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Disks D", spheres S" , and Euclidean spaces R" are among the most important
manifolds to deal with in the study of smooth actions of compact Lie groups. Here are some

reasons which make them outstanding.

(i) D", " and R" are homologically simple. In particular, the celebrated Smith
Theory can be applied to smooth actions of a torus, a finite p—group or its extension by a

torus.

(ii) D® S" and R™ admit linear actions which are among the simplest and most

natural examples of smooth actions.

(iii) Unlike manifolds not admitting smooth compact Lie group actions, D", S" and
R® are among manifolds with the highest degree of symmetry, so that one expects a varie-

ty of smooth actions on these manifolds.

(l)This research was carried out during a visit to the Max—Planck—Institut fiir Mathe-
matik in Bonn whose financial support and hospitality is gratefully acknowledged by the
author. The author also wish to thank M. Grau for her beautiful job of typing the
manuscript.



Here, a natural approach is to compare the geometric behavior of general smooth
actions with the geometric behavior of linear actions. There is a number of regularity theo-
rems which assert that, to some degree, smooth actions satisfying some regularity condi-
tions resemble linear actions (see, e.g., the paper of Hsiang [H] for an excelent survey of
related results). On the other hand, during the pzist twenty years, a number of authors
have constructed many examples of smooth actions showing that the regularity theorems
fail in general. Therefore, one may ask to what extend smooth actions can differ from linear
actions. The goal of this paper is to deal with some related specific problems.

In Section 1, we state nine related problems. For linear actions, the answers to all
quoted problems are affirmative. In Section 2, we collect first examples of smooth actions
which provide negative answers to some of the problems. In Section 3, we discuss some
results obtained by the author which allow us to give further negative answers. In Section
4, we construct new exampes of smooth actions which give negative answers to all of the

problems.

Section 1

Let G be a compact Lie group and let M be a smooth manifold. We are interested
in smaaik aclians of G on M ;i.e. smooth maps

GxM—M, (gx)—igx
fulfilling the following two conditions.

(1) ex=x forall x €M and the neutral element e € G .
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(2) g(hx) = (gh)x forall x€M and gh€G.

The simplest and most natural examples of smooth actions of G on R" are neze

adZans i.e., actions given via linear representations p : G —— GL{n,R) by the formula
G xR* —R", (gx)— p(g)"x .

A linear action of G on R" is also called a representation of G on R™ . The existence of
a positive definite inner product on R® , invaﬁant under a given linear action of G,
allows us to assume that the action of G on R" is aﬁafaaa/ ; i.e., it is given via an
orthogonal representation p : G — O(n) . Clearly, such an action restricts to an ortho-

Sn_l

gonal action of G on D", as well as on and on

S [0,1] 2 {x ER®[1C fix|| S 2} .

Assume G acts linearly on R™ . Let H bea subgroup of G occuring as the iso-

tropy subgroup at a point x € R®:ie.,

H={g€G | gx=x} .

If x#0,then H occurs also as the isotropy subgroup at any point y # 0 lying on the
line passing throught 0 and x . Moreover, the H—fixed point set

F(HR") = {x €ER" | hx=x forall h€ H}

is a k—dimensional linear subspace of R™ for k < n, so that F(H,IRn) is diffeomorphic to
RX . Clearly, for an orthogonal action of G on D™, the H—fixed point set F(H,D") is



diffeomorphic to Dk .

Any smooth action of G on M induces (via the differential of the action} a linear
representation of G on the tangent space T M at any point x € M left fixed by the
action of G .If M =R"™ and the action is linear, then the representation of G on TxM

is equivalent to the original actionon M.

Now we wish to state some specific problems in transformation groups. These prob-
lems are interrelated and it follows easily from the above discussion that all of them have
affirmative answers in the case of linear actions. Unless otherwise stated, G is a compact
Lie group and H is a closed subgroup of G . As usual, M(H) consists of all orbits in M
of type G/H.

Pradom 1. If G actson D™ with the origin as a fixed point, then for H# G with
DI(IH) $@,is Sl(l'ﬁ # @ ? Is this the case when the action on the boundary D" = i1

is orthogonal ?

Pradloms 2. 1 G actson D" andif F(G,D") Cint D", does F(G,D") contain at

most one point?

Peadton 3. I G actson S™ x [0,1] so that theset F of fixed points touches
S™ x {0}, does F also touch S™ x {1} ? Is this the case when the action on both ends is

orthogonal?

Peadtoms 4. Let G act on R with a fixed point x . If [RI(IH) #@ for H$ G,
must x be in the closure of IRI(IH) ? In the case of smooth actions, by the Slice Theorem,

this amounts to asking whether each isotropy subgroup in R™ occurs also in the
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representation on the tangent space TxIR11 .

Peadlom 5. Let G be a torus actingon R™. For H# G, is F(HR™) connected?
Is it connected when G = ! 7

Peadlom 6. Let G act smoothly on R™ . If [R‘(‘H) #@ for H# G, is it true that
the isotropy subgroup representations on the normal spaces of orbits at two points in RI('H)

are equivalent?

Peadlom 7. I G acts on R" and if F(G,R™) is compact, does F(G,R™) contain
at most one point? If F(H,R™) is also compact for H# G, does F(H,R") = F(G,R") ?

Peadlome 8. Let G act on R, D™, or S™ with fixed point set F . Is it true that

each connected component of F has the same dimension?

Peadlom 9. Let G act smoothly on M =R™ or D" (resp., S" ) with at least two
(resp., three) fixed points. Is it true that for any two fixed points x and y, the represen-

tations of G on the tangent spaces T M and Ty M are equivalent?

Problems 1, 2, 3, and 4 are listed in the Bredon’s book [B; p. 205]. Problem 4 was
posed by Raymond for G = st , and Problem 5 is due to Mostert; see [M; Problems 11
and 12 on p. 353]. Problem 6 goes back to Hsiang and Hsiang [HH; Problem 16]. Problem
7 was posed by Smith [Sm; Question on p. 412] for G = Hp q’ the cyclic group of order
pa for two relatively prime integers p and q . Problems 8 and 9 are stated in the
Bredon’s book [B; the second remark on p. 58]. In Problem 9, we excluded the special and
important case of smooth actions of G on S® with exactly two fixed points. In this case,

the question of the equivalence of the representations of G at two fixed points goes back
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to Smith [Sm; the footnote on p. 406]. The complete list of groups G for which the
answer to the Smith question is negative, is still unknown, and we will not discuss this

question here.

Finally, observe that if G (resp., H) is a torus, a finite p—group or it8 extension by
a torus, then it follows from Smith Theory that the answers to Problems 1-9 all are affir-

mative.

Section 2

In this section, we collect first examples of smooth actions which provide negative
answers to some of the problems stated in Section 1. First recall that a smooth manifold F
is called adedly campidar if there exists a smooth embedding of F into some Euclidean
space such that the normal bundle of the embedding admits a complex structure. In parti-
cular, a stably complex manifold F is orientable and all connected components of F are

either even or odd dimensional.

Example 2.1. Let p and q be two relatively prime integers and let F be a closed
smooth manifold such that each connected component of F has the same dimension.
Edmonds and Lee [EL] showed that there is a smooth action of IZp q On some R® with
fixed point set F is the following two cases.

(i) F is stably parallelizable.

(ii) F is stably complex and the integers p and q are sufficiently large with
respect to the dimension of F .

This provides negative answers to the first question in Problem 7.



.

Example 2.2. For two relatively prime integers p and q, Edmonds and Lee [EL]
constructed a smooth action of Z pq O some R™ with exactly two fixed points and in-
equivalent respresentations there at, providing a negative answer to Problem 9 in the case

_ _mh
G-lpq and M=R".

Example 2.3. For G = s! and H= I, C st , Stein [St] constructed a smooth
actionof G on §° with isotropy subgroups G, H, 13, 1[2, and the trivial subgroup 0,
such that F(G,S5) o s! and S?H) consists of just one orbit. By taking the equivariant
connected sum of k copies of 85 for any k 2 1, we get a smooth action of G on S5
with the same isotropy subgroups as before, such that F(G,Ss) o s! and S?H) consists of
k orbits. By removing from 35 a sufficiently small open invariant disk around a fixed
point, we get a smooth action of G on D° (orthogonal on oD° = st ) with isotropy
subgroups G, H, Iy, T, and 0, such that F(G,D°) ¥ D' and D?H) consists of k orbits.
Clearly, D?H) Cint D° , 80 that we get a negative answer to Problem 1. By restricting the
action to int D5 , we get a smooth action of G on IR5 with isotropy subgroups G, H, ﬂs,
I, and 0, such that F(G,IRS) v R! and IR?H) consists of k orbits. This provides nega-
tive answers to Problems 4 and 5. However, note that the representations of H on the
normal spaces of orbits at any two points in IR?H) are equivalent, so that this example

does not provide a negative answer to Problem 6.

Example 2.4. For G = ”pqr

mutually prime integers, Assadi [A; pp. 91-92] constructed a smooth action of G on

and H= Hpq , where p, q,and r are three distinct

some R" with isotropy subgroups G, H, Hp, /) q’ and 0, such that F(G,IRn) is just one
point and F(H,IRn) consists of r+1 points, so that IR'(IH) is just one orbit. This provides
negative answers to Problems 4 and 7.

Example 2.5. For G = HPQIGHPQIGHS and H=leqr$ﬂ , where p, q, T,

par
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and s all are distinct and mutually prime, Assadi [A; pp. 92—94] constructed a smooth
action of G on adisk D™ such that F(G,D") consists of k points for any k > 1, and
F(H,D") consists of k+s points, 50 that DI(IH) is just one orbit. Clearly,

F(G,Dn) C int D™ . Hence, for k > 1, this provides a negative answer to Problem 2. By
setting k =1 and taking the equivariant double of D" , he obtained a smooth action of
G on S" such that F(G,S™) consists of two points and SI(lH) consists of two orbits. By
removing from s a sufficiently small open invariant disk around a fixed point, he
obtained a smooth action of G on D™ (orthogonal on dD™ = o1 ) such that F(G,D™)
is just one point and DI(IH) consists of two orbits lying in the interior of D™ . This pro-
vides a negative answer to Problem 1. By restricting the action to int D" , he obtained a
smooth action of G on R" such that F(G,R") is Just one point and IR](IH) consists of

two orbits. This, in turn, provides negative answers to Problems 4 and 7.

Section 3

In this section, we wish to discuss some results obtained by the author. First, we
point out that for a compact Lie group G, the answers to Problems 8 and 9 depend only
on the quotient group G /GO , where G0 is the identity connected component of G .

More specifically, the following two theorems hold.

Theorem 3.1. 2/ G 4 a compac Liz praups . Thon Uz follassing throe condidions
(1) Fat any smaalh aclisn of G an a dish (eesp., Suclidban space), of any boa
fid frainds Yz acpcsontalions of G are equivalond .
(2) ot any smaclh aclionaf G an a disk (4esp., Euclidean space), cack fued
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(3) Jm G/G, azch clamend has prime frowsok ardbr .

Theorem 3.2. %/ G 4 a camppadd Lic praups . Thon Yie follassing Uhrar condiions
(1) Fot any smaclh adlion af G an a spifore (1esp., hamalogy sphore) ik af

Last thee freed frainds | ol any boa fired fainds Yie acpresondalions of G are eguivalont .
(2) Fot any smacti adlion of G an a sphore (wcsps., hamalafry sphore), cach fued
(3) Jm G/G), cach clwmand has puime pawor ardon .

In Theorems 3.1 and 3.2, (3) implies (1) by [P,; Propositions 7.1 and 7.2] and (1)
implies (2) because, by the Slice Theorem, the trivial summand of the representation of G
at a fixed point x has the same dimension as does the fixed point set connected compo-
nent containing x . In order to show that (2) implies (3), for any compact Lie group G
such that G/G0 has a cyclic subgroup not of prime power order, the author has construc-
ted smooth actions of G on disk, spheres, and Euclidean spaces with fixed point set
connected components of different dimensions (see [P,; Example 6.1], [P,; Theorems (1)
and (2)], and Examples 3.3 and 3.4 below). Therefore, the answers to Problems 8 and 9 are

negative if and only if G/ G0 has a cyclic subgroup not of prime power order.

Example 3.3. Let G be a compact Lie group and let F be a smooth manifold with-
out boundary. The author [P3] proved that there is a smooth action of G on some R™
with fixed point set F in the following two cases (cf. Example 2.1).

(i) Either G, is abelian and G/G0 is not of prime power order, or G, is non-
abelian, and F is a stably parallelizable manifold with all connected components of the
same dimension.

(ii) G/G, has a cyclic subgroup not of prime power order, and F is a stably com-
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plex manifold.
By choosing compact F , we get negative answers to the first question in Problem 7.
In (ii), by choosing F with fixed point set connected components of different dimensions,

we get negative answers to Problems 8 and 9 for M = R".

In the case of smooth actions of G on disks for a compact Lie group G such that
either G0 is not of prime power order, or G0 is nonabelian, there is a restriction on the
Euler characteristic of the fixed point set F . Namely, it follows from the work of Oliver
[0,] and [O,] that

x(F) =1 (mod nG) ,

where ns is the integer defined and calculated by Oliver [0,], [O,], and [O4]. Recall
that N, = nG/GO when G0 is abelian and n, =1 when G0 is nonabelian.

Example 3.4. Let G be a compact Lie group and let F be a compact smooth mani-
fold. The author [P3] proved that there is a smooth action of G on some D" with fixed
point set F in the following two cases.

(i) Either G0 is abelian and G /G0 is not of prime power order, or G, is non-
abelian, and F is a stably parallelizable manifold with all connected components of the
same dimension and with x(F) =1 (mod ng) .

(i) G/ G0 has a cyclic subgroup not of prime power order, and F is a stably com-
plex manifold with x(F) =1 (mod ng) .

By choosing closed F , we have F Cint D", 50 that we get negative answers to
Problem 2. In (ii), by choosing F with fixed point set connected components of different

dimensions and taking the equivariant double of D", we get a smooth action of G on S™
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with fixed point set connected components of different dimension. Thus, we get negative

answers to Problems 8 and 9 for M = D" and S®.

Example 3.5. In Example 3.4 (ii), choose F so that it contains at least one isolated
point and one connected component of positive dimension. By taking the equivariant
double of D, we get a smooth action of G on S™ with fixed point set containing an
isolated point x and a point y in a connected component of positive dimension. By remo-
ving from S™ sufficiently small open invariant disks around x and y , we get a smooth
action of G on S™ ! x [0,1] which is orthogonal on both ends S® ! x {0} and
s1 {1} , and the fixed point set touches only one end. Thus, we get a negative answer
to Problem 3.

Note that ifin G /G0 , each element has prime power order, then such an action of
G on S*1x [0,1] does not exist. In fact, if this can happen, then there would exist a
smooth action of G on D" , a8 well as on st , with fixed point set connected components
of different dimensions which is impossible by Theorems 3.1 and 3.2. Therefore, the answer
to Problem 3 is negative if and only if G/G0 has a cyclic subgroup not of prime power
order.

Example 3.6. For G = Hpq and H= Hpq , where p, q,and r are three distinct

r
mutually prime integers, the author [P2; Example 6.2] has constructed a smooth action of
G onsome D" with isotropy subgroups G, H, Hp, ﬂq, ﬂr ,and 0, such that F(G,Dn)
is just one point and DI(IH) consists of r copies of plxsl, By taking the equivariant
double of D™, we get a smooth action of G on S" such that F(G,S") consists of two

2 _slxsl. By removing from S™

points and SI(IH) consists of r copies of the torus T
a sufficiently small open invariant disk around a fixed point, we get a smooth action of G
on D" (orthogonal on #D" = st ) such that F(G,D") is just one point and DI(IH)

consists of r copies of the torus T2, Clearly, DI(IH) Cint D", so that we get a negative
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answer to Problem 1. By restricting the action to int D", we get a smooth action of G
on R™ such that F(G,R") is just one point and IRI('H) consists of r copies of the torus.
Clearly, F(H,R") = F(G,R®) U IRI(IH) . Thus, we get negative answers to Problems 4 and 7.
Compare the results obtained here with those in Examples 2.4 and 2.5.

Section 4

In this section, we construct new examples of smooth actions of G on disks, spheres,
and Euclidean spaces with prescribed H—fixed point sets for a proper subgroup H of G.
In order to construct these actions, we apply the equivariant thickening procedure obtained
by the author [Pl] (see [P3] for the details). The procedure requires the existence of a
suitable G—vector bundle over a G-CW complex X . In order to get such a G—vector
bundle, we use the space Map _(G,SU(n)) of maps 6:G — SU(n) preserving the neu-
tral elements of G and SU(n), with the action of G given by g &a) = 6(ag) G(g)—l .
This G—space is useful because there is a natural one—one correspondence between special
unitary G—vector bundle structures on X x C" over X and equivariant maps from X

into Map (G,SU(n)) . For a given map
X — Map,(G,SU(m)), x— 0 ,
the corresponding action of G on X x C" is defined by
8(x,v) = (gx,0,(8)"v) ;

cf. [B; Chapter VI, Proposition 11.1] and [P2; Proposition 4.1].
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Example 4.1. Let H be a finite group not of prime power order, such that any two
Sylow subgroups of H intersect trivially. Let Fl""’Fk be parallelizable smooth manifolds
all either even or odd dimensional, such that each F, has the structure of a CW complex
containing as a deformation retract a subcomplex L, which is either a point or a wedge of

circles. Assume also that each Fi is compact and
x(Ly) + ... + x(Ly) =0 (mod np) ,

where ng is the Oliver integer of H, (resp., assume that each Fi is without boundary;
no restriction on the Euler characteristic). Let F and L be the disjoint unions of all F,
and L, , respectively. Since L has finitely many cells and x(L) = 0 (mod nH) (resp., L
has countably many cells), and H is not of prime power order, it follows from the work of
Oliver [O,] (resp., Assadi [A]) that there is a finite (resp., finite dimensional, infinite,
countable) contractible H-CW complex Y with fixed point set

Yi-(}]L,

the disjoint union of a point b and L . Moreover, we may assume that for each proper
subgroup I of H not of prime power order, each equivariant cell H/I x D™ in Y has
an attching map, defined on H/I x sm-1 , that is constant on each copy {hI} x s of
the sphere Sm’_1 (resp., there is no equivariant cell of the form H/I x D™ in Y ). Since
any two Sylow subgroups of G intersect trivially, we may also assume that for each equi-
variant cell G/Ix D™ in Y, m <2 when I is nontrivial, and m € 3 when I is trivial;
of. [Po; Remarks 2.5 and 2.6] (resp., [A; Corollary I1.7.3]).

Now, consider Y UL F,thesumof Y and F along L, with the obvious action of

H (trivialon F ). Let C be a finite group. Put
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G=HxC

and consider (Y Uy F) x C with the product action of G.Let F, be a contractible
smooth manifold with dim Fo= dim F, (mod 2) for i =1,...k, and assume F, is com-
pact (resp., without boundary). Let X be the G—space obtained from (Y Uj F) x C and
F0 by identifying all points (b,c), ¢ € C, with a point in the interior of F0 . Then X is
a finite (resp., finite dimensional, infinite, countable) contractible G—CW complex with

fixed point set XG = FO and

X(H)=FNC .

Moreover, the family of isotropy subgroups in X—XG consists of the subgroups I x {e}
of G forall I occuring as the isotropy subgroups in Y . In particular,

XT =Fy || (FxC) .

Let Vy,..,V, be unitary representations of H with ViH = {0} for i=1,..k.

Assume that the following two conditions hold.
Dimeonsian Candilion . Forall 1<i, j<k,
dimFi-+-dimm\fi=dijj+dimmV-i .
ofmih Sandilian . For each prime power order subgroup P of H and all 1<,

j €k, the nontrivil summands of the restricted representations resg Vi and res]II, v j are

equivalent.
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For i=1,.k,put n, = [(dim F; + 1)/2] , the greatest integer in
n.
(dim F; + 1)/2 . Consider the representation € ‘e V; of H, where H acts trivially on

n. n.
€ . It follows from the Dimension Condition that the representations € ' ® \/ all have

the same dimension, say n . Let o, : H—— U(n) be the homomorphism corresponding

n,
toC'e V. It follows from the Smith Condition that o; |P and ajIP are equivalent for
each prime power order subgroup P of H . Therefore, by adding (if necessary) to each o;
the same 1-dimensional complex representation of H , we may assume that o, all are
special unitary representations; i.e., ai(H) C SU(n) ; see [P2; Lemma 7.3].

Let VO be a special unitary representation of G with V%; = {0}, and assume that
dim F0 + dimIR VO = dim Fi + dimIR Vi and for each prime power order subgroup P of
H , the nontrivial summands of the restricted representations resg V0 and res]g Vi are

n
equivalent. Put n, = [(dim F; + 1)/2] and consider the representation ¢ 0o Vg of
n
G, where G acts trivially on € 0 Let py: G— SU(n) be the homomorphism corres-
ng '

pondingto € “ ® V0 .
According to [P,; Proposition 4.2], the map

{: Map (G,SU(n))! —— Hom(H,SU(n)) x Map (C,SU(n))
8+— (8| H,6|C)

is a homeomorphism. Hereafter, H=H x {e} and C= {e} x C.For i =1,..k, let
p;: G—SU(n) begivenby p, = f_l(ai,p0 | C) . Explicitely,

p,(8) = £g(c)o (1)
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for g=(he), h€EH, c€C.
Recall that X1 = Fy || (F x C) and consider the G-map

n:XH

—— Map (G,SU())? C Map,(G,5U(n))
defined by mapping all points in F, to p; for i =0,1,....k , and extending thus obtained
map on FO L F to the unique G—-map on XH . We claim that n extends to a G—map

{ : X — Map _(G,SU(n)) .

Recall that the family of isotropy subgroups in x—xH consists of the subgroups
I=1x {e} of G for all proper subgroups I of H occuring as the isotropy subgroups in
Y .Let B be the disjoint union of X and all equivariant 0—cells G/I in X-XI . Ex-
tend n on B by mapping each G/I into Py -

If 1 is not of prime power order,  extends on cells G/I x D™ in X—XH because
the attaching maps are constant on each copy {gI} x S™L of the sphere st

If I is of prime power order, P; [T p j | and this amounts to saying that P; and
P lie in the same connected component of the fixed point set Map .(G,SU(n))I ; of. [Pz;
Corollary 4.3]. Therefore,  extends on cells G/I x D! in X—XH . Since each connected
component of Ma.p.(G,SU(n))I is 1—connected; cf. [P2; Corollary 4.5], n extends also
on cells G/I x D% in x—xH. Finally, n extends on cells G x p! , Gx D? , and
G x D% in X-XB because SU(n) is 2—connected, and thus, sois Map (G,SU(n)) .

Let E be the G—vector bundle over X corresponding to the G—map

¢ X—aMap.(G,SU(n)) .For i=1,..k, put M, = Fi x C . Since ¢’|J'{H = 7, the

1.
restricted G—vector bundle E]Mi splits into the product bundles M; x € ' and M. x V.

over Mi . Similarly, as G—vector bundles,
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n
0
E|Fj2(FyxC )@ (FyxVy) .

Since each F, is parallelizable, the tangent bundle TM; (resp., TM, ® (M, x [Rl) ) ad-

n.
mits the structure of the product bundle Mi x €' over Mi when dim Fi is even (resp.,

odd). Similasly, TF, (resp., TF,® (F0 x [Rl) ) admits the structure of the product bundle

n
FyxC 0 , when dim F is even (resp., odd). Therefore,
E[BXTB®U (resp, TB®U® (B xR)) ,

where U is the G—vector bundle over B with U|F,=F,xV,, U|M, =M, xV, and
u|(B—x1) = £|(B-xH).

Now, take the disk bundle of U over B, and then replace inductively equivariant
cells in X—B by equivariant handles in a way prescribed by E . This converts X intoa
smooth G—manifold M of dimension 2n (resp., 2n—1 ), where n is the fiber dimension of
E, such that M contains B as a smooth G—invariant submanifold with equivariant nor-
mal bundle U, M—B and U-B have the same isotropy subgroups and TM (resp.,

TM & (M x IRl) ) is induced from E via a G-homotopy equivalence f: M —— X coin-
ciding with the identity on B (see [P3; § 2] for the details of the equivariant thickening
procedure that we use here, and observe that in order to apply the procedure we add, if
necessary, to E and U the product bundles X x W over X and B x W over B, re-
spectively, for a suitable complex representation W of G ). In particular, TM (resp.

TM & (M x Rl) ) admits the structure of a complex G—vector bundle. Since neither G nor
H occurs as an isotropy subgroup in U-B , thus |

G

MP < F) and Mgy =M [[.. || M .
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Clearly, M = Fo Ll M(H) . Moreover, V; (or V. ® reng ) occurs as the normal repre-
sentation at any point in M, for i=1,..,k,and Vo (or \L ® W ) occurs as the normal
representatiom at any point in FO .

Since the finite (resp., infinite) complex X is contractible, sois M, and it follows

from the construction that M is diffeomorphic to either D211 or (resp., IR211 or

Using the actions just constructed, it is easy to get negative answers to Problem 1-9

2n-1

(except for Problem 5) by taking the equivariant doubles of D?® and D , removing

sufficiently small open invariant disks around fixed points in S2n and S2n—1

2n—-1

, and restric-
ting the actions to int D?® and int D . However, in order to get negative answers to
Problems 6, 8, and 9, it i8 necessary to assume that H has a cyclic subgroup not of prime
power order (otherwise the representations of H on the normal spaces of orbits at two
points in M(H) are equivalent; cf. Theorem 3.1). Now, if H has a cyclic subgroup not of
prime power order, then there are unitary representations Vl"”’vk of H with

VfiI = {0} fulfilling both the Dimension Condition and Smith Condition, such that V,
and V.i are inequivalent when i# j (see, e.g., [P,; Comments (1) and (2)].

Example 4.2. Let G = sl , the group of complex numbers of absolute value 1, and
let H=1 pq’ the cyclic subgroup of order pq generated by the primitive pq—th root of
unity. For any integer n, write t" : G —— U(1) for the unitary representation of G
defined by t"(z) = 2" .

Consider the action of G on € given by the representation t1 , and the trivial
action of G on R. This yields an orthogonal action of G on R3 = C®R . Take the
closed unit disk D> in RS with the action of G , and the decomposition of the boundary
dD° = 8% into the closed upper hemisphere S2 , the closed lower hemisphere S°, and
the equator S1 . Let Y be the quotient space obtained from p3 by taking the following
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quotients: S_?_/Zl , SE/II and Sl/H . Then Y admits the structure of a finite G—CW

complex whose fixed pointqset YG is a line segment. It follows from the Van Kampen

Theorem and the Mayer—Vietoris exact sequence that Y is contractible. By contracting
YG into a point, we may assume that YG = pt . Note that Y is built up from pt by
adding one equivariant 0—cell G/H , attaching one equivariant 1—cell G/ﬂp x D! and

one equivariant 1—cell G/I q x D1 , and finally attaching one equivariant 2—cell G x D2,

Choose a sequence of integers ny,...,n, with n, 21 for i=1,..k, consider

2n.-1
D !  with the trivial action of G, and put

2ni-—1

2n.—1

thesumof Y and G/HxD | along G/H=G/H x {0} . Then X$ is just one point
2n
x; . Now, choose an integer n, 2 0, consider D 0 with the trivial action of G , and take
2n
the space X obtained from XXy and D 0 by identifying all isolated fixed points
2n

x|, With the originin D . Then X is a finite contractible G~CW complex with
isotropy subgroups G, H, Ep, Eq , and the trivial subgroup {1} , such that

G_ _

2n, 2n,-1
where B0 =D and B, = G/HxD for i=1,..k.Put

B=By[|B ||.. [|B -

Choose special unitary representation VO’ Vl""'vk of G without trivial

n.
summands, such that the representations € 'e Vi all have the same dimension, say n,
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n.
where G acts triviallyon € ', and for P = )Ip and Hq , the restricted representations
G n. G n.
resp(C ‘evi) and resp(C JGVj)

are equivalent for all 0 <i, j<k. Let p;:G— SU(n) be the homomorphism corres-
n.
ponding to € ' ev,.

Now, consider the map
B —— Hom(G,SU(n)) C Map .(G,SU(n))

which maps all points in Bi into p; for i =0,1,...,k . Clearly, its restriction to Bi

n.
corresponds to the product bundle B, x (€ ‘e V) over B;.
We claim that the map defined on B extends to a G—map

X —— Map (G,SU(n)) .

First, recall that X is built up from B by attaching equivariant cells of the form
G/le x D1 , G/Hq x D! ,and G x D? . The extension on cells G/lp x D! and

G/Zlq x D! exists because pi|P v pj| P, so0that p, and P lie in the same connected
component of Map .(G,SU(n))P for P = ﬂp and 7 q

The extension on cells G x D? exists as well because the space
Map .(G,SU(n)) ~ ) SU(n)

i8 1—connected, proving the claim.

Let E be the resulting G—vector bundle over X . Clearly,
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E|B; ¥ TB, @ (B, x V,) .

Let U be the G—vector bundle over B defined by U|B, =B, x V; . Then

E|B~ TB ®U . By adding (if necessary) to E and U the product bundles X x W over
X and B x W over B, respectively, for a suitable representation W of G, we may
apply the equivariant thickening procedure described in [Pa; § 2], so that X converts
into a smooth G—manifold M diffeomorphic to D211

Hq ,and {1}, such that

, with isotropy subgroups G, H, Ilp,

G_ -
By taking the equivariant double of p2n , we get a smooth action of G on 520 guch that

F(G 52“)—52n° and S28 =M M
,S77) = (B =M Ll 1M,

2n.-1
where M, = slxs ' fori= 1,....k . By removing from 28 5 sufficiently small open

invariant disk around a fixed point, we get a smooth action of G on p2t (orthogonal on

the boundary) such that

2n 2“0 2n

|R2n

Finally, by restricting the action to int D211 , we get a smooth action of G on such

that

ony 200 2n
FGR™) =R ° and Rigy=M; || 11 M, .
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In all cases, resg(vi ® W) occurs as the normal representation at any point in M, for
i=1,.k.

These actions provide negative answers to Problems 1, 4, 5, 6, and 7. However, in
order to get such answers to Problems 6 and 7, we need to put 0, = 0 and choose special
unitary representations VO, ViV of G fulfilling the required conditions, such that
resg Vi and resg Vj are inequivalent when i # j. For example, assume that

0=n0<n1<...<nk,take
6,: G— SU(2ny —n, + 1)
defined by

-0, (p+q)

_ o PHa g Pl
6, =n,t""" & (n —n)(t" ©t7) B¢

and consider the representation Vi of G on € given via 0i for i=0,1,...,k.
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