählerian algebraic manifolds for which L is a very ample line

bundle.

Next we prove that

!in
(L;"Yl'··'1'b

2
)

is a Hausdorff space and p can be extended to a proper etale map 15'.

15': ml(L' ) -SO(2,b?-2)/SO(2)xSO(b2-2)
l1'1,··,1'b

2
-.

Hut

SO(2,b2 -2)/SO(2)xSO(b2-2)

is a Siegel domain of IV type and so it is simply connected domain of holomorphy. From this

fact and since 15' is a proper and etale map it follows that 15" is a surjective and one to one map

up to a component of

@
( L j .., 1 ' ..• l' b

2
)

So this proves that the period map is both injective and surjective up to a component of

the ~oduli space of marked polarized Hyper-Kählerian manifolds. This generalizes a theorem

proved in [21].

The main step of the proof of Theorem 3 is tbe partial compactification of the moduli

space (one of its eomponents) and it is based on Theorem l.

The proof of Theorem 1 is based on the proof of Calabi's conjecture given by Yau. See

[22]. Nlore precisely we are using the existenee of Rieci flat met ries on Hyper-Kählerian

manifolds and the so ealled isometrie deformations whieh existenee is based on the solution of

the Calabi'a eonjecture.

Theorem 1 gives an affirmative answer to the so ealled "filling in problem" posed by Ph.

Griffiths. See [11] and [18] for eounterexamples in ease of surfaees of general type.
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Theorem 1 is a generalization of same results of Kulikov's . See [15]. Our proof is

entirely different from the proof cf Kulikov's theorem for K3 surfaces and in my opinion his

proof cau not be generalized for higher dimensions.

The first examples of Hyper-Kählerian manifolds of

dim CX>3

were constructed by Fujiki. See [12]. These examples were generalized by Bea.uville and

:Miyaoka. See [1].

It is not very difficult to prove the surjectivity of the period map for all Hyper-Kähler

manifolds. This will be done in a future paper.

Recently O. Debarre constructed using the so-called elementary transformations introduce

by Mukai in {17] constructed two bimeromorpbic but not biholomorphic non-algebraic Hyper~

Kä blerian manifolds. See [7].

CONJECTURE. Let X and X' be two marked Hyper·Käblerian manifolds which have

the same periods, tben X is bimeromorphic to X'.

Part of this work was done during my stay in lAS in Princeton and was supported by an

NSF grant. It was finished in Max~Plank Institute fur Mathematik in Bonn. Tbe auther

expresses his gratitude to both in~titutes for the bospitality and excellent conditions for work.
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#1. SOME DEFINITIONS AND NOTATIONS.

Definition 1.1. Let X be a Kähler compact manifold such that:

a) 1fl (X)=O

b) dimCX=2n, n>3

c) dimCHO(X,n2)=1 and let wX(2,O) is a non-zero holomorpbic two form on X, then

wX(2,O) is a non·degenerate form on X, which means that "n wX (2,O):=wX(2n,O) is a

holamorphie 2n form which has Da zeroes.

Then X will be called a Hyper-Kählerian manifold.

Same notations:

wX(k,O) will be a holomorphic k-forrn on X.

wX(O,k)= wX(j(,O), Le. tbe anti-holomorphic k-forms on X.

D-will be tbe unit disk, Le. D={t ECj ltl < I}
D*=D\{O}

Ir 1f:$-D is a family of manifolds, then Xt =1f-1(t).

Ir g ia a Riemannian metric on X by V we will denote the Levi-Chevita conneetion on

T*X, wbere TX is the tangent bUDdle on X and T*X is tbe eotangent bundle. By T*X@C, we

will denote the eomplexified eotangent bUDdle. V induees a eovariant derivative on "PT*X for

any pEZ. This eovariant derivative we will denote it again V.

feX, '1) will denote the global sections of any sheaf '1 on X.

Ir 4JEf(X,A PT*X), tben loeally:

where

are multi-indices.

Ap Ql Qp l?n .
dz =dz A... Adz and z ,.. ,z- are Ioeal coordmates.

Ir tPEf(X,A PT*X) and dqS=O, then (,p] we will denote the class of cohomology that

tPdefines in HP(X,C).
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#2. PROOF OF THEOREM 1:

THEOREM 1.

Suppose that:

is a family of non-singular Hyper~Kählerianmanifolds such that:

a) 71"*:$* -D* has a trivial monodromy on H2(~'Z)

b) $CpNxD*

! !
D*=D*

Then there ex:ists· a farn Hy 71": Sb - D such t hat all its fihres are non-singular Hyper

Kählerian manifolds and we have

$* C Sb

! !
D* C D

(here D={tJ tEe and Jtl<I})

This problem was first posed by Ph. A. Griffiths.

For the proof of Theorem 1 we will need some preliminary matirial.

#2.1. BODGE STRUCTURES OF WEIGHT TWO ON HYPER·KÄHLERIAN ?Y1ANIFOLDS.

Definition 2.1.1. The tripie

(X;i'l ,... ,1b') ;L)

we will call a marked, polarized Hyper-Kählerian manifold if

a) X is a Hyper-Kählerian manifoldj

b) 11, ... ,ib is a basis of H2(X,l) and
')

c) L is the ;ohomology dass of the imaginary part of a Kähler metric on X, Le.

L=[Im(g -ß)]EH2(X,Z)
0',

Remark. Notice that two marked, polarized Hyper-Kählerian manifolds

(Xj/l, ... ,ib jL)
2
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and

(X'iß1, ... ,ßb ;L')
2

are isomorphie iff there exists a biholomorphie map

cP: X ::::: X '

such that

a) cP*(L')=L jcP*:H2(X' ,Z) -+ :H2(X,Z)

b) cP*(1'j)=ßi icP*:H2 (X,Z)-:H2(X"Z)

Definition 2.1.2.

Suppose that

1I":$-+S

is a family of a non-singular Hyper-Kählerian manifolds and suppose that the monodromy

operator T induced by the action of

1r"1(S) on H2(X t ,Z)

is the identity operator. It is clear that if we fix a basis

1'1,···,1'b
2

cf H2(Xt ,Z), then since the monodromy operator

T=id for every sES

1'1,···,1'b')

will be a basis in H2 (XS 'Z) fo; every sES. So we can define the period map:

p:S -+P(H2 (X,C))

in the following manner:

p(s):=( ... ,J wX
s
(2,O), ... )

l'i

Now we want to see where the image of S lies in P(H2(X,C)).

For this reason we will define a scalar product in H2 (X,R), where X is a marked Hyper

Kählerian manifold.

Definition 2.1.3. The scalar product < , > in H2(X,R) is defined as follows

<w 1,w2>=JWIAW2ÄLn-2

X

and L is the polarization dass.

Proposition 2.1.3.4. The scalar product < , > has signature (3,b2 -3), where

b2=dimRH2(X,R).
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It is easy to see that

<L,L>=fL2n = Vol(X»9

X

where Vol(X) is the volume of X with tespect to the metric (g -ß) and [Im(g -ß)]=L.
Q', Cl' I

Next we will prove the following relations:

(2.1.4.)

(2.1.5)

(2.1.6)

forms.

<wX(2,0),wX(2,0»=0

<wX(2,0),wX(0,2» >0

<wX(2,0),L>=0

(2.1.4.) and (2.1.6.) follow from the definition of < , > and comparing the types of

In order to prove (2.1.5.) we need the following lemma:

LEMMA. If 1] is a primitive form of type (p,q), then

r:;- p-q (p+q)(p+q+l)
(~-1) (-1) 2 L2n-p-q

*1] (2n-p-q)

where * is the Hodge star operator.

Proof: See [8].

Q.E.D.

From this lemma it follows that

f
0

<wX(2,0),wX(2,O»= wX(2,0)I\*wX(2,0)=ll wx (2,0)U- >0

So (2.1.5.) is proved. X

Let

wX(2,0) = RewX(2,O)+i ImwX(2,O)

then from 2.1.4. and 2.1.5. it follows that:

<RewX (2,0), RewX (2,0)>=<ImwX (2,0) ,ImwX(2,0) >=~ 11 Wx 11
2> 0

and

<Rewx (2,0 ),ImwX (2,0) > =0

So we see that L, RewX(2,0) & ImwX(2,O) are three orthonormal vectors in H2 (X,R)

and they have positive self intersection number. So from here it follows that < , > has at least

signature (3,b2 -3). Since we have
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') 1 1 -
H.... CX,R}=RRewXC2,O}+RImwXC2,O}+RL+H ' CX,R}o

where

H1,l CX,lR}o={WEH
1
,lCX,R}I<w,L>=O}

Le. H
1
,l CX ,lR}o are the primitive cohomology classes of type C1,1}. From the LEMMA it

follows that if weH 1
,l CX,iR}0, then

<w,w><O

It is easy to see that if weH1,lCX,R}, then

<w,wX C2 ,O}>=<w,wX CO,2}=O

So Proposition 2.1.3.4. is proved.

Q.E.D

The scalar product < , > defines a non-singular quadric

in the following way:

C2.1.7.)

Let n be

Q:={uePCH 2CX,C))1 <u,u>=O}

n:={ueQI <u,u»O}

n is an open su bset in Q.

(2.1.8.) Let' nCL)={uEnl <u,L>=ü}

From Griffith'8 theory [13] we obtain that if

$---.5

is a family of marked polarized Hyper-Kählerian manifolds, then

p(S)~O(L)

where p is the period map.

Definition 2.1.10.

O(L) we will call the period domain of tbe polarized Badge structures of weight two on

Hyper-Kählerian manifolds.

Remark 2.1.11.

a) If LeH2(X,Z), then < , > is defined over Z.

b) It is not difficult to see that:

n(L):::SOo(2,b2 -3)/UC1)xSO(b2 -3)
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#2.2. GEOMETRY OF O.

Proposition 2.2.1.

There exists a one-to-one map 4> between points of n and all two dimensional oriented
?

vector subspaces EcH"'(X,R) such that < , > (defines in #2.1.) when restricted to E is

positive, i.e. <u,u»O for VuEE.

Proof: The map 4> is constructed in the following way:

Let

then x defines a line

Let

From the definition of n it follows that

<x,x>=O & <x,x»O~x#x

So

Rewx:j:.O Imwx:j:.O

Now we can define 4J in the following way:

4J(x)=Ex

where Ex is an oriented two dimensional subspace in H2(X,lR) spanned by

Rewx and Imwx

The orientation of Ex i8 given by {Rewx, Imwx}.

Since from

<x,x>=O and <x,x»O~x#x if xEO,

t hen it follows t hat to t he point x coresponds Ex, Le

4>(x)=Ex
where

Ex=Ex (as subspaces without orientation)

but

Ex has a different orientation then Ex.
Now it is very easy to show that 4J is a one-to-oue map. Indeed let E be a positive two
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dimensional su bspace in H2(X, Z) t8l R.

Let el and e2 be two orthonormal vectors in Ex and x=el +ie2 .

Clearly

<x,x>=o and <x,x»O

So the vector x:pO defines a line Ix in H2(X,R) t8lC and the line Ix defines a point u EO.

Q.E.D.

Corollary 2.2.2 Let

be a family of marked polarized Hyper·Kählerian manifolds, then the period map

p:S-f2

can be defined in the following way:

pes) = Ei d~f {Rews(2,O),Imws(2,O)}

where Ei means Es with an orientation

{Re ws(2,O),Imws(2,O).

Corollary 2.2.3. f2==SOo(2,b 2 -3)/U(1)xSO(b2 -3).
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#2.3. GEOMETRY OF PLANE QUADRICS ON n.
Proposition 2.3.1.

Let E be a three dimensional subspace in H2(X,lR) such that the restriction of < , > on

E is srtrictly positive, i.e < , > 1E >o.
Then

will be a non-singular projective plane quadric.

Proof: From the definition of n it follows that

n is an open aubset in Q,

where Q ia a non-singular hypersurface of degree 2 in P(H2 (X,C)). Clearly

p(E0C)nQ

is a plane quadric. "Ve will prove first that p(E@C)nQ=p(E@C)nn.

Since

ECH2(X,R) & dimCE=3

and the restriction of < , > on E is srtrictly positive it follows that

Indeed if

ueP(E@C)nQ

then any vector wElu define~ by u in H2(X,R)®C), (where lu is the one di.mensional subspace

in H2(X,R)~C), that corresponds to u) has the property that

<w,w»O & <w,w>=O

So we get that

<u,u»O & <u,u>=O in P(H2(X,lR)@C))

Since this inequality is valid for any

we get that

Q.E.D.

Next we will prove that p(E®C)nn is nonsingular projective curve of deg=2.

Proof: Suppose that p(E®C)nQ is a singular plane quadric, then

p(E0C)nQ

should have a unique singular point q.
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From the definition of n we know that

'v'uEn ~u:;eTI'

So we get that q:;eq. Remember q was a singular point on tbe plane quadric

p(E0C)nQ

From here and the fact that

EeH2(X,R)~ E®C=E®C

we get that the plane quadric

p(E®C)nQen

has two different singular point q & Ci.

This is so since

p(E®C)nn=p(E®C)nn , q &qEn~ q:;eq

This is clearly a contradiction with the fact that deg l?(E®C)nn=2.

Q.E.D.

Definition 2.3.2.

Grass(3,b2iR) d~f {all arien ted 3-dim subspaces EeH2(X,R)[ < , >IE >O}

Corollary 2.3.2.1.

There is a one two-one map

v:O(R) -+ ?rass(3,b2 jlR)

where

OCR) d~f {aB- projective plane quadrics °Fenl F=F}

Definition 2.3.3.

If ECH2(X,R) & <u,u»O VuEE

then we will denote by p 1(E)(R)en the plane quadric

nnp(E0C)=QnlP(E®C) (See Prop. 2.3.1.)

Proposition 2.3.4. Let LEH2(X,Z) & <L,L»O, O(L):={uEn[ <u,L>=O}and Ven(L) be a

complex analytic submanifold. Let zEn be any fixed point such that zjtO(L), then the set

.Az(V)(R) d~f{pl(E)(R)1 zEp1(E)(lR) & pl(E)(R)nV=t0}

is areal analytic subset in Grass(3,b2iR).

Proof:

This is a standard fact from the theory of the grassmanian manifolds. See [13].

Q.E.D.
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Definition 2.3.5.

Let zEn & z be a fixed point t hen we will denote by A z (R) t he followin g set:

.Az(~) d!f {pl(E)(lR) I zEPl(E)(R)}

Remark 2.3.5.1.

It is a. standart fact that .A.z(lR) is areal analytic subset in Grass(3,b2 jR) and dim R
Az(R)=b2 -3.(See [13].)

Proof of the fact that dimR .Az(iR)=b2 -3:

"Ve know from 2.2.1. that to the point zEn corresponds to a two-dimensional space
2EzCH (X,R)

Clearly that there is oue-to-one correspondence between the following three sets

{ECH2(X,R)I< , >IE>O l dim RE=3 & EzCE}

{the points of .A.z(~)CGrass(3,b2jR)}

and the lines in in the convex cone
def r"J

'YzeH) = {UEH-(X,R) lu..LEz <u,u> >O}

Le.

where !P('YzeR)) means the projectivization of ,..zeR).

So

dimR .Az(R)=dim lR '"z(H)-1=b2 -3

This follows directly froin the detinition of 'YzeR).

Q.E.D.

Definition 2.3.6. Let

Grass(3,b2 ;C) ~f{all oriented ECH2(X,C)1 dimCE=3 & < '>IE>O, Le. <u,lI»O VUEE}

Corollary 2.3.6.1.

There is a one two-one map v:0.(C)-Grass(3,b')jC) where

acC) d~f {all projective plane quadr;cs F C f2}
Definition 2.3.7.

If ECH2(X,C), dim C E=3 & <u,lI»O for a.ll uEE

then we will denote by pl(E)(C)cn the plane quadric nnp(E)=QnlP(E) (See Prop. 2.3.1.)
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Proposition 2.3.8.
?

Let LEH-(X,Z) & <L,L»O, O(L):={UEOI <u,L>=O}, VcO(L) be a complex

analytic submanifold. Let zEÜ be any fixed point such that z~Ü(L),

then the set

2.3.8.1

is a complex analytic subset in Grass(3,b2 ;C).

Proof:

This is a standard fact from the theory of the Grassmanian manifolds. See [13].

Q.E.D.

Remark 2.3.9. Let T be the complex analytic conjugation in H2(X,R)0C, Le.

T(U)=U for UEH 2(X,R)®C

then T acts on Grass(3,b2 ;C) in the following mauner:

r(E)=E

Clearly that

where

Definition 2.3.10. Let
dcl . ?

O(L) = {uEnl <u,L>=O, wher~ LEH"'(X,R) & <L,L»O}

Remark 2.3.11.

Let ZEf2(L) and let Ez be the two dimensional subspace in H2 (X,R) that corresponds to

the point z, Le. Ez =t,6(z)(See (2.2.1.»

then

E(L) is the three dimensional subspace in H2(X,lR) spanned by Ez and L.

Proof: We know from 2.2.1. that

< '>IEz>O
From the definition of O(L) it follows that L.lEz and <L,L»O
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So Remark 2.3.11. i5 proved if we use 2.2.1.

Q.E.D.

MaiD Lemma 2.3.12.

Let V be a complex analytic submanifold in n(L), where n(L) i5 defined as in 2.3.10.

Let zEV and Ez(L) be defined as in Remark 2.3.11. Let Ucf2(L) be any open

neighborhood of the point zEV.

Then there exists a point

yEU & y~V

such that

pI (Ey ( L))(R)npI(Ez(L) )(R) i= 0

i.e.

pI (Ey (L) )(R)npl (Ez(L) )(R)=tL}t

and

t & t~f2(L)

Let xEpl(Ez(L»(R) and x~n(L)

Sublemma 1. .Äx(C)nn(L) contains an open subset U'Cf2(L) and V'=Vn.Ax(C)CU', where

.Ax(C) d~f{pI (E) I XEpl(E) }

Proof:

Step1. dim C ..Ä.x (C)=b2 -2.

Proof of step1:

Bince xEnCI?(H2(X,C)) and from -the definition of P(H2(X,C») it follows that x

corresponds to a line
2IxCH (X,C)

Clearly from the definition of ..Ä.x(C) it follows that .Ax(C) is parametrized by aB lines

m:

,.x(C) d~f{all I in H2(X,C)1 I ia one dirn subspace, uEI, ui=O <u,u> >0 &

<lx,u>=O}

It ia not difficult to see, using the fact that < , > has a signature (3,b2 -3) that

b?-l
,.x(C) ia an open cone in C ...
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So dime"x(C)=b2 -1=> dimeP(f"x(C))=b2 -2=>dimC.Äx (C)=b2 -2= dirnen

Q.E.D.

Step 2. .Ax(C)nn(L) contains an open subset.

Proof: Since .Ax(C) contains pl(Ex 0C) where Ex cH2(X,R) we have

pl(Ex 0C}=pl(Ex 0C)=P(Ex 0C)nn=p( Ex 0C)nQ( See 2.2.1.}

So we get that

pl(Ex 0C) intersects fl(L) transversally

This is so since

a) pl(Ex 0C) ia a plane quadric, Le. plane curve of degree 2

b) pl(Ex 0C) contains z and z, where both z :f;.Z E O(L) since Ex 0C=Ex0C.

So from here and the fact that tranaversality is an open condition we get what we need

from the fact that dime'"x(C)=b2 -1. See [13}.

Q.E.D.

So the Sublemma is proved

Q.E.D.

Step 3. .Äx(R)nn(L) ia not contained in V, where

.AxeR) d~l{pl(E)(R)I xEP1(E)(lR)}where x is fixed and V is the submanifold in fl(L)

defined in 2.3.12.

where dimRE=3 and < , >IE>O.

Proof of step 3:

Suppose that Step 3 is not true. This means that we have the following indusion:

where

.A.x(V)(R) ~f {pl(E)(lR)jxEpl(E)(R) & pl(E)(R)nV :f;.0} CGrass(3,b2;R)

where dimRE=3 and < , >IE>O.

We will show that this indusion is absurd.

It was proved that .Ax(V)(R) ia areal anlytic subset in Grass(3,b2ilR). More

over we have

.Ax (V)( R) =.A.x (V) (C) T

On the other hand we have the follwing inclusions
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From (*) we obtain that the complex analytic submanifold .Ax(V)(C) in .Ax(C) is locally

defined by

wbere

f1(Zl, ... ,zm) , f2 (Zl ,... ,zm),.... ,fK(zl ~ ... ,zm)

are complex-analytic functions in

.Ax(C)

From

We obtain that

f1(Rez1, ... ,Rezm)=O ,f2 (Rez1' ... ,Rezm)=O,.... ,fk (Rez! ,... ,Rezm)=O

on ..Ä.X(C)T =.Ax(R) and so on ..Ä.x(C). From here it follows that

f1(zl, ... ,zm)=O , f2 (Z1 ,... ,zm)=O,.... ,fk (z1 ,... ,zm)=O

on .Ax(C).

This ia so since the following trivial fact is valid:

Trivial fact.

If fez! ,... ,zm) is a complex analytic function on Cm and

f(Rez 1,... ,Rezm)=O

then

See [13].

But this is a contrudiction since ..Ä.x(V)(C) is a proper analytic subset in ..Ä.x(C) defined

10caUy by

f1(Z1 ,... ,zm)=O , f2 (Z1 ,... ,zm)=O,.... ,fk (Z1 ,... ,zm)·=O

Step 3 is proved.

Q.E.D.

The end of the proof of Lemma 2.3.12.:

From Step 3 it follows that there exists a plane quadric

p1(Ey (w))(R) in .Ax(V)(R)

such that
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where

Ey is the two dimensional subspace in H2(X,~)

that corresponds to the point YEf2(L) by 2.2.1. and Ey(w) is a three dimensional subspace

spanned by Ey and a vector WEH 2(X,R) is such that

<w,w»O and <w,Ey>=O

If w is proportional to L then our Lemma is proved.

Suppose that w:;6L.

Let us consider the four dimensional subspace in H2(X,R) spanned by Ey and L. Let llS

denote this four dimensional subspace by S. Clearly

EY(L)Cc; and Ez(L)C~

and

From (**) and 2.2.1. it follows that

< '>]Et>O

So again using 2.2.1. we get that

pI (Ez(L»(R)n~1(Ey (L»( R)=tlJT

Q.E.D.
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#2.4. CALABI~YAUMETRICS AND ISOMETRIC DEFORMATIONS.

Definition 2.4.1.

A Kähler metrie g -ß on a Byper-Kählerian manifold X will be called Calabi-Yau metric if
a,

Ried (g -ß )=8a log det (g -ß )=0
0', 0',

The existence of a Calabi-Yau metrie follows from the deep work of Yau [22]. In the

polarization dass L, there exists a unique Calabi·Yau metric g -ß such that
0',

[g -]=L
a,ß

Let us fix the Calabi~Yau (g -ß) metric in L. This metrie induces a covariant differentiation
0',

on

1\2(T*X~C)

We will denote it by V.

Lemma 2.4.2. VWX(2,O)='VwX(2,O)=O

Proof: See [1].

Q.E.D.

Corollary 2.4.2.1. If wX(2,O)=RewX(2,O)+iImwX(2,0), then

V'RewX (2,0)= 'VImwX(2,0)=0

(2.4.3.) From the definition of a Kähler metrie, it follows that

. . V(0I: g -ßdzCl' I\dzß)='V(Im g -ß)=O.
0', Q,

(2.4.4.) RewX(2,O), ImwX(2,0) and Im(g -ß) define a three-dimensional subspace
0',

)
t) *EX(L cr(X,I\""T X~C)

EX(L) is spanned by three forms parallel with the respect to the connection induced by

the Calabi~Yau metrie (g -ß ).
0',

Since

RewX(2,O), ImwX(2,0) & Im gn,ß
are harmonie farms, then

(2.4.4.1.)
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Proposition 2.4.4.2. RewX(2,O), ImwX(2,O) & Im ga,ß is an orthonormal basis in

Proof: Sinee

HO(X,n2 ):::::: cwX(2,O)

and the definition of < :, > we may suppose that

<RewX(2,O),RewX(2,O>=<ImwX (2,O), ImwX (2,O»=<lm gO',ß,Im ga,ß>=l

From the definition of < , > and eomparing the types of the forms it follows that

<RewX(2,O),ImwX(2,O>=<ImwX(2,O),Img "3>=< Imw X(2,0),Im g -ß>=O
a,p 0',

This proves (2.4.4.2)

Q.E.D.

(2.4.5.) Isometrie deformations.

Let us define '1 in the following way:

'1 d~f aRewX(2,O)+bImwX(2,O)+cIm g -ß
0',

where
? 2 2a, b & cER and a-+b +c =1

Sinee

then

\7'1=0

Locally '1 ean be written in the following way:

If

"'"'g dx' A dxv
L.... 'IV

is the Riemannian Rieci flat metric on X defined by the Calabi-Yau metrie (g -ß) on X, then
0',

we will define the complex structure operator Jer) in the following manner:

(2.4.5.1.) (J(7)ß)=(L:: gQ''1'ß) er(X,T*0T)
I

Clearly

V(J(7))=O
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LEMMA 2.4.5.2.

a) J(..,.) defines a new integrable complex strueture on X.

b) 'Y is an imaginary part of a CaJabi-Yau metric with respect to the new complex structure

J( ..,.) an d t his met ric defined by 'Y is equivelent as aRiernan nian metric to t he Calabi-Yau

metric g -ß' that we started with.
er,

Proof: Since

VJ(..,.)=O

if we prove that in each point xEX we have

J(..,.)oJ(..,.)=-id

then J (..,.) will define an almost complex structure globally on X. Then we will need to show

that J(..,.) is an integrable ODe.

(2.4.5.2.1.) J(..,.)oJ(..,.)=-id at 'v'xEX.

Proof:

Since wX(2,O) is a parallel with respect to tbe connection \l of the Rieci flat metric, it

follows t hat t he holonomy group of t he Calabi-Yau metrie is Sp( n). This means t hat globally

there exists

jer(x,T* 0T)

such that

Vj=O & joj=~id (j defines a quaternionie structure on X)

and we have at each point x

T* X1,O ~Hn=Cn+Cnjx,
This splitting ia global.

On the other hand the Calabi·Yau metric on

ia induced by the standart scalar product on Hn , so from here it follows that we can find an

orthonormal quaternionic basis in
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h1=e1+e1+"j, ..... ,h"=e"+e2"j

Then at a point xEX we have:
n . .

Im(g -ß)I * 1 0=02: e
l
Ae

l

0', T' . 1x,)( 1=

I 1 1+n n 2n t i i+n
wX(2,O) * 1,O=e I\e + ...+e Ae =. e I\e

Tx,X I=n

Let us denote by I the original complex structure on X, then

J(Im(g -ß»=I
0',

Let

J =J (RewX (2,0») & K=J (ImwX (2,0))

From (*) and (**) we get:

(***) I2=J2=K2=-id,IJ+JI=IK+KI=JK+KJ=ü

Let me remind YOll that

1 d~faRewX(2,O)+blmwX(2,ü)"tcIm gO',ß

and

a2+b2+c2 =1; a, b & cER

From (***) we get

J("}')oJ(1 )=a2roI+b2JoJ+c2KoK=( a2+b2+c2)( -id)= -id

~o we have proved that the J(..,.) is an almost cc:>mplex structure on X.

Proof of thc fact that J( "}') ia an integrable complex structure.

Proof: The proof is based on the following fact:

ANDREOTTI-WEIL REMARK.

Let w be a n-complex-valued COO form in a .neighbothood of a point xEX, where

dimR X=2n

Let w satisfy:

a) P(w)=O, where P are the Plücker relations. This means that at each point xEX

wlxEX =(11\ ... 1\(" (i ET~,X~C

so w defines a subspace

T 1,0 CT* csCx x,X
at V'xEX.
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b) - f( 1 2n)d 1 d 2n h f( 1 2n)d 1 d 2n O' U T"h' hw/\w= x ,...X x /\ .. /\ x , w ere x ,...X x /\ .. /\ x > In • IS means t at

in U

c) dw=O

a) and b) means that w defines an almost complex-structure in U. c) means that tbis almost

complex structure is an integrable one.

So in order to use tbe Anclreotti-Weil remark we neecl to COllstruct the form w, that

satisfies a), b) ancl c). So first we will COllstruct agIobally defi ned form w J(1 ) (2,0) of type

(2,0) with respect to J(1) and then we will prove that

wJ ("Y)(2n,0)=/\n wJ(1)(2,0)

fulfills the conditions of Andreotti-Weil remark.

COllstruction of W J (7') (2,0).

Let

(o:,ß,1)

be an orthonormal basis of

EX(L)Cr(X,/\ 2T *X)

with respect to the scalar product incluced by Calabi-Yau metric on r(X,/\ 2T *X). \Ve suppose

that

(cr,ß,1)

define the same arien tation of EX (L) as

{RewX (2,0),ImwX (2,0) ,Im(ga,73)}

(2.4.5.2.1.) wJ( ,)(2,0)=a+iß

Proposition 2.4.5.2.2.

wJ (,) (2,0 )=a+iß is a form of type (2,0) with respect to the almost compiex structure on

X defined by J( ,).

Proof:

Sirrce both wJ(,)(2,O)=a+i ß & J(,)
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are parallel with respect to the connection V. We need to check that

W J({' )(2,0 )=o+iß

is a form of type (2,0) at one point xEX with respect to J({'). 'rVe will define an action of

Sp(l) on T*X. Remember that the holonomy group of the Calabi-Yau metric

(g -ß) is Sp(n), so we can introduce on T~ X a quaternionic structure, Le.
0, ,

T~,X=Cn+Cllj=Hn (H is the quatenionic field)

The Calabi~Yau metric (g -ß) induces the standard qu"aternionic scalar product.
0,

Let

h1 1 n+1. hn n 2n·=e +e J, .... , =e +e J

be a quaternionic orthonormal basis in Hn , then the restriction of Calabi-Yau metric on

is obtained from the fo.uowing quaternionic product in Din . Let

u=Ehiu j & v=Ehiv j

then

<u,v>=Eu.v.
1 1

We can identify

Sp(I)={AEHI AÄ=I}

Then Spei) acts on Hn in the following way:

Let AESp(l) and let

u=2: h1u
i

then

T*x,X

Au=EhiuiA

Clearly Sp(I)cSp(n)j i.e. this action of Sp(l) preserves the quaternionie scalar product

<u,v>= LUiv i

The following remark is an easy exercise.

Remark. Sp(l) induces a.n action on 1\2T * X andx,,,
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is invariant under the induced action of SpeI). Moreover Sp(l) induces the standard 50(3)

action on EX(L) with respect to the Euclidean metric on EX(L) induced by the orthonormal

basis

{Rewx(2,0) ,ImwX(2,0) ,Im(ga,ß)}

From this remark it follows immediately that there exists

AESp(l)cSp(n)

such that:

A( RewX(2,Q))=a, A(ImwX(2,Q))=ß & A(Im(ga,ß))=r

So

On the other hand from the definition of J(r) we see immediately that

(**) J(r)=AIAt

So from (*) aod (**) we get that wJ(r)(2,0) is a form of type (2,0) with respect to the

almost complex structure J( )'). This is so since t\ 2,0 is a subspace of vectors of type (2,0) in

t\2(T* 0C)x,X
with respect to the complex structure defined by land if

J()')=AIAt ,

then

aod if

wE t\ 2(T~,X0C),

is of type (2,0) with respect to I, then A(w) is of type (2,0) with respect to J()' )=AIAt.

Q.E.D.
Proof of 2A.5.2.b): If

)'= 2:::: r J1,V d x
J1

t\dxv

then )' defines a scalar product in the following way on T* X:
X,oI

Let

then
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If we prove that for

\fuE T~,X

we have:

<J(7')u,u>7'>O

then it will follow that 7' is an imaginary part of a Kä hIer metric on X wit h respect to J( 7'),

this follows from tbe definition of a Kähler metric and sinee

d7'=O

We may suppose that at \fxEX

ga,ß=8aß
then

Ir

then

The last ealculation shows that 7' is an imagunary part of a Kähler metrie on X with respeet

to the eomplex strueture J( i) and this new Kähler metric is equivelent as Riemann metrie to

t.he Calabi-Yau metric we started with.

Q.E.D.

Definition 2.4.5.3.

From Lemma 2.4.5. it follows that every oriented two dimensional submanifold'

ECEX (L)Cf(X,,,2T *X) defines a new complex structure on X. Sinee all oriented planes in

three dimensional spaee is parametrized by the two dimensional sphere S2 we obtain a family

of Hyper-Kählerian manifolds

71": $-+S2

Sueh family we will eall a farn ily of isomet rie deforrn atio DS wi t h respect to the Calabi-Yau

metric g -p.
0',
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Proposition 2.4.5.4. Let

1r: $_S2

be a family of marked isometrie deformations with respeet to the Calabi-Yau metrie

g -ß such that [Im g -ß]=L,
a, a,

then

peS2)=pl (EX(L) )(IR) Cn
where EX (L) is the three dimensional space spanned by

RewX(2,0), ImwX(2,O), Imga,ß

p is the period map

Proof:

Every point tES 2 defines an oriented two plane EtCEX(L) in the following manner

Et == {Rewt (2,0 ),Imwt (2,0)}

where

{Rewt(2,0) ,Imw t (2,0)}

is an orthonormal basis in Et and

wt (2,O )=Rewt (2,O )+ilmw t (2,0)

Now aur proposition follows from 2.2.1.

Q.E.D.
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Remark.

#2.5. HILBERT SHEME OF HYPER-KAHLERIAN MANIFOLDS.

Let X be a projective Hyper-Kählerian manifold embedded in pN. Tbe Fubbini-Schtudy

metric on pN in a natural way defines a dass of a polarazation L.

Definition 2.5.l.

Let Hilb N be the irreducible component of tbe Hilbert scheme that contains X.
X/P

Let Hilb
X

/ pN be the the subscbeme of Hilb
X

/ pN that parametrizes all non-singular

Hyper-Kählerian manifolds in the flat family:

ID -+ Hilb N
X/P

Grothendieck proved in [SGA] that Hilb N is 11. quasi-projective algebraic space.
X/P

Proposition 2.5.2. Hilb N is 11. non-singular manifold.
X/P

Proof: Bogomolov proved in [4] that the Kuranisbi family iT:$-X has a non-singular base %

and

dimc%=dimCH l(X,eX )

From the local Torelli theorem (See [3]) it follows that we muy suppose that

%CnCP(H2(X,C)). Let L be a fixed dass in H2(X,Z) and let

%L ={tE%1 L is of type (1,1) on Xt =iT- 1(t)}

It is an easy exercise to see that %L can be defined also in tbe following manner:

~L=nnHL, where HL={ueO' <u,L>=O}

Le.

Hilb N.
X/P

action

d' ar_hl,l 1
1ffiC..ru- -

On the other hand we may consider %L to be a maximal local slice to the orbits of the

cf subgroup GCPGL(N) on fI N. wbere H N is the universal covering of
X/P X/P

family is just the pullback of the standart family

REMARK. 1)PGL(N) that preserve the fixed marking of tbe family ID -H N' where this
X/P

ID-Hilb N
X/P
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ID-H N
X/P

2) The action'of G on ii N ia defined correctly, since PGl(N) acts on Hilb N in a
. X/P X/P

natural manner and so G acts on ii N'
X/P

3)Notice that since 1t"tcä N)=O it is enouph to fix the marking of one of the fibres of
X/P

then the marking of all the fibres will be fixed.

From Lemma 3.1. it follows that if Go is the group of biholomorphic automprphisms of a

fixed Hyper-Kählerian manifold that preserve the marking of a fixed Hyper-Kähler manifold

then Go ia the same group for all Hyper-Kähler manifold. It is clear that Go is anormal

subgroup in 6 and 6/Go acts freely on ii N.
X/P

From here it follows that locally fI N is a product of XLxOrb(G/Go ) So ii N is a
X/pi X/P

non-singular manifold. From here it follows that

Hilb
X/pN

is a nonsingular quasi-projective manifo1d,

Q.E.D.

Definition 2.5.3.

Remark 2.5.4.

a) We can define correctly the period map, p:Hilb N-f2(L)/rL
, . X/P

b) F rom general Bai1y-Borel com pactification t heory, it follows t hat f2( L) / r L is a quasi

projective manifold.

LEMMA 2.5.5. There exists an open Zariaki set Hilb' NCHilb N such that
X/P X/P

\V d~fp( Hilb' N) ==p(Hilb N)
. X/p X/p

is an open Zariski subset in O(L)/rLand every point of \V corresponds to an algebraic Hyper

Kähler maifold. (p is the period map)
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Proof: From the famouB Hironaka's "resolution of singulariries" Theorem it follows that we

can find

such that

1) Hilb N CHllb N
X/P X/P

2) Hiib N is a. projective manifold obtained from Hilb N by successive blows
X/P . X/P

up on non-singular submanifolds.

3) Hiib N \Hilb N is a divisor with normal crossings.
X/P XjP

4) ;}-+Hllb N is a flat family obtained by the puB back of the family
XjP

ID-+Hilb N on Hiib N
XjP XjP

Borel proved in [5] that the period map: p:HilbXjpn ....... O(L)jfLcan be prolonged to a

holomorphic map:

Proposition 2.5.5.1. The map p:Hiib N-+fl(L)/fL is a Burjective map.
X/P .

Proof of 2.5.5.1.: In Proposition 2.5.3. we proved that loca.lly Hilb N ia a product of
X/P

~LxG/GO

where over %L we have a family of marked polarized Hyper·Kählerian manifolds:

11": $-%L CX( the base of the Kuranishi family)

and from local Torelli Theorem we know that

Q.E.D.

(*) %L C O(L) & dimC%L =dimCO(L)

From (*) and the fact that the morphism between two projective varieties is proper it follows

that p(Hiib N) is a proper algebraic subsvariety in the projective algebraic variety
XjP

O(L)/rL
with the same dimension, so p(Hiib N) =O(L)/fL

XjP
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5ince the map

p:Hllb N-+ O(L)jrLXjP

is a proper surjective map, then

p(Hiib N\Hilb N)=V
X/P X/P

is a proper algebraic submanifold in

Let

(2.5.5.2.)

Since

(r2(L)jfL)\(r2(L)/rL)

is a proper algebraic submanifold in

r2(L)jfL
it follows that V is a proper algebraic submanifold in

r2(L)/rL·

Let

(2.5.5.3.)

Let

Then we will have p( Hilb' N)="V. So Hilb' N is what we need. On the other hand
X/P X/P . -

from t he definition of V' i t follows immediately t hat p( Hilb N)= "V.
X/P

Q.E.D.

Corollary 2.5.5.4.

In ü(L) there exists countable unions of complex analytic submanifolds V' such that every

point

veO(L)\V' d~f W & "\tV is an open subset in S1(L)

corresponds to a marked aJgebraic polarazid Hyper-KähJerian manifoJd Xv'

Proof of 2.5.5.4.:
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Let T:O(L)-O(L)/rLand V'=T~l(V)

where we shall remind that V is a proper subspace in O(L)/r L defined as follows:

(2.5.5.2.) V d:~lv\(vn(O(L)/rL\n(L)/fL»)
Since r L consists of countable elements, then from the definition of V' and T we get that

V' consista of countable number of proper subspaces in O(L).

Q.E.D.

Corollary 2.5.5.5. Let H N be the universal covering of Hilb N and let 1r:ID - H N
X/P . X/P X/P

be the pullback of the family

tl-HilbX/pN

then p(H N)=W=f2(L)\V' where p is the period map and it is weIl defined since
X/p

and if we mark one of the fibres of

?f:ID-H N
X/P

then we can assume that the whole family

?f:ID-H N
X/P

is a marked family of polarrized Hyper-Kählerian manifolds.

Proof: This follows immediately from the way we define W in O(L).

Q.E.D.
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Le.

#2.6. THE PROOF OF THEOREM 2.

PROOF: The proof ia based on several lemmas and on the THEOREM 2 which will be proved

in #3. Let me remind the statement of THEOREM 2:

THEOREM 2.

There exists a universal family of marked polarized algebraic Hyper~Kählerianmanifolds:

:I -!InL (L;71, .. ,7b )
2

From THEOREM 2 it follows that we may consider the family of marked algebraic

polarized Hyper~Kählerianmanifolds

1f*:$*-D*

that fulfills the conditions a) and b) of THEOREM 1 a.s a aubfamily of

I -!Dl(L Lj71, .. ,7b )
2

$*CLL

! 1
D* c!In

(L;71"',7b )
. 2

LEMMA 2.6.1. There exists an open set UO in !D1(L' ) such that
,71, .. ,7b

~ D*CUo 2

b) p(UO)=U\.A in O(L), where A=UnV' is a complex analytic subspace in U &·U is a

policylinder, which containa p(D*)Cn(L). (V' was defined in #2.5.5.4. & p is the period map)

Proof: From a Theorem 9 proved by Ph. A. Griffiths in [13] it follows that we cau

prolong the period map

p*:D* -+O(L)

to a map

p:D-+O(L)

since the monodromy of the family

71"*:$* -+D*

is trivial.

2.6.1.1.

Let UB denote by z the point p(o)el1(L), where o=D\D*. -...,Ve may suppose that p(D*) is

a punctured disc in O(L). Let U be a policylinder containing p(D)CO(L). Let {U.} be a
1
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covering of UnW by polycylineders. Remember that "V=11(L)\V', V' is an union of complex

analytic subspaces in f2(L). and every point of W corresponds to a marked algebraic Hyper

Kählerian manifolds. (See #2.5.5.~.) Even more for the period map

we have

(See 2.5.5.4. & #3.)

We may suppose that over each component of p-1 Ui we have a family of Hyper-Kählerian

manifolds.

Clearly {p-1 U) is a covering of

D*C!D1
(Lj1' 1"" 1'b

2
)

It is an obvious fact that if we glue aU

{p-1 Ui }

along isomorphie marked polarized Hyper-Kählerian manifolds then we will get what we need,

i.e. we will construet

such that we have a family of marked Hyper-Kählerina manifolds over UO

1r:S:P _ Uo

and

p(UO)=U\.A

where U is a policylinder in O(L) and .A=UnV' is a eomplex-analytie subset in U.

Remark 2.6.1.2 . .A defined as in Lemma 2.6.2. contains the point Z=P(O)ED.

(See Definition 2.6.1.1.)

Remark 2.6.1.3.

Over UO we have a family of marked polarized Hyper-KähJerian manifolds $0 __ UO

with a fixed dass of polarization L.

Definition 2.6.2. Let 9J - Uo xS 2 be COO family of isometrie deformations with respect to the

Ried falat metric that corresponds to the dass L E H1,1 (Xt,Z) for each tE UO C!D1( . in
. L'1'1,··,1'b

2
)
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the family $0 _ UO •

Remark 2.6.2.1. The family ClJ- Uo xS 2 of isometrie deformations with respect to the Ricci-flat

metrie that corresponds to the dass L that corresponds to a very ample line bundle,is correctly

defined, since the family $0 - UO from whieh we obtained '\1-4 Uo xS 2 is just the restriction of

the universal family ~L -[Jl(L' ) which existence is proved in THEOREM 2.
,"Yl···,"Yb

2

Proposition 2.6.3. Let 'U=p(Uo xS 2 ) be the image of Uo xS2 under the period map p, then

every point uE9l. is contained in an open set UuCn such that uEUuCCUCn Le. 9l. is an open

Bubset in n.

Proof: We will use tbe following Proposition:

Proposition 2.2.1.

There exists a one-to-one map r/J between points of f2 and all two dimensional oriented

vector subspaees ECH2(X,R) such that < , > (defines in #2.1.) when restricted to E is

positive, Le. <u,u»O for uEE.

Sublemma 2.6.3.1. A point UE9l.=P(Uo xS 2)cn, where UO Cf2(L) iff Eu="b(u) and L spanned

a three dimensional suhspace Eu(L) such that:

a) < , >IEu(L»O and b) Eu(L) contains Ex=r/J(x), where xEUoCn(L)

Proof of thc Sublemma:

From the definition of isometrie deformations with respeet to a Calabi-Yau metric with a

fixed imaginary dass L, Proposition 2.2.1. and the way we define the family 'lJ-4 Uo xS 2 .

Sublemma 2.6.3.1. follows directly..

Q.E.D.

Now Proposition 2.6.3. follows immediately from Proposition 2.2.1., Sublemma 4.6.3.1. & the

following fact:

Fact.

The condition that the restriction of < 1 > on a two-dimensional subhspace in H2(X,Z)

is strictly positive is an open condition in the Grassmanian of aB two dimensionalsubspaces in

H2(X,Z). The same is true for the three dimensinal suhspaces in H2(X,Z).

The end of thc proof of Proposition 2.6.3.

lndeed if uE'U then from Sulemma 2.6.3.1.=>that Eu aod L spanned a three dimensional
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subspace Eu(L) in H2(X,Z) on which < , > is strictly positive. From here and continuity

arguments it followa that if u' ia a point which ia nearly enouph to the point uE<tL, then Eu'

and L will span a three dimensional subapace Eu,(L) in H2(X,Z) on which

< , >IEu,(L»O

and E ,(L) will contain a two dimensional subspaceu

Ex .1 to L, where XEUo & qS(x)=Ex .

Q.E.D.

Proposition 2.6.4. Let 11":$* - D* be a family of marked Hyper-Kählerian manifolds that fulfil1s

the conditiona a) and b) of THEOREM 1, then

A) $* as a COO manifold ia diffeomorphic to XxD*, where X ia a Hyper-Kählerian manifold.

B) lim wu(2,O)=wz(2,O) exiats and wz(2,O) is a complex non-degenerate COO form on X.u-o
uED*

Proof of Proposition 2.6.4.:

Let me remind You the following Definition:

Definition 2.6.1.1.

Let us denote by z the point p(o)er2(L) where o=D\D*. From the following Lemma

(LEMMA 2.6.1.

There exists an open set VO in m1(L' ) such that
_ ,1'1' ···1'b

2a) D*CUO
.

b) p(UO )=U\.A in fl(L), where .A is a complex analytic subspace in U & U is a polieyclinder, whieh

contains p(O* )CrJ.(L). (remember p is the period map))

it follows that we may suppose that

zE U & ZEV'Cfl(L)(for the defintion of V' see #2.5.5.4.)

From the definition of fl(L) it follows that

< , >IEz(L»O

where tP(z)=Ez and Ez(L) ia the 3-dimensional space in H2(X,Z) spanned by Ez and L

So we have a plane quadric

We can use now Lemma 2.3.12. Let me remind it:
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Main LEMMA 2.3.12.

Let V be a comp/ex ana/ytic submanifo.ld in n(L), ~here n(L) is defined as in 2.3.10.

Let zE V.

Let Ez(L) be defined as in Remark 2.3.11.

Let U be any open neighborhood of the point zE v.

Then there exists a poin t

yEU & y~V

such that

I.e.

pI (Ey (L))(R)n p I (Ez (L))(R)= tUT
and

t & t~n(L).

from 2.3.12. it follows that there exists a point

YEUo

such that

pI (Ey (L) )(R)npI(Ez( L))(R)=tlft

and

i & t~n(L).

Definition 2.5.4.1. Let Ui be a policylinder in U with the following properties:

a) The closure U. cU and zE U.
I 1

b) U· np(D*)=D. ;60 & D. is a disk in p(D*).
I 1 I

c) YEUi' where y is defined by Lemma 2.3.12.

b) The closure of Di is contained in p(D).

It is an obvious fact that such U· exists. Even more from local ToreIli Theorem we may
1

suppose that p-1(U.) is a disjoint union of policylinders in ml(L' )
I ,"Yl, .. ,"Yb

2

(Remark 2.6.4.l.

From now on we will denote one of the components of p-1(Ui ) again by Ui' where p:UCn(L»

then we have a family of marked Hyper-Kählerian manifolds $. - U·
I I
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Definition 2.6.4.2. Let 'lJi - 'Ui be a family of rnarked polarized Hyper-Kählerian manifolds

that eorresponds to all isometrie deformation with respeet to the Rieci-flat metrie that

eorresponds to the polarization dass L of alt fibers of the family

$.-U·
I I

whieb is subfamily of the universal family of marked polarized Hyper-Kählerian manifolds

Proposition 2.6.4.2. The period map p restrieted to 'Ui(may be after shrinking Ui) IS an

embedding, i.e.

P:'U i cO

Proof: Hy assumptioD we have:

Ui C11(L)C11

On th~ other hand from the definition of isometrie deformation and Proposition 2.4.5.4. it

follows diretly that p restrieted to 'Ui ia an embedding.

Q.E.D.

Remark 2.6.4.2.1. From now on we will auppoae that CU. is eontained in n.
1

2.6.4.3. From the proof of Proposition 2.6.3. it follows that every point x of 9.1. is eontained in
I

'Ui with on open neighborhood in 0, Le. 'Ui is an open set in 11.

2.6.4.4. Sinee

yEUi' where y is defined aB in Lemma 2.3.12.

it folows from the defintion of CU. and the isometrie deformations that
1

pi (Ey (L»(R) c 91 i

where ,p(y)=Ey & Ey(L) is the subspaee in H2(X,Z) spanned by Ey and L, ,p is defined In

2.2.1.

2.6.4.5. From Lemma 2.3.12. aod the Definition of 91. it follows that
I

tECU.
I

where

2.6.4.6. Sinee

YEU i & the Definition of Ui

we get that the point y eorresponds to a marked Hyper-Kählerian manifold X y . So every point

tEpl(Ey(L»(R) eorresponds to a marked Hyper-Kählerian manifold X t .
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then
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2.6.4.7.a. Since < , >IEz(L»O then the group SO(3) acts on Ez(L) and this action is defined

in the followin way:

First we fix an orthonormal basis, namely let {el ,e2} be an orthonormal basis in Ez

and e3=L. Then if AESO~3) and

v=L ~ei EEz(L)
i=l

def 3
A(v) = .L aiA(ei)EEz(L)

l-L
2.6.4.7.b. We know from Lemma "2":3.12. that

Let

AESO(3)

and such that

2.6.4.8. For each

we will define on X u a new comp,ex structure xi} in the following way:

Let

where g -ß(u) is the Calabi-Yau metric on X u that corresponds to the class L.
a,

From #2.1. & #2.4. we know that we mau suppose that

{Rewu(2,0), Imwu(2,O),g -ß(u)}
0',

is an orthonormal basis in Eu(L), which is defined by wu(2,0) depending holomorphically on u.

From #2.4. we know that

A(Eu )={A(Rewu (2,0) ),A(Imwu (2,O))} C r(X,/\ 2T*)

defines a new complex structure on Xu, which we will denote by x-i}. So we get a new family:
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A def nDs;. -D. A' where D· = U·
1 1, I 1

In the same way we can get a new family

S;*A- DA
from the family

$* -D*
in the way described aoove.

Remark. The family s;A - D. A is not a holomorphic family but only a COO family of complex
I I,

struetures over the disc D· A'
I,

2.6.4.9. From the way we defined <U. it follows that D. AC CU. even more
1 I, 1

2.6.4.9.a. Proposition.

If u-z(convrging), where uEDi(remember that the closere cf Di contains z) then

A( u)-- A( z)=t(eonverging), where

pI (Ey (L) )(lR)npl (Ez(L) )(lR)=tljt

and A( u) eorresponds in CU. to t he eomlex st ruet ure X~ on X. Clearly A( u) E D. A C CU..
1 I, 1

Proof: 2.6.4.9.a. follows from the way we define the family S;f - Di,A

Q.E.D.

Sublemma 2.6.4.10.

Let X t be the the marked Hyper-Kählerian manifold that corresponds to the point

t EPl(Ey(L»(R)npl (Ey(L»(lR) C91 i Cn
let u-z, where UED i , let wi}(2,O) be the holomorphic twcrform on xi} (where AESO(3) and

A(Ez)=Et .) normalized in the following way <wi}(2,O),wi}(2,O»=1 then

ul~zw~(2,O)=wt(2,0)

where A(z)=t & UEDi and w t (2,O) is the holomorphie two form on Xt .

Proof: From 2.6.4.3. we know that every point tE'Ui is contained in 'lLi together with an open

neighborhood in n. From the fact that we have a holomorphic family of marked Hyper

Kählerian manifolds over CU i , Le.

g;. -CU.
1 1

the fact that
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~i CnC!?(H2 (X,C))

and the normalization condition, Le.

<w~(2,O),w~(2,O»=1

we get that as cohomology classes .
. A '
hm [wu (2,O)]=[wt (2,O)]u-z

where A(z)=t & uED i & and w t (2,O) is the normalized holomorphic two form on Xt .

From

lim [w~(2,O)]=[wt(2,O)]u-z

we obtain that

lim w~(2,O)=wt(2,O)u-z

This is so since dimCHO(Xt,nr)=1 for all tE<Ui and w~ have a holomorphic family

$.-~.
1 1

of marked Hyper-Kählerian manifolds and u-z in 9.1•. This follows from 2.6.4.3.
1

Q.E.D.
Cor. 2.6.4.10.1. The family

g;*A-- DA
defined in 2.6.4.8. can be em bedded in COO family of non-singular marked Hyper- Kählerian

manifolds over the disk DA' where DA is the closure of DA' i.e. in g;A -DA'

Proof of 2.6.4.10.1.: Since

a) D. ACDA*C~·C~
I, 1

b) The closure of D. A contains t=A(z) and is contained in DA
1, ,

c) Every point of ~i is contained together with an open set in n

d) the closure TI A of the punctured disc DA is contained in CU

e) Qver ~ we have a holomorphic family $-CU of marked Hyper-Kählerian manifolds

and from 2.6.4.10. we get immediately that 2.6.4.10.1. is proved.

Q.E.D.
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From 2.6.4.10.1. => that the family S;A - DA a.s COO manifold is diffeomorphie to DxX, where

X is Hyper-Kählerian manifold. From here we o~tain that S;*A- DA is topologoeally the

same as $* -D* . This follows directly from the Definition of Isometrie deformations. So

2.6.4.A) is proved.

Q.E.D.

Proof of 2.6.4.B):

From Lemma 2.3.12. it followa that there exists a point tEpl(Ez(L))(R) such that

tUt =pl(Ez(L))(R)np1(Ey(L))(R)

where

YEU\V'

and so y ia tbe image under the period map of marked Hyper-Kählerian manifold with a dass

of polarization L. See Lemma 2.6.1.

Let

SLd~F{uEPl(Ez(L))(R)IEu=tP(u) & Eu contains L}

(<p is defined in 2.2.1.)

It is easy to prove that as COO manifold 8L={tEC11tl=1}.

5ublemma 2.6.4.B.1. tUt eSL' where tUt =pl(Ey(L»(R)np1(Ez(L))(R) forV'yEU i CS1(L).

Proof of Sublemma 2.6.4.B.1.: From the definition of

pI (Ey ( L) )(R) & pI (Ez (L) )(IR )

it follows that a point u

u EpI (Ey (L) )(~ )np1(Ez( L) )(R)

iff

tP( u)=Eu =Ey(L)nEz(L)( See 2.2.1.)

so LeEu and Sublemma 2.6.4.B.1. follows from the definition of 8 L.

Q.E.D.

Sublemma 2.6.4.B.2. There exist three points t 1, t 2 & t 3 on 5 L cpl(Ez(L))(R) such that:

a) t 1, t~ & t 3 etUi and t 1", t 2 & t 3 are three diiferent points.

b) t 1, t 2 & t 3 define three classes of cohomologies [wl(2,O)], [w2(2,O)] & [w3(2,O)] that are

linearly independent in Ez(L)CH2(X,C).

Proof of Sublemma 2.6.4.B.2.:

From Lemma 2.3.12. and the definition of CU i it follows that tUinSL #:0, Le. tE~inSL' From
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2.6.4.3. we get tbat t is contained In CU i together with an open set. From here 2.6.4.B.2.a.

follows immediately.

Q.E.D.

In order to prove 2.6.4.B.2.b. we need to n.otice that if t 1 :;i:t 2 in SL then the classes of

cohomologies [wI(2,O)] & [w2(2,O)] that are defined by t 1 & t 2 are linearly independent in

H2(X,C). If [w3(2,O)] is a linear combination of [wl(2,O)] & [w2(2,O)], then .

t 3 eP(Elt2 )npl(Ez(L»(R)

where E I '2 is the plane in H2(X,C) spanned by [wl(2,O)] & [w2(2,O)](This is' an easy exersice.)

but

P(E1,2 )npl(Ez(L»(R)

consists of at most of two points, since pl(Ez(L»(R) is plane quadrie and so have deg 2. Now

2.6.4.B.2.b. follows from 2.6.4.B.2.a. and tbe fact that SLnCUi is an open set in SL .(See

2.6.4.3.)

Q.E.D.

Remark. Sinee t l , t 2 & t 3 ESLn9.Li so they corresponds to tbree marked Hyper-Kählerian

manifolds ZllZ2 & Z3 that are in isometrie families of three Hyper-Kählerina manifolds Xl' X2

& X 3 witb respeet to the Calabi-Yau metric that correponds to L. Xl' X 2 & X 3 are fibres in

$i-Ui Cl1(L)

over t he points u l' U 2 & u3 eU i' This follows from the definition of CU i . See 2.6.4.

Definition. Let A, B & CESO(3) such that A(Ez)=Et ' B(Ez)=Et & C(Ez)=Et . From
I 2 3

2.6.4.7. we know tbat SO(3) acta on Ez(L).

Sublemma. 2.6.4.B.3.

a) For eaeh uED* the forms w;}(2,O), w&(2,O) & w~(2,O) defined three linearly independent

classes of cohomologies in Eu (L)CH2(X,'C) where Eu(L) ia the three dimensionalspace

spanned by [Rewu(2,O)], [Imwu(2,O)] & L. and this iso an orthonormal basis for each ueD* in.

Eu(L).

b) There exists three constants a, b & ceC such that wu(2,O)=aw,}(2,O)+bw&(2,O)+cw~(2,O)

as a form for each uED*. where A, 8 & C are fixed elements in SO(3) and A(z)=t l ,

8(z)=t 2 & C(z)=t 3 and tu t 2 & t 3 are defined as in 2.6.4.B.2.

Proof of a): 2.6.4.B.3.

a) follows immediately from 2.6.4.B.2. and continuity arguments.

Q.E.D.
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Proof of b):

From 2.6.4.B.3.a) it follows that there exists three constanta a, b & cEC such that

[wz(2,O)}=a[w~(2,O)}+b[w~(2,0)}+c[wf(2,0)}

Now we must prove that:

(*) wu(a,b,c,) d~fawti'-(2,0)+bw~(2,O)+cw~(2,O

is a form on X u for VuED*.

ProoC oC(*): (*) follows from the way we define the action of 50(3) on

Eu(L)Cr(X,A 2T*X)

Let me remind You how we define this action. First we fixed an orthonormal basis that

depends holomorphically on u E 0*.

el(u)=Rewu(2,0), e2= Imwu(2,O) & e3 (u)=Im(g -ß)
0',

where

if AE50(3) and

then
d f 3

A(v(u» ~ I: ~A(ei(u»

From the Definition of Wu (a,b,c) ii=rdtlows that

(I) wu(a,b,c)EEu(L)Cr(X,/\2T*X~C)

From the defintion of tbe isometrie deformations we know that

(I1) wu(a,b,c) ia a holomorphie two-form on X~{:}<wu(a,b,c),e3(u»=O

So if we prove that

<Wu (a,b ,c) ,e3 ( u)>=0

then (*) will be proved. So we need to provo (1/).

Proof of (Il):

From the defintion of the isometrie deformations it fallows that we need ta prove (I1) on

the level of cohomology classes, since ei (u) are parallel farms with respect to t he metric (g -ß)'
a,

From the definition of wu(a,b,c) we get that

(F)
333

wu(a,b,c)=a'E a1iei(u)+b'E b2iei( u)+c'E c3i ei(u)
i=l i=l i=l
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From (F) follows that

(Fl) 3 3 3

<wu(a,b,c),e3(u»=aL a li<ei (u),e3(u»+bL b2i <ei(u),e3(u»+CL c3i <ei (u),e3( u»
i=1 i=l i=1

From the definition of the orthonormal basis we obtain that the formula (Fl) does not depend

on uED. From definition of the constants a, b, & c, Le.

[wz(2,0)]=a[w~(2,0)]+b[w~(2,0)]+c[wf(2,0)]

and since

zEn(L)~<[wz(2,0)],[e3(z)]=L>=0

we obtain what we need, Le.

<wu (a,b,c),e3(u»=O

So (*) is proved and with this 2.6.4.B.3.b).

Q.E.D.

From 2.6.4.10. it follows that all the limits a.s COO farms of the following farms exist

lim w,}(2,O)=w t (2,0)u-z 1

lim w~(2,O)=wt (2,0)u-z :2

lim w~(2,O)=wt (2,0)u-z 3

where

A(z)=t 1 & uED. & and wt (2,0) is the holomorphic two form on X t .
1 1 1

C(z)=t3 & uED. & and Wt (2,0) is the holomorphic two form on x ..
1 3 ~~3

From here and the fact that:

There exists three constants a, b & cEe such that

Wu (2,0) = aw,} (2,0)+bw~ (2,0)+cw~ (2,0)

a.s forms on X.
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So we get that

lim wu(2,O)=wz(2,O)u-o
UED*

exista aB a C OO form on X.

In order to finish the proof of 2.6.4.B. we need to show that wz(2,O) ia a non degenerate

two-form on X. Clearly

dWz(2,O)=O

From the Definiton of isometrie deormations we get that for each AESO(3) we have:

A n wu (2,0) 1\( A llwU (2,O»=vol(g -ß)= 1\ Dwt}(2,O) 1\ (1\ n w(}(2,O»
0',

(III) lim I\n wu (2,0)I\(A ll wu(2,O» = !im I\nw~(2,O)I\(l\nw~(2,O»
u-z u-z

Since

(IV) lim w~(2,O)=w~(2,O)
u- z

and w~(2,O) ia a non-degenerate form defined by the Hyper-Kählerian manifold Xt , where

t=A(z).

From (III) & (IV) 2.6.4.B. follows directly.

Q.E.D.

In order to finish the proof of THEOREM 1. we need to use first the fact that the family

$* - D*as COO manifold ia diffeomorpfic to D*xX, where X is a Hyper-Kählerian manifold. So

we can compactify topologocally the family $* -D* to Dx...'X.

From the fact that

!im wu(2,O)=wz(2,O) exists
u-z

and wz(2,O) ia a non-degenerate form, we need to chek that the 2n-forrn 1\ nWz (2,O) fulfins

conditiona a), b) & c) of the Andreotti-Weil remark. Clearly

d( /\ n wz (2,O»=O

/\ n wz(2,O) /\( /\ n Wz (2,O» >0

So b) & c) are filfilled.
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Let P be the Plücker relations. Since they are polynomial relations, it follows that these

are closed relations, Le.

lim P(t\llwu(2,ü))=P( lim wu(2,ü))=O
U-+Z 'U.-+Z

So THEOREM 1. is proved.

Q.E.D.
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#3. CONSTRUCTION OF THE MODULI SPACE.

Tbe construction ia based on the following Lemma:

LEMMA 3.1.

Let g be a holomorphic automorphiam of X such that g*=id, where

g*:H 2(X,Z) _ :H2(X,Z)

then ginduces tbe identity map on tbe Kuranishi space of X, i.e on

XC$

1 1
Oe%

Proof: See [12].

Q.E.D.

LEMMA 3.2. Let

XC$

1 !
QeX

be the

Kuranishi family of marked Hyper-Kählerian manifoIds,

(X,'l'····'Yb
2

)
then $-.% is tbe Ioeal universal family of marked Hyper-Kähierian manifolds,

(X"l ,····~'b.)
Proof: We need to prove that if -

Xo.- y

1 1
xoE vV

is a family of marked Hyper-Kähierian manifolds, where vV JS a "smalI" policylinder, then

there exists a unique map f of families:

y- g;

1 1
W-%

such that:

a) f(xo)=O and f:Xo -Xo is an isomorphism of marked Hyper~Kählerianmanifolds.

page

52



.~._.__......... _._~r_ ..... __. -i.~ __ .. -~~_ .... L ~r ..... __.... '__....._.... ~ ... ~ .... _............._.....~~ ~~ ..._ __...._.... ......... __ .~ .._

b) the family Y - vV is the pull hack of the

Kuranishi family.

We know that the Kuranishi family is complete. See [14}. This means that there exists

a holomorphic map f of families:

w-x
such that:

a) f(xo)=O and f:Xo -Xo is an isomorphism of marked Hyper-Kählerian manifolds.

b) the family Y - W is the pull back of the Kuranishi family.

Let g he a roap between the families

Y-W and $-%

which fulfiUs the conditions a) aod b) as for the map f, then from [14} it follows

that we must have:

f(x)=u(g(x» for xEW

where u is an isomorphism of the Kuranishi family such that

u:Xo-Xo

preserve the marking, Le.

u*=id on H2(X,Z)

From 2.1. it follows that u=id on %, so

Q.E.D.

#3.3. The construction of the moduli space.

Let

1 1
xoE %

be the Kuranishi family of marked polarized algebraic Hyper-Kählerian manifolds,

where 11'.... ,lb
2

is a fixed basis in H2 (X,Z) and L is a fixed dass of cohomology in H2 (X,Z)
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eorresponding to an imaginary part of a Hodge metrie on Xo. From the Ioeal ToreIli theorem

it follows that we may eonsider %. as an open ~ubset in

Let

From the Ioeal Torelli Theorem it follows that if we restriet the Kuranishi family

to the family

we will get the IDeal universal family of all Hyper-Kählerian manifolds for whieh L IS the

imaginary part of a Hodge metric on ~, for every tE%L.

From 3.1. it follows that we ean glue aB families

{$L -XL}
by identifying isomorphie marked algebraie Hyper-Kählerian manifolds with fixed dass of

polarization L. In such a way we get an universal family

of marked polarized I1yper-Kählerian manifolds. This is so sinee if

tjJ:X-+X

is a biholomorphic map of X such that

1jl*(L)=L

then Ijl must be an isometry with respect to Calabi-Yau metric that eorresponds to Land so

for generie X qr,*=id on H2(X,Z). See {6] and (11].

So we have proved the following THEOREM:

THEOREM 2.

There exists a universal family of marked polarized algebraie Hyper-Kählerian manifolds:
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REMARK.

There is another way of constructing the universal family of marked polarized algebraic

Hyper-Kählerian manifolds:

Namely let ii N be the universal covering of Hilb N and let
X/P X/P

1l":jJ~ii N
X/P

be the pullback of the family

1l":;'-H N
X/P

Then it is easy to see that

G/Go acts on iI: N ' where G and Go are defined in #2.5.
X/P

It is not very difficult to prove that this action ia a free and proper using a Theorem by

Mumford and Mutausaka. See [25]. So by a general Theorem due to Palais we get that

H N /C G/ Go)=5JJt CL ' ) . See [26].
X/P 1"Y!···,"Yb2

From this we get the following fact:

Fact

for the Definitions of V' and VV see #2.5.5.4.
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