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™
Affine differential geometry developed by Blaschke and his school [B] has been
reorganized in the last several years as geometry of affine immersions. The original
assumption of nondegeneracy for a' hypersurface is relaxed and the standard choice of
so-called affine normal is no longer essential. For a general indication of this geometry,
see, for example, [NP1], [NP2]. The techniques of affine differential geometry can be
applied to hypersurface theory in a projective space [S], [NP3].

In this paper we present a systematic study of centroaffine immersions of an n-
manifold into R"*? — {0}. Such immersions were studied in [W] by adhering to the
original features (including apolarity and local convexity assumption) of the Blaschke
theory as much as possible. Qur approach is more general in that we follow the spirit of
the recent development mentioned above. In particular, our work is motivated by, and
applied to, projective differential geometry.

The paper is organized as follows. In Section 1 we develop the basic machinery for
centroaffine immersions of codimension 2, obtain two fundamental forms ~» and T and
two cubic forms C and 6. The vanishing of T or h is given a geometric interpretation
(Propostions 1.3, 1.4, 1.5). In Section 2, we consider lifts f : M — R"+2 — {0} of
a given immersion F': M — P"t! and find projective invariants through such affine
models f. In Section 3, we define the dual mapping of F : M — P*™! by means
of a lift f and prove a result about selfdual immersions (Proposition 3.5). In Section
4, we study projective flatness and umbilicity for f : M — R"*2? — [0} (Theorem
4.1) and its projective interpretation (Theorem 4.3). In Section 5, we prove a number
of uniqueness theorems for centroaffine immersions M — R"t2 — {0} as well as for
immersions M — P"t! among which Theorems 5.7, 5.8 and 5.9 are the main results.
In Section 6, we show that f : M — R"™*2 — {0} for which VA = 0 and rank h > 2
lies on a quadratic cone (Theorem 6.3) — a generalization of the classical theorem of
Pick and Berwald for affine hypersurfaces. In Section 7, we draw, under the assumption
VT = 0, another geometric conclusion that M lies on a quadratic hypersurface or an
affine hyperplane (Theorem 7.3).
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§1. Centroaffine geometry of affine submanifolds of codimension two

We use the following notation throughout this paper. By D we mean a flat afline
connection of R"*2 and by 7 the radial vector field on R**2 — {0}: n = Z?:f z'9/0zt,
where {z!,.--,2"%?} is an affine coordinate system. The letter w denotes a parallel
volume form of R"*2 that is fixed once and for all. Let M be an n-manifold and f an
immersion of M into R"*? — {0}. Assume f is transversal to . We choose, at least
locally, a vector field { along f that is transversal to f such that ¢ and 5 are linearly
independent. At each z € M, then, the tangent space Tf(,,)R"+2 is decomposed as the
direct sum of the span R{n}, the tangent space f,T; M, and the span R{{}. According
to this decomposition, the vectors Dxn, Dx f,Y, and Dx€, where X, Y are vector
fields on M, have the following expressions:

Dx’? = f#Xa
(1.1) Dxf.Y =T(X,Y)n+ fu(VxY) + h(X,Y),
Dxé = p(X)m— fu(SX)+ (X)L

An n-form 8 is defined by

(1'2) G(Xla"':xn)zw(ftxh"'aftxmga’?)

Thus we have several objects associted with £. They have the following properties.

Proposition 1.1.
(1)V is a torsion-free affine connection on M.
(2) h and T are symmetric tensors.

(3) Vx6 = 7(X)8.

In the following, we occasionally identify a tangent vector (field) X with its image
f.X if there is no danger of confusion. Let RY and R denote the curvature tensors of
the connection D and the connection V, respectively. Using (1.1), we get

DxDyZ =Dx(T(Y,Z)n+ VyZ + h(Y, Z)¢)
= X(T(Y, 2))n + T(Y, 2)X
+T(X,VyZ)n+VxVyZ +h(X,VyZ)¢
+ X(h(Y, Z))¢ + h(Y, Z)(p(X)n = SX + 7(X)€)

and
Dix,v1Z =T((X,Y],Z)n+ V|x,v)Z + K([X, Y], Z)¢.
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Hence we get

RY(X,Y)Z = R(X,Y)Z + T(Y, 2)X - T(X, 2)Y - h(Y, Z2)SX + h(X, Z)SY
+{T(X,Vy2) - T(Y,Vx 2) + X(T(Y, Z)) - Y (T(X, 2))
— T((X, Y], 2) + p(X)A(Y, Z) - p(¥)K(X, Z)}n
+ {h(X, Vy Z) - h(Y, Vx Z) + X(h(Y, 2)) - Y (R(X, Z))
— h(IX, Y], Z) + 7(X)R(Y, Z) - (Y )h(X, 2)}¢
= R(X,Y)Z + T(Y, 2)X — T(X, 2)Y - h(Y, Z)SX + h(X, Z)SY
+{(VXTXY, Z) - (VyT)(X, Z) + o( X)h(¥, Z) - p(Y)h(X, Z)}n
+{(VxR)Y, Z) - (Vy h)(X, Z) + T(X)R(Y, Z) — r(Y)h(X, 2)}¢.

From the equations

DxDy& = Dx(p(Y)n — SY + 7(Y)£)
=X (p(Y))n + p(Y)X — {T(X, SY)n + Vx(SY) + h(X, SY )¢}
+ X(1(Y )€+ 7(Y){ao(X)n - SX + 7(X)¢},
Dix,vi€ = p([X,Y])n — S[X, Y] + 7([X, Y])¢,

we get

RY(X,Y)t = p(Y)X — p(X)Y — Vx(SY)+ Vy(8X) - 7(Y)SX + 7(X)SY

+ S[X, Y]+ {X(o(Y)) - Y(p(X)) - T(X,SY) + T(Y, SX)
+7(Y)p(X) = 7(X)p(Y) ~ p([X, Y])}n

+{A(Y,SX) - h(X,SY) + X (r(Y)) - Y(r(X)) — 7([X, Y]) }{

=p(Y)X — p(X)Y — (VxS)Y) +(VyS)(X) - r(Y)SX + 7(X)SY

+{(Vxp)(Y) — (Vyp)(X) - T(X,SY) + T(Y, 5X)
+ 7(¥)p(X) — 7(X)p(Y)}n

+{A(Y,5X) - i(X, SY) + (Vx7)(Y) = (Vy7)(X)}¢.

Since the connection D is flat, we have equations of Gauss (1.3), of Codazzi (1.4), (1.5),
(1.6), and of Ricci (1.7), (1.8):

(1.3) R(X,Y)Z = h(Y, Z2)SX — h(X, Z)SY - T(Y,2)X + T(X, 2)Y
(1.4) (VxT)Y, 2) + p(X)A(Y, 2) = (Vy T)(X, Z) + p(¥ )h(X, Z)

(1.5) (Vxh)Y,2) +r(X)h(Y, Z) = (Vyh)(X, Z) + 7(Y)h(X, Z)

(1.6) (VxS)Y) = 7(X)SY + p(X)Y = (VyS)(X) — 7(Y)SX + p(Y)X

(1.7) T(X,8Y)-T(Y,5X) = (Vxp)(Y) = (Vyp)(X) + 7(¥)o(X) — 1(X)p(Y)
(1.8) h(X,8Y) - h(Y,8X) = (Vx7)(¥) - (Vy7)(X) = dr(X, Y).
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From (1.3) we have
(1.9) Ric(Y,Z) = trS- k(Y,Z) — h(SY, Z) - (_n - 1)T(Y, 2).

At this point we present the following basic lemma that will be repeatedly used.

Lemma 1.2. Let V be a vector space of finite dimension. Suppose o is a linear form
and h a symmetric bilinear form on V such that

a(X)h(Y,Z2) = o(Y)R(X,Z) forall X,Y,ZeV.

If rank A > 2, then ¢ =0.

We now study what the vanishing of T' and h means for a given immersion f : M —
+2 { } & §
R""¢ — {0}.

Proposition 1.3. If T vanishes and rank h > 2, then the image of the immersion is
included in an affine hyperplane which does not go through 0 and the vector field £ is
tangent to this hyperplane.

Proof. If T = 0, then (1.4) says p(X)h(Y,Z) = p(Y)h(X,Z). By Lemma 1.2, p =0
and, therefore, the distribution spanned by f.(T: M) and &;, z € M, is parallel relative
to D; this implies the result.

The immersion f considered to be a mapping into this hyperplane is an affine
immersion of M as a hypersurface; relative to the induced flat connection D' on'the
hyperplane, f satisfies

xfi¥ = f(VxY)+h(X,Y)§ and Dix{=-f(5X)+ (X)L

0
Figure 1 (Prop 1.3) Figure 2 (Prop 1.4)

Proposition 1.4. If h vanishes and n > 2, then the image of the immersion is included
in a hyperplane through 0. '



Proof. If h = 0, then the distribution spanned by f.(T:M) and 7y, £ € M, is
parallel relative to D.

In the situation of this proposition, the immersion f defines a centroaffine hyper-
surface immersion and the tensor T is the fundamental tensor of this immersion.

We put

C(X,Y,2) =(Vxh)(Y,2) + 7(X)h(Y, Z)

(1.10) 5(X,Y,Z) = (VXTXY, Z) + p(X)R(Y, 2).

Both are symmetric in their arguments (cf. (1.4), (1.5)). We call C the (first) cubic
form and é the second cubic form.

We shall next examine how various objects depend on £. Another choice, say ¢, of
transversal vector field is related to £ by

X' =€ +an+ AU,

where A is a nonzero scalar function, a is also a scalar, and U is a tangent vector field.
Let TV, V', b, p', S', and 7' denote the quantities corresponding to £'. By (1.1) we
have
Dxf.Y = T(X,¥)n + fuVxY + h(X, Y)OE' — an - £,U)
= {T(X: Y) - ah(x) Y)}’? + f*(VXY - h(XaY)U) + /\h(X,Y){',
Dx€ = p(X)n — f.SX + (XY - an— £,U)
= {p(X) — ar(X)}n — fu(SX + 7(X)U) + Ar(X)E'.

On the other hand, we have

Dx€ = Dx(M¢' —an— £.U)
= X(\)¢' + ADx¢€' ~ X(a)y — af. X
—{(T(X,U)— ah(X,U))n + fu(VxU — K(X,U)U) + \R(X,U)¢'}.

Term-by-term comparison shows

(1.11) VY =VxY - h(X,Y)U

(1.12) T(X,Y)=T(X,Y) - ah(X,Y)

(1.13) K(X,Y) = AR(X,Y)

(1.14) ™(X) =1(X) - X(log)) + R(X,U)

(1.15) Mp(X) = p(X) + X(a) + T(X,U) — ah(X,U) - ar(X)
(1.16) - AS'X = SX + 1(X)U — aX — VxU + (X, U)U.
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Formula (1.13) implies that the conformal class of h is independent of the choice
of £. When the class h is nondegenerate we say that the immersion is nondegenerate.
If we assume nondegeneracy, then one can find a vector field £ so that 7 = 0 because
of (1.14); in this case, § is V-parallel. We say that this choice of £ defines (or that the
pair {f,£} is) an equiaffine immersion. Further, we can restrict the choice of { so that
the form 8 is equal to the volume form of the nondegenerate metric tensor h; such £ is
uniquely determined mod 7 up to sign. We call this pair {f,£} a Blaschke immersion
of codimension two. Formulas (1.12), (1.13), and (1.16) with U = 0 show

TNX,Y)+h(S'X,)Y)=T(X,Y)+ h(SX,Y) — 2ah(X,Y).
By determining the scalar function a we can assume that £ is so chosen that
(1.17) trp {T(X,Y) + h(SX,Y)} = 0.

If this condition is satisfied, we say that £ is pre-normalized. In particular, a pre-
normalized Blaschke immersion {f, £} is uniquely determined up to sign.

Remark. Consider the situation where f is a nondegenerate hypersurface immersion
into an affine hyperplane in R"*2 — {0} and where £ is an equiaffine normal relative to
this immersion:

Dxf.Y = fu(¥xY) +A(X,Y){ and Dx¢{=-f(SX).

Then we can regard f as an immersion into R**2 — {0}. Let ¢ = £+ an. Thenitis
easy to see that £ is pre-normalized only when a = 2—lﬁtr.S'. The associated quantities
are given by

T(X,Y)= —p-h(X,¥), S=S-o-I, and p= d(tsS)

andV=¥Y,h=h and 7 =0.

Let us return to the general situation and prove a result which is more precise than
Proposition 1.3.

Proposition 1.5. Assume rank h > 2. Then the image of the immersion is included
in an affine hyperplane if and only if T = ah for some scalar function a.

Proof. Assume T = ah. Replace € by ¢ = £ + an. Then, (1.12) shows that T" for
¢! vanishes identically. Hence, Proposition 1.3 implies that the image is included in an
affine hyperplane. Conversely, if the image lies in a hyperplane not through 0, then for
a vector field £ tangent to this hyperplane we get T = 0. Formula (1.12) also says that
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the property T = ah is independent of the choice of £, although the scalar a depends
on £,

We also have

Proposition 1.6. Let n > 3. Assume V is flat and rank h > 2. Then the image of
the immersion lies on an affine hyperplane and the immersion turns out to be a graph
immersion into this hyperplane.

Proof. The condition V is flat means
(1.18) R(X,Y)Z =h(Y,2)SX - h(X,2)SY - T(Y,2)X +T(X,Z)Y = 0.

Let {Xi, -+, Xr, Xr+1, ', Xn} be a basis such that {X,4;1, -+,X,} generates ker h
and h(X;, X;) = €ibij, e, = 1, for 1 < 4,5 <r. For i # j, choose k # ¢,j (n > 3). By
letting X = X, Y = Xy, Z = Xj, (1.18) implies —T(Xk,.XJ')X,' + (X, X;)Xg = 0.
Hence, T(X;, X;) =0. Fori # jlet X = X;, Y = Z = X;. Then (1.18) implies

h(X;, X;))8X; - T(X;, X;)X; =0.

If1 <j<r,then SX; = pX; where u = T(X;, X;)/h(X;, X;). Since rank h > 2, this
identity holds for all 7 and u is independent of j. If r +1 < 37 < n, then T(X;, X;) = 0.
Therefore, we have

S=ul and T(X,Y)=puh(X,Y).

By changing £ to ¢ = £+ un, the equations (1.11), (1.12), and (1.16) allow us to assume
S = 0and T = 0. By Proposition 1.3 and Example 3 of [NP1] we get the conclusion.

We conclude this section with the following formulas for later applications.

Proposition 1.7. Under the change of £ to ¢’ = A™Y(¢ 4+ an + £,U) the cubic forms C
and § transform as follows:

AICU(X, Y, 2) = C(X,Y, Z) + h(X,Y)K(U, Z) + h(Y, Z)h(U, X) + h(Z, X)}h(U,Y)
§'(X,Y,Z)+a(N)"1C'(X,Y, 2)
=&§X,Y,Z)+ h(X,Y)T(U, 2) + (Y, Z)T(U, X) + h(2Z, X)T(U,Y)

Proof. The first identity is similar to the affine hypersurface case (see [NP2]). The
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second one is calculated as follows.

(VxT')(Y, Z) + p'(X)R'(Y, 2)

= X(T'(Y, 2)) - T'(VY, 2) = T'(Y, Vs 2) + M (X)A(Y, )

= X(T(Y, Z) - ah(Y, 2)) - T(V'xY, Z) + ah(V' Y, 2)
— T(Y, V' Z) + ah(Y, Vi Z) + Ad(X)A(Y, Z)

= X(T(Y, 2)) — X(a)h(Y, Z) — aX(h(Y, Z))
— T(VxY, 2) + (X, Y)T(U, Z) + ah(V xY, Z) — ah(U, Z)h(X, Y)
— T(Y,VxZ) +h(X, 2)T(U,Y) + ah(Y, V x Z) — ah(U, Y)(X, 2)
+ {p(X)+ X(a) + T(X,U) = ah{X,U) — ar(X)}R(Y, Z)

= §(X,Y,2) — aC(X,Y, Z) + k(X,Y{T(U, Z) - ah(U, Z)}
+ h(Y, Z2){T(U,X) — ah(U, X)} + h(Z, X){T(U,Y) — ah(U,Y)}.

§2. Projective hypersurfaces

Let 7 : R"*2 — {0} - P"*! be the natural projection where P"*! is a projective
space of dimension n+1. Let F be an immersion of an n-manifold M into P71, Then,

locally, there is an immersion f of M into R"®*2 — {0} such that 7. f = F. We call f
a local lift of F' and use the notation F' = [f]. Another local lift g is written as g = ¢ f
for some nonzero scalar function ¢. In this section we want to obtain relations of the
invariants for f and those for g and, thereby, to find out what invariants can be attached
to the immersion F.

We first consider the relationship between f, and g,. Since

Dxg=Dx(¢f) =(X¢)f +¢Dxf,

we have

X = (X¢)nf(z) + ¢fi X = X(log 96)7?9(:) + ¢fe X

where f,X € T,e(:,,)R""'2 is considered to be in f!“!,(z)R""'2 by parallel translation. For
the moment we write 74 for 7|,(;) and 5 for 5|5(,). Then

(2.1) 9 X =0(X)ng + ¢fu X

where ¢ = dlog$. The quantities for g are denoted with “~”. We get the following
formulas with respect to the immersions (f,£,7) and (g,&,7,):

(2.3) T(X,Y) = Hesslvog SXY) = o(X)o(Y) + T(X,Y)

(2.4) " R(X,Y) = $h(X,Y)



where
Hessf(’)g 6= Hessian of log ¢ = Vo.

The proof is straightforward by calculating

Dxg.Y = Dx{o(Y)ng + ¢£.Y}
= X(o(Y))ng + o(Y)g. X + X(¢)f.Y + ¢Dx fuY
= X(U(Y))"?_q +0(Y)g. X + o(X)(g.Y — o(Y)ny)
+ H{T(X,Y)n+ fuiVxY + h(X,Y)E}

which, on the other hand, should be T(X,Y)n, + g.(VxY) + h(X,Y)¢.
Similarly, by the identity

Dx&=p(X) - f,SX + r(X)¢
=p5(X)ng — 9.5X +T(X)¢,

we have
(2.5) T=r1
(2.6) #7(X) = p(X) + o(SX)
(2.7) ¢S =S
Moreover we can see that _
6 = ¢"He.

Hence, the conformal class of h is preserved and, if f is equiaffine, i.e. 7 =0, then g is
also equiaffine relative to the same &.

Let R denote the curvature tensor of V and let 4 and 7 be the normalized (i.e.,
divided by n — 1) Ricci tensors of V and V, respectively. We see

R(X,Y)Z = R(X,Y)Z + (Vxo)(2)Y - (Vyo)(2)X + o(Y)o(2)X — o(X)o(2)Y

and
X, Y) =9(X,Y) = {(Vxo)(¥) = o(X)a(Y)}.

Hence we get

(2'8) T(X, Y) +7(X, Y) = T(X, Y) +7(X’Y)'

Assume that h is nondegenerate and that {f,£{} is a pre-normalized Blaschke im-
mersion. Then the immersion g has a similar normalization. Let £ be an associated
vector field which can be written as

M=¢+an, +g,U.

9



By computation, we see that the identities
A=, $h(U,X)=0(X), 2a+0o(U)=0

determine £. Let (6’,7:,.5‘, T, p) be the data for . They are given by the following
formulas:

(2.9) VxY =VxY 4+ o(X)Y 4+ o(Y)X - ¢h(X,Y)U
(2.10) A(X,Y) = *h(X,Y)
(211) T(X,Y)=T(X,Y)+ (Vxo)¥Y)-a(X)o(Y) - adh(X,Y)
(2.12) $’8X = SX — agX — ¢{VxU + o(X)U +o(U)X} + ¢*h(U, X)U
(213)  ¢*B(X) = p(X) + a(SX) + ¢X(a) - ap?h(U, X)
+¢{(Vxo)U — o(X)o(U) + T(U, X)}

We define a quadratic form 7 by
(2.14) T(X,Y)=T(X,Y) + h(SX,Y).

Then we can prove easily the following formulas:
Proposition 2.1.

(1) C = ¢*C.

(2) T(X,Y)=T(X,Y) + ¢C(U,X,Y).

§3. Dual mappings

In this section, we define the dual mapping of a given immersion and discuss its
elementary properties. We assume the nondegeneracy throughout the section.

Let R,42 denote the dual vector space of R®*2 and n* the radial vector field of
R, 4+2. We define two mappings v and w from M into R, 42 by associating to each point
z two linear functions v(z) and w(z) on TI(I)R"+2, which is identified with the vector
space R"*2 as follows:

v(z}€s(r)) =1, v(z)(ng)) =0, and o(z)(fuX)=0 for all X € T; M,
w(z)(€5(z)) =0, w(z)(npz)) =1, and w(z)(f.X)=0 for all X € T, M.

Lemma 3.1. The derivatives of the mappings v and w are given as follows:

(Dxv)(€) = —(X) (Dxw)(&) = —p(X)
(Dxv)(n) =0 (Dxw)(n) =0
(Dxo)(f¥) = —h(X,Y)  (Dxw)(f.Y)=-T(X,Y).
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The nondegeneracy of h implies that the mapping v defines an immersion, because
from the assumption v,Y = Dyv = 0 follows Y = 0 by the identity (Dxv)(f.Y) =
—h(X,Y). Since v(f.X) = 0 and since Dy v is nonzero, the vector field * is transversal
to the mapping v. Since w(n) =1 and Dxv(n) = 0, the vector field w is also transversal
to the mapping v. Because of the definition two vector fields v and w are linearly
independent. So, the mapping v defines a centroaffine immersion of M. The pair {v, w}
is called the dual mapping of {f,£}. The following set of equations

.Dx‘q* =U.X
(3.1) Dxv,Y =T"(X,Y)n* + v.(VXY) + " (X, Y)w
Dxw = p*"(X)n* —v.(5*X) + ' (X)w.

defines the objects V*, h*, T*, S*, p*, and 7* for the dual mapping v.

Lemma 3.2.

T*(X,Y) = —h(8X,Y) + 7(X)r(¥Y) = (V7))
R*(X,Y) = h(X,Y)
Z(W(X,Y)) = H(V2X,Y) + h(X,VLY) + 7(Y)R(X, Z).

Proof. These formulas are obtained by differentiating the three equations on the left-
hand side of Lemma 3.1. For example,

0= X {(v.(¥))&) +7(¥)}
= Dx(v,Y)(§) + (2.Y)(Dx€) + (Vi 7)(Y) + 7(VxY)
= (T*(X,Y)n" +v.(VxY) + I*(X,Y)w) ()
+(0.Y) (p(X)n = £.5X + 7(X)E) + (Vx7)(Y) + 7(VxY)
= {T"(X,Y) - r(Vx¥)} + {A(SX,Y) - 7(X)r(Y)}
+(Vx7UY) +7(VxY)

shows the first formula. The other two are derived likewise.

Similar computation shows

Lemma 3.3.
p*(X) = —p(X) — 7(5"X)

™(X)=0
R(S*X,Y) = -T(X,Y).

Recall the definition of 7 and define 7* by
X, Y)=T"(X,Y)+R*(S*X,Y).

11



Proposition 3.4.
(1) T(X,Y)+ T*(X,Y) = 7(X)r(Y) = (VX))
(2 CY(X,Y,2)+ C(X,Y,Z) =1(X)h(Y,Z)+ r(Y)h(Z,X) + 7(Z)h(X,Y).

Proof. The identity (1) follows from Lemma 3.2 and Lemma 3.3. We prove (2). By
definition, we have

C(X,Y,2)=X(h(Y,2)) - iVxY,Z)- h(Y,Vx2Z)+ 7(X)h(Y, 2).
Since h* = h and * = 0, we obtain
C*(X,Y,Z)= X(h(Y,2)) - h(VXY,Z) - h(Y, V% 2).

Hence the sum of these equations gives the formula in view of the third identity of
Lemma 3.2.

We remark here that when 7 = 0 the formulas take simple forms; in particular, two
connections V and V* are conjugate to each other:

(3.2) X(h(Y, Z)) = h(VxY, Z) + h(Y, V% 2).

This is a well-known relation in affine surface theory (see [DNV]).

Let us next consider the dual of the dual: denote by (p, ¢) the dual of (v, w). It is
determined by

p(w) =1, p(v)=0, and  p(v.X)=0
g(w) =0, q(v) =1, and g(v. X) =0.

If we put p; = angz) + fuz(V) + b4z, then @ = p(w) = 1, b = p(v) = 0, and
p(v,X) = —h(X,V) - br(X) = —h(X,V); since h is nondegenerate, V = 0. Thus p, =
Nf(z) = f(2). Similarly, we see gz = {z+f,.V, where V is defined by h(X, V)4+7(X) = 0.
Therefore, the dual mapping of the dual is the same as the original immersion while the
transversal vector field changes a little depending on 7.

Let F be an immersion of M into the projective space P"*! and f a local lift of F:
[f] = F. The dual mapping v is associated with a transversal vector field £. The dual
mapping v’ associated with another vector field ¢' = (¢ + an + f.U)/ X differs from v by
v' = M. Hence, [v] = [v'] as mappings into the dual projective space Ppy;. Let g be
another choice of local lift of F; then, g = ¢f for a nonzero scalar function ¢. In this
case, the dual mapping v, for {g,£} is equal to v. So, we can define the dual immersion
F*.of F by F* = [v]. The discussion in the previous paragraph says that (F*)* = F.

We say that the pair {f,£} is affinely selfdual if f = Av for a linear isomorphism
A of R4 with R"2. We say that the immersion F = (f] is selfdual if F = AF* for a
projective linear isomorphism A of P4y with P*+2,
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For both cases, denoting by <, > the dual pairing of R"*2 and Rp42, we have
< f,A7 1 f>=< fu>=0.

This proves

Proposition 3.5. The image of an affinely selfdual (nondegenerate) centroaffine im-
mersion lies in a quadratic cone, that is, a cone over a quadratic hypersurface in an
affine hyperplane not passing through the origin. The image of a selfdual (nondegener-
ate) projective immersion is part of a nondegenerate quadratic hypersurface.

§4. Projective flatness and umbilicity

Two torsion-free affine connections V and V' are said to be projectively equivalent
if there is a 1-form ¢ such that

VY = VxY +o(X)Y +o(Y)X.

If o is closed, we say that V and V' are projectively equivalent in a sironger sense. The
connection V is said to be projectively flat if it is projectively equivalent to a flat affine
connection.

Let us recall the definition of the projective curvature tensor of a connection V ([E,
p.97]). Put
WI(X: Y)Z = R(X1 Y)Z - {7(Y: Z)X - 7(X: Z)Y}a

where v(X,Y) = Ric(X,Y)/(n - 1) and

2
n? —1

Wy(X,Y)Z = (A(Y, 2)X — A(X, Z)Y) + ;%TA(X, )z,

where 1
AX,Y) = 3 (Ric(X,Y) — Rie(Y, X)).
Then the projective curvature tensor W is defined by
W(X,Y)Z =W (X,Y)Z + Wa(X,Y)Z.

If V has symmetric Ricci tensor, W2 = 0 and hence W = W;.

If two affine connections V and V' are projectively equivalent, they have the same
W. 1t is known that V is projectively flat if its projective curvature tensor W is
identically zero when n > 3.

13



Denote by S° the traceless part of S: §° = § — (trS/n)I. Then the identities (1.3)
and (1.9) show

(4.1) Wi(X,Y)Z = h(Y, Z)S°X — h(X, Z)S°Y
+ n—i—l{h(S"Y, 2)X — h(S°X, 2)Y},
(4.2) Wy(X,Y)Z = —— [{h(5°2,Y) - h(S°Y, Z)} X

n2—1
—{h(8°Z,X) - h(S°X, Z)}Y]

1 o 0
+ WSV, X) ~ H(S°X, Y)} 2.

We prove

Theorem 4.1. Let n > 3. The connection V is projectively flat if and only if either
(1) h=0,0r (2)rank h=1and S°=v-J on kerh, or (3) S°=0.

Proof. First, we show the only-if part. When (1) or (3) occurs, W vanishes trivially.
We assume the case (2). Let Y € ker h. Then

Wi(X,Y)Z = —vh(X, Z)Y — ;—1—1h(S°X, Z)Y

1

Wa(X,Y)Z = ————(h(5°Z, X) - h(S°X, 2)}Y.

n?

If X €kerhor Z € kerh, then W =W, + Wy, =0. Let X = Z ¢ kerh; then Wy = 0.
Write S°X = AX mod ker h; then, since tr§? = A + (n — 1)v = 0, we have W; = 0.
Hence W = 0.

Second, we prove the converse statement. Assume W = 0 and rank h = 1. Let
{X1,-+, X} be a basis such that h(X;,X;) = +1 and {Xy, -+, X} generates ker h.
When Z =X; and X #Y € {Xs,---,X,}, possible because n > 3,

Wi (X,Y)Z = nL_l{h(s"yz X1)X — h(S°X, X1)Y},
1
n2 -1

Hence, W = 0 implies h(S5°X, X;)Y = h(S°, X)X and h(S°X, X;) = 0 because X and
Y are linearly independent. Namely, we see S°(ker h) C kerh. When X = Z = X, and
Y € ker h (accordingly, S°Y € ker h), W5(X,Y)Z = 0 and

Wi(X,Y)Z = —h(X1, X,)S°Y - n—i—ih(s"Xqu)Y-

Wa(X,Y)Z = (h(5°X, X1)Y - h(S5°Y, X1)X}.
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Therefore, S°Y = vY where v = —h(5°X}, X1)/(n—1)R(X;, X1), which shows the case
(2).

Assume next rank h > 2and W = 0; wesee S°® = 0. Let { Xy, -+, X7, Xr41,-+ -, Xn}
be a basis such that {Xy4+1,--, X} generates ker h and h(X;, X;) = £6ijfor 1 < 4,5 <
r. Whenr >3 and X #Y # Z # X arein {X;, -+, X,},

Wi(X,Y)Z = n—_—l_——l{h(.S"’Y, 2)X — h(§°X, Z)Y),

= {h(S°2,Y) - h(S°Y, Z)}X

1
n? -1

1 0 -]
+ (RS, X) — h(5°X, Y)} 2.

Wi(X,Y)Z = —

{(h(8°2,X) - h(S°X, Z)}Y

Hence, when W = 0, the coefficient of Z says h(S°Y, X) = h(S°X,Y) and, so, W, = 0;
then the coefficient of X in W) implies h(S5°Y, Z) = 0.

WhenY # Z € {X;, -, X;} and X € {X,41, -, X, }, we have

Wi(X,Y)Z = ;—i—l-{h(S"Y, 2)X — h(S°X, Z)Y},

= ~{K(S°2,Y) - h(S°Y, 2)} X

1 . 1 .
+ T h(S° X, 2)Y - —h(5°X,Y)2.

Wo(X,Y)Z =

n?

The coefficient of Z shows h(S°X,Y) =0, i.e., S°ker h C ker h. Then the coefficient of
X vanishes:

1 o 1
h(S°Y, 2) + ——

{(h(5°2,Y) - h(S°Y, 2)} =0,

n-—1

from which it is easy to see h(S°Y, Z) = 0 also in this case. Hence we have seen that
there exist scalars v; such that

(4.3) S°X;=v;X; modkerh, 1<:<r.
Now let both Y = Z and X belong to {X;,::-, X;}. Then, W3 =0 by (4.3) and

Wi(X,Y)Z = h(Y,¥)5°X + ﬁh(S"Y, Y)X.

Hence, vj +vj/(n~1) = 0for ¢ # j. Since n > 3, it is easy to see v; = 0. Then, W; =0
implies now $°X =0, i.e.,, S°=0o0n {X;, -+, X,}.
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Consider finally the case where Y = Z € {X,,--+,X} and X € {Xr41, -+, Xn}.
We have W, = 0 and Wy (X,Y)Z = h(Y,Y)S°X. Hence S° = 0 also on {X,41,: -, Xg}.
This ends the proof.

Remark that the proof is the same as that of Theorem 5 of [NP3] when Ricci
curvature is symmetric.

We say the immersion f is umbilical relative to € if $° = 0, i.e., S = vI for some
scalar function v.

Lemma 4.2. Assume S =v] and n > 2. Then

(1) dr =0.

(2)dv—-vr+p=0.

(3) a(é + vn) is a constant vector where a is defined (locally) by 7 ='—dlog a.

Proof. (1) follows from the identity (1.8). For(3), it is enough to check

Dx(€+vn)=(p(X)n—SX + (X)) + X(v)n +vX
= 7(X)(§ +vn).

The assumption S = v implies VxS = (Xv) -I. Then, by (1.6),
{X(v) = vr(X) + p(X)}Y = {Y(v) - vr(Y) + p(Y)} X.
If n > 2, (2) follows.

Theorem 4.3. Assume the immersion f is umbilical. Then each 2-dimensional linear
subspace spanned by 7, and £; contains a fixed line through the origin; in other words,
each projective line through [f(z)] in P™*! in the direction of [£,) passes through a
fixed point.

Proof. Put y = f(z) + A + pun. Then we get
Dxy = (p(X) 4+ Xp)n +(X = ASX + pX) + (XX + Ar(X))E.
Letting 4 = Av — 1 and using (2) of Lemma 4.2, we check
Dxy = (XX + Ar(X)) (£ + vn).
Puta=a(f+vg)andw = a~(dr + A7). Then we obtain
Dxy =w(X)- a,
which proves the conclusion.
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Remark. Our method in this paper makes it possible to recapture Proposition 8 in
[NP3] without the assumption of equiprojectivity.

§5. Uniqueness theorems

In this section we are going to establish a number of uniqueness theorems for
centroaffine immersions M — R"*? — {0} and for immersions M — P"*1,

Consider two immersions fi: M- R"+‘2 — {0}, ¢ = 1,2, with transversal vector
fields £*. We have two sets of invariants (V!, h!, TV, S*, p*, 7'). We say that f! and f? are
affinely (resp. projectively) equivalent if f! = Af? (resp. if [f*] = [Af?]) for a general
linear transformation A in GL(n + 2, R).

A preliminary uniqueness theorem is stated as follows.

Lemma 5.1. Assume V! =V? A = 2, T =72, 81 = 82, p! = p?, and 7! = 2.
Then f! and f2 are affinely equivalent,

We follow the patterns in (D} and [O] to prove the following.

Lemma 5.2. Assume V! =V? =V, k! = h2 =th, and T! =T? = T. If rank h > 2,
then f! and f? are affinely equivalent.

Proof. From the equation (1.5),

(Vxh)(¥,2) = (Vyh)(X, Z) = T (Y)h(X, 2) — T/ (X)h(Y, 2)
= r3(Y)h(X, 2) - T} (X)h(Y, 2).

g

Hence, for 7 := 7! — 72

, we get
r(Y)h(X, Z) = 7(X)h(Y, Z).

Then, the assumption rank h > 2 implies 7 = 0 by Lemma 1.2. Similarly, for p := p! —p?,
the equation (1.4) shows
p(Y)h(X, Z) = p(X)h(Y, Z)

and we get p = 0. Lastly, for §:= S — §2, the equation (1.3) gives
h(Y,Z)SX = h(X,Z)SY
which implies S = 0. Hence the equivalence follows from Lemma 5.1.

We shall further prove

Lemma 5.3. Assume V! = V2, Al = \h?, and T! = T2 — ah?, where a and X are
scalar functions and X is nonzero. If rank h! > 2, then f! and f? are affinely equivalent.
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Proof. Put £% = (£2 ~ an)/\. Then relative to £ we see
h2' - /\hz, T?l — T2 _ ahZ v = v2;

hence, we can apply Lemma 5.2.
The assumption of Lemma 5.2 can be modified to yield projective equivalence:

Lemma 5.4. Assume

VLY = VAY +o(Y)X + o(X)Y
THX,Y) =THX,Y) +(Vxo)(¥) — o(X)o(Y)
RY(X,Y) = AR (X,Y)

where ) is a nonzero scalar function and ¢ is a closed 1-form. Then f! and f2 are
projectively equivalent.

Proof. Let ¢ = dlogu locally and consider the immersion ¢ = uf? with the same
transversal ¢2. Then

VLY = ViY + o(Y)X + o(X)Y
TX,Y) =THX,Y) + (Vxo)(¥) — o(X)o(Y)
RI(X,Y) = uh*(X,Y).

Hence V! = V9, T! = T9, and k! = (A\/u)h?. Apply Lemma 5.3 to f! and g to obtain
the result.

Now we can drop the condition on 7. We prove

Proposition 5.5. Let n > 3. Assume V! = V2 =:V and h? = h? =:h. If rank h > 2,
then f! and f? are affinely equivalent.

Proof. Let us recall that the projective curvature tensor W is the sum of two tensors
W, and W, which have expressions given in (4.1) and (4.2). The right-hand side of W
has two expressions, one using $'° and the other using $2°. Hence, for $° = S—(trS/n)I
where S := S! — §?, we see

h(Y,Z)S°X — h(X, 2)S°Y + ;—i—-l-{h(s"}’, Z)X — h(S°X, Z)Y}

1
n? —1

+ [{R(S°Z,Y) — h(S°Y, Z)} X — {h(S°Z, X) — h(8°X, Z)}Y]
1 '] o .
+ 7 A5V, X) — h(S°X, ¥)} Z = 0
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Since rank h > 2, the argument in the proof of Proposition 4.1 works and we have
S° =0, i.e., S = sl for a scalar s. Now, the equation (1.3) implies, for T := T? — T2,

sh(Y, 2)X — sh(X, 2)Y — T(Y, Z2)X + T(X, Z)Y = 0.

Hence, T(Y,Z) = sh(Y,Z). Take £¥ = &% — sn; then, T¥ = T? 4 sh by (1.12) and
S% = 82 4 sI by (1.16). This means, in particular, T' — T? = 0 and we can apply
Lemma 5.2.

Theorem 5.8. Let n > 3. Given two centroaffine immersions f! and f?, M —
R™t? _ {0}, assume that the induced connections V! and V? coincide and that k! and
h? are conformal and of rank > 2. Then both immersions are affinely equivalent.

Proof. By scaling ¢? by an appropriate nonzero factor, we can reduce the case to that
of Proposition 5.5 in view of (1.11) and (1.13).

Theorem 5.7. Let n > 3. Assume V! is projectively equivalent in a stronger sense
to V2 and h! is conformally equivalent to h%. If rank A! > 2, then f! is projectively
equivalent to f2.

Proof. By scaling f? by an appropriate scalar, we can reduce the case to that in the
previous proposition.

Two theorems above can be further generalized. We consider a pair (V, k) which
arises from an immersion f : M — R""? — {0} together with a transversal vector field
¢. In the set of all such pairs (V, k) associated to all immersions M — R"*? — {0}, we
define an equivalence relation: (V,h) ~, (V', ') if there exist a vector field U and a
function A # 0 on M such that

(5.1) VLY = VY — h(X,Y)U and h'= Ak

It is easily checked that, given f: M — R"t? — {0}, we get a equivalence clase [(V, k)],
independently of the choice of £.

Theorem 5.8. Let n > 3. Two immersions f!, f2 : M — R"*? — {0} of rank > 2
are affinely equivalent if and only if the equivalence classes [(V?, h1)], and [(V?, h?)],
for f1 and f? coincide.

Proof. See the equations (1.11) and (1.13).

Given two immersions F1,F? : M — P*! we shall say that F1 and F? are
projectively equivalent if there is a projective transformation A of P"*+! such that F? =
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A.Fl. In this case, any lift f! of F! and any lift f? of F? are projectively equivalent
defined in the sense we defined in the beginning.

Given an immersion F: M — P"*! we consider a pair (V, k) which arises from
the choice of a lift f : M — R"? — {0} together with a transversal vector field ¢. In
the set of all such pairs (V, k) associated to all immersions M — P! we define an
equivalence relation: (V, h) ~, (V’, h') if there exist a closed 1-form o, a vector field U,
and a function A # 0 on M such that

(5.2) VY = VxY +0(X)Y +o(Y)X —h(X,Y)U and &' =Ah.

It is easily checked by (1.11) and (2.2) that, given F : M — P™*! we get an equivalence
class [(V, h)], independently of the choice of {f,£} representing F. We define the rank
of F' as the rank of h. We can now state

Theorem 5.9. Let n > 3. Two immersions F1, F?2 : M — P"*! of rank > 2 are
projectively equivalent if and only if the equivalence classes {(V', h!)], and [(V?, h?)],
for F! and F? coincide.

Remark. Formula (5.2) appears in [NP3], (44), as well as in [S].

§6. Immersions with VA =0

In affine hypersurface theory a well-known theorem of Pick and Berwald can be
formulated as follows. If a nondegenerate hypersurface has vanishing cubic form, then
it lies in a quadric. In this section we shall obtain a result of this type for centroaffine
immersions M — R"*2 _ {0},

Lemma 6.1, Assume rank h > 2 and R(X,Y)h =0. Then dr =0 and 7 = Hh, i.e,
h(SX,Y)+ T(X,Y) = H h(X,Y) for some scalar function H.

Proof. By the assumption, we have
MR(X,Y)Y,Z2)+ h(Y,R(X,Y)Z)= —-(R(X,Y)R)(Y,Z)=0.

Then from (1.3) we have
(6.1)
R(Y,YYR(SX,Z) - h(X,Y)R(SY,Z)+ T(X,Y)r(Y,Z) - T(Y,Y)h(X, Z)

+ h(Y, 2)h(SX,Y) - h(X, Z)R(SY,Y)+ T(X, Z2)h(Y,Y) - T(Y, 2)h(X,Y) = 0.
Let {Xy, -+, Xr, Xr41, "+, Xn} be a basis such that {X,4+;,--,X,} generates kerh
and h(Xj;, X;) = €iij, ¢ = £1,for 1 < 4,5 <r. Let 1 <j<randl <i<n with
i #j. By setting X = X;, Y = Z = X}, (6.1) implies
(6.2) hSXi, X;)+T(X:i, X;)=0.
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Next,let r+1 < j<randl1<i<nwithi# j Choosek, 1<k <r, k#1(which
is possible by virtue of the assumption rank A > 2). By setting X = X;, Y = Xy and
Z = X, (6.1) again implies (6.2). Thus (6.2) holds for all 1,5 (i # ).

Nowlet 1 <i,j<n,i#j Ifweset X=2=X;,Y = Xj, then (6.1) leads to

h(X;, X {h(8X, Xi) + T(X;, Xi)}
(6.3) = h(X,',X,'){h(SXJ',X_,‘) +T(XJ',XJ')} for 1<t,5<r
R(SX:, X))+ T(Xi,Xi)=0 for r+1<i1<n,

(6.2) and (6.3) together imply
«T(Xi, Xi) = T(X;,X;) and  T(Xi,X;) =0 (i #5)

Hence, there exists a function H such that 7(X;, X;) = H h(X;, X;) for any ¢,j. This
proves the conclusion.

Lemma 6.2, Assumerank A > 2, VA =0, and n > 2. Then

dH +2p =0.

Proof. Under Vh = 0, (1.5) becomes 7(X)h(Y,Z) = 7(Y)h(X, Z); this implies 7 = 0
by Lemma 1.2. Since Vh =0, we have R(X,Y)h =0 and

(6.4) R(SX,Y)+T(X,Y)=HKX,Y)

by Lemma 6.1. Differentiating this equation and using the assumption Vh = 0, we get
h((V£8)X,Y)+(V4T)X,Y)=(ZH)h(X,Y).

On the other hand, (1.4) and (1.6) imply

R(V4S)X,Y) + p(Z)H(X,Y) = h(VxS)Z,¥) + p(X)A(Z,Y)
(V4T)X,Y) + f(D)R(X,Y) = (VxT)Y, Z) + (X )h(Y, 2)

Hence, from the last three equations, we get
Z(Hh(X,Y)+2p(Z)MX,Y) = X(H)R(Y, Z) + 2p(X)h(Y, Z).
This identity implies the result by Lemma 1.2.
We define for each z € M a quadratic cone through z by the following equation:
Q. ={a(z+U +pé)| AUU)+Hu?-2u=0, a€R*}.
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This is an analogue of Lie’s quadrics ([B], p.228-9). We now prove

Theorem 6.3. Assume the immersion M — R™*% — {0} satisfies that rank k > 2,
Vh =0, and n > 2. Then the image lies on a quadratic cone.

Proof. Fix a point y € R"*? — {0}. For each z € M, y can be written as
y=o(z+ U+ pf).

Suppose y € Qz,. Then, if we can show y € Q; for every z, the proof is complete. To
see this we compute D xy by using the fundamental equations. The result is

Dxy = a{X(loge) + T(X,U) + up(X)}n
+ a(X(loga)U + X + VxU — uSX)
+ {X(loga)u + h(X,U) + X pu}é.

Note here that r = 0. On the other hand, since y is fixed, we have Dxy = 0; so,
T(X,U) = - X(loga) — pp(X)

VxU =puSX — X — X(loga)U
h(X,U) = —uX(loga) — X p.

Using these equations, we get

RV xUU)Z = h(uSX — X — X(loga)U,U)
= ph(SX,U) - h(X,U) = X(loga)h(U,U)
= p(Hh(X,U) - T(X,U)) - h(X,U) — X(loga)h(U,U)
= p{X(loga) + up(X)
+ (Hu - 1){-pX(loga) - Xpu} — X(loga)h(U,U)
and, hence,
X(h(U, U)+H? - 24)
= 2h(VxUU)+ XH p? +2HuX pu - 2Xpu
= 2X(loga){p — (U, U) — u(Hp — 1)} + (2p(X) + X H) .
Therefore, by Lemma 6.2,
X(h(U,U) + Hy? - 2u) = —2X (loga)(h(U, U) + Hu? - 2u)

this implies that a?(h(U, U)+ Hu? —2p) is constant. Since it is zero at z = 74, we have
R(U,U)+ Hp? - 2u = 0.
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Lemma 6.4, Assume the cubic form C vanishes and rank A > 2. Then dr = 0 and
R(X,Y)r =0.

Proof. The assumption C = 0 means (Vxh)(U,V) = —7(X)h(U,V). Hence,

(VxVyh)(U, V) = X{(Vyh)(U,V)} = Vyh(VxU, V) = (Vyh)(U, Vx V)
= X(=7(Y)R(U, V) + 7(¥)R(VxU, V) + 7(Y)h(U, Vx V)
= ~X(r(Y)A(U, V) = 7(Y){(Vxh)U,V)}
= {r(X)r(Y) - X(r(Y)}r(U, V).

Similarly,

(VyVxh) U, V) = {r(X)r(Y) - Y(r(X))}R(U, V),
(VIX,Y]h)(Uv V) = _T([X: Y])h'(U'l V)

Therefore, we get

(R(X,Y)R)YU, V) = {Y(7(X)) = X(r(Y)) + 7([X, Y])} (U, V)
= —dr(X,Y)h(U, V).

Then the identity (R(X,Y)R)(U, V) + h(R(X,Y)U,V) + (U, R(X,Y)V) = 0 implies

{r(X,SY) - h(Y,SX)}n(U,V)
= h(Y,U)h(SX,V) — h(X,U)h(SY, V) + T(X, U)h(Y, V) — T(Y,U)h(X, V)
+ h(Y, VR(SX,U) - h(X, V)R(SY,U) + T(X, V)A(Y,U) — T(Y, V)h(X, U).

Let {X;, -, X,,X;41, ", Xn} be a basis as in Lemma 6.1. For any 1 < i < r,
1<j<n,i#j byletting X=X;andY =U =V = X, we get

h(X;, 8Xi) — h(Xi, SX;) = 2{h(5X;, Xi) + T(X;, Xi)}.
Assuming further 1 < j < r and interchanging ¢ and j, we have

h(Xi, SX;) — h(X;, SXi) = 2{h(SX:, X;) + T(X:, X;)}.
Since T is symmetric, the difference implies
(6.5) h(X;,5Xi) - h(X;,$X;) =0
for1<t,j<r.
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Nowforr+1<i<n,1<j<n,i#j takel <k <r, k#j Byletting X = X,
Y =X,;, U=V = X, we obtain

h(X;, SX;) — h(X;i, §X;) =0.
This proves (6.5) generally; hence dr = 0 by (1.8).

Corollary 6.5. Assume the cubic form C vanishes and rank A > 2. Then the image
lies on a quadratic cone.

Proof. If C =0, then 7(X)A(Y,Z) = 7(Y)h(X, Z) by (1.5). Lemma 1.2 implies 7 = 0
and, then, Vh = 0. Theorem 6.3 proves the result.

Corollary 6.6. Assume the immersion M — R"*? — {0} satisfies the condition h|C,
namely

C(X, Y, Z) = (X, Y)A(Z,U) + KY, Z)K(X, U) + h(Z, X)h(¥, V).
Then the image lies on a quadratic cone.

Proof. Proposition 1.7 implies that we can assume C = 0 by a rechoice of a transversa!l

field ¢.

§7. Immersions with VT' =0
In this section we prove a result (Theorem 7.3) which is an analogue of Theorem 6.3.

Lemma 7.1, Assume rank k > 2. Then the condition R(X,Y )T = 0 is equivalent to
the condition T(SX,Y) = kh(X,Y’) for some scalar function k.

Proof. The condition R(X,Y )T = 0 implies
T(R(X,Y)U,V)+ T(U,R(X,Y)V)=0.
Hence, by (1.3) and by the symmetry of T, we have
A:=h(Y,U)T(SX,V) - h(X,U)T(SY,V)+h(Y,V)T(SX,U) - h(X,V)T(SY,U) = 0.

Let {Xy, ', Xy, Xr+1, ++, Xn} be a basis as before. Suppose j # k and at least one of
them isin {r+1,.-.,n}. Choose 1 £ i< r,i# 7,k Byletting X =X;Y =U = X,
V = X4, we obtain T(SX;, Xi) = 0. Suppose j # k and both in {1,--+,r}. By letting
X = Xj, Y =U =V = X;, we obtain T(SXj,Xk) = 0.

Next, assuming j # k,let X =V =X, Y = U = X, we get
h(Xj, X;)T(SXx, Xk) — h( Xk, X&)T(SX;, X;) = 0.
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Hence we see T(SX,Y) = kh(X,Y). The converse can be seen by showing A = 0 under
this condition.

Lemma 7.2. Assume VT =0, T(SX,Y) = kh(X,Y), and rank k > 2. Then
dlogk = 2r.

Proof. By differentiating T(SX,Y) = kh(X,Y), we get
T(X,(V4z8)Y)=Z(k)h(X,Y) + k(VzR)X,Y).
By interchanging ¥ and Z and by taking the difference, we get
T(X,(V48)Y - (VyS5)2Z)
= Z(k)(X,Y) =Y (k)h(X,Z) + k{(Vzh)(X,Y) — (Vyh)(X, 2)}.
Then equations (1.5) and (1.6) imply
{Zk = 2k7(2)}A(X,Y) = {Yk - 2kr(Y)}R(X, 2).
This implies the formula by Lemma 1.2.

Theorem 7.3. Assume the immersion M — R"*? — {0} satisfies that rank h > 2,
VT =0, and n 2 2. Then the image lies on a quadratic hypersurface or on an affine
hyperplane.

Proof. By the assumption we have from Lemmas 7.1 and 7.2
D)p=0, (2)T(X,SY)=kh(X,Y), and (3)dlogk=27

The first one follows from (1.4). We define a quadratic form g, on each tangent space
Tjz)R"*? as follows:

(4) gz(m,n) =1 (8) z(fsX,m)=0  (6)gz(§,n) =0
(7) 9:(€, fo X) =0 (8) 9:(&,€) = -k (9) gz(fe X, fiY)=-T(X, Y)

If we can see that ¢ is D-parallel, then the proof is complete because the equation (4)
represents a quadratic hypersurface or an affine hyperplane. The fact Dxg = 0 is seen
by simple computation. For example,

(Dx9)(fiY, fu2)
= —q(Dx(f+Y, fu2) - ¢(f.Y,Dx f.Z2) — X(T(Y,Z)) by (9)
= —¢(T(X,Y)n+ f.VxY + h(X,Y )¢, f.Z)
- fY,T(X,Z)n+ f,VxZ + h(X, Z)¢)
- {(VxTXY,2)+ T(VxY,2) + T(Y,Vx 2)}
=0 by (2) (5) (7) and (9).
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Remark. If T = 0 in Theorem 7.3, then also k¥ = 0; hence the quadratic form ¢ is
of rank 1 and the hypersurface ¢ = 1 is an affine hyperplane. See Proposition 1.3.
In general, at a point where k # 0 and h is nondegenerate, the quadratic form T is
nondegenerate; hence the quadratic hypersurface is also nondegenerate.

The meaning of Theorem 7.3 may become clearer if we start with a quadratic form ¢
and assume that a centroafine immersion f : M — R"™? — {0} is contained in the
quadratic hypersurface ¢(n,n) = 1, i.e. (4). Then (5) holds. By choosing £ satisfying
(6), (7) and (8), we can see that these conditions imply (9) and thus lead to VT = 0.
Namely, f(M) contained in the quadratic hypersurface (4) satisfies VT = 0.
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